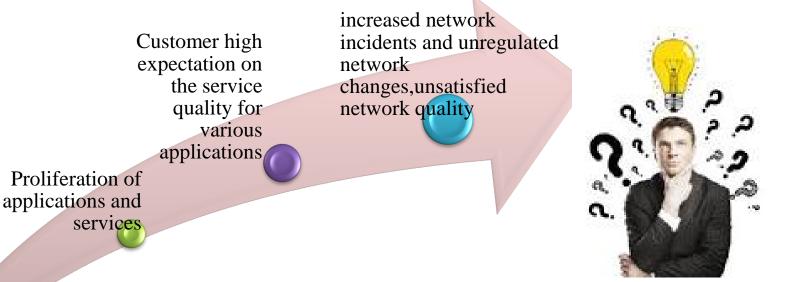

# Network Health Assessment – Using Big Data to Perform Network Diagnosis and Predict

Qin Wu (<u>bill.wu@huawei.com</u>) Liang Zhang (<u>zhangliang1@huawei.com</u>)


# Agenda

- What is "Network Health Assessment"
- Architecture Overview
- Network Health Indicator Use Cases
- Network Health Indicator: Network Diagnostics and Analytics Components
- Conclusion

## What is "Network Health Assessment"



# **Overall Objectives**



High Scale Network

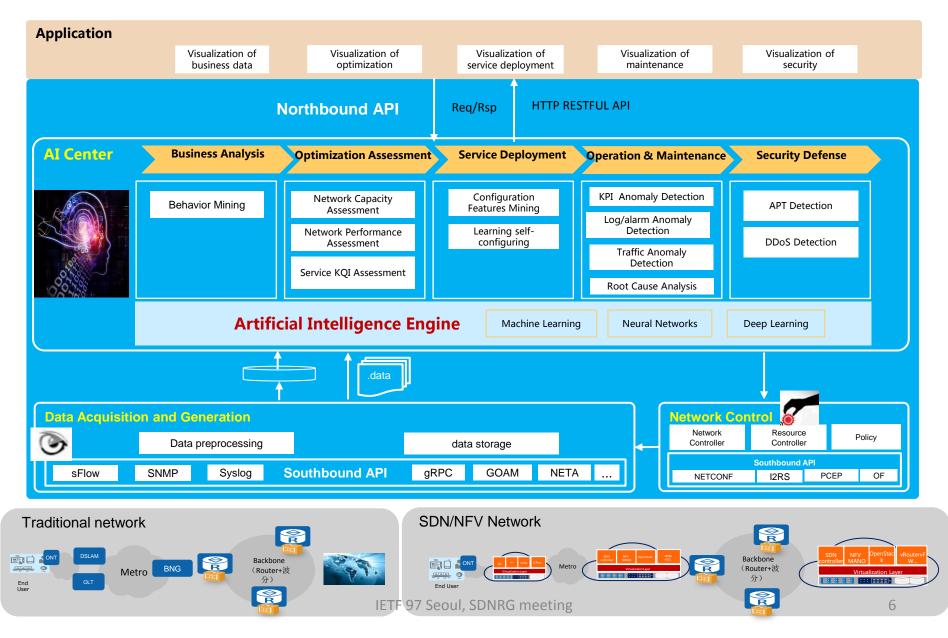


| Network Awareness:           | Perceive Network Performance and detect unregulated event                                                        |  |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Service Assurance:           | Verify Network SLA acceptance, better understand customer feel on application(e.g.,web browsing, AV application) |  |  |  |  |  |
| Metric Calculation:          | use network health indicator to reflect unsatisfactory level of network impairment                               |  |  |  |  |  |
| Network Re-<br>Optimization: | Operate and optimize the network to meet on demand service requirement.                                          |  |  |  |  |  |
| Performance<br>Monitoring:   | Troubleshoot is hard, tracing the traffic in the network consume tremendous network and server resource.         |  |  |  |  |  |
| Trend Analysis:              | Event correlation , anticipant network event, forecast short term                                                |  |  |  |  |  |

