
On Redesigning the Unequipped Ship:
Load Transient Awareness and AQM Algorithms

Ilpo Järvinen and Markku Kojo
ilpo.jarvinen@helsinki.fi, markku.kojo@cs.helsinki.fi

Department of Computer Science
University of Helsinki

iccrg @ IETF-97
November 2016

Outline

1 Motivation

2 AQM and Exponential Load Transients

3 Predict AQM Algorithm Overview

4 Results

5 Predict AQM Algorithm Internals

6 Fair Queuing as a Solution?

7 Conclusions

iccrg @ IETF-97 November 2016 2

Motivation: A Storm and Calm Waters

 0
 50

 100
 150
 200
 250
 300

 0 1 2 3 4 5 6 7 8

C
W

N
D

Time (s)

Slow
start

Congestion avoidance

Two main phases of a TCP connection: slow start and
congestion avoidance
Congestion avoidance resembles calm waters
Slow start is like a storm

The storm gets worse all the time if AQM does not respond
Slow start is frequent!

ON-OFF traffic (e.g., Web traffic), whenever a flow starts
Causes exponential load transients at least near the network
edge

If enough link capacity to the core exists, significant transients
possible also deeper in the core

Seems natural to design for it
While we refer to “TCP slow start” here, this work applies to
other exponential self-clocked bandwidth probing too

iccrg @ IETF-97 November 2016 3

Motivation: Past Load Transient AQM Work

 0
 50

 100
 150
 200
 250
 300

 0 1 2 3 4 5 6 7 8

C
W

N
D

Time (s)

Slow
start

Congestion avoidance

Unfortunately, AQM algorithm control loops typically designed
congestion avoidance in mind

We and others have shown that AQM algorithms have issues
with load transients?

?

I. Järvinen et al., “Harsh RED: Improving RED for Limited Aggregate Traffic,”
in Proceedings of the AINA-2012, Mar. 2012
I. Järvinen and M. Kojo, “Evaluating CoDel, PIE, and HRED AQM Techniques
with Load Transients,” in Proceedings of the LCN 2014, Sep. 2014
T. Høiland-Jørgensen et al., “The Good, the Bad and the WiFi: Modern AQMs
in a residential setting,” Computer Networks, vol. 89, pp. 90–106, Oct. 2015

iccrg @ IETF-97 November 2016 4

Motivation: Past Load Transient AQM Work (2)

 0
 50

 100
 150
 200
 250
 300

 0 1 2 3 4 5 6 7 8

C
W

N
D

Time (s)

Slow
start

Congestion avoidance

Exponential load growth during slow start is much more rapid
than the current AQM algorithms expect by design

Latency spikes
Exponential load transients with multiple flows participating
overpower control authority of the AQM algorithm even after
congestion is detected
Load transients usually tested only after the AQM algorithm
design phase?

But this far, we have had no way to show how good the
performance could be

We need an AQM algorithm that is designed primarily
exponential load transients in mind

iccrg @ IETF-97 November 2016 5

AQM and Exponential Load Transients

Load changes very rapidly
“Current load” becomes stale very quickly

Two pitfalls for AQM algorithms
Too slow reaction ⇒ Large latency spike
Too fast reaction ⇒ Flow completion time (FCT) increases
with longer RTTs

Makes painfully long wait with intercontinental flows even
longer

In odds with each other
Single parameter is not enough (for RTT, interval, etc.)

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

FC
T
 (

s)

RTT (msecs)

Taildrop (with unlimited queue)
PIE
CoDel

On the bright side
Slow start is quite deterministic
Signal-to-noise ratio gets better and better because of
exponential amplification

iccrg @ IETF-97 November 2016 6

AQM and Exponential Load Transients (2)

Load estimation is an open question in congestion control
research (RFC 6077)

Three challenges

Horizon problem
RTT uncertainty
Stale load estimates

Lets look next into these challenges one by one

iccrg @ IETF-97 November 2016 7

AQM and Exponential Load Transients: Horizon Problem

Look ma, no
ships on the seas

today!

