
Captive Portal WG M. Donnelly
Internet-Draft M. Cullen
Intended status: Informational Painless Security
Expires: September 14, 2017 March 13, 2017

 Captive Portal (CAPPORT) API
 draft-donnelly-capport-detection-01

Abstract

 This document describes an HTTP API that allows User Equipment to
 detect the existence of a Captive Portal on the local network,
 determine the properties of the Captive Portal, and satisfy
 requirements for network access.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Donnelly & Cullen Expires September 14, 2017 [Page 1]

Internet-Draft Captive Portal (CAPPORT) API March 2017

Table of Contents

 1. Introduction . 2
 2. Requirements Notation . 3
 3. Workflow . 3
 4. Use of the DHCP Captive-Portal Option 4
 5. CAPPORT API . 4
 5.1. URLs and HTTP Methods 4
 5.1.1. Associating User Equipment with its URL 4
 5.1.2. Fallback URL . 4
 5.1.3. CAPPORT API POST URL 5
 5.1.4. CAPPORT REST API DELETE URL 5
 5.2. JSON Data Structures 5
 5.2.1. CAPPORT Common Elements 5
 5.2.1.1. Toplevel Object 5
 5.2.1.2. Networks Object 6
 5.2.1.3. Network Object 6
 5.2.1.4. Condition Object 7
 5.2.1.5. Session Token Object 7
 5.2.2. User Equipment Request 8
 5.2.2.1. Satisfaction Details Object 8
 5.2.3. CAPPORT API Server Response 8
 5.2.3.1. Requirement Details Object 8
 5.2.3.2. Network State Object 9
 6. Network Access Conditions 9
 6.1. Terms and Conditions 9
 6.1.1. Requirements . 10
 6.1.2. Satisfaction . 10
 6.2. Passcode . 10
 6.2.1. Requirements . 11
 6.2.2. Satisfaction . 11
 7. IANA Considerations . 11
 8. Security Considerations 11
 8.1. Privacy Considerations 11
 9. Acknowledgements . 12
 10. References . 12
 10.1. Normative References 12
 10.2. Informative References 12
 Authors’ Addresses . 12

1. Introduction

 This document describes a HyperText Transfer Protocol (HTTP)
 Application Program Interface (API) that allows User Equipment to
 detect the existence of a Captive Portal (CAPPORT) on the local
 network, determine the properties of the Captive Portal, and satisfy
 requirements for network access. The API defined in this document
 has been designed to meet the requirements of the CAPPORT API, as

Donnelly & Cullen Expires September 14, 2017 [Page 2]

Internet-Draft Captive Portal (CAPPORT) API March 2017

 discussed in the CAPPORT Architecture
 [I-D.larose-capport-architecture].

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Workflow

 The CAPPORT protocol consists of three phases. In the first phase
 User Equipment acquires an IP address and determines the URL of the
 local CAPPORT API Server, if any. The second phase consists of the
 User Equipment querying the CAPPORT API Server for the requirements
 for accessing its protected networks, and submitting proofs of
 meeting those requirements. In the third phase, the User Equipment
 is granted access to the protected network and can query the CAPPORT
 API Server for status.

 During the first phase, User Equipment uses the Dynamic Host
 Configuration Protocol (DHCP) or IPv6 Router Advertisements (RAs) to
 acquire an IP address and to determine the URL for the local CAPPORT
 API Server. This details for the first phase are described in RFC
 7710 [RFC7710], and the rest of this document assumes that the User
 Equipments already has a URL to reach the CAPPORT API Server.

 The second phase begins with the User Equipment accessing the URL
 provided in the first phase. The CAPPORT API Server responds with
 the current status of the User Equipment’s access to the protected
 networks and any conditions requirements to gain access to the
 protected networks. The User Equipment then submits proofs of
 satisfying the access requirements to the CAPPORT API Server. The
 CAPPORT API Server again responds with the current status of the User
 Equipment and any additional requirements necessary to gain access to
 the protected network. The second phase continues until all of the
 requirements are met; the CAPPORT API Server grants access to the
 protected network and responds with a status indicating the access.

