
Code	Point	Management
IETF	97

Jeffrey	Haas	<jhaas@juniper.net>

1



Introduction

• This	presentation	is	based	on	an	internal	presentation	given	at	my	
employer	regarding	the	issue	of	doing	protocol	development	work.
• To	set	the	expectations,	the	talk	is	subtitled:	“Stop	making	customers	
regret	early	deployment.”

2



Motivation	for	this	Talk

• Code	point	allocation	and	use	have	impact	when	people	are	trying	to	
deploy	protocols.
• Improper	allocation	practices	in	code	and	in	specifications	cause	
issues	for	implementers	and	users	of	protocols.
• Sometimes	these	issues	are	local;	e.g.	hop-by-hop	or	constrained	to	a	given	
internal	network.
• Sometimes	they	are	terribly	global;	e.g.	BGP	or	DNS.
• The	“blast	radius”	of	doing	something	wrong	is	a	strong	motivator	to	try	to	do	
it	right	the	first	time.

3



Code	Points

• Protocols	need	code	points	in	order	to	operate.
• When	it	is	a	completely	new	protocol	operating	disjointly with	
everything	else,	the	specification	authors	can	usually	make	up	their	
own	code	point	namespaces	and	choose	initial	assignments	without	
concern.
• Once	a	protocol	has	been	deployed,	maintenance	of	the	code	points	
requires	coordination.		While	it	is	possible	that	these	code	points	are	
solely	maintained	as	part	of	specification	revisions,	typically	a	registry
is	created	somewhere	to	coordinate	the	assignment	and	publication	
of	code	points.
• For	IETF,	that	registry	is	often	IANA.

4



Registration	Policies	in	IETF

• RFC	5226,	Guidelines	for	Writing	an	IANA	Considerations	Section	in	RFCs,	
provides	a	number	of	common	policies	for	registries:
• Private	Use:	Not	regulated	at	all.		Use	at	peril.
• Experimental	Use:	Used	for	experimentation.
• Hierarchical	Allocation:	Permits	delegation	of	ranges	to	organizations.
• First	Come,	First	Served:	Anyone	can	ask	for	a	code	point.
• Expert	Review:	Requires	input	from	the	Designated	Expert.
• Specification	Required:	The	document	might	not be	an	RFC.
• RFC	Required:	Requires	an	RFC.	
• IETF	Review:	Requires	the	document	to	work	its	way	through	IETF	review	process,	
either	as	an	Area	Director	sponsored	document	or	as	a	Working	Group	document.

• Standards	Action:	Requires	an	RFC	targeted	for	the	Standards	Track.
• IESG	Approval:	Catch-all	of	last	resort.

5



Why	are	we	Having	this	Conversation?
• As	developers protocol	authors,	when	it	becomes	necessary	to	write	code	for	
a	protocol	feature	that	requires	a	new	code	point,	one	must	be	chosen.
• The	question	is	what to	choose.
• Your	choices	have	far-reaching	impact	on	the	deployability of	a	new	feature.

6



If	You	Pick	One,	and	You’re	Wrong…
• A	common	strategy	for	a	public	registry	that	has	sequentially	allocated	code	
points	is	to	pick	the	next	one.
• The	feature	ships,	and	customers	start	deploying	it.
• And	potentially	another	implementer	does	the	same	thing	for	a	totally	different	
feature.
• Now	things	can’t	interoperate.
• Who	wins?

• If	you’re	lucky,	you	might	“publicly	squat”	upon	an	undelegated	code	point	as	part	of	
the	standards	document	process.

7



…	Examples	of	When	You’re	Wrong
• draft-snijders-idr-deprecate-30-31-129-01
• BGP	Large	Communities	was	assigned	the	next	code	unallocated	BGP	Path	
point	by	IANA,	30.		It	was	in	use	by	code	that	had	shipped	early	development	
of	other	features…	and	the	feature	was	not	globally	deployable	in	the	
Internet.
• Interesting	note:	Code	points	30	and	129	were	both	done	during	IETF	
Hackathons.

8



Or	You	Pick	One	and	Ship	a	Pre-RFC	Feature
• As	part	of	development	work,	you	use	a	code	point	and	at	a	later	point	
change	the	behavior	of	the	feature-in-progress.
• This	happened	with	the	BGP	Independent	Domain	feature.	(RFC	6368)	
(also	known	as	ATTR-128)

• It	was	developed	as	a	2-byte	Autonomous	System	Number	feature	and	later	updated	
to	a	4-byte	Autonomous	System	feature	without	using	a	new	code	point.

• This	implicit	incompatibility	resulted	in	multiple	globally	visible	BGP	Internet	routing	
outages.

• Partially	as	a	result	of	these	issues,	this	feature	and	its	code	point	is	considered	toxic.
• FCFS	allocation	isn’t	a	guarantee	of	safety.		Stability	of	an	implementation	
(and	thus	versioning	of	the	protocol	component)	is	important.

