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Abstract

   This document describes a new diagnostic tool called Extended Ping
   (Xping).  Network operators execute Xping to determine the status of
   a remote interface.  In this respect, Xping is similar to Ping.
   Xping differs from Ping in that it does not require network
   reachability between itself and remote interface whose status is
   being queried.

   Xping relies on two new ICMP messages, called Extended Echo Request
   and Extended Echo Reply.  Both ICMP messages are defined herein.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 3, 2017.
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Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Problem Statement

   Network operators use Ping [RFC2151] to determine whether a remote
   interface is operational.  Ping sends an ICMP [RFC0792] [RFC4443]
   Echo message to the interface being probed and waits for an ICMP Echo
   Reply.  If Ping receives the expected ICMP Echo Reply, it reports
   that the probed interface is operational.

   In order for the ICMP Echo message to reach the probed interface, the
   probed interface must be addressed appropriately.  IP addresses are
   scoped as follows:
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   o  Global [RFC4291]

   o  Private [RFC1918]

   o  Link-local [RFC3927] [RFC4291]

   Global addresses are the most widely scoped.  A globally addressed
   interface can be reached from any node on the Internet.  By contrast,
   link-local addresses are the least widely scoped.  An interface whose
   only address is link-local can be reached from on-link interfaces
   only.

   Network operators seek to decrease their dependence on widely-scoped
   interface addressing.  For example:

   o  The operator of an IPv4 network currently assigns global addresses
      to all interfaces.  In order to conserve scarce IPv4 address
      space, this operator seeks to renumber selected interfaces with
      private addresses.

   o  The operator of an IPv4 network currently assigns private
      addresses to all interfaces.  In order to achieve operational
      efficiencies, this operator seeks to leave selected interfaces
      unnumbered.

   o  The operator of an IPv6 network currently assigns global addresses
      to all interfaces.  In order to achieve operational efficiencies,
      this operator seeks to number selected interfaces with link-local
      addresses only [RFC7404]

   When a network operator renumbers an interface, replacing a more
   widely scoped address with one that is less widely scoped, the
   operator also reduces the number of nodes from which Ping can probe
   the interface.  Therefore, many network operators who rely on Ping
   remain dependant upon widely scoped interface addressing.

   This document describes a new diagnostic tool called Extended Ping
   (Xping).  Network operators use Xping to determine the status of a
   remote interface.  In this respect, Xping is similar to Ping.  Xping
   differs from Ping in that it does not require reachability between
   the probing node and the probed interface.  Or, said another way,
   Xping does not require reachability between the node upon which it
   executes and the interface whose status is being queried.

   Xping relies on two new informational ICMP messages, called Extended
   Echo Request and Extended Echo Reply.  The Extended Echo Request
   message makes a semantic distinction between the destination
   interface and the probed interface.  The destination interface is the
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   interface to which the Extended Echo Request message is delivered.
   It must be reachable from the probing node.  The probed interface is
   the interface whose status is being queried.  It does not need to be
   reachable from the probing node.  However, the destination and probed
   interfaces must be local to one another (i.e., both interfaces must
   belong to the same node).

   Because the Extended Echo Request message makes a distinction between
   the destination and probed interfaces, Xping can probe every
   interface on a node if it can reach any interface on the node.  In
   many cases, this allows network operators to decrease their
   dependence on widely scoped interface addressing.

   Network operators can use Xping to determine the operational status
   of the probed interface.  They can also use Xping to determine which
   protocols (e.g., IPv4, IPv6) are active on the interface.  However,
   they cannot use Xping to obtain other information regarding the
   interface (e.g., bandwidth, MTU).  In order to obtain such
   information, they should use other network management protocols
   (e.g., SNMP, Netconf).

   This document is divided into sections, with Section 2 describing the
   Extended Echo Request message and Section 3 describing the Extended
   Echo Reply message.  Section 4 describes how the probed node
   processes the Extended Echo Request message and Section 5 describes
   the Xping application.  Section 6 describes uses cases.

2.  ICMP Extended Echo Request

   The ICMP Extended Echo Request message is defined for both ICMPv4 and
   ICMPv6.  Like any ICMP message, the ICMP Extended Echo Request
   message is encapsulated in an IP header.  The ICMPv4 version of the
   Extended Echo Request message is encapsulated in an IPv4 header,
   while the ICMPv6 version is encapsulated in an IPv6 header.

   Figure 1 depicts the ICMP Extended Echo Request message.
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       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     Code      |          Checksum             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Identifier          |        Sequence Number        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   ICMP Extension Structure

               Figure 1: ICMP Extended Echo Request Message

   IP Header fields:

   o  Source Address: The Source Address MUST be valid IPv4 or IPv6
      unicast address belonging to the sending node.

   o  Destination Address: Identifies the destination interface (i.e.,
      the interface to which this message will be delivered).

   ICMP fields:

   o  Type: Extended Echo Request.  The value for ICMPv4 is TBD by IANA.
      The value for ICMPv6 is also TBD by IANA.

   o  Code: 0

   o  Checksum: For ICMPv4, see RFC 792.  For ICMPv6, see RFC 4443.

   o  Identifier: An identifier to aid in matching Extended Echo Replies
      to Extended Echo Requests.  May be zero.

   o  Sequence Number: A sequence number to aid in matching Extended
      Echo Replies to Extended Echo Requests.  May be zero.

   o  ICMP Extension Structure: Identifies the probed interface, by
      name, index or address.

   If the ICMP Extension Structure identifies the probed interface by
   address, that address can be a member of any address family.  For
   example:

   o  An ICMPv4 Extended Echo Request message can carry an ICMP
      Extension Structure that identifies the probed interface by IPv4
      address
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   o  An ICMPv4 Extended Echo Request message can carry an ICMP
      Extension Structure that identifies the probed interface by IPv6
      address

   o  An ICMPv6 Extended Echo Request message can carry an ICMP
      Extension Structure that identifies the probed interface by IPv4
      address

   o  An ICMPv6 Extended Echo Request message can carry an ICMP
      Extension Structure that identifies the probed interface by IPv6
      address

   Section 7 of [RFC4884] defines the ICMP Extension Structure.  As per
   RFC 4884, the Extension Structure contains exactly one Extension
   Header followed by one or more objects.  When applied to the ICMP
   Extended Echo Request message, the ICMP Extension Structure contains
   one or two instances of the Interface Identification Object
   (Section 2.1).

   In most cases, a single instance of the Interface Identification
   Object can identify the probed interface.  However, two instance are
   required when neither uniquely identifies a interface (e.g., an IPv6
   link-local address and an IEEE 802 address).

2.1.  Interface Identification Object

   The Interface Identification Object identifies the probed interface
   by name, index, or address.  Like any other ICMP Extension Object, it
   contains an Object Header and Object Payload.  The Object Header
   contains the following fields:

   o  Class-Num: Interface Identification Object.  Value is TBD by IANA

   o  C-type: Values are: (1) Identifies Interface By Name, (2)
      Identifies Interface By Index, and (3) Identifies Interface By
      Address

   o  Length: Length of the object, measured in octets, including the
      object header and object payload.

   If the Interface Identification Object identifies the probed
   interface by name, the object payload contains the human-readable
   interface name.  The interface name SHOULD be the full MIB-II ifName
   [RFC2863], if less than 255 octets, or the first 255 octets of the
   ifName, if the ifName is longer.  The interface name MAY be some
   other human-meaningful name of the interface.  The interface name
   MUST be represented in the UTF-8 charset [RFC3629] using the Default
   Language [RFC2277].
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   If the Interface Identification Object identifies the probed
   interface by index, the length is equal to 8 and the payload contains
   the MIB-II ifIndex [RFC 2863].

   If the Interface Identification Object identifies the probed
   interface by address, the payload is as depicted in Figure 2.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            AFI                |        Reserved               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Address   ....

       Figure 2: Interface Identification Object - C-type 3 Payload

   Payload fields are defined as follows:

   o  Address Family Identifier (AFI): This 16-bit field identifies the
      type of address represented by the Address field.  All values
      found in the IANA registry of Address Family Numbers (available
      from <http://www.iana.org>) are valid in this field.
      Implementations MUST support values (1) IPv4, (2) IPv6, (6) IEEE
      802, (16389) 48-bit MAC and (16390) 64-bit MAC.  They MAY support
      other values.

   o  Reserved: This 16-bit field MUST be set to zero and ignored upon
      receipt.

   o  Address: This variable-length field represents an address
      associated with the probed interface.

3.  ICMP Extended Echo Reply

   The ICMP Extended Echo Reply message is defined for both ICMPv4 and
   ICMPv6.  Like any ICMP message, the ICMP Extended Echo Reply message
   is encapsulated in an IP header.  The ICMPv4 version of the Extended
   Echo Reply message is encapsulated in an IPv4 header, while the
   ICMPv6 version is encapsulated in an IPv6 header.

   Figure 3 depicts the ICMP Extended Echo Reply message.
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       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     Code      |          Checksum             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Identifier          |        Sequence Number        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Proto Flags |S|             RESERVED                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 3: ICMP Extened Echo Reply Message

   IP Header fields:

   o  Source address: Copied from the Destination Address field of the
      invoking Extended Echo Request message.

   o  Destination address: Copied from the Source Address field of the
      invoking Extended Echo Request message.

   ICMP fields:

   o  Type: Extended Echo Reply.  The value for ICMPv4 is TBD by IANA.
      The value for ICMPv6 is also TBD by IANA.

   o  Code: (0) No Error, (1) Malformed Query, (2) No Such Interface,
      (3) Multiple Interfaces Satisfy Query

   o  Checksum: For ICMPv4, see RFC 792.  For ICMPv6, see RFC 4443.

   o  Identifier: Copied from the Identifier field of the invoking
      Extended Echo Request packet.

   o  Sequence Number: Copied from the Sequence Number field of the
      invoking Extended Echo Request packet.

   o  Proto Flags: Each bit in this field represents a protocol.  The
      bit is set if the S-bit is set and the corresponding protocol is
      running on the probed interface.  Bit mappings are as follows: Bit
      0 (IPv4), Bit 1 (IPv6), Bit 2 (Ethernet), Bits 3-7 (Reserved)

   o  S Bit: This bit is set if the Code field is equal to No Error (0)
      and the probed interface is active.  Otherwise, this bit is clear.
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   o  Reserved: This field MUST be set to zero and ignored upon receipt.

