neot

draft-welzl-tcp-ccc-00

Michael Welzl, SafiqulIslam, Kristian Hiorth, You Jianjie

ICCRG
97th IETF Meeting

Seoul, South Korean
Nov 15 2017

 Parallel TCP connections between two hosts:
Combining congestions controllers can be
beneficial

— Very beneficial: short flows can immediately use an
existing large cwnd, skip slow start; also avoids
competition

— Can divide available bandwidth between flows based
on application needs
* Previous methods were hard to implement + hard
to turn on/off (Congestion Manager)

* General problem with this: do parallel TCP
connections follow the same path all the way?

— Not necessarily, because of ECMP, etc.

* Via configuration, e.g., app hint
— Bottleneck is known, e.g., common wireless uplink

 Measurements can infer whether (long) flows
traverse the same bottleneck [draft-ietf-rmcat-
sbd]

* Encapsulation

— VPNs, Generic UDP Encapsulation, TCP-in-UDP
(TiU) ...

cwnd (pkts)

100

Motivation (from IETF 95)

(ns-2 using TCP-Linux, kernel 3.17.4)

4 Reno flows, 10 Mb bottleneck, RTT 100ms; glen = BDP = 83 Pkts (DropTail)

TMIX trafficfrom 60-minute trace of campus trafficat Univ. North Carolina
(available from the TCP evaluation suite); RTT of background TCP flows:

80~100 ms

Connection 1
Connection 2

Connection 3
Connection 4

-

50 100 150
Time (s}

e Link utilization: 68%
* Loss:0.78%
* Averageqlen: 58 pkts

30

20

60 1
Connection 1 t
Connection 2
Connection 3 +
Connection 4

50

40

10 i! W
N 3
0 50 100 150 200
Time {s)

e Link utilization: 66%
* Loss:0.13%
* Averageqlen: 37 pkts A

* Simple to implement
— minimal changes to TCP code, avoid bursts
— Correctly share TCP states

* Simple to implement
* Correctly share TCP states

* Basic idea similar to FSE in draft-ietf-rmcat-
coupled-cc

— To emulate one flow’s behavior (... but easy to
tune)

— Keep a table of all currentconnections c with their
priorities P(c); calculate each connection’s share
as P(c) / Z(P) * ¥(cwnd); react when a connection
updates its cwnd and use (cwnd(c) — previous
cwnd(c)) to update 2(cwnd)

* Therequiredchangesto TCP:
— Thisfunction call, to be executed at the beginningofa TCP connection

[P

c:
register(c, P, cwnd, sshtresh);
returns: cwnd, ssthresh, state

— Thisfunction call, to be executed whenever TCP connection ‘c’ newly
calculates cwnd:

update(c, cwnd, sshthresh, state);
returns:cwnd, ssthresh, state

— Thisfunction call, to be executed whenevera TCP connection ‘c’
ends:

leave(c)

* A flowjoining with a large share
from the aggregate can create
bursts in the network

— If notpaced
* QOur approach:
— Maintain the ack-clock of TCP

— Using the ACKs of conn 1 to clock
packet transmissions of connection
2 over the course of the first RTT
when connection 2 joins

— Similarly, we make use of the ACKs
of connections 1 and 2 to clock
packet transmissions of conn 3

— Reaquires slightly more changes to
the TCP code

[1] Safiqul Islam, Michael Welzl: Start Me Up: Determining and Sharing
TCP's Initial Congestion Window, ACM, IRTF, ISOC Applied Networking
Research Workshop 2016 (ANRW 2016), Berlin, Germany, 16 July 2016.

700 x S— :
o) Connection 2 © a4
9 600 Connection 3 » V' B
€ 27
€ 500 /J
9 /
Q 400 ’
[
= /
o 300 ’]
3 ’ /
+— 200 27
© ' /
S 4
S 100} é , ~ Y 4
0 55 6 6.5 7
Time (s)
700 : .
o Connection 2 ©
-g 600 Connection 3 =
>
€ 500
(]
Q 400
(0]
3 300
3
+— 200
(0]
S
S 100
o

o

* Simple to implement
e Correctly share TCP states

10

* Once in CA, Slow-Start(SS) shouldn’t happen
as long as ACKs arrive on any flow = only SS
when all flows are in SS

* Avoid multiple congestion reactions to one
loss event: draft-ietf-rmcat-coupled-cc uses a

timer

— TCP already has Fast Recovery (FR), use that
instead

* Evaluations were repeated 10 times with
randomly picked flow start times over the first

second

 We generated internet traffic bursts using D-
ITG to occupy 50% of the bottleneck capacity

on average

CORE lat
O I ... emulator . (0} -
EGeneratoN Crosstraffic P / Sin
: . /
‘ 50ms elo Mbps e 50ms ﬁ

| e TN)

More results (FreeBSD
implementation)

Avg.RTT

J¥X not coupled
A4 coupled

Number of flows

Avg. goodput

LXK nbtcoupled.
¢ |&4A coupled

o
ot

o
o

- -
o ot
, :

Mean goodput (Mbps)
o
ot

<
o

2 3 4 5 6 7 8 9 10
Number of flows

Loss ratio

0.040 ! |
%X not coupled | :
0.035 a4 cou.pled

20.025}
5 |
2 0.020F | ‘ ‘ _
0.010
0.005 |2
0.000 L

Number of flows

Prioritization

| =~ ideal
| — simulation |

1.0b

1¥X emulation [

2 0.9f
© 0.8 : : : : ; :
20.6f
DOSL X
O04F NU
S 03F o N
0.2}
0.1F
0.0

M1 1.2 1:3 14 15 16 1.7 1.8 1.9 1:10
Priority ratio

More results (simulation — FCT of a
short flow competing with a long flow)

90
- : H 1. Short row : :
{0 ERPREY PPN e &4 2. Short flow - coupled- (no -ack- clock)
' H 3. Short row coupled (ack clocked)
TOE _
0 :
- :
l_ R
i s
» :
= :
= :
5
e .
o :
© s
[:
@) :
L :
0 i
0 2 4 6 8 10

Capacity (Mbps)

14

5

[Ty
[Ty

N N A A |

[1)
L

=

x

L] Long Flow (coupled)

Long Flow (uncoupled)

Hll Short Flow (coupled)

EEE Short Flow (uncoupled)

10

8

() Auoede)

39

30

25

20

15

10

FCT (s)

15

Questions?

16