Horizon limits visibility to a small part of
the end-to-end path

Only a subset of the outstanding packets
in the router queue
No packets within horizon does not
imply no packets on the end-to-end path
And vice-versa, packets within horizon
do not imply that end-to-end path is
saturated

Questionable to use queue length or
queuing delay for load estimation in AQM
algorithms

iccrg @ IETF-97 November 2016 8

AQM and Exponential Load Transients: RTT Uncertainty

Mom, when
does that ship

return?

RTT is a key parameter determining how
quickly the exponential load transient
load increases (doubles)

Routers typically do not know the RTTs
of the flows

Challenging to use a measurement
interval in load estimation (RFC 6077)
Typically AQM algorithms select
“worst-case” or “average” RTT and
tune only to that

With other RTTs, the reaction is too
slow or too fast

Would require reconfiguration whenever
the peer changes

But with very frequent changes,
reconfiguration is not an option

iccrg @ IETF-97 November 2016 9

AQM and Exponential Load Transients: Stale Load Estimate

RTT

In exponential load transients, the load
grows rapidly

Congestion signal (its effects) takes one
RTT to reach back the signalling router

Load grows also during this time

If congestion signal is based on
“current load”, AQM is always behind
the traffic by (at least) one RTT
Any estimate of “current load” is
already stale when measured
Must predict load to counter this RTT
long delay

Stale load estimate is solvable for free,
once we have a solution to the horizon
problem and RTT uncertainty

That is, when we know the parameters
of the exponential growth

iccrg @ IETF-97 November 2016 10

Predict AQM Algorithm? Overview
Measures the parameters of an exponential load
transient from the traffic

Truly auto-tunes for different RTTs
Able to use “right measurement interval” (RFC 6077)

Capability to predict the load growth to future

Tracks load below saturation accurately, also when
queue length or queuing delay ≈ 0

Should be fully compatible with pacing
In contrast to most AQM algorithms that rely on non-paced
TCP artifacts to work as good as they do

Pacing during slow start delays response as no queue forms

Timely full load detection allows eliminating/relaxing
multiplicative decrease

TCP is not ready to timely signal and backs off
ECN-based hack for testing purposes to terminate TCP slow
start without window reduction (TCP continues in CA)

Only in proof of concept state currently
Fairness / congestion avoidance aspects not solved yet

?Paper under submission

iccrg @ IETF-97 November 2016 11

Test Setup

End-to-end RTT varied: 12 msecs - 600 msecs
“Infinite” buffer

Only AQM algorithm drops
No drops with Taildrop (for “optimal” flow completion time)

Workload:
1 to 4 TCP flows (only 4 shown here)

Flow start times distributed over the first RTT

Scaled payload (12 · end-to-end BDP)
To avoid sampling too much from congestion avoidance
Divided equally to the TCP flows

Ns2 simulations, 100 replications

In addition, some real network measurements

iccrg @ IETF-97 November 2016 12

Results: Maximum Sojourn Time

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

M
e
d

ia
n

 a
n
d

 i
n
te

r-
q

u
a
rt

ile
 r

a
n
g

e
 o

f
th

e
 m

a
x
im

u
m

 s
o
jo

u
rn

 t
im

e
 (

m
se

cs
)

RTT (msecs)

Taildrop (unlimited queue)
Predict
PIE
CoDel
SFQ-CoDel

iccrg @ IETF-97 November 2016 13

Results: Maximum Sojourn Time

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

M
e
d

ia
n

 a
n
d

 i
n
te

r-
q

u
a
rt

ile
 r

a
n
g

e
 o

f
th

e
 m

a
x
im

u
m

 s
o
jo

u
rn

 t
im

e
 (

m
se

cs
)

RTT (msecs)

Taildrop (unlimited queue)
Predict
PIE
CoDel
SFQ-CoDel

PIE and CoDel do not control congestion with short flows and
small RTTs (too slow reaction)

iccrg @ IETF-97 November 2016 14

Results: Maximum Sojourn Time (6MB payload)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

M
e
d

ia
n

 a
n
d

 i
n
te

r-
q

u
a
rt

ile
 r

a
n
g

e
 o

f
th

e
 m

a
x
im

u
m

 s
o
jo

u
rn

 t
im

e
 (

m
se

cs
)

