
Update	from	the	
NETMOD	Datastore	Design	Team	

	
dra7-nmdsdt-netmod-revised-datastores-00	

IETF	97	



Agenda	

•  Recap	of	datastore	design	team	discussions	
	

•  Protocol	implicaEons	(seeking	WG	input)	
§  NETCONF	
§  RESTCONF	



Design	Team	SoluEon	

•  Use	three	new,	well-defined	datastores:	
<intended>	
<applied>	
<operaEonal-state>	

•  All	three	are	read-only	



<candidate>	
(ct,	rw)	

<startup>	
(ct,	rw)	

<running>	
(ct,	rw)	

<intended>	
(ct,	ro)	

<applied>	
(ct,	ro)	

<operaEonal-state>	
(ct,	ro)	

e.g.,	removal	of	'inacEve’	nodes	,		
expansion	of	templates,	etc.	

subject	to	validaEon	

e.g.,	missing	resources	or	delays	

dynamic	configuraEon	protocols	
control-plane	datastores	
(origin		=	dynamic	or	sub-idenEty)	

auto-discovered	
dynamic	configuraEon	protocols	
control-plane	datastores	
(origin	=	system	or	sub-idenEty)	

<intended>	is	lockstep	with	<running>	

<applied>	is	a	subset	of	<operaEonal-state>	
e.g.,	where	config=true	&	origin={staEc|dynamic}	



Origin	A_ribute	

•  "origin"	a_ribute	describes	the	source	of	data	
– Appears	on	each	node	
– Value	defined	as	a	YANG	idenEty:	

sta+c	–	data	comes	from	<intended>	
dynamic	–	data	from	dynamic	datastore	
data-model	–	value	comes	from	data	model	
system	–	system-controlled	data	

– Use	of	idenEEes	allows	for	some	extensibility	
•  dhcp	based	on	dynamic,	etc	



Datastore	dra7	status	

•  NETMOD	had	a	poll	for	consensus	for	
adopEon:	
§  Had	solid	support	which	will	be	confirmed	on	ML	
§ Would	like	to	know	if	NETCONF	WG	also	
supports?	

	

•  Any	quesEons,	comments,	concerns?	



Agenda	

•  Recap	of	datastore	design	team	discussions	
	

•  Protocol	implicaEons	(seeking	WG	input)	
§  General	consideraEons	
§  NETCONF	
§  RESTCONF	



General	ConsideraEons	

•  The	design	team	has	focussed	on	gehng	
agreement	on	the	data	stores	

•  Not	much	Eme	spent	discussing	protocol	impact	
•  Would	like	to	start	the	discussion	now	

Following	slides	are	to	start	that	conversaEon	



NETCONF	implicaEons	

•  Mechanism	required	to	adverEse	support	for	3	
new	datastores:	
§  <intended>,	<applied>,	<operaEonal-state>	
§  All	are	opEonal	to	implement	
§  But	soluEon	only	really	makes	sense	if	at	least	
<operaEonal-state>	is	implemented	

•  <get-config>	can	be	used	for	<intended>	&	
<applied>	
•  And	<operaEonal-state>	too?	



<get-data>	and	origin	meta-data	

•  <get-data>	is	a	new	operaEon	to	return	the	
contents	of	any	datastore	
§  For	config	datastores,	is	equivalent	to	<get-config>	
(but	not	including	origin	meta-data)	

•  How	to	return	origin	meta-data?	
§  Probably	an	opEonal	parameter	to	<get-data>	
operaEon	(default:	not	included)?	

§  And	<get-config>?		But	wouldn’t	apply	to	all	config	
datastores	(e.g.	<running>,	<candidate>,	etc)	



<get>	

•  Can	<get>	be	deprecated?	
§  Obsoleted	by	<operaEonal-state>	
§  Doesn’t	make	much	sense	once	<operaEonal-
state>	is	defined	(or	even	now	J)	

§  Is	handling	<get>	as	a	<get-data>	request	on	
<operaEonal-state>	a	valid	pragmaEc	deprecaEon	
approach?	