4.  ICMP Extended Echo and Extended Echo Reply Processing

   When a node receives an ICMP Extended Echo Request message and any of
   the following conditions apply, the node MUST silently discard the
   incoming message:

   o  The node does not recognize ICMP Extended Echo Request messages

   o  The node has not explicitly enabled ICMP Extended Echo
      functionality

   o  The node has not explicitly enabled the incoming ICMP Extended
      Echo Request type (i.e., by ifName, by IfIndex, by Address)

   o  The incoming ICMP Extend Echo Request carries a source address
      that is not authorized for the incoming ICMP Extended Echo Request
      type

   o  The Source Address of the incoming messages is not a unicast
      address

   Otherwise, when a node receives an ICMPv4 Extended Echo Request, it
   MUST format an ICMP Extended Echo Reply as follows:

   o  Don’t Fragment flag (DF) is 1

   o  More Fragments flag is 0

   o  Fragment Offset is 0

   o  TTL is 255

   o  Protocol is ICMP

   When a node receives an ICMPv6 Extended Echo Request, it MUST format
   an ICMPv6 Extended Echo Reply as follows:

   o  Hop Limit is 255

   o  Next Header is ICMPv6

   In either case, the responding node MUST:

   o  Copy the source address from the Extended Echo Request message to
      the destination address of the Extended Echo Reply
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   o  Copy the destination address from the Extended Echo Request
      message to the source address of the Extended Echo Reply

   o  Set the DiffServ codepoint to CS0 [RFC4594]

   o  Set the ICMP Type to Extended Echo Reply

   o  Copy the Identifier from the Extended Echo Request message to the
      Extended Echo Reply

   o  Copy the sequence number from the Extended Echo Request message to
      the Extended Echo Reply

   o  Set the Code field as described Section 4.1

   o  If the Code Field is equal to No Error (0) and the probed
      interface is active, set the S-Bit.  Otherwise, clear the S-Bit.

   o  If the S-bit is set, set Protocol Flags as appropriate.
      Otherwise, clear all Protocol Flags.

   o  Set the checksum appropriately

   o  Forward the ICMP Extended Echo Reply to its destination

   The status of the probed interface is determined exactly as if it had
   been probed by a directly connected neighbor using traditional ping.

4.1.  Code Field Processing

   The following rules govern how the Code should be set:

   o  If the query is malformed, set the Code to Malformed Query (1)

   o  Otherwise, if the ICMP Extension Structure does not identify any
      local interfaces, set the Code to No Such Interface (2)

   o  Otherwise, if the ICMP Extension Structure identifies more than
      one local interfaces, set the Code to Multiple Interfaces Satisfy
      Query (3)

   o  Otherwise, set the code to No Error (0)

5.  The Xping Application

   The Xping application accepts input parameters, sets a counter and
   enters a loop to be exited when the counter is equal to zero.  On
   each iteration of the loop, Xping emits an ICMP Extended Echo
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   Request, decrements the counter, sets a timer, waits for the timer to
   expire.  If an expected ICMP Extended Echo Reply arrives while Xping
   is waiting for the timer to expire, Xping relays information returned
   by that message to its user.  However, on each iteration of the loop,
   Xping waits for the timer to expire, regardless of whether an
   Extended Echo Reply message arrives.

   Xping accepts the following parameters:

   o  Count

   o  Wait

   o  Source Interface Address

   o  Hop Count

   o  Destination Interface Address

   o  Probed Interface Identifier

   Count is a positive integer whose default value is 3.  Count
   determines the number of times that Xping iterates through the above-
   mentioned loop.

   Wait is a positive integer whose minimum and default values are 1.
   Wait determines the duration of the above-mentioned timer, measured
   in seconds.

   Source Interface Address specifies the source address of ICMP
   Extended Echo Request.  The Source Interface Address MUST be a
   unicast address and MUST identify an interface that is local to the
   probing node.

   The destination Interface Address identifies the interface to which
   the ICMP Extended Echo Request message is sent.  It can be an IPv4 or
   IPv6 address.  If it is an IPv4 address, Xping emits an ICMPv4
   message.  If it is an IPv6 address, Xping emits an ICMPv6 message.

   The probed interface is the interface whose status is being queried.
   If the probed interface identifier is not specified, the Xping
   application invokes the traditional Ping application and terminates.
   If the probed interface identifier is specified, it can be any of the
   following:

   o  an interface name
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   o  an address from any address family (e.g., IPv4, IPv6, IEEE 802,
      48-bit MAC, 64-bit MAC)

   o  an ifIndex

   The probed interface identifier can have any scope.  For example, the
   probed interface identifier can be:

   o  an IPv6 address, whose scope is global

   o  an IPv6 address, whose scope is link-local

   o  an interface name, whose scope is node-local

   o  an ifIndex, whose scope is node-local

   If the probed interface identifier is an address, it does not need to
   be of the same address family as the destination interface address.
   For example, Xping accepts an IPv4 destination interface address and
   an IPv6 probed interface identifier.

6.  Use-Cases

   In the use cases below, Xping can be used to determine the
   operational status of a forwarding interface.  Other management
   protocols (e.g., SNMP) might also be used to obtain this information.
   However, we assume that those management protocols are not viable
   options, either because they are too heavyweight or they are not
   supported on the relevant nodes.

6.1.  Unnumbered Interfaces

   An IPv4 network contains many routers.  On each router, a loopback
   interface is numbered from global address space and all forwarding
   interfaces are unnumbered.  Network operations staff need a tool that
   they can execute on any router in the network to determine the
   operational status of any forwarding interface in the network.

6.2.  Link-local Interfaces

   An IPv6 network contains many routers.  On each router, a loopback
   interface is numbered from global address space and some or all
   forwarding interfaces are numbered from link-local address space.
   Network operations staff need a tool that they can execute on any
   router in the network to determine the operational status of any
   forwarding interface in the network.
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6.3.  Unadvertised Interfaces

   A network contains many routers.  On each router, the loopback
   interface and all forwarding interfaces are numbered from global
   address space.  However, some forwarding interfaces do not
   participate in any routing protocol nor are they advertised by any
   routing protocol.  Network operations staff need a tool that they can
   execute on any router in the network to determine the operational
   status of any forwarding interface in the network.

7.  Updates to RFC 4884

   Section 4.6 of RFC 4884 provides a list of extensible ICMP messages
   (i.e., messages that can carry the ICMP Extension Structure).  This
   document adds the ICMP Extended Echo message and the ICMP Extended
   Echo Reply message to that list.

8.  IANA Considerations

   This document requests the following actions from IANA:

   o  Add an entry to the "ICMP Type Number" registry, representing the
      Extended Echo Request.  This entry has one code (0).

   o  Add an entry to the "Internet Control Message Protocol version 6
      (ICMPv6) Parameters" registry, representing the Extended Echo
      Request.  This entry has one code (0).

   o  Add an entry to the "ICMP Type Number" registry, representing the
      Extended Echo Reply.  This entry has the following codes: (0) No
      Error, (1) Malformed Query, (2) No Such Interface, (3) Multiple
      Interfaces Satisfy Query.  Protocol Flag Bit mappings are as
      follows: Bit 0 (IPv4), Bit 1 (IPv6), Bit 2 (Ethernet), Bits 3-15
      (Reserved).

   o  Add an entry to the "Internet Control Message Protocol version 6
      (ICMPv6) Parameters" registry, representing the Extended Echo
      Reply.  This entry has the following codes: (0) No Error, (1)
      Malformed Query, (2) No Such Interface, (3) Multiple Interfaces
      Satisfy Query.  Protocol Flag Bit mappings are as follows: Bit 0
      (IPv4), Bit 1 (IPv6), Bit 2 (Ethernet), Bits 3-15 (Reserved).

   o  Add an entry to the "ICMP Extension Object Classes and Class Sub-
      types" registry, representing the Interface Identification Object.
      It has C-types Reserved (0), Identifies Interface By Name (1),
      Identifies Interface By Index (2), Identifies Interface By Address
      (3)
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   Note to RFC Editor: this section may be removed on publication as an
   RFC.

9.  Security Considerations

   The following are legitimate uses of Xping:

   o  to determine the operational status of an interface

   o  to determine which protocols (e.g., IPv4, IPv6) are active on an
      interface

   However, malicious parties can use Xping to obtain additional
   information.  For example, a malicious party can use Xping to
   discover interface names.  Having discovered an interface name, the
   malicious party may be able to infer additional information.
   Additional information may include:

   o  interface bandwidth

   o  the type of device that supports the interface (e.g., vendor
      identity)

   o  the operating system version that the above-mentioned device
      executes

   Understanding this risk, network operators establish policies that
   restrict access to ICMP Extended Echo functionality.  In order to
   enforce these polices, nodes that support ICMP Extended Echo
   functionality MUST support the following configuration options:

   o  Enable/disable ICMP Extended Echo functionality.  By default, ICMP
      Extend Echo functionality is disabled.

   o  Define enabled query types (i.e., by ifName, by ifIndex, by
      Address).  By default, all query types are disabled.

   o  For each enabled query type, define the prefixes from which ICMP
      Extended Echo Request messages are permitted

   o  For each interface, determine whether ICMP Echo Request messages
      are accepted

   When a node receives an ICMP Extended Echo Request message that it is
   not configured to support, it MUST silently discard the message.  See
   Section 4 for details.
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   In order to protect local resources, implementations SHOULD rate-
   limit incoming ICMP Extended Echo Request messages.
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Abstract

   This document describes one possible way for hosts to retrieve
   additional information about their Internet access configuration.
   The set of configuration items required to access the Internet is
   called a Provisioning Domain (PvD) and is identified by a Fully
   Qualified Domain Name.

   This document separates the way of getting the Provisioning Domain
   identifier, the way of getting the Provisioning Domain information
   and the potential information contained in the Provisioning Domain.

Status of This Memo
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   time.  It is inappropriate to use Internet-Drafts as reference
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1.  Introduction

   It has become very common in modern networks that hosts have Internet
   or more specific access through different networking interfaces,
   tunnels, or next-hop routers.  The concept of Provisioning Domain
   (PvD) was defined in RFC7556 [RFC7556] as a set of network
   configuration information which can be used by hosts in order to
   access the network.  In this document, PvDs are associated with a
   Fully Qualified Domain Name (called PvD ID) which is used within the
   host to identify correlated sets of configuration data and also used
   to retrieve additional information about the services that the
   network provides.

   Devices connected to the Internet through multiple interfaces would
   typically be provisioned with one PvD per interface, but it is worth
   noting that multiple PvDs with different PvD IDs could be provisioned
   on any host interface, as well as noting that the same PvD ID could
   be used on different interfaces in order to inform the host that both
   PvDs, on different interfaces, ultimately provide equivalent
   services.

   This document proposes multiple methods allowing the host to to
   retrieve the PvD ID associated with a set of networking discover the
   PvD and retrieve the PvD information.  It also explains configuration
   as well as the methods and format in order to retrieve some of the
   parameters that can describe a PvD.

2.  Terminology

   PvD               A provisioning domain, usually with a set of
                     provisioning domain information; for more
                     information, see [RFC7556].
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2.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

3.  Retrieving the PvD ID

   In this document, each provisioning domain is identified by a PvD ID.
   The PvD ID is a Fully Qualified Domain Name which belongs to the
   network operator to avoid conflicts among network operators.  The
   same PvD ID can exist in several access networks if the set of
   configuration information is identical in all those networks (such as
   in all home networks of a residential subscriber).  Within a host,
   the PvD ID SHOULD be associated to all the configuration information
   associated to this PvD ID; this allows for easy update and removal of
   information while keeping a consistent state.

   This section assumes that IPv6 Router Advertisements are used to
   discover the PvD ID and explains why this technique was selected.

3.1.  Using One Router Advertisement per PvD

   Hosts receive implicit PvDs by the means of Router Advertisements
   (RA).