RTT (msecs)

Taildrop (unlimited queue)
Predict
PIE
CoDel
SFQ-CoDel

This is what happens when the flows are long enough for PIE
and CoDel to react also with small RTTs

iccrg @ IETF-97 November 2016 15

Results: Maximum Sojourn Time

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

M
e
d

ia
n

 a
n
d

 i
n
te

r-
q

u
a
rt

ile
 r

a
n
g

e
 o

f
th

e
 m

a
x
im

u
m

 s
o
jo

u
rn

 t
im

e
 (

m
se

cs
)

RTT (msecs)

Taildrop (unlimited queue)
Predict
PIE
CoDel
SFQ-CoDel

Shallow increasing slope with Predict due to larger
transient-only queue spikes with larger RTTs

iccrg @ IETF-97 November 2016 16

Maximum Sojourn Time (with SFQ-CoDel best flow)

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

M
e
d

ia
n

 a
n
d

 i
n
te

r-
q

u
a
rt

ile
 r

a
n
g

e
 o

f
th

e
 m

a
x
im

u
m

 s
o
jo

u
rn

 t
im

e
 (

m
se

cs
)

RTT (msecs)

Taildrop (unlimited queue)
Predict
CoDel
SFQ-CoDel
SFQ-CoDel
(best flow)

Previous SFQ-CoDel results were from the worst flow only
Even the best flow with SFQ-CoDel is no match for Predict

iccrg @ IETF-97 November 2016 17

Results: Flow Completion Time

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

M
e
d

ia
n

 a
n
d

 i
n
te

r-
q

u
a
rt

ile
 r

a
n
g

e
 o

f
 t

h
e
 l
o
n

g
e
st

 fl
o
w

 c
o
m

p
le

ti
o
n
 t

im
e
 (

s)

RTT (msecs)

Taildrop (unlimited queue)
Predict
PIE
CoDel
SFQ-CoDel

PIE and CoDel react too fast with large RTTs

iccrg @ IETF-97 November 2016 18

Flow Completion Time (FCT) of a real Web Page

Simulated results with FCT increase made
us curious if we could also see the effect
for a real Web site too as increase in Page
load time

Since we’re at Seoul now, we used a
relevant Website (AREX?mainpage
http://www.arex.or.kr/)
Web transaction was initiated from
Finland by a Firefox browser (SYN RTT
≈ 310 msecs)
Turns out the answer is YES

Due to time constraints only a 5Mbps
bottleneck link test was possible (vs
20Mbps in simulations)

With larger BW and BDP, the difference
might be even larger

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Taildrop CoDel FQ-CoDel

P
a
g
e
 l
o
a
d
 t

im
e
 (

m
in

,
2

5
th

,
m

e
d
ia

n
,
7

5
th

,
m

a
x
)

(s
)

10 replications

Page load time

?Not affiliated to us in any way

iccrg @ IETF-97 November 2016 19

Results: CDF of Sojourn Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n
 f

u
n
ct

io
n
 (

C
D

F)

Sojourn time (msecs)

RTT = 90 msecs

Taildrop
Predict

PIE
CoDel

SFQ-CoDel
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n
 f

u
n
ct

io
n
 (

C
D

F)

Sojourn time (msecs)

RTT = 250 msecs

Taildrop
Predict

PIE
CoDel

SFQ-CoDel
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n
 f

u
n
ct

io
n
 (

C
D

F)

Sojourn time (msecs)

RTT = 90 msecs, 6MB payload

Taildrop
Predict

PIE
CoDel

SFQ-CoDel

Beware: different x-axis scales
Again, Predict leads with a very clear margin
Note: workload/metrics selection can diminish slow start
effects in results (leftmost vs rightmost figure)

iccrg @ IETF-97 November 2016 20

Results: Max Sojourn Time with Heterogeneous RTTs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

 f
u
n
ct

io
n

 (
C

D
F)

Maximum sojourn time (msecs)

