
Internet Engineering Task Force S. Cheshire
Internet-Draft Apple Inc.
Intended status: Standards Track March 13, 2017
Expires: September 14, 2017

 Discovery Proxy for Multicast DNS-Based Service Discovery
 draft-ietf-dnssd-hybrid-06

Abstract

 This document specifies a mechanism that uses Multicast DNS to
 automatically populate the wide-area unicast Domain Name System
 namespace with records describing devices and services found on the
 local link.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Cheshire Expires September 14, 2017 [Page 1]

Internet-Draft Multicast Service Discovery Proxy March 2017

Table of Contents

 1. Introduction . 3
 2. Operational Analogy . 6
 3. Conventions and Terminology Used in this Document 7
 4. Compatibility Considerations 7
 5. Discovery Proxy Operation 8
 5.1. Delegated Subdomain for Service Discovery Records 9
 5.2. Domain Enumeration 11
 5.2.1. Domain Enumeration via Unicast Queries 11
 5.2.2. Domain Enumeration via Multicast Queries 13
 5.3. Delegated Subdomain for LDH Host Names 14
 5.4. Delegated Subdomain for Reverse Mapping 16
 5.5. Data Translation . 18
 5.5.1. DNS TTL limiting 18
 5.5.2. Suppressing Unusable Records 19
 5.5.3. NSEC and NSEC3 queries 20
 5.5.4. No Text Encoding Translation 20
 5.5.5. Application-Specific Data Translation 21
 5.6. Answer Aggregation 23
 6. Administrative DNS Records 26
 6.1. DNS SOA (Start of Authority) Record 26
 6.2. DNS NS Records . 27
 6.3. DNS SRV Records . 27
 7. DNSSEC Considerations . 28
 7.1. On-line signing only 28
 7.2. NSEC and NSEC3 Records 28
 8. IPv6 Considerations . 29
 9. Security Considerations 30
 9.1. Authenticity . 30
 9.2. Privacy . 30
 9.3. Denial of Service . 31
 10. Intelectual Property Rights 32
 11. IANA Considerations . 32
 12. Acknowledgments . 32
 13. References . 33
 13.1. Normative References 33
 13.2. Informative References 34
 Appendix A. Implementation Status 36
 A.1. Already Implemented and Deployed 36
 A.2. Already Implemented 36
 A.3. Partially Implemented 36
 A.4. Not Yet Implemented 37
 Author’s Address . 37

Cheshire Expires September 14, 2017 [Page 2]

Internet-Draft Multicast Service Discovery Proxy March 2017

1. Introduction

 Multicast DNS [RFC6762] and its companion technology DNS-based
 Service Discovery [RFC6763] were created to provide IP networking
 with the ease-of-use and autoconfiguration for which AppleTalk was
 well known [RFC6760] [ZC].

 For a small home network consisting of just a single link (or a few
 physical links bridged together to appear as a single logical link
 from the point of view of IP) Multicast DNS [RFC6762] is sufficient
 for client devices to look up the ".local" host names of peers on the
 same home network, and to use Multicast DNS-Based Service Discovery
 (DNS-SD) [RFC6763] to discover services offered on that home network.

 For a larger network consisting of multiple links that are
 interconnected using IP-layer routing instead of link-layer bridging,
 link-local Multicast DNS alone is insufficient because link-local
 Multicast DNS packets, by design, are not propagated onto other
 links.

 Using link-local multicast packets for Multicast DNS was a conscious
 design choice [RFC6762]. Even when limited to a single link,
 multicast traffic is still generally considered to be more expensive
 than unicast, because multicast traffic impacts many devices, instead
 of just a single recipient. In addition, with some technologies like
 Wi-Fi [IEEE-11], multicast traffic is inherently less efficient and
 less reliable than unicast, because Wi-Fi multicast traffic is sent
 using the lower data rates, and is not acknowledged. Multiplying the
 amount of expensive multicast traffic by flooding it across multiple
 links would make the traffic load even worse.

 Partitioning the network into many small links curtails the spread of
 expensive multicast traffic, but limits the discoverability of
 services. Using a very large local link with thousands of hosts
 enables better service discovery, but at the cost of larger amounts
 of multicast traffic.

 Performing DNS-Based Service Discovery using purely Unicast DNS is
 more efficient and doesn’t require excessively large multicast
 domains, but requires that the relevant data be available in the
 Unicast DNS namespace. The Unicast DNS namespace in question could
 fall within a traditionally assigned globally unique domain name, or
 could use a private local unicast domain name such as ".home"
 [HOME].)

 In the DNS-SD specification [RFC6763], Section 10 ("Populating the
 DNS with Information") discusses various possible ways that a
 service’s PTR, SRV, TXT and address records can make their way into

Cheshire Expires September 14, 2017 [Page 3]

Internet-Draft Multicast Service Discovery Proxy March 2017

 the Unicast DNS namespace, including manual zone file configuration
 [RFC1034] [RFC1035], DNS Update [RFC2136] [RFC3007] and proxies of
 various kinds.

 Making the relevant data available in the Unicast DNS namespace by
 manual DNS configuration (as has been done for many years at IETF
 meetings to advertise the IETF Terminal Room printer) is labor
 intensive, error prone, and requires a reasonable degree of DNS
 expertise.

 Populating the Unicast DNS namespace via DNS Update by the devices
 offering the services themselves requires configuration of DNS Update
 keys on those devices, which has proven onerous and impractical for
 simple devices like printers and network cameras.

 Hence, to facilitate efficient and reliable DNS-Based Service
 Discovery, a compromise is needed that combines the ease-of-use of
 Multicast DNS with the efficiency and scalability of Unicast DNS.

 This document specifies a type of proxy called a "Multicast Discovery
 Proxy" (or just "Discovery Proxy") that uses Multicast DNS [RFC6762]
 to discover Multicast DNS records on its local link, and makes
 corresponding DNS records visible in the Unicast DNS namespace.

 In principle, similar mechanisms could be defined using other local
 service discovery protocols, to discover local information and then
 make corresponding DNS records visible in the Unicast DNS namespace.
 Such mechanisms for other local service discovery protocols could be
 addressed in future documents.

 The design of the Discovery Proxy is guided by the previously
 published Requirements for Scalable DNS-Based Service [RFC7558].

 In simple terms, a descriptive DNS name is chosen for each link in an
 organization. Using a DNS NS record, responsibility for that DNS
 name is delegated to a Discovery Proxy physically attached to that
 link. Now, when a remote client issues a unicast query for a name
 falling within the delegated subdomain, the normal DNS delegation
 mechanism results in the unicast query arriving at the Discovery
 Proxy, since it has been declared authoritative for those names.
 Now, instead of consulting a textual zone file on disk to discover
 the answer to the query, as a traditional DNS server would, a
 Discovery Proxy consults its local link, using Multicast DNS, to find
 the answer to the question.

 For fault tolerance reasons there may be more than one Discovery
 Proxy serving a given link.

Cheshire Expires September 14, 2017 [Page 4]

Internet-Draft Multicast Service Discovery Proxy March 2017

 Note that the Discovery Proxy uses a "pull" model. The local link is
 not queried using Multicast DNS until some remote client has
 requested that data. In the idle state, in the absence of client
 requests, the Discovery Proxy sends no packets and imposes no burden
 on the network. It operates purely "on demand".