   A router MAY add a single PvD ID Option in its RAs.  The PvD ID
   specified in this option is then associated with all the Prefix
   Information Options (PIO) included in the RA (albeit it is expected
   that only one PIO will be included in the RA).  All other information
   contained in the RA (notably the RDNSS and Route Information Option)
   are to be associated with the PvD ID.  The set of information
   contained in the RA forms the bootstrap (or hint) PvD.  A new RA
   option will be required to convey the PvD ID.

   When a host receives an RA which does not include a PvD ID Option,
   the set of information included in the RA (such as Recursive DNS
   server, IPv6 prefix) is attached to an implicit PvD identified by the
   local interface ID on which the RA is received, and by the link-local
   address of the router sending the RA.

   In the cases where a router should provide multiple independent PvDs
   to all hosts, including non-PvD aware hosts, it should send multiple
   RAs, as proposed in [I-D.bowbakova-rtgwg-enterprise-pa-multihoming]
   using different source link-local addresses (LLA); the datalink layer
   (MAC) address could be the same for all the different RA.  If the
   router is actually a VRRP instance, then the procedure is identical
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   except that the virtual link-layer address is used as well as virtual
   link-layer addresses.

   Using RA allows for an early discovery of the PvD ID as it is early
   in the interface start-up.  As RA is usually processed in the kernel,
   this requires a host OS upgrade.  The RA SHOULD contain other PvD
   information as explained in section Section 4.1.

3.2.  Rationale for not selecting other techniques

   There are other techniques to discover the PvD ID that were not
   selected by the authors and reviewers, this section explains why.
   The design goal was to be as reliable as possible (do not depend on
   Internet connectivity) and as fast as possible.

3.2.1.  Using DNS-SD

   For each received RA including a RDNSS option as well as a DNS search
   list option, the host MAY retrieve the PvD ID by querying the
   configured DNS server for records of type PTR associated with
   _pvd.<DNS search name>.  If a PvD ID is configured, the DNS recursive
   resolver MUST reply with the PvD ID as a PTR record.  NXDOMAIN is
   returned otherwise.

   When the RDNSS address is link-local, the host MAY retrieve the PvD
   ID before configuring its global scope address(es).

   Relying on a valid DNS service at the interface bootstrap can lead
   into delay to start the interface or starting without enough
   information: for example when the RDNSS is a non local address and
   there is no Internet connectivity.

3.2.2.  Using Reverse DNS lookup

   [I-D.stenberg-mif-mpvd-dns] proposes a solution to get the name of
   the PvD using a reverse DNS lookup based on the host global
   address(es).  It merely relies on prepending a well-known prefix
   ’_pvd’ to the reverse lookup, for example ’ _pvd....ip6.arpa.’.

   However, the PvD information is typically provided by the network
   operator, whereas the reverse DNS zone could be delegated from the
   operator to the network user, in which case it would not work.

   It also requires a fully functional global address to retrieve the
   information which may be too late for a correct host configuration.
   One advantage is that it does not require any change in the IPv6
   protocol and no change in the host kernel or even in the CPE.
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3.3.  IoT Considerations

   TBD: should state that when end-host (IoT) cannot impletement
   completely this RFC it MAY select any of the PvD or the router SHOULD
   send a single unicast RA (hence a single PvD) in response to the RS
   or none if it detects that it cannot offer the right set of network
   services.

3.4.  Linking IPv4 Information to an IPv6 PvD

   The document describes IPv6-only PvD but there are multiple ways to
   link the set of IPv4 configuration information received by DHCPv4:

   o  correlation based on the data-link layer address of the source, if
      the IPv6 RA and the DHCPv4 response have the same data-link layer
      address, then the information contained in the IPv4 DHCP can be
      linked to the IPv6 PvD;

   o  correlation based on the interface when there is no data-link
      address on the link (such as a 3GPP link), then the information
      contained in the IPv4 PDP context can be linked to the IPv6 PvD
      (*** TO BE VERIFIED before going -01);

   o  correlation based on the DNS search list, if the DNS search lists
      are identical between the IPv6 RDNSS and the DHCPV4 response, then
      the information contained in the IPv4 DHCP response can be linked
      to the IPv6 PvD.

   The correlation could be useful for some PvD information such as
   Internet reachability, use of captive portal, display name of the
   PvD, ...

   In cases where the IPv4 configuration information could not be
   associated with a PvD, hosts MUST consider it as attached to an
   independent implicit PvD containing no other information than what is
   provided through DHCPv4.

4.  Getting the full set of PvD information

   Once the PvD ID is known, it MAY be used to retrieve additional
   information.  PvD Information is modeled as a key-value dictionary
   which keys are ASCII strings of arbitrary length, and values are
   either strings (encoding can vary), ordered list of values
   (recursively), or a dictionary (recursively).

   The PvD Information may be retrieved from multiple sources (from the
   bootstrap PvD contained in the RA to the secondary/extended PvD
   described in this section); the PvD ID is then used to correlate the
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   information from different sources.  The way a host should operate
   when receiving conflicting information is TBD but it SHOULD at least
   override information from less authenticated sources (RA) by more
   authenticated sources (via TLS).

4.1.  Using the PvD Bootstrap Information Option

   Routers MAY transmit, in addition to the PvD ID option, a PvD
   Bootstrap Information option, containing a first subset of PvD
   information.  The additional pieces of bootstrap PvD information data
   set are transmitted using the short-hand notation proposed in
   Section 5.  This requires another RA option.

   As there is a size limit on the amount of information a single RA can
   convey, it is likely that the PvD Bootstrap Information option may
   not contain the whole set of PvD Information.  The set of PvD
   information included in the RA is called PvD Bootstrap Information.

4.2.  Downloading a JSON file over HTTPS

   The host SHOULD try to download a JSON formatted file over HTTPS in
   order to get more PvD information.

   The host MUST perform an HTTP query to https://<PvD-ID>/v1.json.  If
   the HTTP status of the answer is greater than 400 the host MUST
   abandon and consider that there is no additional PvD information.  If
   the HTTP status of the answer is between 300 and 400 it MUST follow
   the redirection(s).  If the HTTP status of the answer is between 200
   and 300 the host MAY get a file containing a single JSON object.

   The host MUST respect the cache information in the HTTP header, if
   any, and at expiration of the downloaded object, it must fetch a
   fresher version if any.

4.2.1.  Advantages

   The JSON format allows advanced structures.

   It can be secured using HTTPS (and DNSSEC).

   It is easier to update a file on a web server than to edit DNS
   records.  It can be especially important if we want providers to be
   able to often update the remaining phone plan of the user.

Bruneau, et al.        Expires September 14, 2017               [Page 7]



Internet-Draft           Possibilities for PvDs               March 2017

4.2.2.  Disadvantages

   It is slower than using DNS because HTTPS uses TCP and TLS and needs
   more packets to be exchanged to get the file.

   An additional HTTPS server must be deployed and configured.

4.3.  Using DNS TXT ressource records (not selected)

   This approach was not selected during the design team meeting but has
   kept here for reference, it will be removed after global consensus is
   reached.

   The host could perform a DNS query for TXT resource records (RR) for
   the FQDN used as PvD ID (alternatively for _pvd.<PvD-ID>).  For each
   retrieved PvD ID, the DNS query MUST be sent to the DNS server
   configured from the same router advertisement as the PvD ID.  Syntax
   of the TXT response is defined in Section 5 (Section 5).

4.3.1.  Advantages

   It requires a single round-time trip in order to retrieve the PvD
   Information.

   It can be secured using DNSSEC.

4.3.2.  Disadvantages

   A TXT record is limited to 65535 characters in theory but large size
   of TXT records could require either DNS over TCP (so loosing the
   1-RTT advantage) or fragmented UDP packets (which could be dropped by
   a bad choice of security policy).  Large TXT records could also be
   used to mount an amplification attack.

4.3.3.  Using DNS SRV ressource records

   It is expected that the DNS TXT records will be sufficient for the
   host to configure itself with basic networking and policy
   configuration.  Nevertheless, if further information is required, or
   when a different security model shall be used to access the PvD
   Information, a SRV Resource Record including a full URL MAY be
   included as a response, expecting the host to query this URL in order
   to retrieve additional PvD information.
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5.  PvD Information

   PvD information is a set of key-value pairs.  Keys are ASCII
   character strings.  Values are either a character string, an ordered
   list of values, or an embedded dictionary.  Value types and default
   behavior with respect to some specific keys MAY be further specified
   (recursively).  Some keys have a default value as described in the
   following sections.  When there is an expiration time in a PvD, then
   the information MUST be refreshed before the expiration time.  The
   behavior of a host when the refresh operation is not successful is
   TBD.

   Nodes using the PvD MUST support the two encodings:

      JSON syntax for the complete set of PvD information;

      short-hand notation for the bootstrap PvD.

   When the PvD information is transferred as a JSON file, then the key
   used is the second column of the following table.  The syntax of the
   JSON file is obvioulsy JSON and is richer than the short-hand
   notation specified in the next paragraph.

   When transmitting more information than the PvD ID in the RA (or when
   DNS TXT resource records are used), the shorthand notataion for PvD
   information is used and consists of a string containing several
   "key=value;" substrings.  The "key" is the first column of the
   following tables, the value is encoded as:

   Shorthand notation for values:

      integer: expressed in decimal format with a ’.’ (dot) used for
      decimals;

      string: expressed as UTF-8 encoded string, delimited by single
      quote character, the single quote character can be expressed by
      two consecutive single quote character;

      boolean: expressed as ’0’ for false and ’1’ for true;

      IPv6 address: printed as RFC5952 [RFC5952].

5.1.  PvD Name

   PvD SHOULD have a human readable name in order to be presented on a
   GUI.  The name can also be localized.
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   +------------+------------+---------------+--------------+----------+
   | DNS TXT ke | JSON key   | Description   | Type         | JSON     |
   | y/Bootstra |            |               |              | Example  |
   | p PvD key  |            |               |              |          |
   +------------+------------+---------------+--------------+----------+
   | n          | name       | User-visible  | human-       | "Foobar  |
   |            |            | service name, | readable     | Service" |
   |            |            | SHOULD be     | UTF-8 string |          |
   |            |            | part of the   |              |          |
   |            |            | bootstrap PvD |              |          |
   | nl10n      | localizedN | Localized     | human-       | "Service |
   |            | ame        | user-visible  | readable     | Blabla"  |
   |            |            | service name, | UTF-8 string |          |
   |            |            | language can  |              |          |
   |            |            | be selected   |              |          |
   |            |            | based on the  |              |          |
   |            |            | HTTP Accept-  |              |          |
   |            |            | Language      |              |          |
   |            |            | header in the |              |          |
   |            |            | request.      |              |          |
   +------------+------------+---------------+--------------+----------+

5.2.  Trust of the bootstrap PvD

   The content of the bootstrap PvD (from the original RA) cannot be
   trusted as it is not authenticated.  But, the extended PvD can be
   associated with the PvD ID (as the PvD ID is used to construct the
   extended PvD URL) and trusted by the used of TLS.  The extended PvD
   SHOULD therefore include the following information elements and, if
   they are present, the host MUST verify that the all PIO of the RA
   fits into the master prefix list.  If any PIO prefix from the
   bootstrap PvD does not fit in the master prefix array, then all
   information received by the bootstrap PvD must be invalidated.  In
   short, the masterIPv6Prefix received over TLS is used to authenticate
   the bootstrap PvD.