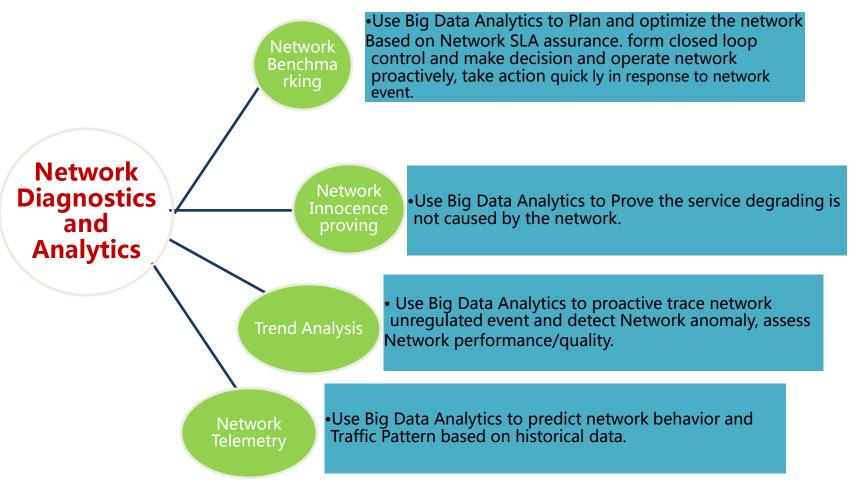
### Network Health Indicator vs MoS indicator

The network health indicator provides a Numerical indication of the network anomaly Degree from underlying network impairment Parameters based On big Data Analytics and Diagnosis.

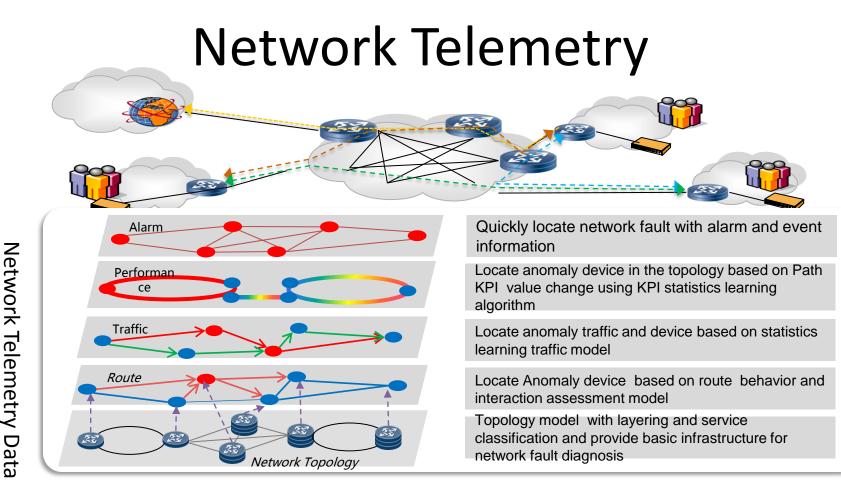



The MOS provides a numerical indication of the perceived quality from the users' perspective of received media after compression and/or transmission

#### Mean opinion score (MOS)


| r | MOS | Quality   | Impairment                   |
|---|-----|-----------|------------------------------|
|   | 5   | Excellent | Imperceptible                |
|   | 4   | Good      | Perceptible but not annoying |
|   | 3   | Fair      | Slightly annoying            |
|   | 2   | Poor      | Annoying                     |
|   | 1   | Bad       | Very annoying                |