 An alternative proposal that has been suggested is a proxy that
 performs DNS updates to a remote DNS server on behalf of the
 Multicast DNS devices on the local network. The difficulty of this
 is that the proxy would have to be issuing all possible Multicast DNS
 queries all the time, to discover all the answers it needed to push
 up to the remote DNS server using DNS Update. It would thus generate
 very high load on the network continuously, even when there were no
 clients with any interest in that data.

 Hence, having a model where the query comes to the Discovery Proxy is
 much more efficient than a model where the Discovery Proxy pushes the
 answers out to some other remote DNS server.

 A client seeking to discover services and other information achieves
 this by sending traditional DNS queries to the Discovery Proxy, or by
 sending DNS Push Notification subscription requests [PUSH].

Cheshire Expires September 14, 2017 [Page 5]

Internet-Draft Multicast Service Discovery Proxy March 2017

2. Operational Analogy

 A Discovery Proxy does not operate as a multicast relay, or multicast
 forwarder. There is no danger of multicast forwarding loops that
 result in traffic storms, because no multicast packets are forwarded.
 A Discovery Proxy operates as a *proxy* for a remote client,
 performing queries on its behalf and reporting the results back.

 A reasonable analogy would be making a telephone call to a colleague
 at your workplace and saying, "I’m out of the office right now.
 Would you mind bringing up a printer browser window and telling me
 the names of the printers you see?" That entails no risk of a
 forwarding loop causing a traffic storm, because no multicast packets
 are sent over the telephone call.

 A similar analogy, instead of enlisting another human being to
 initiate the service discovery operation on your behalf, would be to
 log into your own desktop work computer using screen sharing, and
 then run the printer browser yourself to see the list of printers.
 Or log in using ssh and type "dns-sd -B _ipp._tcp" and observe the
 list of discovered printer names. In neither case is there any risk
 of a forwarding loop causing a traffic storm, because no multicast
 packets are being sent over the screen sharing or ssh connection.

 The Discovery Proxy provides another way of performing remote
 queries, just using a different protocol instead of screen sharing or
 ssh.

 When the Discovery Proxy software performs Multicast DNS operations,
 the exact same Multicast DNS caching mechanisms are applied as when
 any other client software on that Discovery Proxy device performs
 Multicast DNS operations, whether that be running a printer browser
 client locally, or a remote user running the printer browser client
 via a screen sharing connection, or a remote user logged in via ssh
 running a command-line tool like "dns-sd".

Cheshire Expires September 14, 2017 [Page 6]

Internet-Draft Multicast Service Discovery Proxy March 2017

3. Conventions and Terminology Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

 The Discovery Proxy builds on Multicast DNS, which works between
 hosts on the same link. A set of hosts is considered to be "on the
 same link" if:

 o when any host A from that set sends a packet to any other host B
 in that set, using unicast, multicast, or broadcast, the entire
 link-layer packet payload arrives unmodified, and

 o a broadcast sent over that link by any host from that set of hosts
 can be received by every other host in that set

 The link-layer *header* may be modified, such as in Token Ring Source
 Routing [IEEE-5], but not the link-layer *payload*. In particular,
 if any device forwarding a packet modifies any part of the IP header
 or IP payload then the packet is no longer considered to be on the
 same link. This means that the packet may pass through devices such
 as repeaters, bridges, hubs or switches and still be considered to be
 on the same link for the purpose of this document, but not through a
 device such as an IP router that decrements the IP TTL or otherwise
 modifies the IP header.

4. Compatibility Considerations

 No changes to existing devices are required to work with a Discovery
 Proxy.

 Existing devices that advertise services using Multicast DNS work
 with Discovery Proxy.

 Existing clients that support DNS-Based Service Discovery over
 Unicast DNS work with Discovery Proxy. Service Discovery over
 Unicast DNS was introduced in Mac OS X 10.4 in April 2005, as is
 included in Apple products introduced since then, including iPhone
 and iPad, as well as products from other vendors, such as Microsoft
 Windows 10.

Cheshire Expires September 14, 2017 [Page 7]

Internet-Draft Multicast Service Discovery Proxy March 2017

5. Discovery Proxy Operation

 In a typical configuration, a Discovery Proxy is configured to be
 authoritative [RFC1034] [RFC1035] for four DNS subdomains, and
 authority for these subdomains is delegated to it via NS records:

 A DNS subdomain for service discovery records.
 This subdomain name may contain rich text, including spaces and
 other punctuation. This is because this subdomain name is used
 only in graphical user interfaces, where rich text is appropriate.

 A DNS subdomain for host name records.
 This subdomain name SHOULD be limited to letters, digits and
 hyphens, to facilitate convenient use of host names in command-
 line interfaces.

 A DNS subdomain for IPv6 Reverse Mapping records.
 This subdomain name will be a name that ends in "ip6.arpa."

 A DNS subdomain for IPv4 Reverse Mapping records.
 This subdomain name will be a name that ends in "in-addr.arpa."

 In an enterprise network the naming and delegation of these
 subdomains is typically performed by conscious action of the network
 administrator. In a home network naming and delegation would
 typically be performed using some automatic configuration mechanism
 such as HNCP [RFC7788].

 These three varieties of delegated subdomains (service discovery,
 host names, and reverse mapping) are described below in sections
 Section 5.1, Section 5.3 and Section 5.4.

 How a client discovers where to issue its service discovery queries
 is described below in section Section 5.2.

Cheshire Expires September 14, 2017 [Page 8]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.1. Delegated Subdomain for Service Discovery Records

 In its simplest form, each link in an organization is assigned a
 unique Unicast DNS domain name, such as "Building 1.example.com" or
 "2nd Floor.Building 3.example.com". Grouping multiple links under a
 single Unicast DNS domain name is to be specified in a future
 companion document, but for the purposes of this document, assume
 that each link has its own unique Unicast DNS domain name. In a
 graphical user interface these names are not displayed as strings
 with dots as shown above, but something more akin to a typical file
 browser graphical user interface (which is harder to illustrate in a
 text-only document) showing folders, subfolders and files in a file
 system.

 +---------------+--------------+-------------+-------------------+
 | *example.com* | Building 1 | 1st Floor | Alice’s printer |
 | | Building 2 | *2nd Floor* | Bob’s printer |
 | | *Building 3* | 3rd Floor | Charlie’s printer |
 | | Building 4 | 4th Floor | |
 | | Building 5 | | |
 | | Building 6 | | |
 +---------------+--------------+-------------+-------------------+

 Figure 1: Illustrative GUI

 Each named link in an organization has one or more Discovery Proxies
 which serve it. This Discovery Proxy function for each link could be
 performed by a device like a router or switch that is physically
 attached to that link. In the parent domain, NS records are used to
 delegate ownership of each defined link name
 (e.g., "Building 1.example.com") to the one or more Discovery Proxies
 that serve the named link. In other words, the Discovery Proxies are
 the authoritative name servers for that subdomain.

 With appropriate VLAN configuration [IEEE-1Q] a single Discovery
 Proxy device could have a logical presence on many links, and serve
 as the Discovery Proxy for all those links. In such a configuration
 the Discovery Proxy device would have a single physical Ethernet
 [IEEE-3] port, configured as a VLAN trunk port, which would appear to
 software on that device as multiple virtual Ethernet interfaces, one
 connected to each of the VLAN links.