20-350 msecs RTTs, 6MB payload, 27 RTT combinations * 100 replications

Taildrop (unlimited queue)
Predict

PIE
CoDel

SFQ-CoDel

iccrg @ IETF-97 November 2016 21

Results: Max Sojourn Time with Pacing

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

M
e
d

ia
n

 a
n
d

 i
n
te

r-
q

u
a
rt

ile
 r

a
n
g

e
 o

f
th

e
 m

a
x
im

u
m

 s
o
jo

u
rn

 t
im

e
 (

m
se

cs
)

RTT (msecs)

6MB payload

Predict (without TCP Pacing)
Predict
PIE
CoDel
SFQ-CoDel
W/o pacing
(SFQ-CoDel,
PIE, CoDel)

Predict yields equal or better sojourn time with pacing
Higher maximum sojourn times with PIE and CoDel

iccrg @ IETF-97 November 2016 22

Predict AQM Internals

Timeslots

At the end of each timeslot, store
load (link busytime) into a history
array (big, 2-d)

Rolling sums, the tslot busy array
used for subtracting at the tail

Queue history in another array

At end of each timeslot, collect the
loads (history+queue) from prior
RTTs into a last array

Collect using a stretched RTT
that takes into account
self-induced RTT variations due
to transient queuing

iccrg @ IETF-97 November 2016 23

Predict AQM Internals (2)

Multiple predictors for candidate RTTs, heuristics to select
the right candidate RTT

The last array is collected for each predictor
Look for exponential load growth using the last array

Predict the load growth using exponential trend one RTT
ahead in order to signal the sender in time

Good enough match between the candidate and real RTT is
enough for in the ballpark prediction

Well ahead of traffic, no need to use head drop hack to deliver
feedback “sooner”

iccrg @ IETF-97 November 2016 24

Predict AQM Computational Complexity

More detailed analysis of traffic than in other AQM
algorithms

Inherently higher computational cost

However,

Reasonable enqueue/dequeue complexity
Most work done at the end of a timeslot
Uses precalculated values, at the cost of memory

Less memory needed than the memory required to buffer the
worst-case non-saturating slow-start transients

iccrg @ IETF-97 November 2016 25

Fair Queuing as a Solution?

In many cases, FQ works just fine (for hiding AQM
shortcomings with load transients)

However,
Latency sensitive flow must have low enough rate

In general, latency sensitive flows cannot control how many
flows they compete with
“Equal-rate” (or “fair-share”) is unknown, could be quite
small

If a flow participating in the exponential load transient is
latency sensitive, FQ does not help

Better to control the exponential load transient in timely
manner with AQM algorithm

Good latency for all

iccrg @ IETF-97 November 2016 26

Conclusions and Research Insights

Handling exponential load transients should be considered
already during AQM algorithm design phase

Not done in the past ⇒ AQMs have hard time to correctly
manage such transients, results in flow completion time (FCT)
and delay issues

It is like designing a ship only for calm waters
. . . and releasing it to the rough waters on the Internet

Predict AQM algorithm
First(?) AQM algorithm addressing exponential load transients
as the primary design goal
Nearly optimal control w.r.t. FCT vs delay tradeoff
Scales to a large RTT range
Allows relaxing the requirement for multiplicative decrease
By no means, we claim that Predict AQM approach is the best
or only way to handle the exponential load transients

A curve fitting approach would likely be more robust, but
needs to be cheap computationally

This work gives additional insights on solving the open
challenge about “measuring a current link load” (RFC 6077)

iccrg @ IETF-97 November 2016 27

Backup Slides

iccrg @ IETF-97 November 2016 28

Related Work Comparison

Modifies Flow completion Overshoot with Relaxed MD at
time (FCT) pacing during SS the end of SS

Router only AQMs Router Harmed with Yes Not allowed
(PIE, CoDel) large RTTs
Predict Router+end host Ok No Yes
DualQ/DCTCP Router+end host Harmed with Yes Yes, but limited

large RTTs
HyStart End host Ok Incompatible Yes, to CA without

with pacing congestion signal

iccrg @ IETF-97 November 2016 29

	Motivation
	AQM and Exponential Load Transients
	Predict AQM Algorithm Overview
	Results
	Predict AQM Algorithm Internals
	Fair Queuing as a Solution?
	Conclusions