   The values of the bootstrap PvD (RDNSS, ...) are overwritten by the
   values contained in the trusted extended PvD if they are present.
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   +-----+------------------+-------------+----------+-----------------+
   | DNS | JSON key         | Description | Type     | JSON Example    |
   | TXT |                  |             |          |                 |
   | key |                  |             |          |                 |
   +-----+------------------+-------------+----------+-----------------+
   | mp6 | masterIpv6Prefix | All the     | Array of | ["2001:db8::/32 |
   |     |                  | IPv6        | IPv6     | "]              |
   |     |                  | prefixes    | prefixes |                 |
   |     |                  | linked to   |          |                 |
   |     |                  | this PvD    |          |                 |
   |     |                  | (such as a  |          |                 |
   |     |                  | /29 for the |          |                 |
   |     |                  | ISP).       |          |                 |
   +-----+------------------+-------------+----------+-----------------+

5.3.  Reachability

   The following set of keys can be used to specify the set of services
   for which the respective PvD should be used.  If present they MUST be
   honored by the client, i.e., if the PvD is marked as not usable for
   Internet access (walled garden), then it MUST NOT be used for
   Internet access.  If the usability is limited to a certain set of
   domain or address prefixes (typical VPN access), then a different PvD
   MUST be used for other destinations.
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   +-----+---------------+---------------+-----------+-----------------+
   | DNS | JSON key      | Description   | Type      | JSON Example    |
   | TXT |               |               |           |                 |
   | key |               |               |           |                 |
   +-----+---------------+---------------+-----------+-----------------+
   | s   | noInternet    | Internet      | boolean   | true            |
   |     |               | inaccessible  |           |                 |
   | cp  | captivePortal | Presence of a | boolean   | false           |
   |     |               | captive       |           |                 |
   |     |               | portal        |           |                 |
   | z   | dnsZones      | DNS zones     | array of  | ["foo.com","sub |
   |     |               | accessible    | DNS zone  | .bar.com"]      |
   |     |               | and           |           |                 |
   |     |               | searchable    |           |                 |
   | 6   | prefixes6     | IPv6-prefixes | array of  | ["2001:db8:a::/ |
   |     |               | accessible    | IPv6      | 48","2001:db8:b |
   |     |               | via this PvD  | prefixes  | :c::/64"]       |
   | 4   | prefixes4     | IPv4-prefixes | array of  | ["192.0.2.0/24" |
   |     |               | accessible    | IPv4      | ,"2.3.0.0/16"]  |
   |     |               |               | prefixes  |                 |
   |     |               |               | in CIDR   |                 |
   |     |               |               | reachable |                 |
   |     |               |               | via this  |                 |
   |     |               |               | PvD       |                 |
   +-----+---------------+---------------+-----------+-----------------+

5.4.  DNS Configuration

   The following set of keys can be used to specify the DNS
   configuration for the respective PvD.  If present, they MUST be
   honored and used by the client whenever it wishes to access a
   resource described by the PvD.

   +-----+------------+-------------+-----------+----------------------+
   | DNS | JSON key   | Description | Value     | JSON Example         |
   | TXT |            |             |           |                      |
   | key |            |             |           |                      |
   +-----+------------+-------------+-----------+----------------------+
   | r   | dnsServers | Recursive   | array of  | ["2001:db8::1","192. |
   |     |            | DNS server  | IPv6 and  | 0.2.2"]              |
   |     |            |             | IPv4      |                      |
   |     |            |             | addresses |                      |
   | d   | dnsSearch  | DNS search  | array of  | ["foo.com","sub.bar. |
   |     |            | domains     | search    | com"]                |
   |     |            |             | domains   |                      |
   +-----+------------+-------------+-----------+----------------------+
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5.5.  Connectivity Characteristics

   NOTE: open question to the authors/reviewers: should this document
   include this section or is it useless?

   The following set of keys can be used to signal certain
   characteristics of the connection towards the PvD.

   They should reflect characteristics of the overall access technology
   which is not limited to the link the host is connected to, but rather
   a combination of the link technology, CPE upstream connectivity, and
   further quality of service considerations.

   +------+------------------+------------+--------------+-------------+
   | DNS  | JSON key         | Descriptio | Type         | JSON        |
   | TXT  |                  | n          |              | Example     |
   | key  |                  |            |              |             |
   +------+------------------+------------+--------------+-------------+
   | tp   | throughputMax    | Maximum    | object({down | {"down":    |
   |      |                  | achievable | (int),       | 10000,      |
   |      |                  | throughput | up(int)}) in | "up": 5000} |
   |      |                  | (e.g. CPE  | kb/s         |             |
   |      |                  | downlink/u |              |             |
   |      |                  | plink)     |              |             |
   | lt   | latencyMin       | Minimum    | object({down | {"down":    |
   |      |                  | achievable | (int),       | 10, "up":   |
   |      |                  | latency    | up(int)}) in | 20}         |
   |      |                  |            | ms           |             |
   | rl   | reliabilityMax   | Maximum    | object({down | {"down":    |
   |      |                  | achievable | (int),       | 1000, "up": |
   |      |                  | reliabilit | up(int)}) in | 800}        |
   |      |                  | y          | 1/1000       |             |
   | cp   | captivePortal    | Captive    | URL of the   | "https://ex |
   |      |                  | portal     | portal       | ample.com"  |
   | nat  | NAT              | IPv4 NAT   | boolean      | true        |
   |      |                  | in place   |              |             |
   | natt | NAT Time-out     | The value  | Integer      | 30          |
   | o    |                  | in seconds |              |             |
   |      |                  | of the NAT |              |             |
   |      |                  | time-out   |              |             |
   | srh  | segmentRoutingHe | The IPv6   | Binary       | ...         |
   |      | ader             | Segment    | string       |             |
   |      |                  | Routing    |              |             |
   |      |                  | Header to  |              |             |
   |      |                  | be used    |              |             |
   |      |                  | between    |              |             |
   |      |                  | the IPv6   |              |             |
   |      |                  | header and |              |             |
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   |      |                  | any other  |              |             |
   |      |                  | headers    |              |             |
   |      |                  | when using |              |             |
   |      |                  | this PvD   |              |             |
   | srhD | segmentRoutingHe | The DNS    | Ascii string | srh.pvd-foo |
   | NS   | aderDnsFQDN      | FQDN which |              | .example.or |
   |      |                  | is used to |              | g           |
   |      |                  | retrieved  |              |             |
   |      |                  | the actual |              |             |
   |      |                  | IPv6       |              |             |
   |      |                  | Segment    |              |             |
   |      |                  | Routing    |              |             |
   |      |                  | Header to  |              |             |
   |      |                  | be used    |              |             |
   |      |                  | between    |              |             |
   |      |                  | the IPv6   |              |             |
   |      |                  | header and |              |             |
   |      |                  | any other  |              |             |
   |      |                  | headers    |              |             |
   |      |                  | when using |              |             |
   |      |                  | this PvD   |              |             |
   | cost | cost             | Cost of    | object       | See Section |
   |      |                  | using the  |              | 5.6         |
   |      |                  | connection |              |             |
   +------+------------------+------------+--------------+-------------+

5.6.  Connection monetary cost

   NOTE: This section is included as a request for comment on the
   potential use and syntax.

   The billing of a connection can be done in a lot of different ways.
   The user can have a global traffic threshold per month, after which
   his throughput is limited, or after which he/she pays each megabyte.
   He/she can also have an unlimited access to some websites, or an
   unlimited access during the weekends.

   We propose to split the final billing in elementary billings, which
   have conditions (a start date, an end date, a destination IP
   address...).  The global billing is an ordered list of elementary
   billings.  To know the cost of a transmission, the host goes through
   the list, and the first elementary billing whose the conditions are
   fulfilled gives the cost.  If no elementary billing conditions match
   the request, the host MUST make no assumption about the cost.
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5.6.1.  Conditions

   Here are the potential conditions for an elementary billing.  All
   conditions MUST be fulfill.

   Note: the final version should use short-hand key names.

   +-----------+-------------+---------------+-------------------------+
   | Key       | Description | Type          | JSON Example            |
   +-----------+-------------+---------------+-------------------------+
   | beginDate | Date before | ISO 8601      | "1977-04-22T06:00:00Z"  |
   |           | which the   |               |                         |
   |           | billing is  |               |                         |
   |           | not valid   |               |                         |
   | endDate   | Date after  | ISO 8601      | "1977-04-22T06:00:00Z"  |
   |           | which the   |               |                         |
   |           | billing is  |               |                         |
   |           | not valid   |               |                         |
   | domains   | FQDNs whose | array(string) | ["deezer.com","spotify. |
   |           | the billing |               | com"]                   |
   |           | is limited  |               |                         |
   | prefixes4 | IPv4        | array(string) | ["78.40.123.182/32","78 |
   |           | prefixes    |               | .40.123.183/32"]        |
   |           | whose the   |               |                         |
   |           | billing is  |               |                         |
   |           | limited     |               |                         |
   | prefixes6 | IPv6        | array(string) | ["2a00:1450:4007:80e::2 |
   |           | prefixes    |               | 00e/64"]                |
   |           | whose the   |               |                         |
   |           | billing is  |               |                         |
   |           | limited     |               |                         |
   +-----------+-------------+---------------+-------------------------+

5.6.2.  Price

   Here are the different possibilities for the cost of an elementary
   billing.  A missing key means "all/unlimited/unrestricted".  If the
   elementary billing selected has a trafficRemaining of 0 kb, then it
   means that the user has no access to the network.  Actually, if the
   last elementary billing has a trafficRemaining parameter, it means
   that when the user will reach the threshold, he/she will not have
   access to the network anymore.
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   +------------------+------------------+--------------+--------------+
   | Key              | Description      | Type         | JSON Example |
   +------------------+------------------+--------------+--------------+
   | pricePerGb       | The price per    | float        | 2            |
   |                  | Gigabit          | (currency    |              |
   |                  |                  | per Gb)      |              |
   | currency         | The currency     | ISO 4217     | "EUR"        |
   |                  | used             |              |              |
   | throughputMax    | The maximum      | float (kb/s) | 1000         |
   |                  | achievable       |              |              |
   |                  | throughput       |              |              |
   | trafficRemaining | The traffic      | float (kb)   | 96000000     |
   |                  | remaining        |              |              |
   +------------------+------------------+--------------+--------------+

5.6.3.  Examples

   Example for a user with 20 GB per month for 40 EUR, then reach a
   threshold, and with unlimited data during weekends and to deezer:

   [
     {
       "domains": ["deezer.com"]
     },
     {
       "prefixes4": ["78.40.123.182/32","78.40.123.183/32"]
     },
     {
       "beginDate": "2016-07-16T00:00:00Z",
       "endDate": "2016-07-17T23:59:59Z",
     },
     {
       "beginDate": "2016-06-20T00:00:00Z",
       "endDate": "2016-07-19T23:59:59Z",
       "trafficRemaining": 96000000
     },
     {
       "throughputMax": 1000
     }
   ]

   If the host tries to download data from deezer.com, the conditions of
   the first elementary billing are fulfilled, so the host takes this
   elementary billing, finds no cost indication in it and so deduces
   that it is totally free.  If the host tries to exchange data with
   youtube.com and the date is 2016-07-14T19:00:00Z, the conditions of
   the first, second and third elementary billing are not fulfilled.
   But the conditions of the fourth are.  So the host takes this
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   elementary billing and sees that there is a threshold, 12 GB are
   remaining.

