An Information Model for the Monitoring of Network Security Functions (NSF)

draft-zhang-i2nsf-info-model-monitoring-02

DaCheng Zhang Yi Wu Liang Xia Rakesh Kumar Anil Lohiya

Huawei Alibaba Huawei Juniper Juniper

November 2016 Seoul

Monitoring Part of I2NSF Architecture

Mailing List Discussion

- Does I2NSF need the work of NSF monitoring part? <u>Yes</u>
- Is producing a information model useful? <u>Yes</u>
- If we produce a YANG module, do we still need to publish the information model? <u>Not yet decided</u>
- What do you think of the content of the draft? <u>Nobody</u> <u>dislike it, some people say it is a good start, others say it</u> <u>is a key part and very useful</u>
- Improvement comments from Robert Moskowitz, Diego R. Lopez, Susan Hares, John Strassner, ...: <u>will consider,</u> <u>many thanks!</u>

Updates

- New contents for clearly describing:
 - <u>use cases</u> for NSF monitoring data;
 - <u>classification way</u> of NSF monitoring data;
 - <u>the way to export</u> NSF monitoring data;
 - <u>basic Information model</u> for all monitoring data
- Restructure the existing NSF monitoring data into suitable classification respectively
- Update and improvement on the detailed NSF monitoring data information model
- New co-authors from Juniper

Overall Introductory Contents for NSF Monitoring Data

- Use cases
- Classification
 - System Alarms, System Events, System Logs, System Counters
 - NSF Events, NSF Logs, NSF Counters
- The way to export
 - Pull-Push model, subscription method
 - Export frequency
 - Authentication
 - Transport method, data transfer mode

Basic Information Model

- The general information is included in each message as meta data information:
 - Message_version
 - Message_type
 - Time_stamp
 - vendor_name
 - NSF_name
 - NSF_type: firewall, WAF, IPS
 - NSF_version

NSF Monitoring Data IM Specification

- System Alarm
 - Memory Alarm
 - CPU Alarm
 - Disk Alarm
 - Hardware Alarm
 - Interface Alarm
- System Event
 - Access Violation
 - Configuration Change

- o event_name: 'IFNET_STATE_ALARM'
- o interface_Name: The name of interface
- o interface_state: 'UP', 'DOWN', 'CONGESTED'
- o threshold: The threshold triggering the event
- o severity: The severity of the alarm such as critical, high,

medium, low

o message: 'Current interface state'

- o event_name: 'ACCESS_DENIED'
- o user: Name of a user
- o group: Group to which a user belongs
- o login_ip_address: Login IP address of a user
- o authentication_mode: User authentication mode. e.g., Local Authentication, Third-Party Server Authentication, Authentication Exemption, SSO Authentication
 - o message: 'access denied'

NSF Monitoring Data IM Specification

- System Log
 - Access Logs
 - Resource Utilization Log
 - User Activity Log
- System Counter

– Interface counter

o user: Name of a user

- o group: Group to which a user belongs
- o login_ip_address: Login IP address of a user
- o authentication_mode: User authentication mode. e.g., Local Authentication, Third-Party Server Authentication, Authentication Exemption, SSO Authentication
- o access_mode: User access mode. e.g., PPP, SVN, LOCAL
- o online_duration: Online duration
- o lockout_duration: Lockout duration
- o type: User activities. e.g., Successful User Login, Failed Login attempts, User Logout, Successful User Password Change, Failed User Password Change, User Lockout, User Unlocking, Unknown
 o cause: Cause of a failed user activity

o interface name: Network interface name configured in NSF o in_total_traffic_pkts: Total inbound packets o out_total_traffic_pkts: Total outbound packets o in total traffic bytes: Total inbound bytes o out_total_traffic_bytes: Total outbound bytes o in_drop_traffic_pkts: Total inbound drop packets o out drop traffic pkts: Total outbound drop packets o in_drop_traffic_bytes: Total inbound drop bytes o out_drop_traffic_bytes: Total outbound drop bytes o in traffic ave rate: Inbound traffic average rate in pps o in_traffic_peak_rate: Inbound traffic peak rate in pps o in_traffic_ave_speed: Inbound traffic average speed in bps o in traffic peak speed: Inbound traffic peak speed in bps o out_traffic_ave_rate: Outbound traffic average rate in pps o out_traffic_peak_rate: Outbound traffic peak rate in pps o out traffic ave speed: Outbound traffic average speed in bps o out_traffic_peak_speed: Outbound traffic peak speed in bps.

NSF Monitoring Data IM Specification

- NSF Event
 - DDoS Event
 - Session Table Event
 - Virus Event
 - Intrusion Event
 - Botnet Event
 - Web Attack Event
- NSF Log
 - DDoS Log
 - Virus Log
 - Intrusion Log
 - Botnet Log
 - DPI Log
 - Vulnerability Scanning
 - Web Attack Logs
- NSF Counter
 - Firewall counter
 - Policy Hit Counter

- o event_name: the name of event: 'SEC_EVENT_WebAttack'
 o sub_attack_type: Concret web attack type, e.g., sql injection, command injection, XSS, CSRF
 o src_ip: The source IP address of the packet
 o dst_ip: The destination IP address of the packet
 o src_port: The source port number of the packet
 o dst_port: The destination port number of the packet
 o stc_zone: The destination security zone of the packet
 o dst_zone: The destination security zone of the packet
 o req_method: The method of requirement. For instance, 'PUT' or 'GET' in HTTP
 o req_url: Requested URL
 o url_category: Matched URL category
 o filtering_type: URL filtering type, e.g., Blacklist, Whitelist, User-Defined,
 Predefined, Malicious Category, Unknown
- o rule_id: The ID of the rule being triggered
- o rule_name: The name of the rule being triggered
- o profile: Security profile that traffic matches.
- o attack_type: Web Attack
- o rsp_code: Response code
- o req_clientapp: The client application
- o req_cookies: Cookies
- o req_host: The domain name of the requested host
- o raw_info: The information describing the packet triggering the event.
 - o src_zone: Source security zone of traffic
 - o dst_zone: Destination security zone of traffic
 - o src_region: Source region of the traffic
 - o dst_region: Destination region of the traffic
 - o src_ip: Source IP address of traffic
 - o src_user: User who generates traffic
 - o dst_ip: Destination IP address of traffic
 - o src_port: Source port of traffic
 - o dst_port: Destination port of traffic
 - o protocol: Protocol type of traffic o app: Application type of traffic
 - o policy id: Security policy id that traffic matches
 - o policy name: Security policy name that traffic matches
 - o hit times: The hit times that the security policy matches the specified traffic.

Next Step

• Comments are welcome!

 Be aligned with I2NSF framework and terminology drafts

• Keep on improving...

Thanks!

Liang Xia (Frank)