Service Function Chaining
Metadata Type 1 and Type 2
draft-sarikaya-sfc-metadatat1t2-01

Behcet Sarikaya(sarikaya@ieee.org)
Mohamed Boucadair (mohamed.boucadair@orange.com)
Dirk von Hugo(Dirk.von-Hugo@telekom.de)

IETF#97, Seoul, November 2016
SFC Network Service Header

- Current Definitions – Metadata Type 1

```
<table>
<thead>
<tr>
<th>Ver</th>
<th>O</th>
<th>C</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>Length</th>
<th>MD type=0x1</th>
<th>Next Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

- Metadata Type 2

```
<table>
<thead>
<tr>
<th>Ver</th>
<th>O</th>
<th>C</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>Length</th>
<th>MD Type=0x2</th>
<th>Next Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

- Draft-ietf-sfc-nsh-10
The Problem

- Many use cases (Mobility, Data Center, OAM)
- Other use cases: extreme low-latency service, ultra high reliability applications
- Many drafts defining Type 1 and Type 2 metadata for these use cases
- Format/syntax of metadata
- Semantics of metadata, post processing instructions
- How to standardize metadata needed by diverse set of SFC use cases while ensuring backward compatibility?
Metadata Type 1 approaches

- I-D.guichard-sfc-nsh-dc-allocation:
 - Use case: I-D.ietf-sfc-dc-use-cases
 - Identifiers: Source Node, Source Interface, Tenant Destination, Source and Opaque Service Classes
 - D-bit for destination class and
 - F-bits for Opaque Service Class types:
 - ServiceTag to identify a particular flow, transaction or application message
 - Application ID
Metadata Type 1 approaches

- I-D.napper-sfc-nsh-broadband-allocation
 - Use case: I-D.ietf-sfc-use-case-mobility
 - Identifiers: Context, Sub/Endpoint
 - Service Information
 - Sub bits for Sub/Endpoint ID types:
 - IMSI, MSISDN, M2M flows or Home Identifier
 - Tag bits for Service Information types
 - Connectivity Access Network types of 3GPP-GPRS, DOCSIS, xDSL, etc.
 - App ID describing flow type, Con access congestion level
 - Also defines an empty TLV as MD Type 2
Metadata Type 1 approaches

- **I-D.wang-sfc-nsh-ns-allocation:**
 - Use case: I-D.wang-sfc-ns-use-cases
 - Identifiers: Session, Tenant
 - Destination, Source Classes
 - Destination, Source Score – security score
 - D-bit for destination class
 - Designed for the needs of security services
 - Security context allocation may also be defined as variable number of MD-Type 2 metadata TLVs

- **I-D.meng-sfc-nsh-broadband-allocation** defines Type 1 metadata for broadband network use cases
 - Source Node, Source Interface, User, VLAN IDs
Metadata Type 2 approaches

- [I-D.sarikaya-sfc-hostid-serviceheader]
 - Use cases: parental control, traffic offload, extreme low-latency, high reliability applications
 - Identifiers: Host ID, Subscriber ID, Slice and Service IDs,
 - SubT-bits for Subscriber ID, Service ID

- Use cases are defined in the same document
- Post processing normative behavior
- Privacy considerations for host and subscriber IDs
Metadata Type 2 approaches

- [I-D.quinn-sfc-nsh-tlv]
 - Identifiers: forwarding context, subscriber/user info, tenant, application ID, content type, ingress network information, flow ID, source and/or destination groups, universal resource identifier (URI)
 - Some have flag bits

- Purpose is to document syntactic structure of the TLVs to set up a registry of Type 2 metadata

- This document does not define the normative behavior for processing the defined TLVs. This is key for interoperability
Other approaches

- [I-D.penno-sfc-packet]
- Use case: OAM, reverse packet request as MD Type 1
- Service-Path-Invariant, Service-Path-Default, Bidirectional Clonable, Unidirectional Clonable, Service-Function-Mastered metadata

- No structure is defined for these metadata but semantics is defined

- [I-D.penno-sfc-appid]
- Classification Engine ID and Selector ID for Application ID defined in [I-D.quinn-sfc-nsh-tlv]
How should WG proceed?

- Registry approach option
 - Currently Type 2 has a small registry
 - Could also be made for Type 1
- Case-by-case approach option
- Hybrid cases
 - Registry + case-by-case with semantic info
 - Case-by-case + registry of only Type 1
 - Case-by-case + registry of only Type 2
- Informational or standards track?
 - Registry as informational
 - Case-by-case as standards track
How should WG proceed?

- Comments?
- Q&A