


- 2 -

 Despite the short history, Multipath 
TCP(MPTCP) prevails drastically
° As MPTCP was deployed, security concerns 

increase

 There have been multiple attempts at 
verifications to security of MPTCP
° Initial eavesdropper breaches the primary 

security goal of MPTCP

 We need new solution for initial 
eavesdropper!

GIGA LTE

LTE-A
300 Mbps

GIGA WIFI
867 Mbps

GIGA LTE
1.17 Gbps



- 3 -

 Initial connection setup
° Three-way handshake with MP_CAPABLE

° Exchange 64 bit key(Key-A, Key-B)

 Adding subflow setup
° Three-way handshake with MP_JOIN

° Authentication through ‘Token’ and HMAC

• Token : most significant 32 bits of SHA1 output 
with Key-B as a message of hash

Address A1

SYN + MP_CAPABLE(Key-A)

Address A2
Host A Host B

Address B1

SYN/ACK + MP_CAPABLE(Key-B)

ACK + MP_CAPABLE(Key-A, Key-B)

SYN + MP_JOIN(Token-B, R-A)

SYN/ACK + MP_JOIN(Auth-B, R-B)

ACK + MP_JOIN(Auth-A)



- 4 -

 Initial connected host should be a intended host
° If other host? TCP Session hijacking, not MPTCP problem

 This assumption is good for using weak authentication
° Weak authentication verify that corresponding host is the one who was in initial handshake

° Weak authentication cannot guarantee corresponding host’s identity
• There are no CAs or trusted third parties



- 5 -

 Eavesdropper in the Initial Handshake(EitIH)
° Has ability to eavesdrop shared keys in initial connection setup

° Shared keys transmit in plaintext

 Related Solutions
° Hash Chains

° MPTCP-SSL(MPTLS)
• TLS over the TCP

° Tcpcrypt(SMPTCP)
• RSA Diffie-Hellman Exchange through four additional packets after initial handshake

• Encrypt IP datagram



- 6 -

 MPTLS makes shared key using TLS

 MPTLS needs TLS handshake
° Inherit the overhead of TLS

 Additional one-way message delay
° At least, four one-way delay for TLS

Address A1

SYN + MP_CAPABLE

Address A2
Host A Host B

Address B1

SYN/ACK + MP_CAPABLE

ACK + MP_CAPABLE

SYN + MP_JOIN(Token-B, R-A)

SYN/ACK + MP_JOIN(Auth-B, R-B)

ACK + MP_JOIN(Auth-A)

Make TLS session to make shared key



- 7 -

 SMPTCP uses Tcpcrypt
° Tcpcrypt is low-overhead asymmetric key 

exchange protocol using TCP option

° To reduce the overhead for TLS handshake

 SMPTCP still has overhead
° Combine two protocol, double option header

° One additional one-way delay 

Address A1

SYN + MP_CAPABLE + Crypt/Hello

Address A2
Host A Host B

Address B1

SYN/ACK + MP_CAPABLE + Crypt/PKconf

ACK + Crypt/INIT + Crypto parameters in payload

SYN + MP_JOIN(Token-B, R-A)

SYN/ACK + MP_JOIN(Auth-B, R-B)

ACK + MP_JOIN(Auth-A)

Crypt/INIT + Crypto parameters



- 8 -

 Each host makes hash-chain 
° H-0(A), H-1(A), … , H-n(A)

° H-0(B), H-1(B), … , H-n(B)

° H-n-1 = Hash (H-n)

 Reveal in reverse order
° Based on one-way property of hash

 Weak authentication

Address A1

SYN + MP_CAPABLE(H-0(A))

Address A2
Host A Host B

Address B1

SYN/ACK + MP_CAPABLE(H-0(B))

ACK + MP_CAPABLE

SYN + MP_JOIN(H-1(A))

SYN/ACK + MP_JOIN(H-1(B))

ACK



- 9 -

 In asymmetric manners, overhead is too big
° Large space for TLS handshake or tcpcrypt

° Additional one-way message delays

 In other methods, security is not enough

 We need more efficient and more secure protocol!



