
TCP-ENO:
Encryption Negotiation Option
dra�-ietf-tcpinc-tcpeno-06

Andrea Bittau, Dan Boneh, Daniel Gi�in, Mark Handley,
David Mazières, and Eric Smith

IETF97

Friday, November 18, 2016

TCP-ENO goals

Facilitate adoption of future TCP encryption protocols (TEPs)
- New TEPs do not require additional TCP option kinds
- New TEPs incrementally deployable, fall back to older ones
- New TEPs compatible with existing TCPINC-aware applications
(recall charter requires authentication hooks)

Abstract away details of TEPs
- Opaque session ID allows TEP-agnostic endpoint authentication

Minimize consumption of TCP option space

Avoid unnecessary round trips for connection setup

Revert to unencrypted TCP when encryption not possible

2 / 11

Overview of common case

SYN, ENO[TEPs]

SYN-ACK, ENO[b=1,TEPs]

ACK, ENO[]

ACK, ENO[], data

ACK, ciphertext

A B

Active opener A advertises supported TEPs
Passive opener B chooses a TEP (or ranks TEPs by preference)
- MUST set global option b=1

A sends empty ENO option indicating encryption enabled
- Keeps sending ENO option until it receives non-SYN segment

If any handshake ENOsmissing, revert to unencrypted TCP
3 / 11

Overview of common case

SYN, ENO[TEPs]

SYN-ACK, ENO[b=1,TEPs]

ACK, ENO[]

ACK, ENO[], data

ACK, ciphertext

A B

Active opener A advertises supported TEPs
Passive opener B chooses a TEP (or ranks TEPs by preference)
- MUST set global option b=1

A sends empty ENO option indicating encryption enabled
- Keeps sending ENO option until it receives non-SYN segment

If any handshake ENOsmissing, revert to unencrypted TCP
3 / 11

Overview of common case

SYN, ENO[TEPs]

SYN-ACK, ENO[b=1,TEPs]

ACK, ENO[]

ACK, ENO[], data

ACK, ciphertext

A B

Active opener A advertises supported TEPs
Passive opener B chooses a TEP (or ranks TEPs by preference)
- MUST set global option b=1

A sends empty ENO option indicating encryption enabled
- Keeps sending ENO option until it receives non-SYN segment

If any handshake ENOsmissing, revert to unencrypted TCP
3 / 11

Overview of common case

SYN, ENO[TEPs]

SYN-ACK, ENO[b=1,TEPs]

ACK, ENO[]

ACK, ENO[], data

ACK, ciphertext

A B

Active opener A advertises supported TEPs
Passive opener B chooses a TEP (or ranks TEPs by preference)
- MUST set global option b=1

A sends empty ENO option indicating encryption enabled
- Keeps sending ENO option until it receives non-SYN segment

If any handshake ENOsmissing, revert to unencrypted TCP
3 / 11

Overview of common case

SYN, ENO[TEPs]

SYN-ACK, ENO[b=1,TEPs]

ACK, ENO[]

ACK, ENO[], data

ACK, ciphertext

A B

Active opener A advertises supported TEPs
Passive opener B chooses a TEP (or ranks TEPs by preference)
- MUST set global option b=1

A sends empty ENO option indicating encryption enabled
- Keeps sending ENO option until it receives non-SYN segment

If any handshake ENOsmissing, revert to unencrypted TCP
3 / 11

Overview of common case

SYN, ENO[TEPs]

SYN-ACK, ENO[b=1,TEPs]

ACK, ENO[]

ACK, ENO[], data

ACK, ciphertext

A B

Active opener A advertises supported TEPs
Passive opener B chooses a TEP (or ranks TEPs by preference)
- MUST set global option b=1

A sends empty ENO option indicating encryption enabled
- Keeps sending ENO option until it receives non-SYN segment

If any handshake ENOsmissing, revert to unencrypted TCP
3 / 11

ENO option contents

SYN-form ENO is a container for a set of suboptions:

Opt1 Opt2 . . . Optk

Non-SYN-form ENO is just a flag:

ignored by ENO

- Non-SYN-form contents MUST be 0 bytes unless defined by TEP

4 / 11

Initial suboption byte

v
7bit

glt
6–0

glt v meaning
0x00�0x1f 0 Global suboption (was general suboption)
0x00�0x1f 1 Length byte (no more length word)
0x20�0x7f 0 TEP Id without data
0x20�0x7f 1 TEP Id followed by data

v = Variable-length data indicator

glt = Global suboption, Length byte, or TEP Id

5 / 11

TEP identifier suboption format

Single-byte TEP identifier suboption

0

7bit

TEP Id (≥0x20)

6–0

TEP identifier suboption with suboption data

1 TEP Id(≥0x20) data to end of TCP option

100 nnnnn 1 TEP Id (≥0x20) nnnnn+1 bytes

[not drawn to scale]

