Anycast vs. DDoS: Evaluating Nov. 30

Giovane C. M. Moura¹, Ricardo de O. Schmidt², John Heidemann³, Wouter B. de Vries², Moritz Müller¹, Lan Wei³, Cristian Hesselman¹

¹SIDN Labs ²University of Twente ³USC/ISI

At NMRG IETF 97 Seoul 2016-11-15
A Bad Day at the Root…

What happened?

What does “red” really mean?

Anycast vs. DDoS in general?

data: RIPE DNSmon
red: >30% loss
(some sites ~99% loss!)
How *Well* Does Anycast Defend?

561 root DNS sites for **13 services** (in 2016-01)

is 561 *too few? too many?*

what happens *under stress?*
Contributions

• public evaluation of anycast under stress
• public articulation of design options
• evaluation of collateral damage
prior work for all, but in private

• goals:
 • public discussion ➔ greater transparency
 • expectation setting
 • possible future defenses
Anycast in Good Times

Anycast matches a user to a nearby site

Anycast divides the Internet into catchements (often messy and non-geographic)

(some sites have more capacity)
Anycast Under Stress

too many attackers overwhelm your site: your queries get lost

a similar size attack may be absorbed at a bigger site

catchments also isolate sites from attackers
Anycast Reactions to Stress (do nothing?)

1. **nothing**: X-SJC is *degraded absorber*, protecting X-SYD’s users

 - *you* (SJC)
 - *your friend* (PRG)
 - *other attackers* (SYD)

 - *another friend* (X-SYD)
Anycast Reactions to Stress
(withdraw some routes?)

1. **nothing**: X-SJC is degraded absorber, protecting X-SYD’s users 😊😊😊😊
2. **withdraw** routes from X-SJC; may shift attackers to big site 😊😊😊😊

uscviterbi
university of Twente
SDN LABS
Anycast vs. DDoS / 2016-10-16
Anycast Reactions to Stress
(withdraw other routes?)

1. **nothing**: X-SJC is degraded absorber, protecting X-SYD’s users 😞😞😞
2. **withdraw** routes from X-SJC; may shift attackers to big site 😞😞😞
3. **withdraw** wrong routes from X-SJC; may shift attackers to other site 😞😞😞
Best Reaction to Stress? You Don’t Know

don’t know: number of attackers, location of attackers, affects of routing change

don’t fully control routing and catchments

hard to make informed choices
Data About Nov. 30

- **RIPE Atlas**
 - ~9000 vantage points (RIPE Atlas probes)
 - try every *letter* every 4 minutes
 - except A-root, at this time, was every 30 minutes
 - CHAOS query identifies *server* and implies *site*
 - targets *letters*, not Root DNS (cannot switch letter)
 - global, but heavily biased to Europe
 - we map *server-*->*site*
 - map will be public dataset

- **RSSAC-002 reports**
 - self-reports from letters
 - not guaranteed when under stress

- **BGPmon routing**
 - control plane
Summary of the Events

- two events
 - 2015-11-30T06:50 for 2h40m
 - 2015-12-01T05:10 for 1h
- affected 10 of 13 letters
- about 5M q/s or 3.5Gb/s per affected letter
 - aggregate: 34Gb/s (unreflected)
- real DNS queries, common query names, from spoofed source Ips
- implications:
 - some letters had high loss
 - overall, though DNS worked fine
 - clients retried other letters (as designed)
 - but want to do better

data:
A-Root had full view
(Verisign presentation);
RSSAC-002 reports
How About the Letters?

some did great:
D, L, M: not attacked
A: no visible loss

most suffered:
a bit (E, F, I, J, K)
or a lot (B, C, G, H)

but does “x%”
measure what
users actually see?
Reachability at K’s Sites

- sites see fewer VPs, but why?
 - query loss?
 - route change?
Site *Flips* from Routing Changes

[Moura16a, figure 11; data: RIPE Atlas]
Site Flips from Routing Changes

360 minutes (in 4 minute bins)

Nov. 30 event

yellow: K-LHR

blue: K-AMS

white: K-other

black: failed query

[Moura16a, figure 11b; data: RIPE Atlas]

stay at K-LHR;
sad during event

flip to K-AMS;
(less) sad during event;
back to K-LHR after

flip to K-other
and stay there
flip to K-AMS

Anycast vs. DDoS / 2016-10-16
Flips: Implications

• some ISPs are “sticky” and won’t flip
 – will suffer if their site is overloaded
• some ISPs will flip
 – but new site may not be much better
• result depends on many factors
 – actions taken by root operator
 – routing choices by operator and peer
 • and perhaps peer’s peers, depending on congestion location
 – implementation choices
 • DNS, routing
During An Event:
Active Routing Changes or Not?

• no active routing changes
 – should expect partial loss in future attacks
 • inevitable: non-uniform attacker and defender capacity
 – overloaded catchments will suffer during attack
 – need to pre-deploy excess capacity
 – operators understand and are doing these;
 but what about user expectations?

• active routing changes
 – important when aggregate attack and defense capacity is similar
 • if one exceeds the other, no need to bother
 – requires much better measurement and route control
 • seems like a research problem; AFAIK no tools today
 – important to reduce client losses at smaller sites
 – seems necessary to get to 0% loss
Aside: Collateral Damage

• can an event hurt non-targets?
• yes! ...a risk of shared datacenters

D-FRA and D-SYD: less traffic
(even though D was not directly attacked)
Recommendations

• current approach reasonable
 – build out capacity in advance
 – no active re-routing during attack
 – should expect some loss during each attack
• need true diversity to avoid collateral damage
• longer-term
 – need research to improve measurement and control
 – active control can improve loss during some attacks
• how many sites needed?
 – there is a lot of capacity already
 – many small sites seem to increase partial outages
More Info

- paper: http://www.isi.edu/~johnh/PAPERS/Moura16b
- data: https://ant.isi.edu/datasets/anycast/
Confirming Flips in BGP

flips common during events for most letters

flips seen in BGP