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A few insights
• Applications deal in objects (messages) of arbitrary size 

• Files, assets, media frames, etc. may depend on each other, but usually 
don’t require a strict ordering. 

• Streams exist too, but only when the underlying source of data is of 
unknown length and not easily divisble into objects. 

• The network of the future is explicitly multipath. 
• Applications must have access to the properties of these paths. 
• (And may be able to communicate with the path about these properties) 

• Future transports must guarantee security properties.
• Path elements must not be able to see transport-layer metadata. 

• Message reception is inherently asynchronous.
• Present scalable programming models enable (and require!) async IO.
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Abstract Programming Interface 
Object and Stream properties

• Objects and streams have a niceness 
• Nicer send()s/write()s yield to less nice 

• Objects have a deadline 
• An object will be cancelled if it cannot be 

realistically received before this deadline 
• Infinite-deadline objects are fully reliable 

• Objects may have antecedents 
• other objects which should be sent before



Transport Independence
• Only two requirements for transport on the wire: 

• Framing for objects 
• Some (non-address) way to identify associations  

• Assumption that the transport protocol provides encryption for 
payload confidentiality and public header integrity protection. 

• Can make use of other transport features on demand: 
• Multipath load balancing and migration 
• Multistreaming for objects and streams 
• PLUS for path property exposure 

• Object properties (niceness, deadline, dependencies) are sender-
side only; path properties can be derived locally too.



Post and TAPS
• What we asking for: input and indication of interest in further 

development. 

• POST as the TAPS API? probably not, or at least not yet: 
• Post places some requirements on the transport: 

• Won’t run over TCP/MPTCP without a framing/association 
identification shim. 

• Not the generic API TAPS envisions, if TAPS must work with 
unmodified transport protocols. 

• Could be modified for application-layer failover: 
• exception to say “transport supports only open_stream().”



Work to do
• Solicit feedback and design review <— we are here  

What are we missing? What can we remove? 
• Define path properties beyond “up/down” 

• Defined properties: interface cost/preference 
• Measurable properties: RTT/loss rate 
• Exposed properties: Lo/La, etc. via PLUS 

• Pilot implementation and experimentation 
• Within auspices of MAMI project, by mid-2018. 
• Post for QUIC/TLS over PLUS? 
• Post with framing/ID shim over TCP?