   Another example for a user abroad, who has 3 GB per year abroad, and
   then pay each MB:

   [
     {
       "beginDate": "2016-02-10T00:00:00Z",
       "endDate": "2017-02-09T23:59:59Z",
       "trafficRemaining": 9200000
     },
     {
       "pricePerGb": 30,
       "currency": "EUR"
     }
   ]

5.7.  Private Extensions

   keys starting with "x-" are reserved for private use and can be
   utilized to provide vendor-, user- or enterprise-specific
   information.  It is RECOMMENDED to use one of the patterns "x-FQDN-
   KEY" or "x-PEN-KEY" where FQDN is a fully qualified domain name or
   PEN is a private enterprise number [PEN] under control of the author
   of the extension to avoid collisions.

5.8.  Examples

5.8.1.  Using JSON
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   {
     "name": "Orange France",
     "localizedName": "Orange France",
     "dnsServers": ["8.8.8.8", "8.8.4.4"],
     "throughputMax": {
       "down": 100000,
       "up": 20000
     },
     "cost": [
       {
         "domains": ["deezer.com"]
       },
       {
         "prefixes4": ["78.40.123.182/32","78.40.123.183/32"]
       },
       {
         "beginDate": "2016-07-16T00:00:00Z",
         "endDate": "2016-07-17T23:59:59Z",
       },
       {
         "beginDate": "2016-06-20T00:00:00Z",
         "endDate": "2016-07-19T23:59:59Z",
         "trafficRemaining": 96000000
       },
       {
         "throughputMax": 1000
       }
     ]
   }

5.8.2.  Using DNS TXT records

   n=Orange France
   r=8.8.8.8,8.8.4.4
   tp=100000,20000
   cost+0+domains=deezer.com
   cost+1+prefixes4=78.40.123.182/32,78.40.123.183/32
   cost+2+beginDate=2016-07-16T00:00:00Z
   cost+2+endDate=2016-07-17T23:59:59Z
   cost+3+beginDate=2016-06-20T00:00:00Z
   cost+3+endDate=2016-07-19T23:59:59Z
   cost+3+trafficRemaining=96000000
   cost+4+throughputMax=1000
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6.  Use case examples

   TBD: 1 or 2 examples when PvD are critical

6.1.  Multihoming

   First example could be multihoming (very much in-line with bowbakova
   draft).

6.2.  VPN/Extranet example

   using PvD to reach a specific destination (such as VPN or extranet).

7.  Security Considerations

   While the PvD ID can be forged easily, if the host retrieve the
   extended PvD via TLS, then the host can trust the content of the
   extended PvD and verifies that the RA prefix(es) are indeed included
   in the master prefixed of the extended PvD.
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1.  Introduction

   Generic UDP Encapsulation (GUE) [I.D.nvo3-gue] is a generic and
   extensible encapsulation protocol. This specification defines a
   fundamental set of optional extensions for version 0 of GUE. These
   extensions are the security option, payload transform option,
   checksum option, fragmentation option, and the remote checksum
   offload option.

2.  GUE header format with optional extensions

   The format of a version 0 GUE header with the optional extensions
   defined in this specification is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+\
   |        Source port            |      Destination port         | UDP
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+/
   |           Length              |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 |C|   Hlen  |  Proto/ctype  |V| SEC |F|T|R|K|   Rsvd Flags  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        VNID (optional)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ˜                      Security (optional)                      ˜
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                     Fragmentation (optional)                  +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   Payload transform (optional                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Remote checksum offload (optional)            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Checksum (optional)                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ˜                    Private data (optional)                    ˜
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The contents of the UDP header are described in [I.D.herbert-gue].
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   The GUE header consists of:

      o Ver: Version. Set to 0 to indicate GUE encapsulation header.
        Note that version 1 does not allow options.

      o C: C-bit. Indicates the GUE payload is a control message when
        set, a data message when not set. GUE optional extensions can be
        used with either control or data messages unless otherwise
        specified in the option definition.

      o Hlen: Length in 32-bit words of the GUE header, including
        optional extension fields but not the first four bytes of the
        header. Computed as (header_len - 4) / 4. The length of the
        encapsulated packet is determined from the UDP length and the
        Hlen: encapsulated_packet_length = UDP_Length - 12 - 4*Hlen.

      o Proto/ctype: If the C-bit is not set this indicates IP protocol
        number for the packet in the payload; if the C bit is set this
        is the type of control message in the payload. The next header
        begins at the offset provided by Hlen. When the payload
        transform option or fragmentation option is used this field may
        be set to protocol number 59 for a data message, or zero for a
        control message, to indicate no next header for the payload.

      o V: Indicates the network virtualization extension (VNID) field
        is present. The VNID option is described in [I.D.hy-nvo3-gue-4-
        nvo].

      o SEC: Indicates security extension field is present. The security
        option is described in section 3.

      o F: Indicates fragmentation extension field is present. The
        fragmentation option is described in section 4.

      o T: Indicates payload transform extension field is present. The
        payload transform option is described in section 5.

      o R: Indicates the remote checksum extension field is present. The
        remote checksum offload option is described in section 6.

      o K: Indicates checksum extension field is present. The checksum
        option is described in section 7.

      o Private data is described in [I.D.nvo3-gue].

3.  Security option

   The GUE security option provides origin authentication and integrity
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   protection of the GUE header at tunnel end points to guarantee
   isolation between tunnels and mitigate Denial of Service attacks.

3.1.  Extension field format

   The presence of the GUE security option is indicated in the SEC flag
   bits of the GUE header.

   The format of the security option is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ˜                           Security                            ˜
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The fields of the option are:

      o  Security (variable length). Contains the security information.
         The specific semantics and format of this field is expected to
         be negotiated between the two communicating nodes.

   To provide security capability, the SEC flags MUST be set. Different
   sizes are allowed to allow different methods and extensibility. The
   use of the security field is expected to be negotiated out of band
   between two tunnel end points.

   The values in the SEC flags are:

      o 000b - No security field

      o 001b - 64 bit security field

      o 010b - 128 bit security field

      o 011b - 256 bit security field

      o 100b - 388 bit security field (HMAC)

      o 101b, 110b, 111b - Reserved values

3.2.  Usage

   The GUE security field should be used to provide integrity and
   authentication of the GUE header. Security parameters (interpretation
   of security field, key management, etc.) are expected to be
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   negotiated out of band between two communicating hosts. Two security
   algorithms are defined below.

3.3.  Cookies

   The security field may be used as a cookie. This would be similar to
   the cookie mechanism described in L2TP [RFC3931], and the general
   properties should be the same. A cookie may be used to validate the
   encapsulation. The cookie is a shared value between an encapsulator
   and decapsulator which should be chosen randomly and may be changed
   periodically. Different cookies may used for logical flows between
   the encapsulator and decapsulator, for instance packets sent with
   different VNIDs in network virtualization [I.D.hy-nvo3-gue-4-nvo]
   might have different cookies. Cookies may be 64, 128, or 256 bits in
   size.

3.4.  HMAC

   Key-hashed message authentication code (HMAC) is a strong method of
   checking integrity and authentication of data. This sections defines
   a GUE security option for HMAC. Note that this is based on the HMAC
   TLV description in "IPv6 Segment Routing Header (SRH)" [I.D.previdi-
   6man-sr-header].

3.4.1. Extension field format

   The HMAC option is a 288 bit field (36 octets). The security flags
   are set to 100b to indicates the presence of a 288 bit security
   field.

   The format of the field is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          HMAC Key-id                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ˜                        HMAC (256 bits)                        ˜
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Fields are:

      o HMAC Key-id: opaque field to allow multiple hash algorithms or
                     key selection

      o HMAC: Output of HMAC computation
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   The HMAC field is the output of the HMAC computation (per RFC 2104
   [RFC2104]) using a pre-shared key identified by HMAC Key-id and of
   the text which consists of the concatenation of:

      o The IP addresses

      o The GUE header including all private data and all optional
        extensions that are present except for the security option

   The purpose of the HMAC option is to verify the validity, the
   integrity and the authorization of the GUE header itself.

   The HMAC Key-id field allows for the simultaneous existence of
   several hash algorithms (SHA-256, SHA3-256 ... or future ones) as
   well as pre-shared keys. The HMAC Key-id field is opaque, i.e., it
   has neither syntax nor semantic.  Having an HMAC Key-id field allows
   for pre-shared key roll-over when two pre-shared keys are supported
   for a while GUE endpoints converge to a fresher pre-shared key.

3.4.2. Selecting a hash algorithm

   The HMAC field in the HMAC option is 256 bit wide. Therefore, the
   HMAC MUST be based on a hash function whose output is at least 256
   bits. If the output of the hash function is 256, then this output is
   simply inserted in the HMAC field. If the output of the hash function
   is larger than 256 bits, then the output value is truncated to 256 by
   taking the least-significant 256 bits and inserting them in the HMAC
   field.

   GUE implementations can support multiple hash functions but MUST
   implement SHA-2 [FIPS180-4] in its SHA-256 variant.

3.4.3. Pre-shared key management

   The field HMAC Key-id allows for:

      o Key roll-over: when there is a need to change the key (the hash
        pre-shared secret), then multiple pre-shared keys can be used
        simultaneously.  A decapsulator can have a table of <HMAC Key-
        id, pre-shared secret> for the currently active and future keys.

      o Different algorithms: by extending the previous table to <HMAC
        Key-id, hash function, pre-shared secret>, the decapsulator can
        also support simultaneously several hash algorithms (see section
        Section 5.2.1)

   The pre-shared secret distribution can be done:
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      o In the configuration of the endpoints

      o Dynamically using a trusted key distribution such as [RFC6407]

   The intent of this document is NOT to define yet-another-key-
   distribution-protocol.

3.5.  Interaction with other optional extensions

   If GUE fragmentation (section 4) is used in concert with the GUE
   security option, the security option processing is performed after
   fragmentation at the encapsulator and before reassembly at the
   decapsulator.

   The GUE payload transform option (section 5) may be used in concert
   with the GUE security option. The payload transform option could be
   used to encrypt the GUE payload to provide privacy for an
   encapsulated packet during transit. The security option provides
   authentication and integrity for the GUE header (including the
   payload transform field in the header). The two functions are
   processed separately at tunnel end points. A GUE tunnel can use both
   functions or use one of them. Section 5.3 details handling for when
   both are used in a packet.

4.  Fragmentation option

   The fragmentation option allows an encapsulator to perform
   fragmentation of packets being ingress to a tunnel. Procedures for
   fragmentation and reassembly are defined in this section. This
   specification adapts the procedures for IP fragmentation and
   reassembly described in [RFC0791] and [RFC2460]. Fragmentation may be
   performed on both data and control messages in GUE.

4.1.  Motivation

   This section describes the motivation for having a fragmentation
   option in GUE.