Cheshire Expires September 14, 2017 [Page 9]

Internet-Draft Multicast Service Discovery Proxy March 2017

 When a DNS-SD client issues a Unicast DNS query to discover services
 in a particular Unicast DNS subdomain
 (e.g., "_printer._tcp.Building 1.example.com. PTR ?") the normal DNS
 delegation mechanism results in that query being forwarded until it
 reaches the delegated authoritative name server for that subdomain,
 namely the Discovery Proxy on the link in question. Like a
 conventional Unicast DNS server, a Discovery Proxy implements the
 usual Unicast DNS protocol [RFC1034] [RFC1035] over UDP and TCP.
 However, unlike a conventional Unicast DNS server that generates
 answers from the data in its manually-configured zone file, a
 Discovery Proxy generates answers using Multicast DNS. A Discovery
 Proxy does this by consulting its Multicast DNS cache and/or issuing
 Multicast DNS queries for the corresponding Multicast DNS name, type
 and class, (e.g., in this case, "_printer._tcp.local. PTR ?"). Then,
 from the received Multicast DNS data, the Discovery Proxy synthesizes
 the appropriate Unicast DNS response. How long the Discovery Proxy
 should wait to accumulate Multicast DNS responses is described below
 in section Section 5.6.

 Naturally, the existing Multicast DNS caching mechanism is used to
 minimize unnecessary Multicast DNS queries on the wire. The
 Discovery Proxy is acting as a client of the underlying Multicast DNS
 subsystem, and benefits from the same caching and efficiency measures
 as any other client using that subsystem.

Cheshire Expires September 14, 2017 [Page 10]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.2. Domain Enumeration

 A DNS-SD client performs Domain Enumeration [RFC6763] via certain PTR
 queries, using both unicast and multicast. If it receives a Domain
 Name configuration via DHCP option 15 [RFC2132], then it issues
 unicast queries using this domain. It issues unicast queries using
 names derived from its IPv6 prefix(es) and IPv4 subnet address(es).
 These are described below in Section 5.2.1. It also issues multicast
 Domain Enumeration queries in the "local" domain [RFC6762]. These
 are described below in Section 5.2.2. The results of all the Domain
 Enumeration queries are combined for Service Discovery purposes.

5.2.1. Domain Enumeration via Unicast Queries

 The administrator creates Domain Enumeration PTR records [RFC6763] to
 inform clients of available service discovery domains, e.g.,:

 b._dns-sd._udp.example.com. PTR Building 1.example.com.
 PTR Building 2.example.com.
 PTR Building 3.example.com.
 PTR Building 4.example.com.

 db._dns-sd._udp.example.com. PTR Building 1.example.com.

 lb._dns-sd._udp.example.com. PTR Building 1.example.com.

 The "b" ("browse") records tell the client device the list of
 browsing domains to display for the user to select from and the "db"
 ("default browse") record tells the client device which domain in
 that list should be selected by default. The "lb" ("legacy browse")
 record tells the client device which domain to automatically browse
 on behalf of applications that don’t implement UI for multi-domain
 browsing (which is most of them, as of 2017). The "lb" domain is
 often the same as the "db" domain, or sometimes the "db" domain plus
 one or more others that should be included in the list of automatic
 browsing domains for legacy clients.

Cheshire Expires September 14, 2017 [Page 11]

Internet-Draft Multicast Service Discovery Proxy March 2017

 DNS responses are limited to a maximum size of 65535 bytes. This
 limits the maximum number of domains that can be returned for a
 Domain Enumeration query, as follows:

 A DNS response header is 12 bytes. That’s typically followed by a
 single qname (up to 256 bytes) plus qtype (2 bytes) and qclass
 (2 bytes), leaving 65275 for the Answer Section.

 An Answer Section Resource Record consists of:

 o Owner name, encoded as a two-byte compression pointer
 o Two-byte rrtype (type PTR)
 o Two-byte rrclass (class IN)
 o Four-byte ttl
 o Two-byte rdlength
 o rdata (domain name, up to 256 bytes)

 This means that each Resource Record in the Answer Section can take
 up to 268 bytes total, which means that the Answer Section can
 contain, in the worst case, no more than 243 domains.

 In a more typical scenario, where the domain names are not all
 maximum-sized names, and there is some similarity between names so
 that reasonable name compression is possible, each Answer
 Section Resource Record may average 140 bytes, which means that the
 Answer Section can contain up to 466 domains.

 It is anticipated that this should be sufficient for even a large
 corporate network or university campus.

Cheshire Expires September 14, 2017 [Page 12]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.2.2. Domain Enumeration via Multicast Queries

 Since a Discovery Proxy exists on many, if not all, the links in an
 enterprise, it offers an additional way to provide Domain Enumeration
 data for clients.

 A Discovery Proxy can be configured to generate Multicast DNS
 responses for the following Multicast DNS Domain Enumeration queries
 issued by clients:

 b._dns-sd._udp.local. PTR ?
 db._dns-sd._udp.local. PTR ?
 lb._dns-sd._udp.local. PTR ?

 This provides the ability for Discovery Proxies to indicate
 recommended browsing domains to DNS-SD clients on a per-link
 granularity. In some enterprises it may be preferable to provide
 this per-link configuration data in the form of Discovery Proxy
 configuration, rather than populating the Unicast DNS servers with
 the same data (in the "ip6.arpa" or "in-addr.arpa" domains).

 Regardless of how the network operator chooses to provide this
 configuration data, clients will perform Domain Enumeration via both
 unicast and multicast queries, and then combine the results of these
 queries.

Cheshire Expires September 14, 2017 [Page 13]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.3. Delegated Subdomain for LDH Host Names

 DNS-SD service instance names and domains are allowed to contain
 arbitrary Net-Unicode text [RFC5198], encoded as precomposed UTF-8
 [RFC3629].

 Users typically interact with service discovery software by viewing a
 list of discovered service instance names on a display, and selecting
 one of them by pointing, touching, or clicking. Similarly, in
 software that provides a multi-domain DNS-SD user interface, users
 view a list of offered domains on the display and select one of them
 by pointing, touching, or clicking. To use a service, users don’t
 have to remember domain or instance names, or type them; users just
 have to be able to recognize what they see on the display and touch
 or click on the thing they want.

 In contrast, host names are often remembered and typed. Also, host
 names have historically been used in command-line interfaces where
 spaces can be inconvenient. For this reason, host names have
 traditionally been restricted to letters, digits and hyphens (LDH),
 with no spaces or other punctuation.

 While we still want to allow rich text for DNS-SD service instance
 names and domains, it is advisable, for maximum compatibility with
 existing usage, to restrict host names to the traditional letter-
 digit-hyphen rules. This means that while a service name
 "My Printer._ipp._tcp.Building 1.example.com" is acceptable and
 desirable (it is displayed in a graphical user interface as an
 instance called "My Printer" in the domain "Building 1" at
 "example.com"), a host name "My-Printer.Building 1.example.com" is
 less desirable (because of the space in "Building 1").

