Background

Currently, IKE depends on the security of DH or ECDH for privacy.

Both DH and ECDH are believed to be breakable by someone with a Quantum Computer.

No one has a nontoy Quantum Computer currently; however, if someone does develop one in the future, they can decrypt recordings of old IKE and IPsec sessions.
Background

What do we do about this:

• Option 1: replace (EC)DH with a Quantum Resistant Key Exchange
 • Issue with that: large change, no Quantum Resistant Key Exchange is universal accepted

• Option 2: have both sides have a shared secret (ppk); stir that into the derived key
 • The idea is that, even if someone breaks the DH shared secret, the ppk still protects us
Previous WG Meeting

We agreed to make working on this as a WG item

We decided to gather requirements for a solution

We agreed to have a poll of the WG for the important of various requirements
Results of the WG Poll
Interpretation of the Results

Preserving IKE security properties against a conventional adversary considered the most critical

“First rule: do no harm”

Simplicity was the second most important goal

Protecting IKE traffic, and identities were considered less important
Updates to draft-fluhrer-qr-ikev2-03 to reflect these priorities

There are now three differences from the standard IKE protocol

• We exchange notifications on the first encrypted exchange
 • This is to deal with the brownfield scenario

• We stir in the PPK when generating IPsec KEYMAT
 • This means that all IPsec keys are protected

• We stir in the PPK when generating child SAs
 • This means that child IKE traffic is protected
Changes from the previous version

• We simplified the protocol
• We do not attempt to protect identities from an adversary with a QC
• We do not protect the initial IKE exchange from an adversary with a QC
 • However, since we can immediately create a child IKE SA (which is protected), an implementation can protect the traffic selectors
How we score against the requirements

<table>
<thead>
<tr>
<th>Requirement (ordered by importance)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preserving IKE security</td>
<td>✔</td>
</tr>
<tr>
<td>Simplicity</td>
<td>✔</td>
</tr>
<tr>
<td>Protecting IKE traffic</td>
<td>At additional cost</td>
</tr>
<tr>
<td>Authentication</td>
<td>✔</td>
</tr>
<tr>
<td>Algorithm Agility</td>
<td>✔</td>
</tr>
<tr>
<td>Identity Protection</td>
<td>✗</td>
</tr>
<tr>
<td>Nonstatic PPKs</td>
<td>Not addressed</td>
</tr>
<tr>
<td>PPK Management</td>
<td>Not addressed</td>
</tr>
</tbody>
</table>
Thank you.