   MTU and fragmentation issues with In-the-Network Tunneling are
   described in [RFC4459]. Considerations need to be made when a packet
   is received at a tunnel ingress point which may be too large to
   traverse the path between tunnel endpoints.

   There are four suggested alternatives in [RFC4459] to deal with this:

      1) Fragmentation and Reassembly by the Tunnel Endpoints

      2) Signaling the Lower MTU to the Sources
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      3) Encapsulate Only When There is Free MTU

      4) Fragmentation of the Inner Packet

   Many tunneling protocol implementations have assumed that
   fragmentation should be avoided, and in particular alternative #3
   seems preferred for deployment. In this case, it is assumed that an
   operator can configure the MTUs of links in the paths of tunnels to
   ensure that they are large enough to accommodate any packets and
   required encapsulation overhead. This method, however, may not be
   feasible in certain deployments and may be prone to misconfiguration
   in others.

   Similarly, the other alternatives have drawbacks that are described
   in [RFC4459]. Alternative #2 implies use of something like Path MTU
   Discovery which is not known to be sufficiently reliable. Alternative
   #4 is not permissible with IPv6 or when the DF bit is set for IPv4,
   and it also introduces other known issues with IP fragmentation.

   For alternative #1, fragmentation and reassembly at the tunnel
   endpoints, there are two possibilities: encapsulate the large packet
   and then perform IP fragmentation, or segment the packet and then
   encapsulate each segment (a non-IP fragmentation approach).

   Performing IP fragmentation on an encapsulated packet has the same
   issues as that of normal IP fragmentation. Most significant of these
   is that the Identification field is only sixteen bits in IPv4 which
   introduces problems with wraparound as described in [RFC4963].

   The second possibility follows the suggestion expressed in [RFC2764]
   and the fragmentation feature described in the AERO protocol
   [I.D.templin-aerolink], that is for the tunneling protocol itself to
   incorporate a segmentation and reassembly capability that operates at
   the tunnel level. In this method fragmentation is part of the
   encapsulation and an encapsulation header contains the information
   for reassembly. This differs from IP fragmentation in that the IP
   headers of the original packet are not replicated for each fragment.

   Incorporating fragmentation into the encapsulation protocol has some
   advantages:

      o At least a 32 bit identifier can be defined to avoid issues of
        the 16 bit Identification in IPv4.

      o Encapsulation mechanisms for security and identification, such
        as virtual network identifiers, can be applied to each segment.

      o This allows the possibility of using alternate fragmentation and
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        reassembly algorithms (e.g. fragmentation with Forward Error
        Correction).

      o Fragmentation is transparent to the underlying network so it is
        unlikely that fragmented packet will be unconditionally dropped
        as might happen with IP fragmentation.

4.2.  Scope

   This specification describes the mechanics of fragmentation in
   Generic UDP Encapsulation. The operational aspects and details for
   higher layer implementation must be considered for deployment, but
   are considered out of scope for this document. The AERO protocol
   [I.D.templin-aerolink] defines one use case of fragmentation with
   encapsulation.

4.3.  Extension field format

   The presence of the GUE fragmentation option is indicated by the F
   bit in the GUE header.

   The format of the fragmentation option is:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Fragment offset   |Res|M|  Orig-proto   |               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               +
      |                        Identification                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The fields of the option are:

      o Fragment offset: This field indicates where in the datagram this
        fragment belongs. The fragment offset is measured in units of 8
        octets (64 bits).  The first fragment has offset zero.

      o Res: Two bit reserved field. Must be set to zero for
        transmission. If set to non-zero in a received packet then the
        packet MUST be dropped.

      o M: More fragments bit. Set to 1 when there are more fragments
        following in the datagram, set to 0 for the last fragment.

      o Orig-proto: The control type (when C-bit is set) or the IP
        protocol (when C-bit is not set) of the fragmented packet.

      o Identification: 40 bits. Identifies fragments of a fragmented

T. Herbert                Expires May 1, 2016                  [Page 11]



INTERNET DRAFT      draft-herbert-gue-extensions-00     October 28, 2016

        packet.

   Pertinent GUE header fields to fragmentation are:

      o C-bit: This is set for each fragment based on the whether the
        original packet being fragmented is a control or data message.

      o Proto/ctype - For the first fragment (fragment offset is zero)
        this is set to that of the original packet being fragmented
        (either will be a control type or IP protocol). For other
        fragments, this is set to zero for a control message being
        fragmented, or to "No next header" (protocol number 59) for a
        data message being fragmented.

      o F bit - Set to indicate presence of the fragmentation extension
        field.

4.4.  Fragmentation procedure

   If an encapsulator determines that a packet must be fragmented (eg.
   the packet’s size exceeds the Path MTU of the tunnel) it should
   divide the packet into fragments and send each fragment as a separate
   GUE packet, to be reassembled at the decapsulator (tunnel egress).

   For every packet that is to be fragmented, the source node generates
   an Identification value. The Identification must be different than
   that of any other fragmented packet sent within the past 60 seconds
   (Maximum Segment Lifetime) with the same tunnel identification-- that
   is the same outer source and destination addresses, same UDP ports,
   same orig-proto, and same virtual network identifier if present.

   The initial, unfragmented, and unencapsulated packet is referred to
   as the "original packet". This will be a layer 2 packet, layer 3
   packet, or the payload of a GUE control message:

      +-------------------------------//------------------------------+
      |                        Original packet                        |
      |            (e.g. an IPv4, IPv6, Ethernet packet)              |
      +------------------------------//-------------------------------+

   Fragmentation and encapsulation are performed on the original packet
   in sequence. First the packet is divided up in to fragments, and then
   each fragment is encapsulated. Each fragment, except possibly the
   last ("rightmost") one, is an integer multiple of 8 octets long.
   Fragments MUST be non-overlapping. The number of fragments should be
   minimized, and all but the last fragment should be approximately
   equal in length.
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   The fragments are transmitted in separate "fragment packets" as:

      +--------------+--------------+---------------+--//--+----------+
      |    first     |    second    |    third      |      |   last   |
      |   fragment   |   fragment   |   fragment    | .... | fragment |
      +--------------+--------------+---------------+--//--+----------+

   Each fragment is encapsulated as the payload of a GUE packet. This is
   illustrated as:

      +------------------+----------------+-----------------------+
      |  IP/UDP header   |   GUE header   |         first         |
      |                  | w/ frag option |        fragment       |
      +------------------+----------------+-----------------------+

      +------------------+----------------+-----------------------+
      |  IP/UDP header   |   GUE header   |         second        |
      |                  | w/ frag option |        fragment       |
      +------------------+----------------+-----------------------+
                                    o
                                    o
      +------------------+----------------+-----------------------+
      |  IP/UDP header   |   GUE header   |          last         |
      |                  | w/ frag option |         fragment      |
      +------------------+----------------+-----------------------+

   Each fragment packet is composed of:

      (1) Outer IP and UDP headers as defined for GUE encapsulation.

          o The IP addresses and UDP ports must be the same for all
            fragments of a fragmented packet.

      (2) A GUE header that contains:

          o The C-bit which is set to the same value for all the
            fragments of a fragmented packet based on whether a control
            message or data message was fragmented.

          o A proto/ctype. In the first fragment this is set to the
            value corresponding to the next header of the original
            packet and will be either an IP protocol or a control type.
            For subsequent fragments, this field is set to 0 for a
            fragmented control message or 59 (no next header) for a
            fragmented data message.

          o The F bit is set and fragment extension field is present.
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          o Other GUE options. Note that options apply to the individual
            GUE packet. For instance, the security option would be
            validated before reassembly.

      (3) The GUE fragmentation option. The contents of the extension
          field include:

          o Orig-proto specifies the protocol of the original packet.

          o A Fragment Offset containing the offset of the fragment, in
            8-octet units, relative to the start of the of the original
            packet.  The Fragment Offset of the first ("leftmost")
            fragment is 0.

          o An M flag value of 0 if the fragment is the last
            ("rightmost") one, else an M flag value of 1.

          o The Identification value generated for the original packet.

      (4) The fragment itself.

4.5.  Reassembly procedure

   At the destination, fragment packets are decapsulated and reassembled
   into their original, unfragmented form, as illustrated:

      +-------------------------------//------------------------------+
      |                        Original packet                        |
      |             (e.g. an IPv4, IPv6, Ethernet packet)             |
      +------------------------------//-------------------------------+

   The following rules govern reassembly:

        The IP/UDP/GUE headers of each packet are retained until all
        fragments have arrived. The reassembled packet is then composed
        of the decapsulated payloads in the GUE packets, and the
        IP/UDP/GUE headers are discarded.

        When a GUE packet is received with the fragment extension, the
        proto/ctype field in the GUE header must be validated. In the
        case that the packet is a first fragment (fragment offset is
        zero), the proto/ctype in the GUE header must equal the orig-
        proto value in the fragmentation option. For subsequent
        fragments (fragment offset is non-zero) the proto/ctype in the
        GUE header must be 0 for a control message or 59 (no-next-hdr)
        for a data message. If the proto/ctype value is invalid for a
        received packet it MUST be dropped.
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        An original packet is reassembled only from GUE fragment packets
        that have the same outer source address, destination address,
        UDP source port, UDP destination port, GUE header C-bit, virtual
        network identifier if present, orig-proto value in the
        fragmentation option, and Fragment Identification. The protocol
        type or control message type (depending on the C-bit) for the
        reassembled packet is the value of the GUE header proto/ctype
        field in the first fragment.

   The following error conditions may arise when reassembling fragmented
   packets with GUE encapsulation:

        If insufficient fragments are received to complete reassembly of
        a packet within 60 seconds (or a configurable period) of the
        reception of the first-arriving fragment of that packet,
        reassembly of that packet must be abandoned and all the
        fragments that have been received for that packet must be
        discarded.

        If the payload length of a fragment is not a multiple of 8
        octets and the M flag of that fragment is 1, then that fragment
        must be discarded.

        If the length and offset of a fragment are such that the payload
        length of the packet reassembled from that fragment would exceed
        65,535 octets, then that fragment must be discarded.

        If a fragment overlaps another fragment already saved for
        reassembly then the new fragment that overlaps the existing
        fragment MUST be discarded.

        If the first fragment is too small then it is possible that it
        does not contain the necessary headers for a stateful firewall.
        Sending small fragments like this has been used as an attack on
        IP fragmentation. To mitigate this problem, an implementation
        should ensure that the first fragment contains the headers of
        the encapsulated packet at least through the transport header.

        A GUE node must be able to accept a fragmented packet that,
        after reassembly and decapsulation, is as large as 1500 octets.
        This means that the node must configure a reassembly buffer that
        is at least as large as 1500 octets plus the maximum-sized
        encapsulation headers that may be inserted during encapsulation.
        Implementations may find it more convenient and efficient to
        configure a reassembly buffer size of 2KB which is large enough
        to accommodate even the largest set of encapsulation headers and
        provides a natural memory page size boundary.
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4.6.  Security Considerations

   Exploits that have been identified with IP fragmentation are
   conceptually applicable to GUE fragmentation.

