
RACK: a time-based fast loss recovery
draft-ietf-tcpm-rack-01

Yuchung Cheng
Neal Cardwell

Nandita Dukkipati

Google

IETF97: Seoul, Nov 2016

https://tools.ietf.org/html/draft-ietf-tcpm-rack-01
https://tools.ietf.org/html/draft-ietf-tcpm-rack-01
https://tools.ietf.org/html/draft-ietf-tcpm-rack-01
https://tools.ietf.org/html/draft-ietf-tcpm-rack-01
https://tools.ietf.org/html/draft-ietf-tcpm-rack-01

What’s RACK (Recent ACK)?

Key Idea: time-based loss inferences (not packet or
sequence counting)

● If a packet is delivered out of order, then packets
sent chronologically before it are either lost or
reordered

● Wait RTT/4 before retransmitting in case the
unacked packet is just delayed. RTT/4 is empirically
determined

● Conceptually RACK arms a (virtual) timer on every
packet sent. The timers are updated by the latest
RTT measurement.

P1

P2

Retransmit P1

Expect ACK of P1
by then … wait
RTT/4 in case P1
is reordered

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

New in RACK: Tail Loss Probe (TLP)
● Problem

○ Tails drops are common on request response
traffic

○ Tail drops lead to timeouts which is often 10x
longer than fast recovery

○ 70% of losses on Google.com recovered via
timeouts

● Goal
○ Reduce tail latency of request response

transactions
● Approach

○ Convert RTOs to fast recovery
○ Retransmit the last packet in 2 RTTs to trigger

RACK-based Fast Recovery

● draft-dukkipati-tcpm-tcp-loss-probe (expired 2013)
○ Past presentations @ IETF 87 86 85 84
○ Previously depended on non-standard FACK

P1

P2

Retransmit P1

After 2 RTTs...
send TLP to
get SACK to start
RACK recovery
of a tail loss

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

TLP: P2

3

P0

ACK

https://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://docs.google.com/presentation/d/1jjFJCzPOCsFoBG6GLXRdtag9w9ZXvNQJXT8p5LnxLoY/edit#slide=id.p
https://docs.google.com/presentation/d/1NqFmIDy646U6gOxh7tGL0r9u92Kgsayq4DqNIOOxXB8/edit#slide=id.p
https://docs.google.com/presentation/d/1xc_ISrPojYnYi7qsMAOM8VZsj6OogdCAIe66rcqjLoY/edit#slide=id.p
https://tools.ietf.org/agenda/84/slides/slides-84-tcpm-14.pdf

Why RACK + TLP?
Problems in existing recovery (e.g., wait for 3 dupacks to start the repair process)

1. Poor performance
○ Losses on short flows, tail losses, lost retransmit often resort to timeouts
○ Work poorly with common reordering scenarios

■ e.g. Last pkt is delivered before the first N-1 pkts are delivered. Dupack threshold == N-1
2. Complex

○ Many additional heuristics case-by-case
○ RFC5681, RFC6675, RFC5827, RFC4653, RFC5682, FACK, thin-dupack (Linux has all!)

RACK + TLP’s goal is to solve both problems: performant and simple recovery!

4

Performance impact
A/B test on Google.com in Western-Europe for 3 days in Oct 2016

● Short flows: timeout-driven repair is ~3.6x ack-driven repairs
● A: RFC3517 (conserv. sack recovery) + RFC5827 (early retransmit) + F-RTO
● B: RACK + TLP + F-RTO

Impact

● -41% RTO-triggered recoveries
● -23% time in recovery, mostly benefited from TLP
● +2.6% data packets (TLP packets)

○ >30% TLP are spurious as indicated by DSACK

TODO: poor connectivity regions. Compare w/ RACK + TLP only

5

Timeouts can destroy throughput

20ms RTT, 10Gbps, 1% random drop,
BBR congestion control

Two tests overlaid:

A: 9.6Gbps w/ RACK
B: 5.4Gbps w/o RACK

6

B: w/o RACK: lost
retransmit every
10000 packets
causing timeout

A: w/ RACK:
lost retransmit
repaired in 1 RTT

Overlaid time-seq graphs of A & B
While line: sequence sent
Green line: cumulative ack received
Purple line: selective acknowledgements
Yellow line: highest receive window allows
Red dots: retransmission

7

Data / RTX

Loss probe

ACK

Send loss probe
after 2*RTT

ACK of loss probe
triggers RACK to
retransmit rest
(assuming cwnd==3)

ACK of 2nd loss probe
triggers RACK to
retransmit the rest

Timeline

RACK reo_timer fires
after RTT/4 to
retransmit the rest

RACK + TLP fast loss recovery example

88

Data / RTX

Loss probe

ACK

w/o RACK+TLP: slow repair by timeout (diagram assumes RTO=3*RTT for illustration)

w/ RACK + TLP (same from prev. slide)

TLP discussions
● Why retransmit the last packet instead of the first packet (SND.UNA)?

