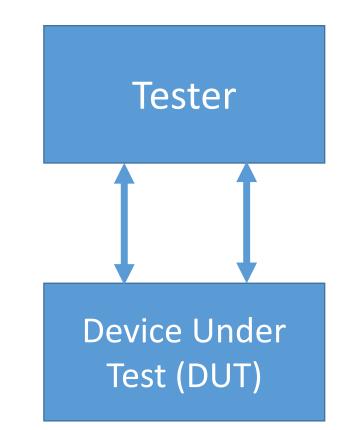
Benchmarking The Neighbor Discovery Protocol draft-ietf-bmwg-ipv6-nd-03 IETF 97


W. Cerveny Arbor Networks Ron Bonica & Reji Thomas Juniper Networks

Motivation

- For IPv6, Neighbor Discovery (ND) replaces the Address Resolution Protocol (ARP)
 - IPv6 ND is based upon ICMPv6
- IPv4 subnetwork are typically numbered small address blocks
 - /24 contains 255 elements
 - ARP scaling is not an issue
- IPv6 subnetworks are always numbered from /64 or larger
 - /64 contains 18,446,744,073,709,551,616 elements
 - ND scaling is an issue
 - RFC 6583 demonstrates that a port scan can be fatal to a naïve ND implementation

Approach

- Baseline Test
 - Send a stream that does not stress ND through DUT
 - Every packet in stream carries the same destination address
 - No loss should be observed
- Scaling
 - Send a stream that stresses ND through the DUT
 - Stream is identical to baseline in every way except that it carries many destination addresses
 - Loss will be observed

Results

- METRIC: NDP-MAX-NEIGHBORS
 - How many addresses can the stream carry before loss is observed
- Observation: What happens when NDP-MAX-NEIGHBORS is exceeded
 - Implementation crashes?
 - New neighbors cannot be acquired, but connectivity to previously acquired neighbors remains stable?
 - New neighbors can be acquired, but connectivity to previously acquired neighbors is lost?

Scaling Test Procedure Details

- NDP configured with RFC 4861 defaults
- Counters (2 per destination address)
 - One on transmit interface, one on receive interface
 - Both reset on first receive (allow for initial packet loss)
- Test procedure
 - Start flow with single destination
 - Set N to 2
 - Until N is equal to MAX-NDP-NEIGHBORS * 1.1
 - Set timer
 - Add a destination to the flow
 - Wait for reception of first packet with new destination or timer to expire
- Counters reflect loss for each destination

Next Steps

• WG Last Call