
TCP Options for Low Latency: 

Maximum ACK Delay and

Microsecond Timestamps

Neal Cardwell
Yuchung Cheng

Eric Dumazet

IETF 97: Seoul, Nov 2016



Motivation: lower latency, higher throughput

Datacenters with commodity 10Gbps Ethernet: RTT  <100 us

Outdated fixed parameters:

TCP Timestamps: granularity is  1 ms .. 1 sec        [ 10x RTT ]

Delayed ACKs: typical delays: 40 ms .. 200 ms      [ 400x RTT ]

RFC minimum RTO of 1 sec                                    [ 10,000x  RTT ] 

Goal: negotiate of values to fit today's networks

Open-source Google's Linux TCP code for these

Standardize option format and semantics in IETF 2



Minimum RTO

Most TCPs have min RTO of 200 ms .. 1 sec; why?

Delayed ACKs: typical delays: 40 ms .. 200 ms      [ 400x RTT ]

RFC minimum RTO of 1 sec                                    [ 10,000x  RTT ] 

But switches don't have 1 s. of buffer; hosts don't delay ACKs by 1 s.

Google experience, incast research [1] [2] [3]: lower timeouts help app latency

Quicker RTO, TLP: simple way to vastly reduce latency ~40x (200ms -> 5ms)

Google uses 5ms internally since 2013 ([3] mentions 5ms as well)

3

https://www.google.com/url?q=http://www.pdl.cmu.edu/PDL-FTP/Storage/CMU-PDL-07-105.pdf&sa=D&ust=1478446246691000&usg=AFQjCNG1rLPRhcWwHkoguTrgNp9z4h8Z3g
http://dl.acm.org/citation.cfm?id=1592693
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-judd.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-judd.pdf


Maximum ACK Delay (MAD)

But if RTO is fast even when ACKs are delayed:

-> spurious retransmits and congestion control back-off

How to know long ACKs may be delayed?

Negotiate Max ACK Delay (MAD) in an option in TCP handshake...

Small MAD negotiated => enables small min RTO => improves performance

4



Microsecond TCP Timestamps: Motivation

TCP Timestamps [RFC1323][RFC7323]: finest allowed granularity is 1 ms

But RTTs are < 100 us and soon 10 us in the datacenter

Benefits of 1 us TCP timestamps:

Can undo cwnd reductions in datacenter

In datacenter, original and fast retransmit have same 1ms timestamp

Can't use TCP timestamps to undo cwnd reduction [RFC3522/RFC4015]

Can do fine-grained measurement and diagnostics

One-way delay variation for data (e.g. incast queues), ACKs
5

https://tools.ietf.org/html/rfc1323
https://tools.ietf.org/html/rfc7323
https://tools.ietf.org/html/rfc3522
https://tools.ietf.org/html/rfc4015


Microsecond TCP Timestamps: Implementation

When using usec TS, need to adjust a constant in PAWS logic

When to expect 32-bit wrap-around in idle connections [RFC7323 sec 5.5]:

1 ms => wraps in ~24 days

1 us => wraps in ~34 minutes

1 ns => wraps in ~2 secs

How? Negotiate use in an option in TCP handshake...

Handles the general/cloud/SaaS case

(Could also use per-route config if this is intradomain traffic)
6

https://tools.ietf.org/html/rfc7323#section-5.5


Options and the TCP Handshake

7

SYN <MAD 10ms usTS,...>

SYN + ACK <MAD 5ms usTS,...> 

Remote MAD = 5ms
usTS = on

ACK

Remote MAD = 10ms
usTS = on



Max ACK Delay and Min RTO interaction

8
Delayed ACK < MAD

RTO =
f1(RTT) +

f2(RTTVAR) +
MAD

Data

Delayed ACK



Low Latency Option: Proposed Format
   0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |      Kind     |    Length     |   RFC 6994 ExperimentID       |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |u|M u|        MAD        |     |

   |s|A n|       Value       | Res |        ...

   |T|D i|     (10 bits)     |     |

   |S|  t|                   |     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     usTS:  use microsecond timestamps? (0 = no usec Timestamps; 1 = usec Timestamps)

 MAD unit:  time units for MAD value    (0 = no MAD negotiated; 1=msecs, 2=usecs, 3=nsecs)

MAD value:  Maximum ACK Delay value     (1 ... 999)

Total space: 

6 bytes - using 2-byte RFC 6994 ExperimentID

4 bytes - if promoted to standard with its own option Kind (no ExperimentID)

9



Status
Code for these 2 features has matured at Google (used for all internal TCP traffic)

● Maximum ACK Delay: since Jul 2005   (yes, 11 years ago!) 
● Microsecond timestamps: since Feb 2015   (1.75 years ago)

Verbal interest from at least one other major TCP implementor for MAD
Next steps:

1. Internet Draft
2. Change code to support RFC6994 experimental option format
3. Send code upstream to Linux by Q1 2017

10

https://tools.ietf.org/html/rfc6994

