An Improvement of ECN to Enhance TCP Fairness Performance

draft-sun-tcpm-ecn-improvement-00

Marcus Sun <u>marcus.sun@huawei.com</u> Jing Cui (presenter) IETF97-Seoul

Background

□ RFC 3168 allows E2E notification of network congestion:

- CE can be marked by any of the network devices in the path
- TCP receiver echoes CE to sender by ACK
- Sender adjusts SWND according to CWND & ECN labeled packets ratio

□ CANNOT accurately reflect network congestion status:

If multiple nodes exceed threshold value

Sender received congestion status ≥ Actual link congestion(the worst node status)

Other ECN Limitations – 1/2

□ Lack of good solution for light load in network:

- Current ECN only handles with network congestion
- If light loaded, lack of rapid notification to TCP sender
- Unable to rapidly adjust SWND for better utilization of idled bandwidth

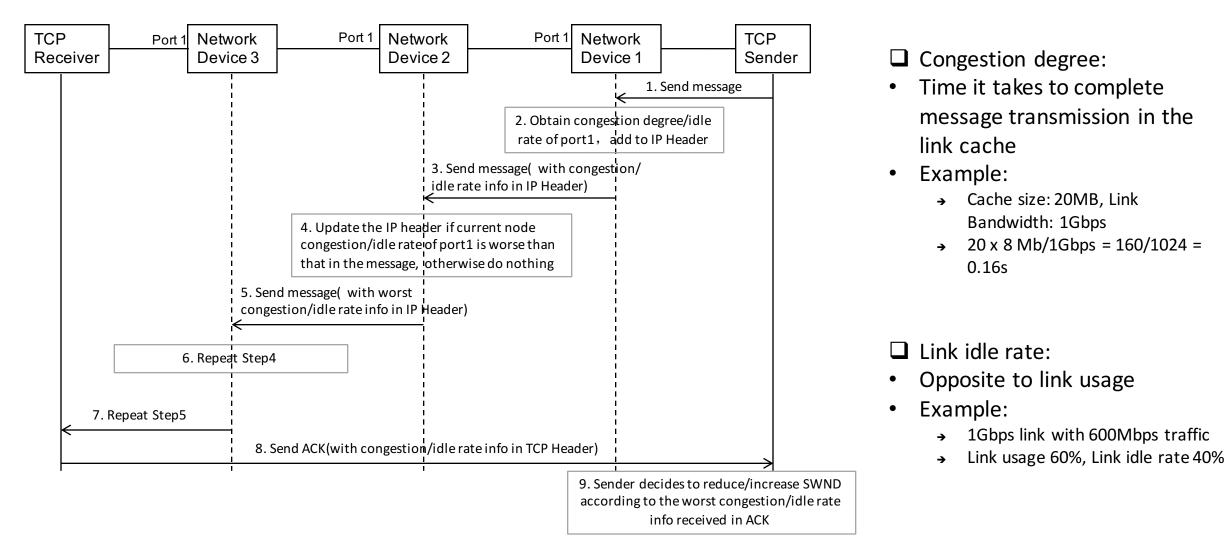
Other ECN Limitations - 2/2

TCP fairness problem:

- In Current ECN, different flows on a same path may attain discrepant link congestion status:
 - Packet transmission order depends on flows' own sending rate
 - Amounts of packets sent in 1 RTT vary → Proportions of ECN labelled packets vary
- Unfairness between flows' SWND adjustment ratio:
 - Especially for flows in same business scenarios/protocols

Example:

Assuming that 3 receivers are requesting the same sports live show stream in 4K resolution, If the 3 flows attain different link congestion status, flow rates will vary although they are in the same contents/protocols.


Main Goal

• Optimize the ECN scheme, which can:

- Reflect the worst congested node status for more accurate congestion control
- Fully utilize the link idle rate in light load network situation
- Achieve more fairness for different streams

Improvement of ECN

The worst case(congestion or idle rate) of network devices is notified to TCP sender

Send Window Adjusting Method

Option 1: Using the Worst Congestion Degree to Adjust SWND

• TCP sender adjusts the decrease rate of the window according to the worst congestion degree in the received TCP ACK and the current SWND

□ Option 2: Using the Worst Idle Rate to Adjust SWND

• TCP sender adjusts the increase in window size based on the worst idle rate in the received TCP ACK and the current SWND

Example: Assuming that,

The worst idle rate in TCP ACK: 40% The current window of Flow1: 1000 The current window of Flow2: 200 The current link utilization (total flow rate): 1-40% = 60% The **flow rate can be increased by** 40% / 60% = 66.67%

For Flow 1: the window should be increased by $1000 \times 66.67\% = 667$ For Flow 2: the window should be increased by $200 \times 66.67\% = 133$

TCP/IP Option Extension

Congestion Degree Extend

• Congestion degree carried in IP packets can be achieved by extending the IP option

+		+	+		+-		+
1	Туре	l	Ь	ength	1	Value	L
+			+		+-		+
node	congestion	degree	4	bytes	I	0.1	I
+			+		+-		+

• The worst congestion degree carried by TCP ACK can be extended by TCP option

+		+
1	Туре	Length Value
+	congestion	degree 4 bytes 0.1

□Idle Rate IP Extend

• Idle rate carried in IP packets can be achieved by extending the IP option

+		-++
I.	Туре	Length Value
+		-++
1	node idle rate	4 bytes 0.45

• The worst idle rate carried by TCP ACK can be extended by TCP option

+	++	+
І Туре	Length V	
the worst idle	++ rate 4 bytes ++	0.45

TCP Fairness Enhancement

- Each message is carrying the SAME worst node/port status (congestion/idle rate) in the same path
- TCP sender is no longer calculating the ratio of ECN labelled messages to modify the SWND, but adjusting window size according to the accurate worst node/port status
- □ Since each TCP flow attains the same worst node/port status, TCP sender give them same proportion on SWND adjustment, which indicates that their TCP fairness is guaranteed.

Next Step

□ Read and comment, please – thx for useful comments so far

□ More experiments & verification:

- Give some more verification supports in next version
- Methods of more rapid notification to sender
- Alternative method to present the worst link node status

Etc.