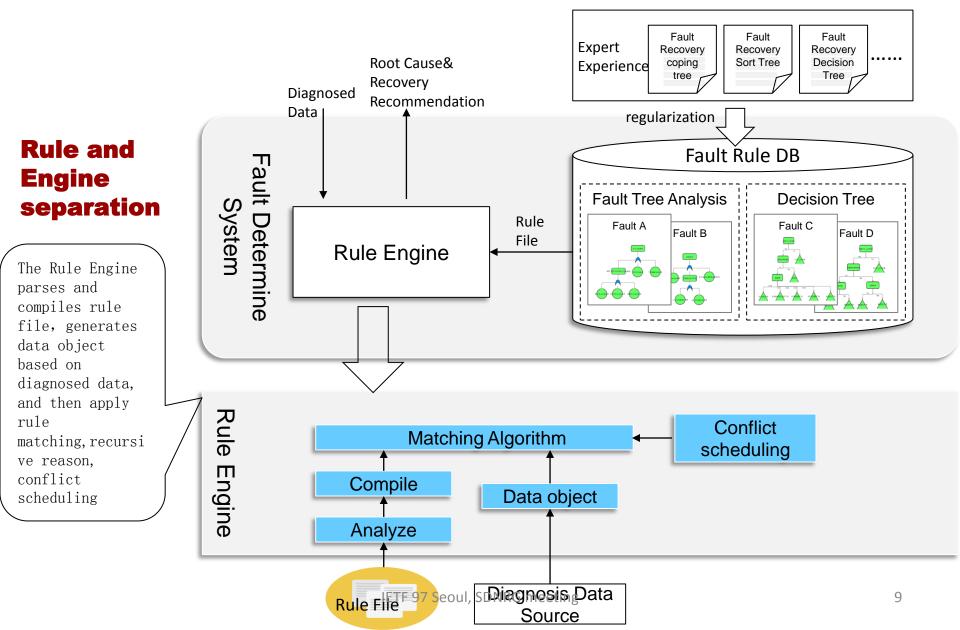
|                                            | Network Health Indicator                                                                                                                                               | Application Specific MoS                                                                              |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Network-or application<br>layer monitoring | Network layer monitoring                                                                                                                                               | Application layer monitoring                                                                          |
| Purpose                                    | Network Anomaly Evaluation                                                                                                                                             | Service assurance assessment                                                                          |
|                                            | And accurate network diagnosis                                                                                                                                         | And coarse granularity application layer diagnosis                                                    |
|                                            | (delimitate to specific network portion, network element, network module)                                                                                              | (delimitate to specific network portion)                                                              |
|                                            | And root cause analysis, fault prediction                                                                                                                              |                                                                                                       |
| Calculation algorithm                      | Anomaly detection, correlation degree analysis,<br>conformity degree analysis, data consistency check, root<br>cause algorithm                                         | QoE algorithm, e.g., MoS calculation algorithm and other media quality assessment algorithm           |
| Usage                                      | Network planning, dimension, network monitoring and<br>diagnosis                                                                                                       | Service monitoring                                                                                    |
| Assessment Model                           | Network specific model(could be application<br>independent model or application specific model), defined<br>in the context a specific network and for specific service | Application specific model, defined in the context of specific application and specific usage session |
| Contributing factors                       | Network layer parameter, e.g., Network Log data, Network Warning data, Network configuration data, etc.                                                                | Application specific parameter(e.g.,GOP, bitrate, I frame loss,<br>PCR, PTS error)                    |
|                                            |                                                                                                                                                                        | Terminal specific parameter (e.g., Jitter buffer)                                                     |


## **Architecture Overview**



### Network Health Assessment Use Cases




For the first three use Cases, see ITU-T SG12 proposal https://www.itu.int/md/T13\_SG12\_CnQ368/en



### Using Syslog, SNMP,NetFlow as data source to collect traffic statistics, route behavior, performance information. Warning information.

- various network telemetry method are proposed
  - Syslog
  - SNMP
  - Data probing proposed by Facebook
  - In Network Telemetry(INT)
  - In band OAM proposed by Cisco
  - gRPC proposed by Google
  - Limitations of these methods
    - Scalability of trace collection
    - Limitation of passive tracing for some methods
    - Data format lack efficiency in the wire
    - Lack pub-sub capability

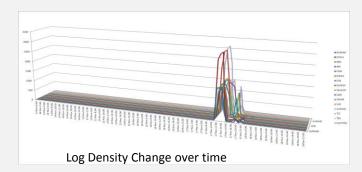
### **Diagnostics and Analytics System**

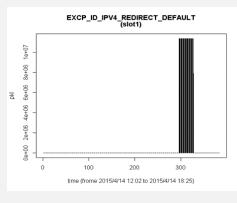


## **Diagnostics and Analytics: Anomaly Analysis**

### > Spatial Dimensions Anomaly Analysis: NE configuration

#### parameters comparison

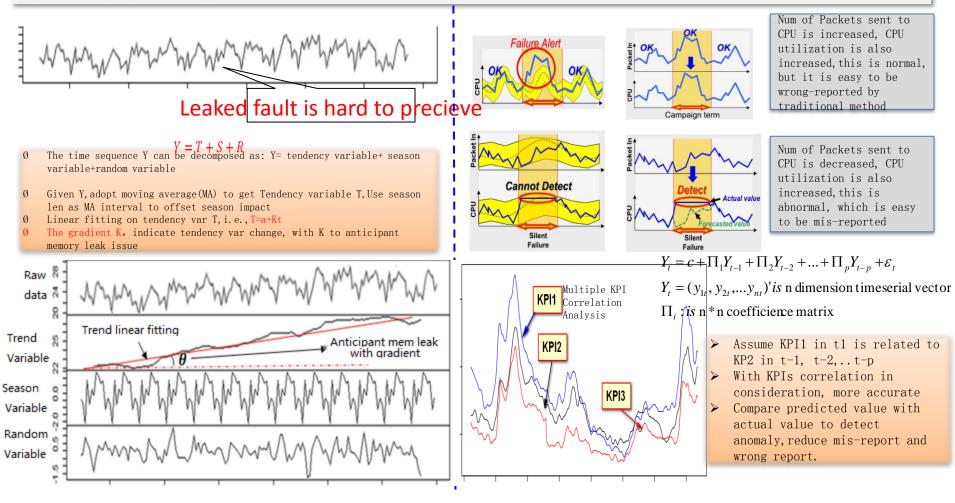

When normal NE and malfunctioned NE are running at the same time, the event type is different, the occurring frequency of the same event is also different.


