An Improvement of ECN to Enhance TCP Fairness Performance

draft-sun-tcpm-ecn-improvement-00

Marcus Sun
marcus.sun@huawei.com

Jing Cui (presenter)
IETF97-Seoul
Background

- RFC 3168 allows E2E notification of network congestion:
 - CE can be marked by any of the network devices in the path
 - TCP receiver echoes CE to sender by ACK
 - Sender adjusts SWND according to CWND & ECN labeled packets ratio

- CANNOT accurately reflect network congestion status:
 - If multiple nodes exceed threshold value
 Sender received congestion status ≥ Actual link congestion (the worst node status)
Other ECN Limitations – 1/2

- Lack of good solution for light load in network:
 - Current ECN only handles with network congestion
 - If light loaded, lack of rapid notification to TCP sender
 - Unable to rapidly adjust SWND for better utilization of idled bandwidth
TCP fairness problem:
- In Current ECN, different flows on a same path may attain discrepant link congestion status:
 - Packet transmission order depends on flows’ own sending rate
 - Amounts of packets sent in 1 RTT vary ➔ Proportions of ECN labelled packets vary

- Unfairness between flows’ SWND adjustment ratio:
 - Especially for flows in same business scenarios/protocols

Example:
Assuming that 3 receivers are requesting the same sports live show stream in 4K resolution,
If the 3 flows attain different link congestion status, flow rates will vary although they are in the same contents/protocols.
Main Goal

- Optimize the ECN scheme, which can:
 - Reflect the worst congested node status for more accurate congestion control
 - Fully utilize the link idle rate in light load network situation
 - Achieve more fairness for different streams
Improvement of ECN

The worst case (congestion or idle rate) of network devices is notified to TCP sender

- **Congestion degree:**
 - Time it takes to complete message transmission in the link cache
 - Example:
 - Cache size: 20MB, Link Bandwidth: 1Gbps
 - $20 \times 8 \, \text{Mb}/1\, \text{Gbps} = \frac{160}{1024} = 0.16\, \text{s}$

- **Link idle rate:**
 - Opposite to link usage
 - Example:
 - 1Gbps link with 600Mbps traffic
 - Link usage 60%, Link idle rate 40%
Send Window Adjusting Method

Option 1: Using the Worst Congestion Degree to Adjust SWND
- TCP sender adjusts the decrease rate of the window according to the worst congestion degree in the received TCP ACK and the current SWND

Option 2: Using the Worst Idle Rate to Adjust SWND
- TCP sender adjusts the increase in window size based on the worst idle rate in the received TCP ACK and the current SWND

Example: Assuming that,
The worst idle rate in TCP ACK: 40%
The current window of Flow1: 1000
The current window of Flow2: 200
The current link utilization (total flow rate): 1-40% = 60%
The flow rate can be increased by 40% / 60% = 66.67%

For Flow 1: the window should be increased by 1000 x 66.67% = 667
For Flow 2: the window should be increased by 200 x 66.67% = 133
TCP/IP Option Extension

- **Congestion Degree Extend**
 - Congestion degree carried in IP packets can be achieved by extending the IP option
 - Type | Length | Value
 - node congestion degree | 4 bytes | 0.1
 - The worst congestion degree carried by TCP ACK can be extended by TCP option
 - Type | Length | Value
 - the worst congestion degree | 4 bytes | 0.1

- **Idle Rate IP Extend**
 - Idle rate carried in IP packets can be achieved by extending the IP option
 - Type | Length | Value
 - node idle rate | 4 bytes | 0.45
 - The worst idle rate carried by TCP ACK can be extended by TCP option
 - Type | Length | Value
 - the worst idle rate | 4 bytes | 0.45
TCP Fairness Enhancement

- Each message is carrying the SAME worst node/port status (congestion/idle rate) in the same path
- TCP sender is no longer calculating the ratio of ECN labelled messages to modify the SWND, but adjusting window size according to the accurate worst node/port status
- Since each TCP flow attains the same worst node/port status, TCP sender give them same proportion on SWND adjustment, which indicates that their TCP fairness is guaranteed.
Next Step

- Read and comment, please – thx for useful comments so far

- More experiments & verification:
 - Give some more verification supports in next version
 - Methods of more rapid notification to sender
 - Alternative method to present the worst link node status

- Etc.