Lightweight Authenticated Time (LATe) Synchronization Protocol

draft-navas-ace-secure-time-synchronization-00

Renzo Navas, Göran Selander, Ludwig Seitz

IETF 97, ACE WG. Seoul, Nov 17, 2016

Background/Motivation

- Freshness of information exchange can be assured by:
 - Time-stamps
 - Nonce-based exchanges
- Time-based solutions:
 - Typically have one less message than a nonce-counterpart protocol. Simplify exchanges/protocol: Good!
 - Drawback: There is the need for a (secure!) time synchronization protocol!
- ACE WG
 - Ace-oauth-authz: Needs Time-awareness for OAuth's PoP Token Validation and Expiration. (except for an Introspection setting)

Background/Motivation

- A secure time-source is assumed on most security services (not only constrained). But, it does not yet exist...
 - NTPv4 authenticated mode incurs in a circular interdependence:
 - "The lifetime of cryptographic values must be enforced, which requires a reliable system clock. However, the sources that synchronize the system clock must be trusted."
 - This problem is spotted and being solved at NTP WG "Network Time Security (NTS)" [I-D.ietf-ntp-network-time-security], it adds messages on top of a time protocol.
- ... and these future solutions <u>are not</u> resource-constrained friendly.

Protocol Goals

- Functional Goal:
 - The protocol enables a constrained node to obtain a local time representation from a trusted entity, with an associated +/- uncertainty.
- Security Goals:
 - **Authentication**: The time representation must be authenticated (data authentication).
 - **Freshness**: The time representation must be fresh (RFC4949: "Recently generated; not replayed from some earlier interaction of the protocol.")
- Design Goals:
 - Lightweight: Fewest messages possible, CBOR, COSE.
 - Easily transported over-foo, CoAP explicitly.
 - "ACE-embeddable".
- Non-goals: accurate time precision

Proposed Solution: Base Protocol

Proposed Solution: TIC and TOC CBOR MAPs

Parameter Name	CBOR Key	Value Type	registry	Description
nonce	4 (TBD)	bstr		A random nonce
kid	5 (TBD)	bstr		Key-ID is an opaque value and identifies the cryptographic key to be used in the response
alg (optional)	6 (TBD)	int	COSE Alg. Values	Identifies the cryptographic algorithm to be used in the resp.
server (optional)	7 (TBD)	tstr		Identifies the intended Server for time synchr.

Parameter Name	CBOR Key	Value Type	Description
time	3 (TBD)	uint (TBD)	A time representation information
nonce	4 (TBD)	bstr	A random nonce

CBOR Map 'TOC Response'

CBOR Map 'TIC Information'

Proposed Solution: TIC and TOC CBOR MAPs

Parameter Name	CBOR Key	Value Type	registry	Description
nonce	4 (TBD)	bstr		A random nonce
kid	5 (TBD)	bstr		Key-ID is an opaque value and identifies the cryptographic key to be used in the response
alg (optional)	6 (TBD)	int	COSE Alg. Values	Identifies the cryptographic algorithm to be used in the resp.
server (optional)	7 (TBD)	tstr		Identifies the intended Server for time synchr.

Parameter Name	CBOR Key	Value Type	Description
time	3 (TBD)	uint (TBD)	A time representation information
nonce	4 (TBD)	bstr	A random nonce

CBOR Map 'TOC Response'

Authentication of the the CBOR 'TOC Response', will be achieved by COSE.

CBOR Map 'TIC Information'

Example: TIC over CoAP

Example: TOC over CoAP

LATe on ACE

- Actor Mappings:
 - Authorization Server (AS) is the Time Server
 - Resource Server (RS) is the Time Client
 - Client (C) will relay messages
- Possible Scenarios:
 - 1. First Message C -> RS: Resource Request
 - 1.1. Response: Time Synchronization only needed
 - 1.2. Response: Time Synchronization + Access Token needed
 - 2. First Message C -> AS: ACE Basic Protocol Flow
 - 3. First Message RS -> AS: Direct Communication (RS Can do Introspection)

LATe on ACE: Scenario 1.2.

LATe on ACE: Scenario 1.2. MSG 2: ACE Info + TIC

This response is not yet defined on ACE. draft-gerdes-ace-dtls-authorize-00 defines "AS Information payload"

LATe on ACE: Scenario 1.2. MSG 5: POST /authz-inf (Token+ Auth TOC)

Next Steps

- Cryptographically analyze/validate base protocol
 - Attacks were studied on paper. Test on a crypto model.
 - Involve a crypto person.
- Refine ACE Scenarios

• Get feedback from ACE WG

Discussion

Do we need a secure lightweight time synchronization mechanism?

Thank you!

Comments/Questions?

Backup Slides

LATe on ACE: Scenario 1.1