|                    |    |         |    | KOM_NE80 |    | The     | Network     | RPR-NE80  | TRG-RPR-NE80 |
|--------------------|----|---------|----|----------|----|---------|-------------|-----------|--------------|
|                    | 36 | 36      | 36 |          |    |         | t Type of   | 36        |              |
| network events per | 37 | 37      | 37 |          |    |         | nctional is | 37        |              |
| NE, the value of   | 0  | 0       |    |          |    |         |             | 122       |              |
| network Event      | 0  | 0       |    |          |    |         | rent from   | 123       |              |
|                    | 0  | 0       |    |          |    | on      | e from      | 124       |              |
| represent Network  | 0  | 0       |    |          |    | Nor     | mal NE      | 125       |              |
|                    | 24 | 24      |    |          |    |         | 17          | 24        |              |
|                    | 47 | 47      | 47 |          |    | 47      | 47          | 47        |              |
|                    | 0  | 0       |    |          |    | 0       | 0           | 126       |              |
|                    | 0  | 0       |    |          |    | 0       | 0           | 127       |              |
|                    | 0  | 25      |    |          |    | 25      | 0           | 128       |              |
|                    | 25 |         |    |          |    | 25<br>0 | 25          | 25<br>129 |              |
|                    | 51 | 0<br>51 | 51 |          |    | 51      | 51          | 51        |              |
|                    | 63 | 63      |    |          |    | 51      | 0           | 51        |              |
|                    | 30 | 30      |    |          |    | 30      | 30          | 30        |              |
|                    | 0  | 0       |    |          |    | 0       | 76          | 76        |              |
|                    | 29 | 29      |    |          |    | 29      | 29          | 29        |              |
|                    | 0  | 25      |    |          |    | 29      | 0           | 25        |              |
|                    | 34 | 34      |    |          |    | 34      | 34          | 34        |              |
|                    | 35 | 35      |    |          |    | 35      | 35          | 35        |              |
|                    | 0  | 0       |    |          |    | 0       | 0           | 0         |              |
|                    | 0  | Ű       |    |          |    | 0       | 0           | 0         |              |
|                    | Ŭ. | Ű.      |    |          |    | ů.      | 0           | 0         |              |
|                    | Ŭ. | Ű.      |    |          |    | Ű.      | 0           | 0         |              |
|                    | 60 | 60      |    |          |    | 60      | 60          | 60        |              |
|                    | 0  | 0       |    |          |    | 0       | 0           | 0         |              |
|                    | 0  | 0       |    |          |    | 0       | 0           | 0         |              |
|                    | 0  | 0       |    |          |    | 0       | 0           | 0         |              |
|                    | 0  | 0       |    |          |    | 0       | 0           | 0         |              |
|                    | 64 | 64      | 64 | 64       | 64 | 64      | 64          | 0         | 64           |
|                    | 65 | 0       |    |          |    | 0       | 65          | 0         |              |
|                    | 66 | 0       | 0  | ) (      | 0  | 0       | 66          | 0         | 66           |
|                    | 67 | 0       | 0  | 0        | 0  | 0       | 67          | 0         | 67           |
|                    | 0  | 0       | 0  | 0        | 0  | 0       | 0           | 0         | 136          |

#### Time Dimension Anomaly Analysis: NE historical data

#### comparison

> The change of the performance measurement results and network event occurring frequency in malfunctioned NE is different from ones in Normal NEs.