 At any point in the second phase, the User Equipment MAY stop
 communicating over the CAPPORT protocol and instead direct a web
 browser to access the URL. The web browser then becomes the agent
 for proving that the User Equipment meets the requirements for access
 to the protected networks.

 During the third phase, the User Equipment has access to the
 protected network. The User Equipment may access the URL provided in
 the first phase to query the current status. The CAPPORT API Server

Donnelly & Cullen Expires September 14, 2017 [Page 3]

Internet-Draft Captive Portal (CAPPORT) API March 2017

 responds with the current status of the User Equipment. The CAPPORT
 API Server SHOULD respond with the current status of the User
 Equipment regardless of whether the User Equipment used the automated
 CAPPORT protocol or a web browser to complete the second phase.

4. Use of the DHCP Captive-Portal Option

 As decribed above, to use the CAPPORT API, User Equipment needs a URL
 that can be used to reach the CAPPORT API Server. DHCP Servers and
 IPv6 Routers should provide, and User Equipment SHOULD obtain, the
 required URL using the DCHP Captive-Portal Option or the IPv6 RA
 Captive-Portal Option, as described in [RFC7710].

 To provide backwards compatibility with the original use of the DHCP
 and RA options described in RFC7710, the CAPPORT API defined in this
 document is exclusively accessed using HTTP Methods with an Accept
 header value of "application/json". Captive Portals that implement
 the CAPPORT API SHOULD respond to an HTTP GET that has an Accept
 header of "text/html" with HTML content that, when displayed in a web
 browser, will allow the user to interactively meet the Captive Portal
 requirements for network access.

5. CAPPORT API

 This section defines the CAPPORT API.

5.1. URLs and HTTP Methods

 This section describes the URLs that can be used to access the
 CAPPORT API.

5.1.1. Associating User Equipment with its URL

 The CAPPORT API Server SHOULD associate an incoming request with a
 particular User Equipment consistently. [TODO: specify how this
 would happen.]

5.1.2. Fallback URL

 The CAPPORT API Server SHOULD respond to HTTP GET requests to the
 provided URL that specify an Accept header value of "text/html" with
 HTML content instead of this protocol. If the User Equipment
 determines that it is unable to satisfy the conditions for network
 access, it SHOULD display this fallback URL in a web browser to allow
 the user to complete the network access outside of this protocol.

Donnelly & Cullen Expires September 14, 2017 [Page 4]

Internet-Draft Captive Portal (CAPPORT) API March 2017

5.1.3. CAPPORT API POST URL

 The CAPPORT API Server SHOULD respond to HTTP POST requests to the
 provided URL that specify an Accept header value of "application/
 json" with the CAPPORT API protocol.

5.1.4. CAPPORT REST API DELETE URL

 The CAPPORT API Server SHOULD respond to HTTP DELETE requests to the
 provided URL that specify an Accept header value of "application/
 json" by revoking any network access to protected networks
 immediately. The CAPPORT API Server MUST NOT allow any device other
 than the User Equipment to DELETE the network access of the User
 Equipment via the CAPPORT API.

 The CAPPORT API Server MAY delete the session token (Section 5.2.1.5)
 for this User Equipment as part of the DELETE request.

5.2. JSON Data Structures

 The CAPPORT API data structures are specified in JavaScript Object
 Notation (JSON) [RFC7159]. This document specifies the structure of
 the JSON structures and message using the JSON Content Rules (JCR)
 defined in draft-newton-json-content-rules
 [I-D.newton-json-content-rules].

5.2.1. CAPPORT Common Elements

 This section describes structures that are shared between requests
 and responses.

5.2.1.1. Toplevel Object

 The CAPPORT API will contain JSON-formatted data. The toplevel
 object contains a networks object whose value is an array of zero or
 more network objects.

