
TCP-CCC:	single-path	TCP	congestion	
control	coupling
draft-welzl-tcp-ccc-00

Michael	Welzl,	Safiqul	Islam,	Kristian	Hiorth,	You Jianjie

1

ICCRG
97th	IETF	Meeting

Seoul,	South	Korean
Nov	15	2017

Motivation
• Parallel	TCP	connections	between	two	hosts:
Combining	congestions	controllers	can	be	
beneficial
– Very beneficial:	short	flows	can	immediately	use	an	
existing	large	cwnd,	skip	slow	start;	also	avoids	
competition

– Can	divide	available	bandwidth	between	flows	based	
on	application	needs

• Previous	methods	were	hard	to	implement	+	hard	
to	turn	on/off	(Congestion	Manager)

• General	problem	with	this:	do	parallel	TCP	
connections	follow	the	same	path	all	the	way?
– Not	necessarily,	because	of	ECMP,	etc.

2

Ensuring	a	common	bottleneck

• Via	configuration,	e.g.,	app	hint
– Bottleneck	is	known,	e.g.,	common	wireless	uplink

• Measurements	can	infer	whether	(long)	flows	
traverse	the	same	bottleneck	[draft-ietf-rmcat-
sbd]

• Encapsulation	
– VPNs,	Generic	UDP	Encapsulation,	TCP-in-UDP	
(TiU)	…

3

Motivation	(from	IETF	95)
(ns-2	using	TCP-Linux,	kernel	3.17.4)

• 4	Reno	flows,	10	Mb	bottleneck,	RTT	100ms;	qlen =	BDP	=	83	Pkts (DropTail)
• TMIX	traffic	from 60-minute	trace	of	campus	traffic	at	Univ.	North Carolina	

(available	from	the	TCP	evaluation	suite);	RTT	of	background	TCP	flows:	
80∼100	ms

• Link	utilization:	68%
• Loss:	0.78%
• Average	qlen:	58	pkts

• Link	utilization:	66%
• Loss:	0.13%
• Average	qlen:	37	pkts 4

Requirements

• Simple	to	implement
– minimal	changes	to	TCP	code,	avoid	bursts
– Correctly	share	TCP	states

5

Requirements

• Simple	to	implement
• Correctly	share	TCP	states

6

Design

• Basic	idea	similar	to	FSE	in	draft-ietf-rmcat-
coupled-cc
– To	emulate	one	flow’s	behavior (… but	easy	to	
tune)

– Keep	a	table	of	all	current	connections	c with	their	
priorities	P(c);	calculate	each	connection’s	share	
as	P(c)	/	Σ(P)	*	Σ(cwnd);	react	when	a	connection	
updates	its	cwnd and	use	(cwnd(c)	– previous	
cwnd(c)) to	update	Σ(cwnd)

7

Basic	TCP	changes
• The	required	changes	to	TCP:

– This	function	call,	to	be	executed	at	the	beginning	of	a	TCP	connection	
‘c’	:

register(c,	P,	cwnd,	sshtresh);
returns:	cwnd,	ssthresh,	state

– This	function	call,	to	be	executed	whenever	TCP	connection	‘c’	newly	
calculates	cwnd:

update(c,	cwnd,	sshthresh,	state);
returns:	cwnd,	ssthresh,	state

– This	function	call,	to	be	executed	whenever	a	 TCP	connection	‘c’	
ends:

leave(c)

8

ACK-clocking	to	avoid	bursts

9
 0

 100

 200

 300

 400

 500

 600

 700

 5 5.5 6 6.5 7

P
a

ck
e

t
se

q
u

e
n

ce
 n

u
m

b
e

r

Time (s)

Connection 2
Connection 3

 0

 100

 200

 300

 400

 500

 600

 700

 5 5.5 6 6.5 7

P
a
ck

e
t
se

q
u
e
n
ce

 n
u
m

b
e
r

Time (s)

Connection 2
Connection 3

• A	flow	joining	with	a	large	share	
from	the	aggregate	can	create	
bursts	in	the	network
– If	not	paced

• Our	approach:
– Maintain	the	ack-clock	of	TCP
– Using	the	ACKs	of	conn	1	to	clock	

packet	transmissions	of	connection	
2	over	the	course	of	the	first	RTT	
when	connection	2	joins

– Similarly,	we	make	use	of	the	ACKs	
of	connections	1	and	2	to	clock	
packet	transmissions	of	conn	3

– Requires	slightly	more	changes	to	
the	TCP	code	

[1]	Safiqul	Islam,	Michael	Welzl:	Start	Me	Up:	Determining	and	Sharing	
TCP's	Initial	Congestion	Window,	ACM,	IRTF,	ISOC	Applied	Networking	
Research	Workshop	2016	 (ANRW	2016),	Berlin,	Germany,	16	July	2016.

Requirements

• Simple	to	implement
• Correctly	share	TCP	states

10

TCP	states	

• Once	in	CA,	Slow-Start(SS)	shouldn’t	happen	
as	long	as	ACKs	arrive	on	any	flow	è only	SS	
when	all flows	are	in	SS

• Avoid	multiple	congestion	reactions	to	one	
loss	event:	draft-ietf-rmcat-coupled-cc	uses	a	
timer
– TCP	already	has	Fast	Recovery	(FR),	use	that	
instead

11

More	results	(FreeBSD	
implementation)

• Evaluations	were	repeated	10	times	with	
randomly	picked	flow	start	times	over	the	first	
second

• We	generated	internet	traffic	bursts	using	D-
ITG	to	occupy	50%	of	the	bottleneck	capacity	
on	average

12

More	results	(FreeBSD	
implementation)

13

Avg.	RTT Loss	ratio

Avg.	goodput Prioritization

More	results	(simulation	– FCT	of	a	
short	flow	competing	with	a	long	flow)

14

0 2 4 6 8 10
Capacity (Mbps)

0

10

20

30

40

50

60

70

80

90
FC

T
of

sh
or

tfl
ow

s
(R

TT
s)

1. Short flow
2. Short flow - coupled (no-ack-clock)
3. Short flow - coupled (ack-clocked)

More	results	– Flow	Completion	Time	
(FCT)	(FreeBSD	implementation)

15

0 5 10 15 20 25 30 35
FCT (s)

6

8

10

C
ap

ac
ity

(M
b)

Long Flow (uncoupled)
Short Flow (uncoupled)

Long Flow (coupled)
Short Flow (coupled)

Questions?

16

