
1

FECFRAME version 2
Adding convolutional FEC
codes support to the FEC

Framework
draft-roca-tsvwg-fecframev2-02

Vincent Roca, Inria, France
Ali Begen, Networked Media, Turkey

November 2016, IETF97, Seoul

Note well

lwe, authors of -02 version, didn’t try to patent
any of the material included in this presentation/I-D

lwe, authors of -02 version, are not reasonably
aware of patents on the subject that may be applied
for by our employer

l if you believe some aspects may infringe IPR you
are aware of, then fill in an IPR disclosure and
please, let us know

2

FECFRAME / FECFRAMEv2 reminder
l a follow-up of [RFC 6363] describing FECFRAME

❍RFC 6363, M. Watson, A. Begen, V. Roca, October 2011

l a shim layer for robust and scalable distribution of
real-time flows

❍already part of 3GPP (e)MBMS standards
❍we start to have deployment experience

lFECFRAME relies on block FEC codes…
l…block codes add latency to everybody, always
l this issue is solved with convolutional FEC codes

❍good reception conditions: near zero latency J
❍bad reception conditions latency: still significantly inferior

l v2 adds convolutional code support
❍in a fully backward compatible way

3

Differences WRT last July's I-D (01 version)
l added an Implementation Status Section
❍as recommended in RFC 7942

❍leverages on a FECFRAME implementation (Vincent) being
commercialized (Expway), for which interop. tests have been
conducted

❍FECFRAMEv2 implementation under progress (Vincent)

l added Appendix B that explains differences WRT
RFC 6363

l fixed a few minor things

4

Differences WRT last July's I-D… (2)
lwe made progress in terms of block vs convolutional

codes evaluation
❍block FEC codes are totally sub-optimal for real-time flows
❍true with small or larger block/encoding window sizes
❍motivates the need for FECFRAME v2

V. Roca, B. Teibi, C. Burdinat, T. Tran, C. Thienot , "Block or Convolutional AL-FEC Codes? A Performance
Comparison for Robust Low-Latency Communications", https://hal.inria.fr/hal-01395937, November 2016. 5

latency CDF with conv. codes latency CDF with block R-S codes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40pe
rc

en
ta

ge
 o

f r
ec

ei
ve

d/
de

co
de

d
so

ur
ce

 s
ym

bo
ls

(in
 %

)

latency (in # ticks)

Reed-Solomon GF(2**8) (k=38, cr=2/3)
RLC GF(2**8) (ew-size=19, ls-size=200, dw-size=38, cr=2/3)

(a) R-S vs. RLC CDF when loss = 15%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40pe
rc

en
ta

ge
 o

f r
ec

ei
ve

d/
de

co
de

d
so

ur
ce

 s
ym

bo
ls

(in
 %

)

latency (in # ticks)

Reed-Solomon GF(2**8) (k=38, cr=2/3)
RLC GF(2**8) (ew-size=19, ls-size=200, dw-size=38, cr=2/3)

(b) R-S vs. RLC CDF when loss = 25%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40pe
rc

en
ta

ge
 o

f r
ec

ei
ve

d/
de

co
de

d
so

ur
ce

 s
ym

bo
ls

(in
 %

)

latency (in # ticks)

Reed-Solomon GF(2**8) (k=38, cr=2/3)
RLC GF(2**8) (ew-size=19, ls-size=200, dw-size=38, cr=2/3)

(c) R-S vs. RLC CDF when loss = 30%

Fig. 4. Reed-Solomon and RLC CDF for received or decoded source packet latency distribution, in case of small blocks (38), for various loss rates of a
memory-less channel. Comparable parameters are used for both codes, namely k = 38 for Reed-Solomon and (ew size = 19, ls size = 200, dw size = 38)
for RLC, with CR = 2/3 in all cases. A total of 100, 000 source symbols are sent during tests.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180pe
rc

en
ta

ge
 o

f r
ec

ei
ve

d/
de

co
de

d
so

ur
ce

 s
ym

bo
ls

(in
 %

)

latency (in # ticks)

Reed-Solomon GF(2**8) (k=167, cr=2/3)
RLC GF(2**8) (ew-size=83, ls-size=400, dw-size=167, cr=2/3)

(a) R-S vs. RLC CDF when loss = 15%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180pe
rc

en
ta

ge
 o

f r
ec

ei
ve

d/
de

co
de

d
so

ur
ce

 s
ym

bo
ls

(in
 %

)

latency (in # ticks)