 $toplevel = {
 $networks ,
 $session_token ?
 }

 The toplevel object MUST contain a networks object.

 The CAPPORT API Server responses MUST contain a session_token object.
 The session-token object contains a session token which will be used
 in ICMP requests as discussed in RFC 7710.

Donnelly & Cullen Expires September 14, 2017 [Page 5]

Internet-Draft Captive Portal (CAPPORT) API March 2017

 QUESTION: Should the session token just be provided by the server,
 or should it be negotiated between the client and server using
 something like a DH exchange?

5.2.1.2. Networks Object

 The networks object represents the list of networks being acted on in
 this CAPPORT session.

 $networks = {
 ("DEFAULT" || //) = $network +
 }

 The networks object is a JSON object whose keys are network names and
 whose values are network objects. Thus a single response could be
 used in gaining access to multiple protected networks at once. The
 first request to the CAPPORT API Server will contain no networks, and
 acts as a discovery request.

 The CAPPORT API Server SHOULD use the special name DEFAULT for one
 network that provides access to the greater Internet.

5.2.1.3. Network Object

 The network object represents a network protected by the Captive
 Portal.

 $network = {
 "conditions" : [$condition +] ,
 "state" : $network_state ? ,
 "details" : $network_details ?
 }

 The network object MUST contain a ’conditions’ key whose value is an
 array of one or more $condition objects, which represent the unmet
 conditions for gaining access to this network. The conditions object
 SHOULD NOT contain conditions that have already been met.

 CAPPORT API Server responses MUST contain the ’state’ key, whose
 value is the $network_state object, which represents the state of
 access that the User Equipment has to the network.

 CAPPORT API Server responses SHOULD contain the ’details’ key, whose
 value is the $network_details object, which provides relevant
 information about the network.

Donnelly & Cullen Expires September 14, 2017 [Page 6]

Internet-Draft Captive Portal (CAPPORT) API March 2017

5.2.1.4. Condition Object

 The condition object describes one of the conditions necessary for
 access to the protected network. The CAPPORT API Server uses this
 object to express the requirements for User Equipment to access the
 protected network. The User Equipment uses this object as proof that
 it has satisfied the corresponding requirement for access to the
 protected network.

 $condition = {
 "id" : $uuid,
 "type" : string ? ,
 "requirement_details" : $requirement_details ? ,
 "satisfaction_details" : $satisfaction_details ?
 }

 The condition object MUST include an ’id’ key whose value is a UUID
 that uniquely identifies this condition. This ID will be used to
 match the client condition satisfactions with the server condition
 requirements.

 CAPPORT API Server responses MUST contain the ’type’ key, whose value
 is a string that represents the type of condition that permits access
 to the network.

 CAPPORT API Server responses MUST contain the ’requirement_details’
 key, whose value is the $requirement_details object. The
 $requirement_details object details the requirements that the User
 Equipment must pass to gain access to the protected network.

 User Equipment requests MUST contain the ’satisfaction_details’ key,
 whose value is the $satisfaction_details object. The $satisfaction
 _details object details the proof that the User Equipment has
 satisfied the conditions of access to the protected network.

5.2.1.5. Session Token Object

 The session_token object describes the CAPPORT session token.

 $session_token = "session_token" : base64

 The session_token object MUST include a "session_token" key whose
 value is a base64-encoded string of a 32-bit session token. This
 token will be used as proposed in [I-D.larose-capport-architecture].
 The CAPPORT API Server SHOULD send the same session token to a given
 User Equipment in every response, until the User Equipment DELETEs
 its network access (Section 5.1.4). After a DELETE, the CAPPORT API

Donnelly & Cullen Expires September 14, 2017 [Page 7]

Internet-Draft Captive Portal (CAPPORT) API March 2017

 Server MAY generate a new session token if the User Equipment makes a
 new request.