- 10 -

 Only guarantee integrity of initial handshake
° NOT provide confidentiality

° Eavesdropper does not modify the connection

 Eavesdropper can get every information to bypass authentication

 Solution : Asymmetric key exchange! 
° If we can guarantee the corresponding host 



- 11 -

 MPTCP uses TCP option for compatibility to previous system

 TCP header length has maximum length of 60 bytes

 Except for basic header(20 byte), only for option? Maximum 40 byte
° Except for option header(8 byte), only 32 bytes are available

 Solution : Parameter Minimizing(optimizing)!
° To squeeze public parameters into a limited space



- 12 -

 In internet nature, there are a lot of short connection
° Short connection : TCP connection which has short lifetime

 Short connections do not need subflows
° Data are already sent through initial connection

 Establishing and terminating subflows cause the degrade of total throughput

 Solution : Delayed initiation
° In case of short connection, MPTCP does not make subflows



- 13 -

 Use asymmetric key exchange
° To block eavesdropper

 Minimize public parameters
° Limit algorithm and key size

 Minimize overhead for Initial handshake
° Can not distinguish which protocols will be 

used

° Reduce overhead for short connection

Address A1

SYN + MP_CAPABLE(A’s x point)

Address A2
Host A Host B

Address B1

ACK + MP_CAPABLE(B’s x point)

SYN + MP_CAPABLE(A’s y point)

ACK + MP_CAPABLE(B’s y point)

SYN + MP_JOIN(Token-B, HMAC-Token, Address ID, R-A)

SYN/ACK + MP_JOIN(Auth-B, R-B)

ACK + MP_JOIN(Auth-A)



- 14 -

 Valid token in SYN+MP_JOIN makes the 
host turn into a receiving state

 Token reuses in same MPTCP session
° Eavesdrop once, reuse until the end of session

° Or, just guessing. It is only 32-bit

 Limited number of half-open state
° Use different five tuple

Address A1

SYN + MP_CAPABLE(A’s x point)

Address A2
Host A Host B

Address B1

ACK + MP_CAPABLE(B’s x point)

SYN + MP_CAPABLE(A’s y point)

ACK + MP_CAPABLE(B’s y point)

SYN + MP_JOIN(Token-B, HMAC-Token, Address ID, R-A)

SYN/ACK + MP_JOIN(Auth-B, R-B)

ACK + MP_JOIN(Auth-A)



- 15 -

 Hosts may want to advertise their address
° When host could not initiate the connection 

due to the middleboxes

 Address advertisement
° Host A sends ADD_ADDR option with 

residue addresses(A2)

° Host B initiates subflow handshake to A2

° Finish subflow handshake

Address A1 Address A2
Host A Host B

Address B1

SYN + MP_JOIN(Token-A, R-B)

SYN/ACK + MP_JOIN(Auth-A, R-A)

ACK + MP_JOIN(Auth-B)

Initial Connection Setup

ADD_ADDR(Address A2, Address ID)



- 16 -

 Attacker sends fake ADD_ADDR
° Host B sends Token-A, HMAC to Attacker

 DoS Attack on MP_JOIN
° Attacker knows the valid token

 MPTCP v1 modifies ADD_ADDR
° ADD_ADDR includes HMAC

° However, EitIH knows the key for MAC

Address A1 Address A2
Host A Host B

Address B1

SYN + MP_JOIN(Token-A, R-B)

Initial Connection Setup

Fake ADD_ADDR(Address D1, Address ID)

Darth
Address D1

DoS Attack on MP_JOIN(Token-A)



- 17 -

 Asymmetric key exchange makes shared key without key exposure
° Symmetric key exchange reveals shared key

 Using the shared key, data encryption is possible

 Two use cases of shared key
° Only for authentication

° Datagram encryption



- 18 -



- 19 -

 Deliverable
° Three design consideration

° Secure Design for EitIH model

 Discussion
° Scalability Issue - Limited algorithm and key size

° Empirical evaluation

° Omitted computation overhead

 Future Work
° Real kernel implementation


	Efficient Design for Secure Multipath TCP against Eavesdropper in Initial Handshake
	Introduction
	MPTCP v0 Sequence
	Basic Assumption in MPTCP
	Threat Model
	Related Solutions : MPTLS
	Related Solutions : SMPTCP
	Related Solutions : Hash-Chain Based
	Problem Definition
	Pitfall of Integrity
	Space Limitation
	Short Connection Problem
	Proposed Solution
	DoS Attack on MP_JOIN 
	Address Advertisement in MPTCP v0
	ADD_ADDR Attack
	Data Encryption
	Result
	Conclusion

