
Post Sockets
a way to think about the world after sockets

draft-trammell-post-sockets-00

TAPS WG, IETF 97 서울, Wednesday 16 November 2016
Brian Trammell, Colin Perkins, Tommy Pauly, and Mirja Kühlewind
(with thanks to Jason Lee and Laurent Chuat, and acknowledgments to the authors
of TCP Minion and of SCTP and its extensions, from whence many of these ideas

came)

A few insights
• Applications deal in objects (messages) of arbitrary size

• Files, assets, media frames, etc. may depend on each other, but usually
don’t require a strict ordering.

• Streams exist too, but only when the underlying source of data is of
unknown length and not easily divisble into objects.

• The network of the future is explicitly multipath.
• Applications must have access to the properties of these paths.
• (And may be able to communicate with the path about these properties)

• Future transports must guarantee security properties.
• Path elements must not be able to see transport-layer metadata.

• Message reception is inherently asynchronous.
• Present scalable programming models enable (and require!) async IO.

Abstract Programming Interface
Classes and Entry Points

Association
long-term state,

end-to-end
cryptographic
parameters

Path
ephemeral state,
per-address-pair

parameters

Stream
platform-specific
read/write API

Listener
creates associations

restores paths

Object

Local
interfaces,

private keys

Remote
names, addresses,
public keys and

certificates

send()

handle()

listen()

associate()
Event Handler

receive()

ack()
expired()path_up()

path_down()

dormant()

open_stream()resolve_local()

resolve()

Abstract Programming Interface
Object and Stream properties

• Objects and streams have a niceness
• Nicer send()s/write()s yield to less nice

• Objects have a deadline
• An object will be cancelled if it cannot be

realistically received before this deadline
• Infinite-deadline objects are fully reliable

• Objects may have antecedents
• other objects which should be sent before

Transport Independence
• Only two requirements for transport on the wire:

• Framing for objects
• Some (non-address) way to identify associations

• Assumption that the transport protocol provides encryption for
payload confidentiality and public header integrity protection.

• Can make use of other transport features on demand:
• Multipath load balancing and migration
• Multistreaming for objects and streams
• PLUS for path property exposure

• Object properties (niceness, deadline, dependencies) are sender-
side only; path properties can be derived locally too.

Post and TAPS
• What we asking for: input and indication of interest in further

development.

• POST as the TAPS API? probably not, or at least not yet:
• Post places some requirements on the transport:

• Won’t run over TCP/MPTCP without a framing/association
identification shim.

• Not the generic API TAPS envisions, if TAPS must work with
unmodified transport protocols.

• Could be modified for application-layer failover:
• exception to say “transport supports only open_stream().”

Work to do
• Solicit feedback and design review <— we are here  

What are we missing? What can we remove?
• Define path properties beyond “up/down”

• Defined properties: interface cost/preference
• Measurable properties: RTT/loss rate
• Exposed properties: Lo/La, etc. via PLUS

• Pilot implementation and experimentation
• Within auspices of MAMI project, by mid-2018.
• Post for QUIC/TLS over PLUS?
• Post with framing/ID shim over TCP?