 To accomodate this difference in allowable characters, a Discovery
 Proxy SHOULD support having two separate subdomains delegated to it
 for each link it serves, one whose name is allowed to contain
 arbitrary Net-Unicode text [RFC5198], and a second more constrained
 subdomain whose name is restricted to contain only letters, digits,
 and hyphens, to be used for host name records (names of ’A’ and
 ’AAAA’ address records).

Cheshire Expires September 14, 2017 [Page 14]

Internet-Draft Multicast Service Discovery Proxy March 2017

 For example, a Discovery Proxy could have the two subdomains
 "Building 1.example.com" and "bldg1.example.com" delegated to it.
 The Discovery Proxy would then translate these two Multicast DNS
 records:

 My Printer._ipp._tcp.local. SRV 0 0 631 prnt.local.
 prnt.local. A 203.0.113.2

 into Unicast DNS records as follows:

 My Printer._ipp._tcp.Building 1.example.com.
 SRV 0 0 631 prnt.bldg1.example.com.
 prnt.bldg1.example.com. A 203.0.113.2

 Note that the SRV record name is translated using the rich-text
 domain name ("Building 1.example.com") and the address record name is
 translated using the LDH domain ("bldg1.example.com").

 A Discovery Proxy MAY support only a single rich text Net-Unicode
 domain, and use that domain for all records, including ’A’ and ’AAAA’
 address records, but implementers choosing this option should be
 aware that this choice may produce host names that are awkward to use
 in command-line environments. Whether this is an issue depends on
 whether users in the target environment are expected to be using
 command-line interfaces.

 A Discovery Proxy MUST NOT be restricted to support only a letter-
 digit-hyphen subdomain, because that results in an unnecessarily poor
 user experience.

Cheshire Expires September 14, 2017 [Page 15]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.4. Delegated Subdomain for Reverse Mapping

 A Discovery Proxy can facilitate easier management of reverse mapping
 domains, particularly for IPv6 addresses where manual management may
 be more onerous than it is for IPv4 addresses.

 To achieve this, in the parent domain, NS records are used to
 delegate ownership of the appropriate reverse mapping domain to the
 Discovery Proxy. In other words, the Discovery Proxy becomes the
 authoritative name server for the reverse mapping domain. For fault
 tolerance reasons there may be more than one Discovery Proxy serving
 a given link.

 For example, if a given link is using the
 IPv6 prefix 2001:0DB8:1234:5678/64,
 then the domain "8.7.6.5.4.3.2.1.8.b.d.0.1.0.0.2.ip6.arpa"
 is delegated to the Discovery Proxy for that link.

 If a given link is using the IPv4 subnet 203.0.113/24,
 then the domain "113.0.203.in-addr.arpa"
 is delegated to the Discovery Proxy for that link.

 When a reverse mapping query arrives at the Discovery Proxy, it
 issues the identical query on its local link as a Multicast DNS
 query. The mechanism to force an apparently unicast name to be
 resolved using link-local Multicast DNS varies depending on the API
 set being used. For example, in the "/usr/include/dns_sd.h" APIs
 (available on macOS, iOS, Bonjour for Windows, Linux and Android),
 using kDNSServiceFlagsForceMulticast indicates that the
 DNSServiceQueryRecord() call should perform the query using Multicast
 DNS. Other APIs sets have different ways of forcing multicast
 queries. When the host owning that IPv6 or IPv4 address responds
 with a name of the form "something.local", the Discovery Proxy
 rewrites that to use its configured LDH host name domain instead of
 "local", and returns the response to the caller.

Cheshire Expires September 14, 2017 [Page 16]

Internet-Draft Multicast Service Discovery Proxy March 2017

 For example, a Discovery Proxy with the two subdomains
 "113.0.203.in-addr.arpa" and "bldg1.example.com" delegated to it
 would translate this Multicast DNS record:

 2.113.0.203.in-addr.arpa. PTR prnt.local.

 into this Unicast DNS response:

 2.113.0.203.in-addr.arpa. PTR prnt.bldg1.example.com.

 Subsequent queries for the prnt.bldg1.example.com address record,
 falling as it does within the bldg1.example.com domain, which is
 delegated to the Discovery Proxy, will arrive at the Discovery Proxy,
 where they are answered by issuing Multicast DNS queries and using
 the received Multicast DNS answers to synthesize Unicast DNS
 responses, as described above.

Cheshire Expires September 14, 2017 [Page 17]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.5. Data Translation

 Generating the appropriate Multicast DNS queries involves,
 at the very least, translating from the configured DNS domain
 (e.g., "Building 1.example.com") on the Unicast DNS side to "local"
 on the Multicast DNS side.

 Generating the appropriate Unicast DNS responses involves translating
 back from "local" to the appropriate configured DNS Unicast domain.

 Other beneficial translation and filtering operations are described
 below.

5.5.1. DNS TTL limiting

 For efficiency, Multicast DNS typically uses moderately high DNS TTL
 values. For example, the typical TTL on DNS-SD PTR records is 75
 minutes. What makes these moderately high TTLs acceptable is the
 cache coherency mechanisms built in to the Multicast DNS protocol
 which protect against stale data persisting for too long. When a
 service shuts down gracefully, it sends goodbye packets to remove its
 PTR records immediately from neighbouring caches. If a service shuts
 down abruptly without sending goodbye packets, the Passive
 Observation Of Failures (POOF) mechanism described in Section 10.5 of
 the Multicast DNS specification [RFC6762] comes into play to purge
 the cache of stale data.

 A traditional Unicast DNS client on a remote link does not get to
 participate in these Multicast DNS cache coherency mechanisms on the
 local link. For traditional Unicast DNS queries (those received
 without using Long-Lived Query [LLQ] or DNS Push Notification [PUSH])
 the DNS TTLs reported in the resulting Unicast DNS response SHOULD be
 capped to be no more than ten seconds.

 Similarly, for negative responses, the negative caching TTL indicated
 in the SOA record [RFC2308] should also be ten seconds (Section 6.1).

 This value of ten seconds is chosen based on user-experience
 considerations.

 For negative caching, suppose a user is attempting to access a remote
 device (e.g., a printer), and they are unsuccessful because that
 device is powered off. Suppose they then place a telephone call and
 ask for the device to be powered on. We want the device to become
 available to the user within a reasonable time period. It is
 reasonable to expect it to take on the order of ten seconds for a
 simple device with a simple embedded operating system to power on.
 Once the device is powered on and has announced its presence on the

Cheshire Expires September 14, 2017 [Page 18]

Internet-Draft Multicast Service Discovery Proxy March 2017

 network via Multicast DNS, we would like it to take no more than a
 further ten seconds for stale negative cache entries to expire from
 Unicast DNS caches, making the device available to the user desiring
 to access it.

 Similar reasoning applies to capping positive TTLs at ten seconds.
 In the event of a device moving location, getting a new DHCP address,
 or other renumbering events, we would like the updated information to
 be available to remote clients in a relatively timely fashion.

 However, network administrators should be aware that many recursive
 (caching) DNS servers by default are configured to impose a minimum
 TTL of 30 seconds. If stale data appears to be persisting in the
 network to the extent that it adversely impacts user experience,
 network administrators are advised to check the configuration of
 their recursive DNS servers.