● When only one packet is in flight
○ Receiver may delayed the ACK: 2*RTT is too aggressive?

■ 1.5RTT + 200ms
○ TLP (retransmit the packet) may masquerade a loss event

■ Draft suggest a (slightly complicated) detection mechanism
■ Do we really care 1-pkt loss event?

● How many TLPs before RTO?
○ Draft uses 1, but more may help?

● Too many timers (RACK reo_timer, TLP timer, RTO)
○ Can easily implemen with one real timer b/c only one is active at any time

9

Retransmission storm induced by spurious RTO

1. (Spurious) timeout!
Mark all packets (P1… P100)lost, retransmit P1

2. ACK of original P1, retransmit P2 P3 spuriously
3. ACK of original P2, retransmit P4 P5 spuriously
4. … End up spuriously retransmitting all

a. Double the bloat and queue

10

WIP: extend RACK + TLP to mitigating
spurious RTO retransmission storm

Extend RACK + TLP to mitigating spurious
RTO retransmission storm
Retransmission storm induced by spurious RTO

1. (Spurious) timeout!
Mark all packets (P1… P100)lost, retransmit P1

2. ACK of original P1, retransmit P2 P3 spuriously
3. ACK of original P2, retransmit P4 P5 spuriously
4. … End up spuriously retransmitting all

a. Double the bloat and queue

11

Time-series of bytes received on Chrome loading many images in
parallel from pinterests.com:
incast -> delay spikes -> false RTOs -> spurious RTX storms

original data
(false) Rtx data

12

Extending RACK + TLP to RTOs could save this!

1. (Spurious) timeout!
Mark first packet (P1) lost, retransmit P1

2. ACK of original P1, retransmit P99 and P100 (TLP)
3. ACK of original P2

==> never retransmitted P2 so stop!

(If the timeout is genuine, step 3 would receive ACK of
P99 and P100, then RACK would repair P2 … P 98)

Retransmission storm induced by spurious RTO

1. (Spurious) timeout!
Mark all packets (P1… P100)lost, retransmit P1

2. ACK of original P1, retransmit P2 P3 spuriously
3. ACK of original P2, retransmit P4 P5 spuriously
4. … End up spuriously retransmitting all

a. Double the bloat and queue

Extend RACK + TLP to mitigating spurious
RTO retransmission storm

RACK + TLP as a new integrated recovery
● Conceptually more intuitive (vs N dupacks mean loss)
● ACK-driven repairs as much as possible (even lost retransmits)
● Timeout-driven repairs as the last resort

○ Timeout can be long and conservative
○ End RTO tweaking game risking falsely resetting cwnd to 1

● Robust under common reordering (traversing slightly different paths or out-of-order delivery in wireless)

● Experimentation: implemented as a supplemental loss detection
○ Progressively replace existing conventional approaches
○ In Linux 4.4, Windows 10/Server 2016, FreeBSD/NetFlix

● Please help review the draft and share any data and implementation experiences on tcpm list!

13

Backup slides

14

Time

Seq.

15

Packet
RACK + TLP Example: tail loss + lost retransmit (slide 7 - 15)

Time

Seq.

16

2RTT
SACK

Packet

TLP

TLP retransmit the tail, soliciting an ACK/SACK

Time

Seq.

17

2RTT
SACK

Packet

Lost Packet

TLP

RACK detects first 3 packets are lost from the ACK/SACK, and retransmits

Time

Seq.

18

SACK

Packet

Lost Packet

TLP

(Need to update draft-02
to probe in recovery)

After 2RTT send a TLP again

2RTT

Time

Seq.

19

2RTT
SACK

Packet

Lost Packet

TLP

The TLP solicits another ACK/SACK

Time

Seq.

20

2RTT
SACK

Packet

Lost Packet

TLP

The ACK/SACK let RACK detect first two retransmits are lost and retransmit
them (again)

Time

Seq.

21

2RTT
SACK

Packet

Lost Packet

TLP

The new ACK/SACK indicates 1st packet is lost for the 3rd time

Time

Seq.

22

2RTT
SACK

Packet

Lost Packet

TLP

After waiting, RACK detects the lost retransmission and retransmits again

Time

Seq.

23

2RTT
SACK / ACK

Packet

Lost Packet

TLP

All acked and repaired: loss rate = 8/4 = 200%!