§  Or	do	servers	that	support	<operaEonal-state>	
sEll	need	to	support	<get>	(i.e.	<running>	+	all	
config	false)?	



What	about	other	NC	operaEons?	

•  We	don’t	think	that	any	need	to	be	supported	
since	these	new	datastores	are	all	read	only.	

•  But	what	about	<validate/>?	



RESTCONF	implicaEons	

Bringing	up	Phil’s	comment:	
•  Disagreement	of	goals	of	RESTCONF	

§  Does	it	need	all	NETCONF	capabiliEes?	
§  Or	is	it	the	“Easy”	bu_on?	
	

•  Is	this	the	right	Eme	to	discuss	this?	
	



{+restconf}/data	resource	

•  Represents	combined	config	and	state	data	
•  Equivalent	to	bundling	<running>	together	with	
<operaEonal-state>	

•  Much	like	<get>	operaEon	of	NETCONF	

•  Should	this	design	be	deprecated?	



Some	opEons	to	select	datastore	

1.  Use	a	query	parameter	to	choose	the	
datastore	

2.  Or	let	the	datastore	be	explicit	in	the	path:	
e.g.	{+restconf}/ds/running/…	

			{+restconf}/ds/operaEonal-state/…	
			etc	

2+.	Could	also	define	{+restconf}/data	as:	
•  POST/PUT/…	implicitly	updates	running/candidate	
•  GET/etc	implicitly	reads	from	operaEonal-state	



Fetching	origin	meta-data	

•  Should	the	origin	meta-data	be	made	
available	through	RESTCONF	at	all?	

•  If	so,	presumably	need	an	extra	query	
parameter	to	choose	whether	to	return	it	
(default	no)?	



Agenda	

•  Recap	of	datastore	design	team	discussions	
	

•  Protocol	implicaEons	(seeking	WG	input)	
§  General	consideraEons	
§  NETCONF	
§  RESTCONF	

Any	last	quesEons?	



BACKUP	



<intended>	

•  Content	driven	from	<running>	
–  templates/scripts/etc	expanded,	if	supported		
–  inacEve	nodes	are	removed,	if	supported	
– May	be	idenEcal	(if	system	doesn’t	support	
above)	

•  Must	be	valid	configuraEon	
•  Feeds	into	<applied>	
– E.g.	can	be	thought	of	as	“pre-applied”	

•  [Only	"config	true"	nodes]	



<applied>	(#5.2)	

•  Currently	acEve	in-use	configuraEon	data	
•  Complete	view	of	"config	true"	nodes	
– Where	origin	is	staEc	or	dynamic	(no	defaults)	

•  Data	may	be	removed:	
– Missing	resources	(aka	ephemeral	interfaces)	

•  Data	may	be	added:	
– Non-"tradiEonal"	configuraEon	sources:	

•  DHCP,	Dynamic	Datastores,	802.1x,	etc	



<operaEonal-state>	(#5.3)	

•  "The	whole	enchilada"	
– All	nodes,	"config	true"	and	"config	false"	

•  Currently	acEve	in-use	values	
•  "config	true"	nodes	are	marked	with	the	origin	
a_ribute	

•  Constraints	from	data	models	do	not	apply	
•  <applied>	is	subset	of	<operaEonal-state>	
– Where	@origin	is	"staEc"	or	"dynamic"	



ImplicaEons	(#6)	
•  Define	new	DSs	
•  Device	adverEsing	support	for	DSs	
– NETCONF:	capability	exchange	
–  RESTCONF:	??	

•  <get/>	is	deprecated	
(And	there	was	much	rejoicing!)	
Also	{+restconf}/data	

	Needs	parameter	for	<operaEonal-state>	
•  ClarificaEon	
–  YANG	constraints	apply	to	<intended>	