 For received Unicast DNS queries that use LLQ or DNS Push
 Notification, the Multicast DNS record’s TTL SHOULD be returned
 unmodified, because the Push Notification channel exists to inform
 the remote client as records come and go. For further details about
 Long-Lived Queries, and its newer replacement, DNS Push
 Notifications, see Section 5.6.

5.5.2. Suppressing Unusable Records

 A Discovery Proxy SHOULD suppress Unicast DNS answers for records
 that are not useful outside the local link. For example, DNS AAAA
 and A records for IPv6 link-local addresses [RFC4862] and IPv4 link-
 local addresses [RFC3927] SHOULD be suppressed. Similarly, for sites
 that have multiple private address realms [RFC1918], in cases where
 the Discovery Proxy can determine that the querying client is in a
 different address realm, private addresses MUST NOT be communicated
 to that client. IPv6 Unique Local Addresses [RFC4193] SHOULD be
 suppressed in cases where the Discovery Proxy can determine that the
 querying client is in a different IPv6 address realm.

 By the same logic, DNS SRV records that reference target host names
 that have no addresses usable by the requester should be suppressed,
 and likewise, DNS PTR records that point to unusable SRV records
 should be similarly be suppressed.

Cheshire Expires September 14, 2017 [Page 19]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.5.3. NSEC and NSEC3 queries

 Since a Discovery Proxy only knows what names exist on the local link
 by issuing queries for them, and since it would be impractical to
 issue queries for every possible name just to find out which names
 exist and which do not, a Discovery Proxy cannot programatically
 generate the traditional NSEC and NSEC3 records which assert the
 nonexistence of a large range of names.

 When queried for an NSEC or NSEC3 record type, the Discovery Proxy
 issues a qtype "ANY" query using Multicast DNS on the local link, and
 then generates an NSEC or NSEC3 response signifying which record
 types do and do not exist just the specific name queried, and no
 others.

 Multicast DNS NSEC records received on the local link MUST NOT be
 forwarded unmodified to a unicast querier, because there are slight
 differences in the NSEC record data. In particular, Multicast DNS
 NSEC records do not have the NSEC bit set in the Type Bit Map,
 whereas conventional Unicast DNS NSEC records do have the NSEC bit
 set.

5.5.4. No Text Encoding Translation

 A Discovery Proxy does no translation between text encodings.
 Specifically, a Discovery Proxy does no translation between Punycode
 and UTF-8, either in the owner name of DNS records, or anywhere in
 the RDATA of DNS records (such as the RDATA of PTR records, SRV
 records, NS records, or other record types like TXT, where it is
 ambiguous whether the RDATA may contain DNS names). All bytes are
 treated as-is, with no attempt at text encoding translation. A
 client implementing DNS-based Service Discovery [RFC6763] will use
 UTF-8 encoding for its service discovery queries, which the Discovery
 Proxy passes through without any text encoding translation to the
 Multicast DNS subsystem. Responses from the Multicast DNS subsystem
 are similarly returned, without any text encoding translation, back
 to the requesting client.

Cheshire Expires September 14, 2017 [Page 20]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.5.5. Application-Specific Data Translation

 There may be cases where Application-Specific Data Translation is
 appropriate.

 For example, AirPrint printers tend to advertise fairly verbose
 information about their capabilities in their DNS-SD TXT record. TXT
 record sizes in the range 500-1000 bytes are not uncommon. This
 information is a legacy from LPR printing, because LPR does not have
 in-band capability negotiation, so all of this information is
 conveyed using the DNS-SD TXT record instead. IPP printing does have
 in-band capability negotiation, but for convenience printers tend to
 include the same capability information in their IPP DNS-SD TXT
 records as well. For local mDNS use this extra TXT record
 information is inefficient, but not fatal. However, when a Discovery
 Proxy aggregates data from multiple printers on a link, and sends it
 via unicast (via UDP or TCP) this amount of unnecessary TXT record
 information can result in large responses. A DNS reply over TCP
 carrying information about 70 printers with an average of 700 bytes
 per printer adds up to about 50 kilobytes of data. Therefore, a
 Discovery Proxy that is aware of the specifics of an application-
 layer protocol such as AirPrint (which uses IPP) can elide
 unnecessary key/value pairs from the DNS-SD TXT record for better
 network efficiency.

 Also, the DNS-SD TXT record for many printers contains an "adminurl"
 key something like "adminurl=http://printername.local/status.html".
 For this URL to be useful outside the local link, the embedded
 ".local" hostname needs to be translated to an appropriate name with
 larger scope. It is easy to translate ".local" names when they
 appear in well-defined places, either as a record’s name, or in the
 rdata of record types like PTR and SRV. In the printing case, some
 application-specific knowledge about the semantics of the "adminurl"
 key is needed for the Discovery Proxy to know that it contains a name
 that needs to be translated. This is somewhat analogous to the need
 for NAT gateways to contain ALGs (Application-Specific Gateways) to
 facilitate the correct translation of protocols that embed addresses
 in unexpected places.

 As is the case with NAT ALGs, protocol designers are advised to avoid
 communicating names and addresses in nonstandard locations, because
 those "hidden" names and addresses are at risk of not being
 translated when necessary, resulting in operational failures. In the
 printing case, the operational failure of failing to translate the
 "adminurl" key correctly is that, when accessed from a different
 link, printing will still work, but clicking the "Admin" UI button
 will fail to open the printer’s administration page. Rather than
 duplicating the host name from the service’s SRV record in its

Cheshire Expires September 14, 2017 [Page 21]

Internet-Draft Multicast Service Discovery Proxy March 2017

 "adminurl" key, thereby having the same host name appear in two
 places, a better design might have been to omit the host name from
 the "adminurl" key, and instead have the client implicitly substitute
 the target host name from the service’s SRV record in place of a
 missing host name in the "adminurl" key. That way the desired host
 name only appears once, and it is in a well-defined place where
 software like the Discovery Proxy is expecting to find it.

 Note that this kind of Application-Specific Data Translation is
 expected to be very rare. It is the exception, rather than the rule.
 This is an example of a common theme in computing. It is frequently
 the case that it is wise to start with a clean, layered design, with
 clear boundaries. Then, in certain special cases, those layer
 boundaries may be violated, where the performance and efficiency
 benefits outweigh the inelegance of the layer violation.

 These layer violations are optional. They are done primarily for
 efficiency reasons, and generally should not be required for correct
 operation. A Discovery Proxy MAY operate solely at the mDNS layer,
 without any knowledge of semantics at the DNS-SD layer or above.

Cheshire Expires September 14, 2017 [Page 22]

Internet-Draft Multicast Service Discovery Proxy March 2017

5.6. Answer Aggregation

 In a simple analysis, simply gathering multicast answers and
 forwarding them in a unicast response seems adequate, but it raises
 the question of how long the Discovery Proxy should wait to be sure
 that it has received all the Multicast DNS answers it needs to form a
 complete Unicast DNS response. If it waits too little time, then it
 risks its Unicast DNS response being incomplete. If it waits too
 long, then it creates a poor user experience at the client end. In
 fact, there may be no time which is both short enough to produce a
 good user experience and at the same time long enough to reliably
 produce complete results.

