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 Parallel TCP connections between two hosts:
Combining congestions controllers can be
beneficial

— Very beneficial: short flows can immediately use an
existing large cwnd, skip slow start; also avoids
competition

— Can divide available bandwidth between flows based
on application needs
* Previous methods were hard to implement + hard
to turn on/off (Congestion Manager)

* General problem with this: do parallel TCP
connections follow the same path all the way?

— Not necessarily, because of ECMP, etc.




* Via configuration, e.g., app hint
— Bottleneck is known, e.g., common wireless uplink

 Measurements can infer whether (long) flows
traverse the same bottleneck [draft-ietf-rmcat-
sbd]

* Encapsulation

— VPNs, Generic UDP Encapsulation, TCP-in-UDP
(TiU) ...
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Motivation (from IETF 95)

(ns-2 using TCP-Linux, kernel 3.17.4)

4 Reno flows, 10 Mb bottleneck, RTT 100ms; glen = BDP = 83 Pkts (DropTail)

TMIX trafficfrom 60-minute trace of campus trafficat Univ. North Carolina
(available from the TCP evaluation suite); RTT of background TCP flows:
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e Link utilization: 66%
* Loss:0.13%
* Averageqlen: 37 pkts A



* Simple to implement
— minimal changes to TCP code, avoid bursts
— Correctly share TCP states



* Simple to implement
* Correctly share TCP states



* Basic idea similar to FSE in draft-ietf-rmcat-
coupled-cc

— To emulate one flow’s behavior (... but easy to
tune)

— Keep a table of all currentconnections c with their
priorities P(c); calculate each connection’s share
as P(c) / Z(P) * ¥(cwnd); react when a connection
updates its cwnd and use (cwnd(c) — previous
cwnd(c)) to update 2(cwnd)



* Therequiredchangesto TCP:
— Thisfunction call, to be executed at the beginningofa TCP connection

[P

c:
register(c, P, cwnd, sshtresh);
returns: cwnd, ssthresh, state

— Thisfunction call, to be executed whenever TCP connection ‘c’ newly
calculates cwnd:

update(c, cwnd, sshthresh, state);
returns:cwnd, ssthresh, state

— Thisfunction call, to be executed whenevera TCP connection ‘c’
ends:

leave(c)



* A flowjoining with a large share
from the aggregate can create
bursts in the network

— If notpaced
* QOur approach:
— Maintain the ack-clock of TCP

— Using the ACKs of conn 1 to clock
packet transmissions of connection
2 over the course of the first RTT
when connection 2 joins

— Similarly, we make use of the ACKs
of connections 1 and 2 to clock
packet transmissions of conn 3

— Reaquires slightly more changes to
the TCP code

[1] Safiqul Islam, Michael Welzl: Start Me Up: Determining and Sharing
TCP's Initial Congestion Window, ACM, IRTF, ISOC Applied Networking
Research Workshop 2016 (ANRW 2016), Berlin, Germany, 16 July 2016.
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* Simple to implement
e Correctly share TCP states
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* Once in CA, Slow-Start(SS) shouldn’t happen
as long as ACKs arrive on any flow = only SS
when all flows are in SS

* Avoid multiple congestion reactions to one
loss event: draft-ietf-rmcat-coupled-cc uses a

timer

— TCP already has Fast Recovery (FR), use that
instead



* Evaluations were repeated 10 times with
randomly picked flow start times over the first

second

 We generated internet traffic bursts using D-
ITG to occupy 50% of the bottleneck capacity

on average
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More results (FreeBSD
implementation)
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More results (simulation — FCT of a
short flow competing with a long flow)
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Questions?
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