
gRPC Features and Protocol
Eric Anderson (Google)

draft-kumar-rtgwg-grpc-protocol-00
November 14, 2016

IETF 97

https://tools.ietf.org/html/draft-kumar-rtgwg-grpc-protocol-00
https://tools.ietf.org/html/draft-kumar-rtgwg-grpc-protocol-00

Introductions

About gRPC

Client-server remote procedure call; functions+messages

OSS version and future of Google’s RPC

● Development on GitHub

Three implementations (C99, Java, Go), official hand-written APIs for ten languages

● Embedded to mobile to server
● Data center, mobile to cloud, cloud to cloud, device to device

Website: grpc.io GitHub: github.com/grpc

http://grpc.io
https://github.com/grpc

About Myself

gRPC Java Tech Lead

In relation to IETF draft: work with Abhishek and Louis; Jayant in my manager

● Joined team after prototypes and early protocol
● Contributed to current protocol and provided feedback

Have HTTP background

Features &
Protocol

Example Service

Protobuf IDL as example (gRPC core is marshaller agnostic)

service HelloService {

 rpc SayHello (HelloRequest) returns (HelloResponse);

}

message HelloRequest {

 string greeting = 1;

}

message HelloResponse {

 string reply = 1;

}

Protocol Features

● Status: canonical code + text message
○ Not HTTP status code. gRPC-defined

● Cancellation propagation, Deadline propagation
● Streaming; 0-to-many requests, 0-to-many responses

○ Bi-directional, full duplex, flow controlled, in order, best effort
○ Think “message-based TCP”
○ Is a natural scoping mechanism (e.g., notifications, locks)

● Metadata (headers and trailers)
○ Extension mechanism
○ Additional error information

● Misc: TLS with mutual auth, message compression

Example Service

Protobuf IDL as example (gRPC core is marshaller agnostic)

service HelloService {

 rpc SayHello (HelloRequest) returns (HelloResponse);

}

message HelloRequest {

 string greeting = 1;

}

message HelloResponse {

 string reply = 1;

}

Example Service (Streaming)

Protobuf IDL as example (gRPC core is marshaller agnostic)

service HelloService {

 rpc SayHello (stream HelloRequest) returns (stream HelloResponse);

}

message HelloRequest {

 string greeting = 1;

}

message HelloResponse {

 string reply = 1;

}

Protocol Features

● Status: canonical code + text message
○ Not HTTP status code. gRPC-defined

● Cancellation propagation, Deadline propagation
● Streaming; 0-to-many requests, 0-to-many responses

○ Bi-directional, full duplex, flow controlled, in order, best effort
○ Think “message-based TCP”
○ Is a natural scoping mechanism (e.g., notifications, locks)

● Metadata (headers and trailers)
○ Extension mechanism
○ Additional error information

● Misc: TLS with mutual auth, message compression

Basic Flow

Client Server

Metadata (Headers) →

Message →

Half Close →

← Metadata (Headers)

← Message

← Metadata (Trailers) + Status

HTTP Mapping

RPC method: POST /namespace.ServiceName/MethodName
Metadata: Headers and Trailers
Messages: Length-prefixed frames in body (5 byte header)

● Reverse Proxyable

HTTP/1.1 semantics, but needs some edge features

● Trailers
● Concurrent request and response (bi-direction)
● Cancellation

Built on HTTP/2

Frame-based Multiplexing; substantially amortized cost of TLS

● Byte-based flow control (gRPC converts to message-based)
● Graceful connection shutdown

Still permits limited resource servers

Implementation Features

Messages from KBs to 100s MBs

Pluggable name discovery

Client-side load balancer

Reflection

Conversion to REST (with Protobuf and via Proxy)

and more

Eric Anderson (ejona@google.com)

grpc-io@googlegroups.com

Related:

draft-talwar-rtgwg-grpc-use-cases-00

gRPC Network Management Interface

(https://github.com/openconfig/reference/tree/master/rpc/gnmi)

mailto:ejona@google.com
https://tools.ietf.org/html/draft-talwar-rtgwg-grpc-use-cases-00
https://tools.ietf.org/html/draft-talwar-rtgwg-grpc-use-cases-00
https://github.com/openconfig/reference/tree/master/rpc/gnmi

Appendix

Status Codes

● OK
● CANCELLED
● UNKNOWN
● INVALID_ARGUMENT
● DEADLINE_EXCEEDED
● NOT_FOUND
● ALREADY_EXISTS
● PERMISSION_DENIED
● UNAUTHENTICATED

● RESOURCE_EXHAUSTED
● FAILED_PRECONDITION
● ABORTED
● OUT_OF_RANGE
● UNIMPLEMENTED
● INTERNAL
● UNAVAILABLE
● DATA_LOSS