 Similarly, the Discovery Proxy -- the authoritative name server for
 the subdomain in question -- needs to decide what DNS TTL to report
 for these records. If the TTL is too long then the recursive
 (caching) name servers issuing queries on behalf of their clients
 risk caching stale data for too long. If the TTL is too short then
 the amount of network traffic will be more than necessary. In fact,
 there may be no TTL which is both short enough to avoid undesirable
 stale data and at the same time long enough to be efficient on the
 network.

 Both these dilemmas are solved by use of DNS Long-Lived Queries
 (DNS LLQ) [LLQ] or its newer replacement, DNS Push Notifications
 [PUSH].

 Clients supporting unicast DNS Service Discovery SHOULD implement DNS
 Push Notifications [PUSH] for improved user experience.

 Clients and Discovery Proxies MAY support both DNS LLQ and DNS Push,
 and when talking to a Discovery Proxy that supports both, the client
 may use either protocol, as it chooses, though it is expected that
 only DNS Push will continue to be supported in the long run.

 When a Discovery Proxy receives a query using DNS LLQ or DNS Push
 Notification, it responds immediately using the Multicast DNS records
 it already has in its cache (if any). This provides a good client
 user experience by providing a near-instantaneous response.
 Simultaneously, the Discovery Proxy issues a Multicast DNS query on
 the local link to discover if there are any additional Multicast DNS
 records it did not already know about. Should additional Multicast
 DNS responses be received, these are then delivered to the client
 using additional DNS LLQ or DNS Push Notification update messages.
 The timeliness of such update messages is limited only by the
 timeliness of the device responding to the Multicast DNS query. If
 the Multicast DNS device responds quickly, then the update message is
 delivered quickly. If the Multicast DNS device responds slowly, then

Cheshire Expires September 14, 2017 [Page 23]

Internet-Draft Multicast Service Discovery Proxy March 2017

 the update message is delivered slowly. The benefit of using update
 messages is that the Discovery Proxy can respond promptly because it
 doesn’t have to delay its unicast response to allow for the expected
 worst-case delay for receiving all the Multicast DNS responses. Even
 if a proxy were to try to provide reliability by assuming an
 excessively pessimistic worst-case time (thereby giving a very poor
 user experience) there would still be the risk of a slow Multicast
 DNS device taking even longer than that (e.g., a device that is not
 even powered on until ten seconds after the initial query is
 received) resulting in incomplete responses. Using update message
 solves this dilemma: even very late responses are not lost; they are
 delivered in subsequent update messages.

 There are two factors that determine specifically how responses are
 generated:

 The first factor is whether the query from the client used LLQ or DNS
 Push Notification (typical with long-lived service browsing PTR
 queries) or not (typical with one-shot operations like SRV or address
 record queries). Note that queries using LLQ or DNS Push
 Notification are received directly from the client. Queries not
 using LLQ or DNS Push Notification are generally received via the
 client’s configured recursive (caching) name server.

 The second factor is whether the Discovery Proxy already has at least
 one record in its cache that positively answers the question.

 o Not using LLQ or Push Notification; no answer in cache:
 Issue an mDNS query, exactly as a local client would issue an mDNS
 query on the local link for the desired record name, type and
 class, including retransmissions, as appropriate, according to the
 established mDNS retransmission schedule [RFC6762]. As soon as
 any Multicast DNS response packet is received that contains one or
 more positive answers to that question (with or without the Cache
 Flush bit [RFC6762] set), or a negative answer (signified via a
 Multicast DNS NSEC record [RFC6762]), the Discovery Proxy
 generates a Unicast DNS response packet containing the
 corresponding (filtered and translated) answers and sends it to
 the remote client. If after six seconds no Multicast DNS answers
 have been received, return a negative response to the remote
 client. Six seconds is enough time to transmit three mDNS
 queries, and allow some time for responses to arrive.
 DNS TTLs in responses are capped to at most ten seconds.

 o Not using LLQ or Push Notification; at least one answer in cache:

Cheshire Expires September 14, 2017 [Page 24]

Internet-Draft Multicast Service Discovery Proxy March 2017

 Send response right away to minimise delay.
 DNS TTLs in responses are capped to at most ten seconds.
 No local mDNS queries are performed.
 (Reasoning: Given RRSet TTL harmonisation, if the proxy has one
 Multicast DNS answer in its cache, it can reasonably assume that
 it has all of them.)

 o Using LLQ or Push Notification; no answer in cache:
 As in the case above with no answer in the cache, perform mDNS
 querying for six seconds, and send a response to the remote client
 as soon as any relevant mDNS response is received.
 If after six seconds no relevant mDNS response has been received,
 return negative response to the remote client (for LLQ; not
 applicable for PUSH).
 (Reasoning: We don’t need to rush to send an empty answer.)
 Whether or not a relevant mDNS response is received within six
 seconds, the query remains active for as long as the client
 maintains the LLQ or PUSH state, and if mDNS answers are received
 later, LLQ or PUSH update messages are sent.
 DNS TTLs in responses are returned unmodified.

 o Using LLQ or Push Notification; at least one answer in cache:
 As in the case above with at least one answer in cache, send
 response right away to minimise delay.
 The query remains active for as long as the client maintains the
 LLQ or PUSH state, and if additional mDNS answers are received
 later, LLQ or PUSH update messages are sent.
 (Reasoning: We want UI that is displayed very rapidly, yet
 continues to remain accurate even as the network environment
 changes.)
 DNS TTLs in responses are returned unmodified.

 Note that the "negative responses" referred to above are "no error no
 answer" negative responses, not NXDOMAIN. This is because the
 Discovery Proxy cannot know all the Multicast DNS domain names that
 may exist on a link at any given time, so any name with no answers
 may have child names that do exist, making it an "empty nonterminal"
 name.

Cheshire Expires September 14, 2017 [Page 25]

Internet-Draft Multicast Service Discovery Proxy March 2017

6. Administrative DNS Records

6.1. DNS SOA (Start of Authority) Record

 The MNAME field SHOULD contain the host name of the Discovery Proxy
 device (i.e., the same domain name as the rdata of the NS record
 delegating the relevant zone(s) to this Discovery Proxy device).

 The RNAME field SHOULD contain the mailbox of the person responsible
 for administering this Discovery Proxy device.

 The SERIAL field MUST be zero.

 Zone transfers are undefined for Discovery Proxy zones, and
 consequently the REFRESH, RETRY and EXPIRE fields have no useful
 meaning for Discovery Proxy zones. These fields SHOULD contain
 reasonable default values. The RECOMMENDED values are: REFRESH 7200,
 RETRY 3600, EXPIRE 86400.

 The MINIMUM field (used to control the lifetime of negative cache
 entries) SHOULD contain the value 10. The value of ten seconds is
 chosen based on user-experience considerations (see Section 5.5.1).

 In the event that there are multiple Discovery Proxy devices on a
 link for fault tolerance reasons, this will result in clients
 receiving inconsistent SOA records (different MNAME, and possibly
 RNAME) depending on which Discovery Proxy answers their SOA query.
 However, since clients generally have no reason to use the MNAME or
 RNAME data, this is unlikely to cause any problems.

Cheshire Expires September 14, 2017 [Page 26]

Internet-Draft Multicast Service Discovery Proxy March 2017

6.2. DNS NS Records

 In the event that there are multiple Discovery Proxy devices on a
 link for fault tolerance reasons, the parent zone MUST be configured
 with glue records giving the names and addresses of all the Discovery
 Proxy devices on the link.