5.2.2. User Equipment Request

 For the initial CAPPORT request from the User Equipment, the JSON
 object will consist of the toplevel object (Section 5.2.1.1) with its
 required networks (Section 5.2.1.2) and session_token
 (Section 5.2.1.5) objects. The networks object will contain no
 networks, and the session_token object will be empty. This acts as a
 discovery request.

 {
 "networks" : {}
 "session-token" : ""
 }

 Figure 1

 Subsequent CAPPORT requests will contain data to satisfy conditions
 to access protected networks.

5.2.2.1. Satisfaction Details Object

 The satisfaction_details object details proof that the User Equipment
 has satisfied one of the conditions of access to a protected network.

 $satisfaction_details = { // : any + }

 Like the requirement details (Section 5.2.3.1) in the CAPPORT API
 Server Response, the list of keys and values for this object will
 depend on the value of the ’type’ key in the enclosing condition
 (Section 5.2.1.4). Section 6 contains conditions and their
 Satisfaction Details Objects.

5.2.3. CAPPORT API Server Response

5.2.3.1. Requirement Details Object

 The requirement_details object details the requirements of the
 Captive Portal Enforcement for access to a protected network.

 $requirement_details = { // : any + }

 Like the satisfaction details (Section 5.2.2.1), of the User
 Equipment Request, the list of keys and values for this object will
 depend on the value of the ’type’ key in the enclosing condition

Donnelly & Cullen Expires September 14, 2017 [Page 8]

Internet-Draft Captive Portal (CAPPORT) API March 2017

 (Section 5.2.1.4). Section 6 contains conditions and their
 Requirements Details Objects.

5.2.3.2. Network State Object

 The network_state object details the current state of the User
 Equipment access to the protected network.

 $network_state = {
 "permitted" : boolean ,
 "expires" : datetime ? ,
 "bytes_remaining" : integer ?
 }

 The network_state object MUST contain the "permitted" key, whose
 boolean value indicates whether the User Equipment is permitted to
 access the protected network.

 The network_state object SHOULD contain the "expires" key if the
 access to the protected network will expire at a known time in the
 future. The value is a datetime object of the time the access will
 expire. If there is not a known expiration time, the key SHOULD be
 omitted.

 The network_state object SHOULD contain the "bytes_remaining" key if
 the access to the protected network will expire after the User
 Equipment transfers a known number of bytes. The value is an integer
 of the number of bytes remaining. If there is not a known limit for
 this User Equipment, the key MAY be omitted or its value MAY be -1.

6. Network Access Conditions

 Captive Portal systems will have many conditions for access to their
 protected networks. The conditions object is open for use in
 expressing different conditions. Each condition MUST define a "type"
 string, its requirement_details, and its satisfaction_details.

6.1. Terms and Conditions

 One common use of a Captive Portal is for the User to accept some
 terms and conditions for the network access. This network access
 condition will communicate the terms and conditions to the User
 Equipment, and communicate their acceptance back to the CAPPORT API
 Server.

 For this network access condition, the condition object’s ’type’
 value MUST be "t&c"

Donnelly & Cullen Expires September 14, 2017 [Page 9]

Internet-Draft Captive Portal (CAPPORT) API March 2017

 This condition is satisfied by presenting an MD5 sum of the terms and
 conditions document referenced by the requirements. This has the
 property that the MD5 sum will not change unless the terms and
 conditions document itself changes. User Equipment MAY cache values
 and submit a cached value for the MD5 sum preemptively without
 retrieving the terms and conditions document.

6.1.1. Requirements

 $requirement_details = {
 "text" : string ?,
 "html" : string ?
 }

 The requirement_details object for the Terms and Conditions network
 access condition MUST include the "text" key, whose value is a URL
 referencing the plaintext terms and conditions which govern the use
 of the protected network.

 The requirement_details object for the Terms and Conditions network
 access condition MUST include the "html" key, whose value is a URL
 referencing the HTML-fomatted terms and conditions which govern the
 use of the protected network.

