
Video at the Edge
passive delay measurements

Kathleen Nichols
Pollere, Inc

nichols@pollere.net
November 17, 2016

mailto:nichols@pollere.net

Talk Roadmap
• Netflix and YouTube network characterization

• delay profiles

• delay localization

• Passive measurement rocks!

• a wealth of information available in packet headers that can be
post-processed

• also possible to extract information from packet headers in real
time

• Visualization of information as it streams

Diagram of Measurement Setup

Delay is relative to the packet capture point (CP).
• red lines are round trip delay (matching packets from reverse flows)
• blue lines are delay variation (relative to the minimum seen)

Moving CP gives different information
• at the edge, usually both flow directions available
• in the Internet, might only see one direction
• most of the experiments have CP next to modem

AppleTV client
09.11.16

180Mbps ISP link,
CP at modem

The video is in multiple
interleaved flows

Each color is a different flow

Delayed upstream
from CP

Delayed
downstream

~10Mbyte bursts
at ~23Mbps

Netflix Video Delay Variation: Server to CP
Four flows interleave at

a time

Netflix video, Chromecast client, 10.03.16,
Apple wifi,
CP at modem

All flows from
same server IP.
No interleaving,

multiple sequential
flows

Bursts of ~1Mbyte arrive at 14-15Mbps

This Netflix video is from 100716

Netflix to chromecast client 10.07.16
Slower cable connection (40Mbps ISP link), google wifi
CP at modem
Shows queue delay upstream of the CP (from server to modem)

11ms minimum
RTD CP to server

median variation in delay each
packet sees over a 10 minute interval

blue flow is active
here but can’t
compute delay

an internet
delay

iPad
client
(wifi)

Netflix video, 11.02.16, 180Mbps ISP link, CP at modem

Four flows interleave

relative spacing shifts over time

at this bandwidth, burst delays
stay small

Apple Netflix app
behavior clearly differs

from Chromecast
Netflix app

After pre-load with four flows, two flows remain
• blue one is 3.4Mbps overall mostly in 2.5MByte chunks every 4sec bursting to

18Mbps (line rate)
• red one is 96Kbps overall in 200KByte chunks every 16 sec sent in 8Mbps bursts.

Often gets delayed by blue flow
Overall: 26ms minimum RTD to server, 50 microsec to client

• the statistics reflect the delays the red bursts see
• client-to-server delay variation had a median of 1ms
• server to client median delay variation is 2.8ms for blue flow and 6.8ms for red

NF110916, HP desktop running Windows 10 in Chrome
browser, CP near client all Ethernet, DSL ISP 20Mbps

quant blue red

25th 2ms 3.7ms

med 3 6.8

75th 6.5 17

server-to-CP delay variation

Per-packet Delay Variation
of Netflix video for a range of experiments

• Serious delays when the delay from the server includes client network (likely to be
oversubscription in hotel network)

• IQR wider for lower rate downlinks; bursty nature creates more delay with lower
speeds, bigger bottlenecks

median values in seconds
next to box plots

YouTube video: 40Mbps ISP link, chromecast client

• Blue flow ~880Kbps overall (768Kbps after burst) in bursts
• Burst pattern of one short (~175KB) two long (~1MB) every 20 seconds.
• Arrival at CP up to 50Mbps

Taken 10.08.16
Seven flows from

same server IP
Server minimum

RTD is 88ms

• This comes from post-processing packet trace

• Exploring ways to use seqno data in real time

More analysis possible adding sequence numbers

builds 45ms of queue
upstream of CP

builds to > 90ms of
delay on client side

• Same YT video, different location on 10.26.16:180Mbps ISP link,11ms RTD,
wifi link seeing ~45Mbps

• Only opens 5 flows (1 is only briefly active)

• Annotated with sequence space holes and out-of-orders

YT, 180Mbps

Host-to-CP delay variation just the tip of the iceberg

• Every packet provides delay estimates for several path
segments (contrast this to ping probes)

• Packet header data can be used to localize delay
- blue lines are delay variations
- yellow lines are a noisier delay variation (available when CP

sees both directions of a stream)

Localizing delay for YT10.08.16

Localizing delay for YT10.26.16

CP to client path
has a large
delay, could be
application or
wifi or both.
(Same delays
affect the server
to client delay
estimate.)

Building on Passive Packet Capture

• Packet capture a fundamental tool since early days of networking

• Facilitated by high-speed capture, sampling techniques (“heavy
hitters”), span ports, etc.

• A wealth of information in packet headers

• Extracting data from headers and displaying in real-time harder
than post-processing

• This presentation emphasizes delay since active measurement
probes reveal little about application delay

• Would like to see more work using passive measurement of actual
application traffic

Screen shot of web interface
of streamed delay variation

This is a
“delay
topology”
map. It
updates on
statistics
periods which
are usually set
at 5 to 10
minutes.
Stats are from
a high quality
“on the fly”
estimator.

Video Streaming Takeaway
• Video streaming clearly shows the influence of the storage and application

chunk structure

• Network behavior varies by client application (Apple “big bursts” average
about 8 MBytes)

• Video is not a river of flowing bytes but looks more like big ocean waves

• Innocuous looking waves turn ugly when they crash onto the beach of
small bandwidth ISP tails, end-user wifi networks, low-speed device
interfaces and other fast-to-slow pipes

• Also some evidence of entire bursts being delayed in Internet

• For high speed provider links, client networks often are the problem and
wifi can be the bottleneck

Passive Measurement Takeaway
• Packet header capture provides rich information (payload

encryption doesn’t matter) that active probes can’t get

• Packet header capture capabilities in all devices would
provide a basis for great diagnostics

• Good TSvals allow more and better information extraction

• Extracting information in real time is an interesting challenge

• Making sense of information in real time is a visualization
challenge

• Challenging yourself is good, so get to it!

 The Data and Its Processing
• The data used in this talk was collected via packet header capture (tcpdump) in end

networks, mostly home networks. Although these pcap files will not be publicly available,
it is easy to obtain similar ones.

• Netflix and YouTube videos were run on a variety of clients (Apple TV, iPad, Mac laptop,
Chromecast, Windows desktop) connected via ethernet, Google and Apple 802.11ac
routers to cable modems (unknown for hotel capture)

• Most packet captures were done using a bump-in-the-wire device but one was captured
on the client

• Easy to replicate and extend analysis; post-processing of packet captures can be done
with simple graphing tools and statistical packages

• This data used a proprietary method to extract clocks from the data; older ways exist to
do this post-processing (V. Paxson, S. Moon).

• Round trip delays can be extracted from a two-way packet stream, see for example
Marcondes et al 2007.

Resources

• V. Paxson, “On Calibrating Measurements of Packet Transit Times”, ACM
Sigmetrics, 1998. [removing skew from traces]

• S. Moon, P. Skelly, and D. Towsley, “Estimation and Removal of Clock Skew
from Network Delay Measurments”, Proceedings of INFOCOM 1999.
[removing skew from traces: patented technique]

• C. Marcondes et. al., “Regenerating TCP Dynamics from Traces Path
Characteristics”, 3rd International Conference on Testbeds and Research
Infrastructure for Dir of Networks and Communications”, Orlando, FL, April
2007 [round trip delays from bidirectional packet traces]

• J. Martin et. al., “Characterizing Netflix Bandwidth Consumption”, IEEE
Consumer Communications and Networking Conference, 2013

• More data like this at http://pollere.net/Pdfdocs/FunWithTSDE.pdf [real-time
and post-processed delay, uses patent pending technique]

