How to stay online

Harsh realities of operating in a hostile network
DDoS is in all of our futures
Live feed of DDoS attacks from Mirai botnets. Account run by @2sec4u and @MalwareTechBlog.

- Account not monitored, see bio for contact.
- The frequent attacks are from smaller botnets.
- We monitor botnets, not run them.
Amplification attack

Attacker with 1 Mbps

1 Mbps connection

10 compromised trigger machines with 1 Gbps

1 Gbps connection x10

400 ‘amplifier’ machines

Amplification factor of 50x

500 Gbps hits target machine from amplifiers
Popular attack types in 2016

- DNS Floods against authoritative DNS
- SYN Floods
- HTTP(S) Floods
Authoritative DNS Attacks
Direct to Authoritative
Direct To Authoritative

• Treat every request not from a known resolver with suspicion

• A flood of requests to authoritative servers from non-resolvers is an attack

• Just drop the packets
What do floods look like

- Typically apex domain or random subdomains
 - foo.com
 - www.foo.com
 - <random>.foo.com
 - <random>.www.foo.com

- Sometimes spoofed source address, sometimes not
 - Spoofed is harder to deal with
DNS Flood Survival Kit
Null-routing upstream

- example.com
- foo.com
- bar.com

- one.ns.cloudflare.com
- two.ns.cloudflare.com
- three.ns.cloudflare.com
- four.ns.cloudflare.com
Anycast: Spread the load worldwide
ECMP: Spread the load in the datacenter

src ip: 4.3.2.1
dst ip: 1.2.3.4

ECMP router

hash % 3 = 1
server #1

hash % 3 = 2
server #2

hash % 3 = 0
server #3
<table>
<thead>
<tr>
<th>Component</th>
<th>Throughput (pps)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>router</td>
<td>10M+</td>
<td>flowspec</td>
</tr>
<tr>
<td>network card</td>
<td>6M</td>
<td>iptables bpf</td>
</tr>
<tr>
<td>kernel</td>
<td>1.2M</td>
<td>iptables bpf</td>
</tr>
<tr>
<td>DNS application</td>
<td>0.3M</td>
<td>selective drops, just handle</td>
</tr>
</tbody>
</table>
Protect the application: iptables BPF

- BPF is arcane but powerful
- Does fairly complex, yet fast matching

```
iptables -A INPUT \  
-p udp --dport 53 \  
-m bpf --bytecode "14,0 0 0 20,177 0 0 0,12 0 0 0,7 0 0 0,64 0 0 0,\  
21 0 7 124090465,64 0 0 4,21 0 5 1836084325, \  
64 0 0 8,21 0 3 56848237,80 0 0 12,21 0 1 0, \  
6 0 0 1,6 0 0 0," \  
-j DROP
```
Automation is key

- Sample from sflow, netflow
- Use heuristics, machine learning for new attack types
- Fingerprinting is possible but should not be relied on exclusively
- iptables should not be static, or manually updated
- Push your rules to the NIC if possible
Attacks through the recursor
Attacks through the recursor
Attacks through recursor

• **The right response is to answer**

• Whitelist known recursive DNS servers
Attacks through recursor

• Rate limiting can cause negative effects
 • Recursor can mark rate-limiting server as down
 • Failed requests may be repeated, resulting in unintended amplification

• Recursor can help by caching negative ranges (NSEC)
 • Only available for DNSSEC-signed domains
Other attacks
SYN Floods

- Configure SYN cookies to avoid memory exhaustion
- Blacklist non-regional IPs (from Anycast)
- Use iptables BPF rules
HTTP(S) Floods

- Rate limit by request
- Rate limit by volume
- TCP reset — browsers will retry
- TLS cost is asymmetrical, but usually a low percentage of CPU
 - ECDSA is 10x less CPU for servers
 - Client puzzles??
Who is attacking?
Compromised Endpoints

• It’s going to get worse before it gets better (if it ever gets better)
 • When will we see the first major IoT worm?
 • Discoverability is key to virality. IPv6 has a place.

• The economics will drive the results
 • Secure firmware updates is an expensive proposal
 • Secure-by-default open source software will be used if available

• Attribution
 • ISPs, transits can use netflow to tell "where the attack originated" without relying on source IP’s, but don’t
Global Consequences
The shape of the Internet

• The Internet has choke points
• Attacker bandwidth will continue to grow
• Anycast prevents global attacks from focusing on one point
Keeping costs down

• Ingress << egress for most applications because of cache semantics
• Mixed-use data centers have excess ingress capacity
• Scrubbing centers are single-use, therefore not cost effective
Staying online requires scale

- DNS only one of many points of vulnerability
- Deal with DDoS by handling every packet
 - Spread the load over multiple dimensions (geography, resolution)
- You need to be close to the source, or you need a friend who is
- The techniques described try to approximate this as much as possible
How to stay online

Harsh realities of operating in a hostile network