Reed-Solomon GF(2**8) (k=167, cr=2/3)
RLC GF(2**8) (ew-size=83, ls-size=400, dw-size=167, cr=2/3)

(b) R-S vs. RLC CDF when loss = 25%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180pe
rc

en
ta

ge
 o

f r
ec

ei
ve

d/
de

co
de

d
so

ur
ce

 s
ym

bo
ls

(in
 %

)

latency (in # ticks)

Reed-Solomon GF(2**8) (k=167, cr=2/3)
RLC GF(2**8) (ew-size=83, ls-size=400, dw-size=167, cr=2/3)

(c) R-S vs. RLC CDF when loss = 30%

Fig. 5. Reed-Solomon and RLC CDF and associated histograms of received or decoded source packet latency distribution, in case of medium size blocks (167),
for various loss rates of a memory-less channel. Comparable parameters are used for both codes, namely k = 167 for Reed-Solomon and (ew size = 83,
ls size = 400, dw size = 167) for RLC, with CR = 2/3 in all cases. A total of 100, 000 source symbols are sent during tests.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40

nu
m

be
r o

f r
ec

ei
ve

d/
de

co
de

d
so

ur
ce

 s
ym

bo
ls

latency (in # ticks)

Reed-Solomon GF(2**8) (k=38, cr=2/3)

(a) R-S histogram when loss = 15%
(truncated, max value is 85472 sym-
bols for latency 0)

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40

nu
m

be
r o

f r
ec

ei
ve

d/
de

co
de

d
so

ur
ce

 s
ym

bo
ls

latency (in # ticks)

RLC GF(2**8) (ew-size=19, ls-size=200, dw-size=38, cr=2/3)

(b) RLC histogram when loss =
15% (truncated, max value is 89774
symbols for latency 0)

Fig. 6. R-S and RLC histograms of received or decoded source packet latency
distribution, in case of small blocks (38), for loss rate 15%.

D. Decoding Speed Performance

Finally we measured the decoding speeds of the RLC and
Reed-Solomon codecs5. Figures 8 show that if both codecs
achieve the same speed when approaching the decoding limit,
however RLC exhibits higher speeds in good to medium
channel conditions. From this point of view too, there is an
incentive to use such convolutional AL-FEC codes as RLC.

5Note that previous results [8] already validated the adequacy of this Reed-
Solomon codec for lightweight platforms and more generally RLC techniques
[9].

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35
 0

 5

 10

 15

 20

 25

 30

 35

 40

m
in

/a
ve

r/m
ax

 la
te

nc
ie

s
(in

 #
 ti

ck
s)

re
sid

ua
l lo

ss
es

 (i
n

%
)

channel loss percentage (in %)

Reed-Solomon residual losses
RLC residual losses

Reed-Solomon GF(2**8) (k=167) latency
RLC GF(2**8) (ew-sz=83, ls-sz=400, dw-size=167) latency

(a) RS vs RLC

Fig. 7. Block versus convolutional AL-FEC minimum/average/maximum
added latency as a function of the loss rate of a memory-less channel.
Comparable parameters are used for both codes, namely k = 167 for Reed-
Solomon, and (ew size = 83; ls size = 400; dw size = 167) for RLC,
with CR = 2/3 in all cases.

VI. RELATED WORKS

Although convolutional codes are not yet considered in
standardization organizations that rely on AL-FEC codes
within upper layers (it’s different for lower layers), it has
received more attention in the academic community in par-

very bad rx
conditions

intermediate
rx conditions

Q: version 2 or just an update of RFC 6363?
l background
❍version 2 does not remove any capability to FECFRAME

❍only adds the support of convolutional FEC Schemes

❍a receiver decides to join or not after processing the SDP
❍FEC Encoding ID enables the receiver to determine whether it

supports the convolutional FEC Scheme
❍same mechanism for any unsupported FEC Scheme

❍no notion of version in FECFRAME anyway
❍there's no header, only FEC Scheme signaling header/trailer

❍however, from an implementation viewpoint, there are
clear differences
❍version 2 immediately indicates the capabilities

6

Next steps
lwe do not expect major changes in future revisions

lTODO 1: finish FECFRAME v2 implementation
❍to be sure we didn't miss anything
❍sender already done, receiver will be okay for IETF98

lTODO 2: propose RLC convolutional FEC Scheme
❍all the convolutional FEC code complexity is here!

❍specify all code details
❍specify all signaling aspects
❍identified by a IANA registered FEC Encoding ID

❍default convolutional code we use in our implementation

7

