OAuth 2.0 Token Binding

Brian Campbell | %\&\;\; v

Michael B. Jones 1 ETF
John Bradley

IETF 97
Seoul
November 2016

https://tools.ietf.org/html/draft-ietf-oauth-token-binding-01



\
§//

1 ETF

Why?

e Specify a means of using Token Binding with
OAuth (& OpenID Connect) to to defeat
replay of stolen tokens

Refresh tokens

(ID Tokens)

Access tokens
Authorization Codes



Status s o g

1 ETF

e After Berlin draft-jones-
oauth-token-binding-00
adopted as starting point for
WG draft

e Unchanged to initial working §
group version draft-ietf-
oauth-token-binding-00

e draft-ietf-oauth-token-binding- O

e Changed Token Binding for access tokens to use the Referred
Token Binding ID vs. an authorization request parameter

e Defined Protected Resource Metadata value.

o Changed to use the more specific term "protected resource”
instead 3



Quick Token Binding M andi
Overview

e Uses a public-private key pair generated by the client to
sign TLS exported keying material and create long-lived

TLS binding
e draft-ietf-tokbind (TBNEGO)

-negotiation-05
TLS extension for token binding protocol negotiation
-protocol-10 (TBPROTO)
Token Binding protocol message format
provided & referred types
-https-06 (HTTPSTB)

Embedding token binding messages in HTTPS

Sec-Token-Binding request header
Include-Referred-Token-Binding-ID response header




Token Binding for Refresh 7599~
Tokens

e Section 2 of draft-ietf-oauth-token-binding-01
e Straightforward (like binding a cookie)
e There’s only the Client and AS

e When issuing an RT, AS binds it to the
provided Token Binding ID from the client

e \When presented with an RT, AS checks its
bound Token Binding ID against the provided
TB from the client

e Transparent to the client



Representing Token Binding 7999~
in JWTs & ID Tokens

e New RFC 7800 JWT Confirmation Method
member, “tbh”

SHA-256 hash of a Token Binding ID in an ID
Token

Defined in OpenlID Connect Token Bound
AUthenthatlon (http://openid.net/specs/openid-connect-token-bound-authentication-1_0.html)

{

"iss": "https://as.example.com",
"aud": "https://resource.example.com",
"sub": "user@example.com",

"exp": 1478891626,

"enf":

"tbh": ”8ESC 3rl1ACCGp2giLOf48BWCTjpBnhm-QO0yzJxhyLTC"
} 6
}



Token Binding for Access | “2“~~
Tokens

Section 3 of draft-ietf-oauth-token-binding-01

Binds the access token to the token binding key used by
the client in the TLS connection to the protected
resource

When issuing an AT the AS binds it to the referred Token
Binding ID presented at the,
Token endpoint (code, refresh, and all other grants)
Authorization endpoint (implicit)
Protected resource validates by comparing the Provided
Token Binding ID to the Token Binding ID for the access
token




Referred Token Binding ID |1 e r ¢

e Conceptually the *right* approach but

No redirect occurs between the protected resource and the authorization
server
Some allowance for native applications in HTTPSTB but “applications MUST
only convey Token Binding IDs to other servers if the server associated with
a Token Binding ID explicitly signals to do so, e.g., by returning an Include-
Referred-Token-Binding-ID HTTP response header field”

Get that text changed

Interpret that text very liberally

Add an explicit signal (maybe a new auth-param with the WWW-Authenticate

Response Header Field from RFC 6750)

May still prove cumbersome in some situations

Native app using different code path for token endpoint and APl access

Clustered web server clients

Etc.

HTTPSTB has a SHOULD for an eTLD+1 scoping requirement




Token Binding for M o g
Authorization Codes

e Work outstanding to be added to the draft

e Two flavors:

Bind to the Token Binding ID the native client
uses to resolve the code at the token endpoint

Bind to the Token Binding ID the browser uses
to deliver the code to a web server client

Defeats cut-and-paste replay

e Is a double binding necessary?



Authorization Code Binding |<&%%
Straw-man PETE

e Bind to the Token Binding ID the native client uses

to resolve the code at the token endpoint

code challenge=BASEG64URL(SHA256(Provided Token Binding ID
between client and AS token endpoint))

code_challenge _method=tbs256

code_verifier=provided (and use the value of the provided Token Binding
ID)

e Bind to the Token Binding ID the browser uses to

deliver the code to a web server client
code_challenge=referred (use the value of the referred Token Binding
ID)
code challenge _method=referred tb

code_verifier=BASE64URL(Provided Token Binding ID between browser
and Client’s redirect URI)




AL
Token Binding Metadata | © ™ ©

e Client
client_access_token token_ binding_supported (Boolean)
client_refresh_token_ token binding_supported (Boolean)

e Authorization Server
as_access_token_token_binding_supported (Boolean)
as_refresh_token_token_binding_ supported (Boolean)

e Protected Resource
resource_access_token token binding supported (Boolean)

11



Phasing in Token Binding & Mo g
Preventing Downgrade Attacks

e Token Binding won’t bind if not all participants support it
‘context-dependent deployment choice whether to allow
interactions to proceed’ (recommended in the general case to
allow)

e Downgrade: if all participants support it but one doesn't

use it, ‘likely evidence of a downgrade attack [.. ]
authorization SHOULD be aborted with an error.’

It's more subtle than that, mismatch in supported key parameters
types would lead to the same situation

Supported key parameters types vs Boolean in metadata?

Metadata for class of Client apps might not be able to accurately
convey

AS may not know the resource(s)

12



1 ETF

(Known) Next Steps

e (somehow) resolve conflict in HTTPSTB with
explicit signaling needed to reveal the
referred Token Binding

e Add binding for authorization codes

e Flesh out or back off of metadata and
downgrade detection

13