   Attacks on GUE fragmentation can be mitigated by:

      o Hardened implementation that applies applicable techniques from
        implementation of IP fragmentation.

      o Application of GUE security (section 3) or IPsec [RFC4301].
        Security mechanisms can prevent spoofing of fragments from
        unauthorized sources.

      o Implement fragment filter techniques for GUE encapsulation as
        described in [RFC1858] and [RFC3128].

      o Do not accepted data in overlapping segments.

      o Enforce a minimum size for the first fragment.

5.  Payload transform option

   The payload transform option indicates that the GUE payload has been
   transformed. Transforming a payload is done by running a function
   over the data and possibly modifying it (encrypting it for instance).
   The payload transform option indicates the method used to transform
   the data so that a decapsulator is able to validate and reverse the
   transformation to recover the original data. Payload transformations
   could include encryption, authentication, CRC coverage, and
   compression. This specification defines a transformation for DTLS.

5.1.  Extension field format

   The presence of the GUE payload transform option is indicated by the
   T bit in the GUE header.

   The format of Payload Transform Field is:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Type       |     P_C_type  |            Data               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The fields of the option are:

      Type: Payload Transform Type or Code point. Each payload transform
            mechanism must have one code point registered in IANA.  This
            document specifies:
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               0x01: for DTLS [RFC6347]

               0x80˜0xFF: for private payload transform types

            A private payload transform type can be used for
            experimental purpose or vendor proprietary mechanisms.

      P_C_type: Indicates the protocol or control type of the
            untransformed payload. When payload transform option is
            present, proto/ctype in the GUE header should set to 59 ("No
            next header") for a data message and zero for a control
            message. The IP protocol or control message type of the
            untransformed payload must be encoded in this field.

            The benefit of this rule is to prevent a middle box from
            inspecting the encrypted payload according to GUE next
            protocol. The assumption here is that a middle box may
            understand GUE base header but does not understand GUE
            option flag definitions.

      Data: A field that can be set according to the requirements of
            each payload transform type. If the specification for a
            payload transform type does not specify how this field is to
            be set, then the field MUST be set to zero.

5.2.  Usage

   The payload transform option provides a mechanism to transform or
   interpret the payload of a GUE packet. The Type field provides the
   method used to transform the payload, and the P_C_type field provides
   the protocol or control message type of the of payload before being
   transformed. The payload transformation option is generic so that it
   can have both security related uses (such as DTLS) as well as non
   security related uses (such as compression, CRC, etc.).

   An encapsulator performs payload transformation before transmission,
   and a decapsulator must perform the reverse transformation before
   accepting a packet. For example, if an encapsulator transforms a
   payload by encrypting it, the peer decaspsulator must decrypt the
   payload before accepting the packet. If a decapsulator fails to
   perform the reverse transformation or cannot validate the
   transformation it MUST discard the packet and MAY generate an alert
   to the management system.

5.3.  Interaction with other optional extensions

   If GUE fragmentation (section 4) is used in concert with the GUE
   transform option, the transform option processing is performed after
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   fragmentation at the encapsulator and before reassembly at the
   decapsulator. If the payload transform changes the size of the data
   being fragmented this must be taken into account during
   fragmentation.

   If both the security option and the payload transform are used in a
   GUE packet, an encapsulator must perform the payload transformation
   first, set the payload transform option in the GUE header, and then
   create the security option. A decapsulator does processing in
   reverse-- the security option is processed (GUE header is validated)
   and then the reverse payload transform is performed.

   In order to get flow entropy from the payload, an encapsulator should
   derive the flow entropy before performing a payload transform.

5.4.  DTLS transform

   The payload of a GUE packet can be secured using Datagram Transport
   Layer Security [RFC6347]. An encapsulator would apply DTLS to the GUE
   payload so that the payload packets are encrypted and the GUE header
   remains in plaintext. The payload transform option is set to indicate
   that the payload should be interpreted as a DTLS record.

   The payload transform option for DLTS is:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      1        |    P_C_type   |              0                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   DTLS [RFC6347] provides packet fragmentation capability. To avoid
   packet fragmentation performed multiple times, a GUE encapsulator
   SHOULD only perform the packet fragmentation at packet encapsulation
   process, i.e., not in payload encryption process.

   DTLS usage [RFC6347] is limited to a single DTLS session for any
   specific tunnel encapsulator/decapsulator pair (identified by source
   and destination IP addresses). Both IP addresses MUST be unicast
   addresses - multicast traffic is not supported when DTLS is used. A
   GUE tunnel decapsulator implementation that supports DTLS can
   establish DTLS session(s) with one or multiple tunnel encapsulators,
   and likewise a GUE tunnel encapsulator implementation can establish
   DTLS session(s) with one or multiple decapsulators.

6.  Remote checksum offload option

   Remote checksum offload is mechanism that provides checksum offload
   of encapsulated packets using rudimentary offload capabilities found
   in most Network Interface Card (NIC) devices. Many NIC

T. Herbert                Expires May 1, 2016                  [Page 18]



INTERNET DRAFT      draft-herbert-gue-extensions-00     October 28, 2016

   implementations can only offload the outer UDP checksum in UDP
   encapsulation. Remote checksum offload is described in [UDPENCAP].

   In remote checksum offload the outer header checksum, that in the
   outer UDP header, is enabled in packets and, with some additional
   meta information, a receiver is able to deduce the checksum to be set
   for an inner encapsulated packet. Effectively this offloads the
   computation of the inner checksum. Enabling the outer checksum in
   encapsulation has the additional advantage that it covers more of the
   packet than the inner checksum including the encapsulation headers.

6.1.  Extension field format

   The presence of the GUE remote checksum offload option is indicated
   by the R bit in the GUE header.

   The format of remote checksum offload field is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Checksum start         |       Checksum offset         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The fields of the option are:

      o Checksum start: starting offset for checksum computation
        relative to the start of the encapsulated payload. This is
        typically the offset of a transport header (e.g. UDP or TCP).

      o Checksum offset: Offset relative to the start of the
        encapsulated packet where the derived checksum value is to be
        written. This typically is the offset of the checksum field in
        the transport header (e.g. UDP or TCP).

6.2.  Usage

6.2.1. Transmitter operation

   The typical actions to set remote checksum offload on transmit are:

      1) Transport layer creates a packet and indicates in internal
         packet meta data that checksum is to be offloaded to the NIC
         (normal transport layer processing for checksum offload). The
         checksum field is populated with the bitwise not of the
         checksum of the pseudo header or zero as appropriate.

      2) Encapsulation layer adds its headers to the packet including
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         the remote checksum offload option. The start offset and
         checksum offset are set accordingly.

      3) Encapsulation layer arranges for checksum offload of the outer
         header checksum (e.g. UDP).

      4) Packet is sent to the NIC. The NIC will perform transmit
         checksum offload and set the checksum field in the outer
         header. The inner header and rest of the packet are transmitted
         without modification.

6.2.2. Receiver operation

   The typical actions a host receiver does to support remote checksum
   offload are:

      1) Receive packet and validate outer checksum following normal
         processing (e.g. validate non-zero UDP checksum).

      2) Validate the remote checksum option. If checksum start is
         greater than the length of the packet, then the packet MUST be
         dropped. If checksum offset is greater then the length of the
         packet minus two, then the packet MUST be dropped.

      3) Deduce full checksum for the IP packet. If a NIC is capable of
         receive checksum offload it will return either the full
         checksum of the received packet or an indication that the UDP
         checksum is correct. Either of these methods can be used to
         deduce the checksum over the IP packet [UDPENCAP].

      4) From the packet checksum, subtract the checksum computed from
         the start of the packet (outer IP header) to the offset in the
         packet indicted by checksum start in the meta data. The result
         is the deduced checksum to set in the checksum field of the
         encapsulated transport packet.

         In pseudo code:

           csum: initialized to checksum computed from start (outer IP
                 header) to the end of the packet
           start_of_packet: address of start of packet
           encap_payload_offset: relative to start_of_packet
           csum_start: value from meta data
           checksum(start, len): function to compute checksum from start
                 address for len bytes

           csum -= checksum(start_of_packet, encap_payload_offset +
                            csum_start)
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      5) Write the resultant checksum value into the packet at the
         offset provided by checksum offset in the meta data.

         In pseudo code:

           csum_offset: offset of checksum field

           *(start_of_packet + encap_payload_offset +
             csum_offset) = csum

      6) Checksum is verified at the transport layer using normal
         processing. This should not require any checksum computation
         over the packet since the complete checksum has already been
         provided.

6.3.  Security Considerations

   Remote checksum offload allows a means to change the GUE payload
   before being received at a decapsulator. In order to prevent misuse
   of this mechanism, a decapsulator should apply security checks on the
   GUE payload only after checksum remote offload has been processed.

7.  Checksum option

   The GUE checksum option provides a checksum that covers the GUE
   header, a GUE pseudo header, and optionally part or all of the GUE
   payload. The GUE pseudo header includes the corresponding IP
   addresses as well as the UDP ports of the encapsulating headers. This
   checksum should provide adequate protection against address
   corruption in IPv6 when the UDP checksum is zero. Additionally, the
   GUE checksum provides protection of the GUE header when the UDP
   checksum is set to zero with either IPv4 or IPv6. In particular, the
   GUE checksum can provide protection for some sensitive data, such as
   the virtual network identifier ([I.D.hy-nvo3-gue-4-nvo]), which when
   corrupted could lead to mis-delivery of a packet to the wrong virtual
   network.

7.1.  Extension field format

   The presence of the GUE checksum option is indicated by the K bit in
   the GUE header.
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   The format of the checksum extension is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            Checksum           |        Payload coverage       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The fields of the option are:

      o Checksum: Computed checksum value. This checksum covers the GUE
        header (including fields and private data covered by Hlen), the
        GUE pseudo header, and optionally all or part of the payload
        (encapsulated packet).

      o Payload coverage: Number of bytes of payload to cover in the
        checksum. Zero indicates that the checksum only covers the GUE
        header and GUE pseudo header. If the value is greater than the
        encapsulated payload length, the packet must be dropped.

7.2.  Requirements

   The GUE header checksum should be set on transmit when using a zero
   UDP checksum with IPv6.

   The GUE header checksum should be used when the UDP checksum is zero
   for IPv4 if the GUE header includes data that when corrupted can lead
   to misdelivery or other serious consequences, and there is no other
   mechanism that provides protection (no security field that checks
   integrity for instance).

   The GUE header checksum should not be set when the UDP checksum is
   non-zero. In this case the UDP checksum provides adequate protection
   and this avoids convolutions when a packet traverses NAT that does
   address translation (in that case the UDP checksum is required).

7.3.  GUE checksum pseudo header

   The GUE pseudo header checksum is included in the GUE checksum to
   provide protection for the IP and UDP header elements which when
   corrupted could lead to misdelivery of the GUE packet. The GUE pseudo
   header checksum is similar to the standard IP pseudo header defined
   in [RFC0768] and [RFC0793] for IPv4, and in [RFC2460] for IPv6.
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   The GUE pseudo header for IPv4 is:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Source Address                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Destination Address                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Source port            |      Destination port         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The GUE pseudo header for IPv6 is:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                                                               |
   +                         Source Address                        +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                                                               |
   +                      Destination Address                      +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Source port            |      Destination port         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Note that the GUE pseudo header does not include payload length or
   protocol as in the standard IP pseudo headers. The length field is
   deemed unnecessary because:

      o If the length is corrupted this will usually be detected by a
        checksum validation failure on the inner packet.

      o Fragmentation of packets in a tunnel should occur on the inner
        packet before being encapsulated or GUE fragmentation (section
        4) may be performed at tunnel ingress. GUE packets are not
        expected to be fragmented when using IPv6. See RFC6936 for
        considerations of payload length and IPv6 checksum.

      o A corrupted length field in itself should not lead to
        misdelivery of a packet.
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      o Without the length field, the GUE pseudo header checksum is the
        same for all packets of flow. This is a useful property for
        optimizations such as TCP Segment Offload (TSO).