6 / 11

Global suboption format

0
7bit

0
6

0
5

z1

4
z2

3
z3

2
a
1

b

0

b – Passive role bit
- Required to be 1 for all passive openers
- Disable ENO if both sides have same value (eliminated p bit)

a – Application-aware bit
- Intention: modify application protocol to incorporate session ID
- Mandatory application aware mode disables ENO if peer has a = 0

z1, z2, z3 – Reserved (send as 0, ignore on receipt)
- Nomorem, but name z bits for easier future use
- Ideally z3 can play the role ofm in some future RFC

Ignore all but first global suboption byte in ENO
7 / 11

New: Data in SYN segments (§4.7)
The last TEP is a SYN segment is termed the SYN TEP
- The SYN TEP governs the meaning of data in that SYN segment
- Hosts MUST NOT send SYN data unless use defined by SYN TEP

Safeguard: REQUIRE discarding SYN data if:
- SYN TEP is not ultimately the negotiated TEP (including ENO fails), or
- Non-empty TFO or other TCP option indicates conflicting meaning for
SYN data.

Safeguard: Don’t trust non-ENO hosts to discard bad SYN data
- If SYN TEP governs data but passive opener does not support ENO,
might cache data even without ACKing it

- Hence, MUST abort connection if SYN-only+ENO+data followed by
SYN-ACK without ENO, even if SYN-ACK does not ack bad SYN data

To avoid resets, SHOULD avoid SYN-only data by default
- Suggest mandatory encryption mode to enable such SYN data

8 / 11

Improvements to TEP requirements (§5)
TEPs MUST protect and authenticate the end-of-file marker
conveyed by TCP’s FIN flag. . . .

TEPs MUST prevent corrupted packets from causing urgent
data to be delivered when none has been sent. . . . A TEP MAY
disable urgent data functionality by clearing the URG flag on
all received segments and returning errors in response to
sender-side urgent-data API calls. Implementations SHOULD
avoid negotiating TEPs that disable urgent data by default.
The exception is when applications and protocols are known
never to send urgent data.

Goal: avoid updating RFC793 without precluding TCP-use-TLS
- Phrase everything in terms of protecting TCP functionality
- Can’t break urgent data [RFC6093] by default
- Leave big loophole since most apps known not to use urgent data

9 / 11

Improvements to TEP requirements (§5)
TEPs MUST protect and authenticate the end-of-file marker
conveyed by TCP’s FIN flag. . . .

TEPs MUST prevent corrupted packets from causing urgent
data to be delivered when none has been sent. . . . A TEP MAY
disable urgent data functionality by clearing the URG flag on
all received segments and returning errors in response to
sender-side urgent-data API calls. Implementations SHOULD
avoid negotiating TEPs that disable urgent data by default.
The exception is when applications and protocols are known
never to send urgent data.

Goal: avoid updating RFC793 without precluding TCP-use-TLS
- Phrase everything in terms of protecting TCP functionality
- Can’t break urgent data [RFC6093] by default
- Leave big loophole since most apps known not to use urgent data

9 / 11

Improvements to TEP requirements (§5)
TEPs MUST protect and authenticate the end-of-file marker
conveyed by TCP’s FIN flag. . . .

TEPs MUST prevent corrupted packets from causing urgent
data to be delivered when none has been sent. . . . A TEP MAY
disable urgent data functionality by clearing the URG flag on
all received segments and returning errors in response to
sender-side urgent-data API calls. Implementations SHOULD
avoid negotiating TEPs that disable urgent data by default.
The exception is when applications and protocols are known
never to send urgent data.

Goal: avoid updating RFC793 without precluding TCP-use-TLS
- Phrase everything in terms of protecting TCP functionality
- Can’t break urgent data [RFC6093] by default
- Leave big loophole since most apps known not to use urgent data

9 / 11

Changes since Berlin

Terminology changes:
- spec→TEP, general suboption→global suboption, SYN TEP

Nomore length word (max 32 bytes for all but last suboption)

Nomore globalm bit; name z1, z2, z3 in global suboption

Specify use of data in SYN segments
Several SHOULDs are nowMUSTs
- Remaining SHOULDs make clear what exceptions might be

Improved wording for TEP requirements
- Forward secrecy a MUST at TEP level, a SHOULD for implementation
- FIN, URG preserve RFC793 but add authentication requirements

10 / 11

Still to do
Optional way to signal ENO implemented but disabled?
- Maybe permit SYN ENO option with just b bit, no TEP Ids?
- Might facilitate deployment of TEPs with SYN data
- Might facilitate data gathering

Add TCP_ENO_MANDATORY socket option to API doc

Get dedicated TCP option (preferably ’E’ – 69)

Ideally not toomuch else before RFC.. .

Work needed for follow-on/companion documents:
- TCP-ENOmiddlebox probing
- How tomultiplex experimental spec ID 0x20 (ExID-like mechanism)
- Define how to do application-independent endpoint authentication
(probably co-opting z3).

11 / 11