6.1.2. Satisfaction

 $satisfaction_details = {
 "text" : string ?,
 "html" : string ?
 }

 The satisfaction_details object for the Terms and Conditions network
 access condition MUST include one of "text" or "html" as a key. The
 satisfaction_details MAY include both.

 The "text" key of the satisfaction_details object has a string value
 that is an MD5 sum of the document referred to by the URL provided in
 the Requirement Details (Section 6.1.1) "text" key’s value.

 The "html" key of the satisfaction_details object has a string value
 that is an MD5 sum of the document referred to by the URL provided in
 the Requirement Details (Section 6.1.1) "html" key’s value.

6.2. Passcode

 Another common use of a captive portal is to have a user enter a
 passcode to gain access to the protected network. The Passcode
 network access condition will communicate the requirement for that

Donnelly & Cullen Expires September 14, 2017 [Page 10]

Internet-Draft Captive Portal (CAPPORT) API March 2017

 passcode to the User Equipment and satisfy the Captive Portal
 Enforcement that the User Equipment has the correct passcode.

 For the Passcode network access condition, the condition object’s
 "type" value must be "passcode".

6.2.1. Requirements

 $requirement_details = { }

 The requirement_details object of the Passcode network access
 condition has no elements.

6.2.2. Satisfaction

 $satisfaction_details = {
 "passcode" : string
 }

 The satisfaction_details object of the Passcode network access
 condition MUST include the "passcode" key, whose value is a string of
 the passcode that grants access to the protected network.

7. IANA Considerations

 This document does not require any IANA allocations. Please remove
 this section before RFC publication.

8. Security Considerations

 The CAPPORT API described in this document is intended to automate a
 process that is currently accomplished by a user filling out a HTML
 form in a Web Browser. Therefore, this mechanism should meet the
 requirement of being no less secure than presenting the user with a
 HTML form for completion in a Web Browser, and submitting that form
 to a Captive Portal.

 TBD: Provide complete security requirements and analysis.

8.1. Privacy Considerations

 Information passed in this protocol may include a user’s personal
 information, such as a full name and credit card details. Therefore,
 it is important that CAPPORT API Servers do not allow access to the
 CAPPORT API over unecrypted sessions.

Donnelly & Cullen Expires September 14, 2017 [Page 11]

Internet-Draft Captive Portal (CAPPORT) API March 2017

9. Acknowledgements

 This document was written using xml2rfc, as described in [RFC7749]

10. References

10.1. Normative References

 [I-D.larose-capport-architecture]
 Larose, K. and D. Dolson, "CAPPORT Architecture", draft-
 larose-capport-architecture-00 (work in progress), March
 2017.

 [I-D.newton-json-content-rules]
 Newton, A. and P. Cordell, "A Language for Rules
 Describing JSON Content", draft-newton-json-content-
 rules-07 (work in progress), September 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7710] Kumari, W., Gudmundsson, O., Ebersman, P., and S. Sheng,
 "Captive-Portal Identification Using DHCP or Router
 Advertisements (RAs)", RFC 7710, DOI 10.17487/RFC7710,
 December 2015, <http://www.rfc-editor.org/info/rfc7710>.

10.2. Informative References

 [RFC7749] Reschke, J., "The "xml2rfc" Version 2 Vocabulary",
 RFC 7749, DOI 10.17487/RFC7749, February 2016,
 <http://www.rfc-editor.org/info/rfc7749>.

Authors’ Addresses

 Mark Donnelly
 Painless Security
 14 Summer Street, Suite 202
 Malden, MA 02148
 USA

 Email: mark@painless-security.com
 URI: http://www.painless-security.com

Donnelly & Cullen Expires September 14, 2017 [Page 12]

Internet-Draft Captive Portal (CAPPORT) API March 2017

 Margaret Cullen
 Painless Security
 14 Summer Street, Suite 202
 Malden, MA 02148
 USA

 Phone: +1 781 405-7464
 Email: margaret@painless-security.com
 URI: http://www.painless-security.com

Donnelly & Cullen Expires September 14, 2017 [Page 13]

