

Brian Campbell

Michael B. Jones
John Bradley

IETF 97
Seoul

November 2016

https://tools.ietf.org/html/draft-ietf-oauth-token-binding-01

OAuth 2.0 Token Binding

1

*

Why?
l  Specify a means of using Token Binding with

OAuth (& OpenID Connect) to to defeat
replay of stolen tokens
l  Refresh tokens
l  (ID Tokens)
l  Access tokens
l  Authorization Codes

2

Status

l  After Berlin draft-jones-
oauth-token-binding-00
adopted as starting point for
WG draft

l  Unchanged to initial working
group version draft-ietf-
oauth-token-binding-00

3

l  draft-ietf-oauth-token-binding-01
l  Changed Token Binding for access tokens to use the Referred

Token Binding ID vs. an authorization request parameter
l  Defined Protected Resource Metadata value.
l  Changed to use the more specific term "protected resource"

instead

Quick Token Binding
Overview

l  Uses a public-private key pair generated by the client to
sign TLS exported keying material and create long-lived
TLS binding

l  draft-ietf-tokbind (TBNEGO)
l  -negotiation-05

l  TLS extension for token binding protocol negotiation
l  -protocol-10 (TBPROTO)

l  Token Binding protocol message format
§  provided & referred types

l  -https-06 (HTTPSTB)
l  Embedding token binding messages in HTTPS

§  Sec-Token-Binding request header
§  Include-Referred-Token-Binding-ID response header

4

Token Binding for Refresh
Tokens

l  Section 2 of draft-ietf-oauth-token-binding-01
l  Straightforward (like binding a cookie)
l  There’s only the Client and AS
l  When issuing an RT, AS binds it to the

provided Token Binding ID from the client
l  When presented with an RT, AS checks its

bound Token Binding ID against the provided
TB from the client

l  Transparent to the client
5

Representing Token Binding
in JWTs & ID Tokens

l  New RFC 7800 JWT Confirmation Method
member, “tbh”
l  SHA-256 hash of a Token Binding ID in an ID

Token
l  Defined in OpenID Connect Token Bound

Authentication (http://openid.net/specs/openid-connect-token-bound-authentication-1_0.html)

6

 {
 "iss": "https://as.example.com",
 "aud": "https://resource.example.com",
 "sub": "user@example.com",
 "exp": 1478891626,
 "cnf":{
 "tbh": ”8ESC_3r1ACCGp2qiLOf48BWCTjpBnhm-QOyzJxhyLTC"
 }
 }

Token Binding for Access
Tokens

l  Section 3 of draft-ietf-oauth-token-binding-01
l  Binds the access token to the token binding key used by

the client in the TLS connection to the protected
resource

l  When issuing an AT the AS binds it to the referred Token
Binding ID presented at the,
l  Token endpoint (code, refresh, and all other grants)
l  Authorization endpoint (implicit)

l  Protected resource validates by comparing the Provided
Token Binding ID to the Token Binding ID for the access
token

7

Referred Token Binding ID
l  Conceptually the *right* approach but

l  No redirect occurs between the protected resource and the authorization
server

l  Some allowance for native applications in HTTPSTB but “applications MUST
only convey Token Binding IDs to other servers if the server associated with
a Token Binding ID explicitly signals to do so, e.g., by returning an Include-
Referred-Token-Binding-ID HTTP response header field”
l  Get that text changed
l  Interpret that text very liberally
l  Add an explicit signal (maybe a new auth-param with the WWW-Authenticate

Response Header Field from RFC 6750)
l  May still prove cumbersome in some situations

l  Native app using different code path for token endpoint and API access
l  Clustered web server clients
l  Etc.

l  HTTPSTB has a SHOULD for an eTLD+1 scoping requirement
8

Token Binding for
Authorization Codes

l  Work outstanding to be added to the draft
l  Two flavors:

l  Bind to the Token Binding ID the native client
uses to resolve the code at the token endpoint

l  Bind to the Token Binding ID the browser uses
to deliver the code to a web server client
l  Defeats cut-and-paste replay

l  Is a double binding necessary?
9

Authorization Code Binding
Straw-man

l  Bind to the Token Binding ID the native client uses
to resolve the code at the token endpoint
l  code_challenge=BASE64URL(SHA256(Provided Token Binding ID

between client and AS token endpoint))
l  code_challenge_method=tbs256
l  code_verifier=provided (and use the value of the provided Token Binding

ID)

l  Bind to the Token Binding ID the browser uses to
deliver the code to a web server client
l  code_challenge=referred (use the value of the referred Token Binding

ID)
l  code_challenge_method=referred_tb
l  code_verifier=BASE64URL(Provided Token Binding ID between browser

and Client’s redirect URI) 10

Token Binding Metadata
l  Client

l  client_access_token_token_binding_supported (Boolean)
l  client_refresh_token_token_binding_supported (Boolean)

l  Authorization Server
l  as_access_token_token_binding_supported (Boolean)
l  as_refresh_token_token_binding_supported (Boolean)

l  Protected Resource
l  resource_access_token_token_binding_supported (Boolean)

11

Phasing in Token Binding &
Preventing Downgrade Attacks

l  Token Binding won’t bind if not all participants support it
l  ‘context-dependent deployment choice whether to allow

interactions to proceed’ (recommended in the general case to
allow)

l  Downgrade: if all participants support it but one doesn’t
use it, ‘likely evidence of a downgrade attack […]
authorization SHOULD be aborted with an error.’
l  It’s more subtle than that, mismatch in supported key parameters

types would lead to the same situation
l  Supported key parameters types vs Boolean in metadata?
l  Metadata for class of Client apps might not be able to accurately

convey
l  AS may not know the resource(s)

12

(Known) Next Steps

l  (somehow) resolve conflict in HTTPSTB with
explicit signaling needed to reveal the
referred Token Binding

l  Add binding for authorization codes
l  Flesh out or back off of metadata and

downgrade detection

13