 Each Discovery Proxy device MUST be configured with its own NS
 record, and with the NS records of its fellow Discovery Proxy devices
 on the same link, so that it can return the correct answers for NS
 queries.

6.3. DNS SRV Records

 In the event that a Discovery Proxy implements Long-Lived Queries
 [LLQ] and/or DNS Push Notifications [PUSH] (as most SHOULD) they MUST
 generate answers for the appropriate corresponding
 _dns-llq._udp.<zone> and/or _dns-push-tls._tcp.<zone> SRV record
 queries. These records are conceptually inserted into the namespace
 of the corresponding zones. They do not exist in the ".local"
 namespace of the local link.

Cheshire Expires September 14, 2017 [Page 27]

Internet-Draft Multicast Service Discovery Proxy March 2017

7. DNSSEC Considerations

7.1. On-line signing only

 The Discovery Proxy acts as the authoritative name server for
 designated subdomains, and if DNSSEC is to be used, the Discovery
 Proxy needs to possess a copy of the signing keys, in order to
 generate authoritative signed data from the local Multicast DNS
 responses it receives. Off-line signing not applicable to Discovery
 Proxy.

7.2. NSEC and NSEC3 Records

 In DNSSEC, NSEC and NSEC3 records are used to assert the nonexistence
 of certain names, also described as "authenticated denial of
 existence".

 Since a Discovery Proxy only knows what names exist on the local link
 by issuing queries for them, and since it would be impractical to
 issue queries for every possible name just to find out which names
 exist and which do not, a Discovery Proxy cannot programatically
 synthesize the traditional NSEC and NSEC3 records which assert the
 nonexistence of a large range names. Instead, when generating a
 negative response, a Discovery Proxy programatically synthesizes a
 single NSEC record assert the nonexistence of just the specific name
 queried, and no others. Since the Discovery Proxy has the zone
 signing key, it can do this on demand. Since the NSEC record asserts
 the nonexistence of only a single name, zone walking is not a
 concern, so NSEC3 is not necessary.

 Note that this applies only to traditional immediate DNS queries,
 which may return immediate negative answers when no immediate
 positive answer is available. When used with a DNS Push Notification
 subscription [PUSH] there are no negative answers, merely the absence
 of answers so far, which may change in the future if answers become
 available.

Cheshire Expires September 14, 2017 [Page 28]

Internet-Draft Multicast Service Discovery Proxy March 2017

8. IPv6 Considerations

 An IPv6-only host and an IPv4-only host behave as "ships that pass in
 the night". Even if they are on the same Ethernet [IEEE-3], neither
 is aware of the other’s traffic. For this reason, each link may have
 two unrelated ".local." zones, one for IPv6 and one for IPv4.
 Since for practical purposes, a group of IPv6-only hosts and a group
 of IPv4-only hosts on the same Ethernet act as if they were on two
 entirely separate Ethernet segments, it is unsurprising that their
 use of the ".local." zone should occur exactly as it would if they
 really were on two entirely separate Ethernet segments.

 It will be desirable to have a mechanism to ’stitch’ together these
 two unrelated ".local." zones so that they appear as one. Such
 mechanism will need to be able to differentiate between a dual-stack
 (v4/v6) host participating in both ".local." zones, and two different
 hosts, one IPv6-only and the other IPv4-only, which are both trying
 to use the same name(s). Such a mechanism will be specified in a
 future companion document.

 At present, it is RECOMMENDED that a Discovery Proxy be configured
 with a single domain name for both the IPv4 and IPv6 ".local." zones
 on the local link, and when a unicast query is received, it should
 issue Multicast DNS queries using both IPv4 and IPv6 on the local
 link, and then combine the results.

Cheshire Expires September 14, 2017 [Page 29]

Internet-Draft Multicast Service Discovery Proxy March 2017

9. Security Considerations

9.1. Authenticity

 A service proves its presence on a link by its ability to answer
 link-local multicast queries on that link. If greater security is
 desired, then the Discovery Proxy mechanism should not be used, and
 something with stronger security should be used instead, such as
 authenticated secure DNS Update [RFC2136] [RFC3007].

9.2. Privacy

 The Domain Name System is, generally speaking, a global public
 database. Records that exist in the Domain Name System name
 hierarchy can be queried by name from, in principle, anywhere in the
 world. If services on a mobile device (like a laptop computer) are
 made visible via the Discovery Proxy mechanism, then when those
 services become visible in a domain such as "My House.example.com"
 that might indicate to (potentially hostile) observers that the
 mobile device is in my house. When those services disappear from
 "My House.example.com" that change could be used by observers to
 infer when the mobile device (and possibly its owner) may have left
 the house. The privacy of this information may be protected using
 techniques like firewalls, split-view DNS, and Virtual Private
 Networks (VPNs), as are customarily used today to protect the privacy
 of corporate DNS information.

 The Discovery Proxy could also provide sensitive records only to
 authenticated users. This is a general DNS problem, not specific to
 the Discovery Proxy. Work is underway in the IETF to tackle this
 problem [RFC7626].

Cheshire Expires September 14, 2017 [Page 30]

Internet-Draft Multicast Service Discovery Proxy March 2017

9.3. Denial of Service

 A remote attacker could use a rapid series of unique Unicast DNS
 queries to induce a Discovery Proxy to generate a rapid series of
 corresponding Multicast DNS queries on one or more of its local
 links. Multicast traffic is generally more expensive than unicast
 traffic -- especially on Wi-Fi links -- which makes this attack
 particularly serious. To limit the damage that can be caused by such
 attacks, a Discovery Proxy (or the underlying Multicast DNS subsystem
 which it utilizes) MUST implement Multicast DNS query rate limiting
 appropriate to the link technology in question. For today’s
 802.11b/g/n/ac Wi-Fi links (for which approximately 200 multicast
 packets per second is sufficient to consume approximately 100% of the
 wireless spectrum) a limit of 20 Multicast DNS query packets per
 second is RECOMMENDED. On other link technologies like Gigabit
 Ethernet higher limits may be appropriate. A consequence of this
 rate limiting is that a rogue remote client could issue an excessive
 number of queries, resuling in denial of service to other remote
 clients attempting to use that Discovery Proxy. However, this is
 preferable to a rogue remote client being able to inflict even
 greater harm on the local network, which could impact the correct
 operation of all local clients on that network.

Cheshire Expires September 14, 2017 [Page 31]

Internet-Draft Multicast Service Discovery Proxy March 2017

10. Intelectual Property Rights

 Apple has submitted an IPR disclosure concerning the technique
 proposed in this document. Details are available on the IETF IPR
 disclosure page [IPR2119].

11. IANA Considerations

 This document has no IANA Considerations.

12. Acknowledgments

 Thanks to Markus Stenberg for helping develop the policy regarding
 the four styles of unicast response according to what data is
 immediately available in the cache. Thanks to Anders Brandt, Tim
 Chown, Ralph Droms, Ray Hunter, Ted Lemon, Tom Pusateri, Markus
 Stenberg, Dave Thaler, and Andrew Yourtchenko for their comments.