9



Picking	a	Code	Point
• Many	IETF	registries	are	fairly	permissive,	having	First	Come	First	Served	policies	
for	a	portion	of	the	range.		Once	a	feature	is	far	enough	along	initial	development	
and	has	made	some	progress	through	the	standards	process	(if	applicable),	an	
allocation	should	simply	be	requested	and	any	standards	documents	updated.
• Several	of	the	more	restrictive	policies	require	the	document	to	have	reached	the	
RFC	publication	point	of	the	process.		This	can	lead	to	bootstrapping	issues	since	
interoperable	code	is	often	needed	and	that	requires	coordinated	code	points.
• Early	allocation,	covered	in	5226bis,	permits	the	IESG	to	“temporarily”	allocate	a	code	
point	to	documents	that	have	these	dependencies.

• These	allocations	have	a	one	year	life	span	and	thus	tend	to	come	along	much	later	in	the	
life	of	a	document.		In	practice,	it	can	be	longer,	but	it’s	not	permanent.

• This	is	all	partially	complicated	because	the	RFC	process	is	slow.

10



What	to	Do	Until	You	Can	Get	a	Real	Assignment
• Many	registries	provide	for	an	Experimental	range	if	they	don’t	already	have	a	
Private	range.
• You	can	use	these	as	we	wish.

• But	this	means	you	must	coordinate	these	assignments	internally.
• Experimental	ranges	tend	to	be	small.	This	means	that	we	can’t	have	too	many	
“experiments”	running	at	the	same	time.

• We	have	to	have	a	migration	strategy	to	move	to	a	real	assignment	at	a	later	time.
• You	can’t	ship	your	code	using	this	experimental	code	point.
• A	later	presentation	in	IDR	discusses	a	way	we	can	potentially	do	more	experiments.

• If	there	we	can’t	get	a	FCFS	or	use	an	experimental	point,	we	have	to	“squat”	on	a	
number.
• And	it	becomes	even	more	important	to	have	a	migration	strategy.
• And	you	still	can’t	ship	your	code	using	this	code	point.

11



Code	Point	Migration	Life	Cycle
• For	feature	development,	it’s	most	important	to	simply	get	a	number.		This	
number	serves	for	development	and	testing	purposes.
• Try	to	use	an	appropriate	number,	ideally	an	experimental	number	until	your	work	is	
far	enough	along.

• If	the	feature	must	squat	upon	a	code	point	including	an	experimental	number,	the	
feature	must require	configuration	of	the	code	points	in	order	to	function.

• While	it’s	tempting	to	provide	configuration	to	change	from	a	default	number,	
defaults	end	up	being	wrong.

• It	is	critical to	not	ship	features	that	may	use	wrong	code	points.
• The	test	group	must	sign	up	to	verify	the	feature	with	its	properly	assigned	code	
point	and	not	just	the	one	controlled	by	the	configuration.

• It	is	dangerous to	ship	features	with	configurable	code	points.
• It	lets	the	customer	squat	on	arbitrary	code	points.

12



Registry	Policy	Considerations
• AKA	”What	do	I	put	in	my	protocol	spec?”
• A	”libertarian”	policy	would	be	FCFS	as	much	as	possible	and	Standards	Action	
when	needed	– but	mostly	because	Early	Allocation	isn’t	a	boundary	to	
moving	forward.
• Make	it	easier	to	get	a	real	code	point	than	to	squat	on	one.

• Making	it	easy	also	entails	having	enough	code	points	to	be	generous	with	
giving	them	out.		Don’t	be	stingy	with	bits	in	your	PDU	unless	you	really	need	
to	be.

13



Review	Considerations	– in	Code
• Code	points	are	often	scattered	across	general	feature	header	files.
• Code	points	managed	by	registries	should	be	refactored	into	separate	files.

• These	files	should	be	under	expert	reviewer	approval	control,	preferably	parties	that	
also	participate	in	the	standards	process.

• A	process	for	ensuring	releases	block	when	code	points	aren’t	properly	allocated	
must	be	implemented.		For	example,	a	blocker	PR.

• Your	expert	reviewers	should	be	able	to	help	developers	choose	code	points	
at	the	time	of	design	specification	work.
• And	they	should	move	for	early	allocation,	if	needed,	when	the	feature	is	suitably	
stable.

14



Review	Considerations	– In	Specifications
• Never	create	a	type	field	without	also	creating	a	registry	for	it.
• When	you	review	a	draft,	especially	at	WG	adoption,	review	it	carefully	to	see	if	
there	are	type	fields	that	have	no	registries.
• Registry	policies	SHOULD	be	FCFS	or	Standards	Action	unless	there’s	a	very	good	
reason	to	not	do	so.
• The	WG	should	own	the	registry	as	much	as	is	reasonable.
• Policy	speed	bumps	cause	rash	behaviors.		See	EVPN	route	type	allocation	issues	as	an	
example.

• Refer	to	code	points	by	feature	name	rather	than	code	point	number.
• IANA	is	incredibly	easy	and	pleasant	to	deal	with.		FCFS	allocations	are	very	fast.
• Document	Shepherd	work	should	include	verifying	registries	as	part	of	document	
progression	to	IESG.

15