#### Packet Loss KPI change over Time

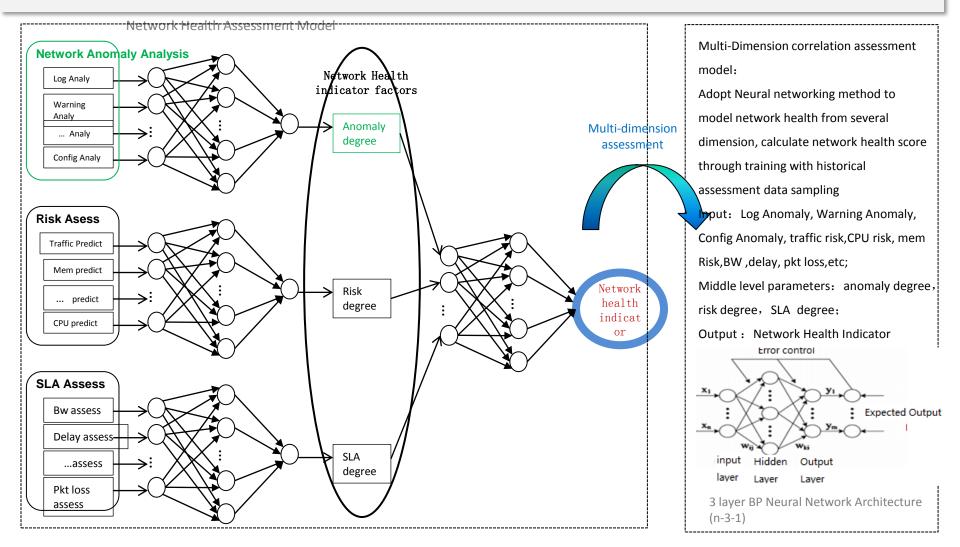
### **Diagnostics and Analytics : KPI Anomaly Prediction**

Single KPI Anomaly Prediction: long resource leaking hide time, strong concealment, anomaly is easy to be concealed by Normal data
Multiple KPI Anomaly Prediction: Need to consider correlation between KPIs, without its impact on single KPI threshold detection, misreport, wrong report can be generated



## Metric Definition: Network Profile

Network Profile: Describe network Constraints,


Characteristics

| Network Category            | Attributes                                                                                                                |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Network Type                | LAN, WAN, WLAN, MAN, SAN, PAN, EPN & VPN                                                                                  |  |  |  |
| Network technology          | MPLS Tech, IP Tech, Segment Routing Tech, etc.                                                                            |  |  |  |
| Network Coverage            | FBB, MBB, Home Broadband, Corporate Lease line                                                                            |  |  |  |
| Network Segment             | Access, Aggregation, Edge, Core                                                                                           |  |  |  |
| Application support         | Data Service, Storage, Video, Audio, Real time service, Data Center                                                       |  |  |  |
| Transport Protocol          | UDP, TCP, HTTP                                                                                                            |  |  |  |
| Bearer                      | Ethernet, Optical,                                                                                                        |  |  |  |
| Network Access Mode         | Wireline, Wireless                                                                                                        |  |  |  |
| Routing Tech                | BGP/ISIS/OSPF/RIP/Static routing                                                                                          |  |  |  |
| Network Topology            | Hub spoke, Full Mesh                                                                                                      |  |  |  |
| Network QoS                 | Total Bandwidth, Resvered bandwidth, Bandwidth Utilization, Packet Loss, Jitter, Delay, Max-Route, Throughput, CoS Value. |  |  |  |
| Network Multicast           | Unicast, Multicast, Broadast                                                                                              |  |  |  |
| Network Security            | Authentication, Encryption, Integration Protection, etc.                                                                  |  |  |  |
| Network OAM                 | BFD, LSP Ping, IP OAM, Ethernet OAM, PW OAM                                                                               |  |  |  |
| Network Tunnel              | Tunnel Type, Tunnel Technology                                                                                            |  |  |  |
| Network Protection          | Link Protection, Node Protection, Link and Node Protection, Repair time                                                   |  |  |  |
| Network Protocol complexity | Disruption frequency, Disrupt time, Protocol parameters consistency                                                       |  |  |  |
| Network Topology complexity | Primary path, backup path, Domain Diversity, Link Diversity, Node Diversity                                               |  |  |  |

# **Metric Calculation**

> ITU-T SG12 Q16 has been tasked to work on Network Health assessment standards in the new study period 2016-2020.

"Network Health Assessment Using Big Data Fault Analytics"



# Conclusion

- Troubleshooting is hard
  - Protocol misbehave
  - Mis-configuration
  - Packt loss
  - End to end latency
  - Load balancing, etc.
- Network health indicator is the key for Network Diagnostic and Analytics
  - Build Closed loop echo-system
  - Schedule network resource based on service requirements from customer
- Network telemetry is the key to troubleshooting
  - Network telemetry provide data for diagnostic and analytics
  - various network telemetry method are proposed
    - Syslog
    - SNMP
    - Data probing proposed by Facebook
    - In Network Telemetry(INT)
    - In band OAM proposed by Cisco
    - gRPC proposed by Google