
Signature Forms 

Ambiguity in IKEv2 

Valery Smyslov 

svan@elvis.ru 

IETF 97 



Problem Overview 

• In IKEv2 there is no negotiation of auth methods, so 
each side may use what she thinks is appropriate 

• RFC7427 adds a mechanism that allows peers to 
announce their support for hash functions that can be 
used in digital signatures 
– each peer sends SIGNATURE_HASH_ALGORITHMS 

notification containing a list of supported hash functions 

• However, currently there is no way for peers to 
indicate supported signature forms 
– if some signature algorithm has several forms that can 

equally be used with the same key, then peers cannot tell 
each other what forms are supported 



Real Life Interoperability Issue 

• RSA signature currently has two forms: 
1. RSASSA-PKCS1 v1.5 (legacy) 

2. RSASSA-PSS (newer, more secure) 

• An implementation may support both forms or only one of them and 
still be compliant with RFC7427 

– draft-ietf-ipsecme-rfc4307bis specifies that RSASSA-PSS MUST be supported 
and RSASSA-PKCS1 v1.5 MAY be supported 

• If an implementation supports only one of the above forms, then 
IKE SA may fail even if the other side supports both. 

– if Responder supports both forms it can use the same form as Initiator used 

– however if Initiator supports both forms it has no clue what form to use: 
• she can use some heuristics based on information from IKE_SA_INIT (unreliable) 

• she can use some pre-configuration (doesn’t scale) 

• she can try RSASSA-PSS first and revert to RSASSA-PKCS1 if it fails (complicates 
code and slows down IKE SA setup) 

– since currently RSASSA-PSS is not widely used, the simplest solution for Initiator 
is to always use RSASSA-PKCS1, that will further slow down PSS adoption 

 



Possible Future Issues 

Similar issues may arise in future if several signature 

forms can be used with one key type: 

• ECDSA vs EdDSA with Edwards curve keys? 

• Prehashed vs non-prehashed forms of EdDSA? 

– draft-nir-ipsecme-eddsa specifies that pre-hashed form SHOULD NOT 

be used 

• Different AlgorithmIdentifier OIDs for the same signature 

form? 

• New forms of ECC signatures using existing curves? 

• Hash based signatures? (e.g. XMSS vs XMSS^MT) 

 



What to Do: Do Nothing 

Consider the RSASSA-PSS issue as temporary and 
insignificant, that will gone once draft-ietf-ipsecme-rfc4307bis 
is adopted (until that happens work around RSASSA-PSS 
issue as suggested before). Envision that no such issues will 
occur in the future. 

Pros: 

• no changes to the protocol 

Cons: 

• complicates code to work around current RSASSA-PSS issue 

• slow down RSASSA-PSS adoption 

• if similar issues occur in the future then we’ll face the same problem 
and it’s unclear now whether reasonable workarounds will be found 



What to Do: Make a Quick Fix 

Add a fake hash algorithm RSASSA_PSS_SUPPORTED 
in SIGNATURE_HASH_ALGORITHMS notification. 

Pros: 
• fixes current problem 

Cons: 
• clear protocol hack 

• needs some time to be adopted, so the problem may have 
already gone once draft-ietf-ipsecme-rfc4307bis is adopted 

• slightly increases IKE_SA_INIT message size 

• fixes only current problem, so if similar issues occur in the future 
then we’ll face the same problem and it’s unclear now whether 
reasonable workarounds will be found 

 

 

 



What to Do: Solve Generic 

Problem 

Define a new notification that will contain a list of 
supported signature forms (as AlgorithmIdentifier 
OIDs or as code points from new IKEv2 registry). 

Pros: 
• fixes the problem completely 

Cons: 
• increases IKE_SA_INIT message size 

• may partially overlap with SIGNATURE_HASH_ALGORITHMS 
functionality 

• reveals some information about peers capabilities to passive 
eavesdroppers (also true for SIGNATURE_HASH_ALGORITHMS) 

 

 



Any thoughts? 

Thank you 