Cheshire Expires September 14, 2017 [Page 32]

Internet-Draft Multicast Service Discovery Proxy March 2017

13. References

13.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <http://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <http://www.rfc-editor.org/info/rfc1918>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <http://www.rfc-editor.org/info/rfc2308>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 DOI 10.17487/RFC3927, May 2005,
 <http://www.rfc-editor.org/info/rfc3927>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <http://www.rfc-editor.org/info/rfc4862>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <http://www.rfc-editor.org/info/rfc5198>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 December 2012.

Cheshire Expires September 14, 2017 [Page 33]

Internet-Draft Multicast Service Discovery Proxy March 2017

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, December 2012.

 [PUSH] Pusateri, T. and S. Cheshire, "DNS Push Notifications",
 draft-ietf-dnssd-push-09 (work in progress), October 2016.

13.2. Informative References

 [HOME] Cheshire, S., "Special Use Top Level Domain ’home’",
 draft-cheshire-homenet-dot-home (work in progress),
 November 2015.

 [IPR2119] "Apple Inc.’s Statement about IPR related to Hybrid
 Unicast/Multicast DNS-Based Service Discovery",
 <https://datatracker.ietf.org/ipr/2119/>.

 [ohp] "Discovery Proxy (Hybrid Proxy) implementation for
 OpenWrt", <https://github.com/sbyx/ohybridproxy/>.

 [LLQ] Sekar, K., "DNS Long-Lived Queries", draft-sekar-dns-
 llq-01 (work in progress), August 2006.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
 <http://www.rfc-editor.org/info/rfc2132>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <http://www.rfc-editor.org/info/rfc2136>.

 [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, DOI 10.17487/RFC3007, November 2000,
 <http://www.rfc-editor.org/info/rfc3007>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <http://www.rfc-editor.org/info/rfc4193>.

 [RFC7558] Lynn, K., Cheshire, S., Blanchet, M., and D. Migault,
 "Requirements for Scalable DNS-Based Service Discovery
 (DNS-SD) / Multicast DNS (mDNS) Extensions", RFC 7558,
 DOI 10.17487/RFC7558, July 2015,
 <http://www.rfc-editor.org/info/rfc7558>.

 [RFC7626] Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
 DOI 10.17487/RFC7626, August 2015,
 <http://www.rfc-editor.org/info/rfc7626>.

Cheshire Expires September 14, 2017 [Page 34]

Internet-Draft Multicast Service Discovery Proxy March 2017

 [RFC7788] Stenberg, M., Barth, S., and P. Pfister, "Home Networking
 Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
 2016, <http://www.rfc-editor.org/info/rfc7788>.

 [RFC6760] Cheshire, S. and M. Krochmal, "Requirements for a Protocol
 to Replace the AppleTalk Name Binding Protocol (NBP)",
 RFC 6760, December 2012.

 [ZC] Cheshire, S. and D. Steinberg, "Zero Configuration
 Networking: The Definitive Guide", O’Reilly Media, Inc. ,
 ISBN 0-596-10100-7, December 2005.

 [IEEE-1Q] "IEEE Standard for Local and metropolitan area networks --
 Bridges and Bridged Networks", IEEE Std 802.1Q-2014,
 November 2014, <http://standards.ieee.org/getieee802/
 download/802-1Q-2014.pdf>.

 [IEEE-3] "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 3: Carrier Sense Multiple Access with Collision Detection
 (CMSA/CD) Access Method and Physical Layer
 Specifications", IEEE Std 802.3-2008, December 2008,
 <http://standards.ieee.org/getieee802/802.3.html>.

 [IEEE-5] Institute of Electrical and Electronics Engineers,
 "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 5: Token ring access method and physical layer
 specification", IEEE Std 802.5-1998, 1995.

 [IEEE-11] "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 11: Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications", IEEE Std 802.11-2007, June
 2007, <http://standards.ieee.org/getieee802/802.11.html>.

Cheshire Expires September 14, 2017 [Page 35]

Internet-Draft Multicast Service Discovery Proxy March 2017

Appendix A. Implementation Status

 Some aspects of the mechanism specified in this document already
 exist in deployed software. Some aspects are new. This section
 outlines which aspects already exist and which are new.

A.1. Already Implemented and Deployed

 Domain enumeration by the client (the "b._dns-sd._udp" queries) is
 already implemented and deployed.

 Unicast queries to the indicated discovery domain is already
 implemented and deployed.

 These are implemented and deployed in Mac OS X 10.4 and later
 (including all versions of Apple iOS, on all iPhone and iPads), in
 Bonjour for Windows, and in Android 4.1 "Jelly Bean" (API Level 16)
 and later.

 Domain enumeration and unicast querying have been used for several
 years at IETF meetings to make Terminal Room printers discoverable
 from outside the Terminal room. When an IETF attendee presses Cmd-P
 on a Mac, or selects AirPrint on an iPad or iPhone, and the Terminal
 room printers appear, that is because the client is sending unicast
 DNS queries to the IETF DNS servers.

A.2. Already Implemented

 A minimal portable Discovery Proxy implementation has been produced
 by Markus Stenberg and Steven Barth, which runs on OS X and several
 Linux variants including OpenWrt [ohp]. It was demonstrated at the
 Berlin IETF in July 2013.

 Tom Pusateri also has an implementation that runs on any Unix/Linux.
 It has a RESTful interface for management and an experimental demo
 CLI and web interface.

A.3. Partially Implemented

 The current APIs make multiple domains visible to client software,
 but most client UI today lumps all discovered services into a single
 flat list. This is largely a chicken-and-egg problem. Application
 writers were naturally reluctant to spend time writing domain-aware
 UI code when few customers today would benefit from it. If Discovery
 Proxy deployment becomes common, then application writers will have a
 reason to provide better UI. Existing applications will work with
 the Discovery Proxy, but will show all services in a single flat
 list. Applications with improved UI will group services by domain.

Cheshire Expires September 14, 2017 [Page 36]

Internet-Draft Multicast Service Discovery Proxy March 2017

 The Long-Lived Query mechanism [LLQ] referred to in this
 specification exists and is deployed, but has not been standardized
 by the IETF. The IETF is considering standardizing a superior Long-
 Lived Query mechanism called DNS Push Notifications [PUSH]. The
 pragmatic short-term deployment approach is for vendors to produce
 Discovery Proxies that implement both the deployed Long-Lived Query
 mechanism [LLQ] (for today’s clients) and the new DNS Push
 Notifications mechanism [PUSH] as the preferred long-term direction.

 The translating/filtering Discovery Proxy specified in this document.
 Implementations are under development, and operational experience
 with these implementations has guided updates to this document.

A.4. Not Yet Implemented

 Client implementations of the new DNS Push Notifications mechanism
 [PUSH] are currently underway.

 A mechanism to ’stitch’ together multiple ".local." zones so that
 they appear as one. Such a stitching mechanism will be specified in
 a future companion document. This stitching mechanism addresses the
 issue that if a printer is physically moved from one link to another,
 then conceptually the old service has disappeared from the DNS
 namespace, and a new service with a similar name has appeared. This
 stitching mechanism will allow a service to change its point of
 attachment without changing the name by which it can be found.

Author’s Address

 Stuart Cheshire
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 3207
 Email: cheshire@apple.com

Cheshire Expires September 14, 2017 [Page 37]