7.4.  Usage

   The GUE checksum is computed and verified following the standard
   process for computing the Internet checksum [RFC1071]. Checksum
   computation may be optimized per the mathematical properties
   including parallel computation and incremental updates.

7.4.1. Transmitter operation

   The procedure for setting the GUE checksum on transmit is:

      1) Create the GUE header including the checksum and payload
         coverage fields. The checksum field is initially set to zero.

      2) Calculate the 1’s complement checksum of the GUE header from
         the start of the GUE header through the its length as indicated
         in GUE Hlen.

      3) Calculate the checksum of the GUE pseudo header for IPv4 or
         IPv6.

      4) Calculate checksum of payload portion if payload coverage is
         enabled (payload coverage field is non-zero). If the length of
         the payload coverage is odd, logically append a single zero
         byte for the purposes of checksum calculation.

      5) Add and fold the computed checksums for the GUE header, GUE
         pseudo header and payload coverage. Set the bitwise not of the
         result in the GUE checksum field.

7.4.2.Receiver operation

   If the GUE checksum option is present, the receiver must validate the
   checksum before processing any other fields or accepting the packet.

   The procedure for verifying the checksum is:

      1) If the payload coverage length is greater than the length of
         the encapsulated payload then drop the packet.

      2) Calculate the checksum of the GUE header from the start of the
         header to the end as indicated by Hlen.

      3) Calculate the checksum of the appropriate GUE pseudo header.

T. Herbert                Expires May 1, 2016                  [Page 24]



INTERNET DRAFT      draft-herbert-gue-extensions-00     October 28, 2016

      4) Calculate the checksum of payload if payload coverage is
         enabled (payload coverage is non-zero). If the length of the
         payload coverage is odd logically append a single zero byte for
         the purposes of checksum calculation.

      5) Sum and fold the computed checksums for the GUE header, GUE
         pseudo header, and payload coverage. If the result is all 1
         bits (-0 in 1’s complement arithmetic), the checksum is valid
         and the packet is accepted; otherwise the checksum is
         considered invalid and the packet must be dropped.

7.5.  Security Considerations

   The checksum option is only a mechanism for corruption detection, it
   is not a security mechanism. To provide integrity checks or
   authentication of the GUE header, the GUE security option should be
   used.

8.  Processing order of options

   Options must be processed in a specific order for both sending and
   receive.

   The order of processing options to send a GUE packet are:

      1) Set VNID option.

      2) Fragment if necessary and set fragmentation option. VNID is
         copied into each fragment. Note that if payload transformation
         will increase the size of the payload that must be accounted
         for when deciding how to fragment

      3) Perform payload transform (potentially on a fragment) and set
         payload transform option.

      4) Set Remote checksum offload.

      5) Set security option.

      6) Calculate GUE checksum and set checksum option.

   On reception the order of actions is reversed.

      1) Verify GUE checksum.

      2) Verify security option.

T. Herbert                Expires May 1, 2016                  [Page 25]



INTERNET DRAFT      draft-herbert-gue-extensions-00     October 28, 2016

      3) Adjust packet for remote checksum offload.

      4) Perform payload transformation (i.e. decrypt payload)

      5) Perform reassembly.

      6) Receive on virtual network indicated by VNID.

   Note that the relative processing order of private fields is
   unspecified.

9.  Security Considerations

   If the integrity and privacy of data packets being transported
   through GUE is a concern, GUE security option and payload encryption
   using the the transform option SHOULD be used to remove the concern.
   If the integrity is the only concern, the tunnel may consider use of
   GUE security only for optimization. Likewise, if the privacy is the
   only concern, the tunnel may use GUE encryption function only.

   If GUE payload already provides secure mechanism, e.g., the payload
   is IPsec packets, it is still valuable to consider use of GUE
   security.

   GUE may rely on other secure tunnel mechanisms such as DTLS [RFC6347]
   over the whole UDP payload for securing the whole GUE packet or IPsec
   [RFC4301] to achieve the secure transport over an IP network or
   Internet.

   IPsec [RFC4301] was designed as a network security mechanism, and
   therefore it resides at the network layer.  As such, if the tunnel is
   secured with IPsec, the UDP header would not be visible to
   intermediate routers in either IPsec tunnel or transport mode. The
   big drawback here prohibits intermediate routers to perform load
   balancing based on the flow entropy in UDP header. In addition, this
   method prohibits any middle box function on the path.

   By comparison, DTLS [RFC6347] was designed with application security
   and can better preserve network and transport layer protocol
   information than IPsec [RFC4301]. Using DTLS over UDP to secure the
   GUE tunnel, both GUE header and payload will be encrypted. In order
   to differentiate plaintext GUE header from encrypted GUE header, the
   destination port of the UDP header between two must be different,
   which essentially requires another standard UDP port for GUE with
   DTLS. The drawback on this method is to prevent a middle box
   operation to GUE tunnel on the path.

   Use of two independent tunnel mechanisms such as GUE and DTLS over
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   UDP to carry a network protocol over an IP network adds some overlap
   and complexity. For example, fragmentation will be done twice.

   As the result, a GUE tunnel SHOULD use the security mechanisms
   specified in this document to provide secure transport over an IP
   network or Internet when it is needed. GUE encapsulation can be used
   as a secure transport mechanism over an IP network and Internet.

10. IANA Consideration

   IANA is requested to assign flags for the extensions defined in this
   specification. Specifically, an assignment is requested for the V,
   SEC, F, T, R, and K flags in the "GUE flag-fields" registry (proposed
   in [I.D.nvo3-gue]).

   IANA is requested to set up a registry for the GUE payload transform
   types. Payload transform types are 8 bit values.  New values for
   control types 1-127 are assigned via Standards Action [RFC5226].

      +----------------+------------------+---------------+
      | Transform type | Description      | Reference     |
      +----------------+------------------+---------------+
      | 0              | Reserved         | This document |
      |                |                  |               |
      | 1              | DTLS             | This document |
      |                |                  |               |
      | 2..127         | Unassigned       |               |
      |                |                  |               |
      | 128..255       | User defined     | This document |
      +----------------+------------------+---------------+
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Abstract

   This specification describes identifier-locator addressing (ILA) for
   IPv6. Identifier-locator addressing differentiates between location
   and identity of a network node. Part of an address expresses the
   immutable identity of the node, and another part indicates the
   location of the node which can be dynamic. Identifier-locator
   addressing can be used to efficiently implement overlay networks for
   network virtualization as well as solutions for use cases in
   mobility.
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1 Introduction

   This specification describes the address formats, protocol operation,
   and communication scenarios of identifier-locator addressing (ILA).
   In identifier-locator addressing, an IPv6 address is split into a
   locator and an identifier component. The locator indicates the
   topological location in the network for a node, and the identifier
   indicates the node’s identity which refers to the logical or virtual
   node in communications. Locators are routable within a network, but
   identifiers typically are not. An application addresses a peer
   destination by identifier. Identifiers are mapped to locators for
   transit in the network. The on-the-wire address is composed of a
   locator and an identifier: the locator is sufficient to route the
   packet to a physical host, and the identifier allows the receiving
   host to translate and forward the packet to the addressed
   application.

   With identifier-locator addressing network virtualization and
   addressing for mobility can be implemented in an IPv6 network without
   any additional encapsulation headers. Packets sent with identifier-
   locator addresses look like plain unencapsulated packets (e.g. TCP/IP
   packets). This method is transparent to the network, so protocol
   specific mechanisms in network hardware work seamlessly. These
   mechanisms include hash calculation for ECMP, NIC large segment
   offload, checksum offload, etc.

   Many of the concepts for ILA are adapted from Identifier-Locator
   Network Protocol (ILNP) ([RFC6740], [RFC6741]) which defines a
   protocol and operations model for identifier-locator addressing in
   IPv6.

   Section 5 provides a motivation for ILA and comparison of ILA with
   alternative methods that achieve similar functionality.

1.1 Terminology

     ILA         Identifier-locator addressing.

     ILA router  A network node that performs ILA translation and
                 forwarding of translated packets.

     ILA host    An end host that is capable of performing ILA
                 translations on transmit or receive.

     ILA node    A network node capable of performing ILA translations.
                 This can be an ILA router or ILA host.

     Locator     A network prefix that routes to a physical host.
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                 Locators provide the topological location of an
                 addressed node. In ILA locators are a sixty-four bit
                 prefixes.

     Identifier  A number that identifies an addressable node in the
                 network independent of its location. ILA identifiers
                 are sixty-four bit values.

     ILA address
                 An IPv6 address composed of a locator (upper sixty-four
                 bits) and an identifier (low order sixty-four bits).

     SIR         Standard identifier representation.

     SIR prefix  A sixty-four bit network prefix used to identify a SIR
                 address.

     SIR address
                 An IPv6 address composed of a SIR prefix (upper sixty-
                 four bits) and an identifier (lower sixty-four bits).
                 SIR addresses are visible to applications and provide a
                 means to address nodes independent of their location.

     SIR domain  A unique identifier namespace defined by a SIR prefix.
                 Each SIR prefix defines a SIR domain.

     ILA translation
                 The process of translating the upper sixty-four bits of
                 an IPv6 address. Translations may be from a SIR prefix
                 to a locator or a locator to a SIR prefix.

     Virtual address
                 An IPv6 or IPv4 address that resides in the address
                 space of a virtual network. Such addresses may be
                 translated to SIR addresses as an external
                 representation of the address outside of the virtual
                 network, or they may be translated to ILA addresses for
                 transit over an underlay network.

     Topological address
                 An address that refers to a non-virtual node in a
                 network topology. These address physical hosts in a
                 network.
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2 Architectural overview

   Identifier-locator addressing allows a data plane method to implement
   network virtualization without encapsulation and its related
   overheads. The service ILA provides is effectively layer 3 over layer
   3 network virtualization (IPv4 or IPv6 over IPv6).

2.1 Addressing

   ILA performs translations on IPv6 address. There are two types of
   addresses introduced for ILA: ILA addresses and SIR addresses.

   ILA addresses are IPv6 addresses that are composed of a locator
   (upper sixty-four bits) and an identifier (low order sixty-four
   bits). The identifier serves as the logical addresses of a node, and
   the locator indicates the location of the node on the network.

   A SIR address (standard identifier representation) is an IPv6 address
   that contains an identifier and an application visible SIR prefix.
   SIR addresses are visible to the application and can be used as
   connection endpoints. When a packet is sent to a SIR address, an ILA
   router or host overwrites the SIR prefix with a locator corresponding
   to the identifier. When a peer ILA node receives the packet, the
   locator is overwritten with the original SIR prefix before delivery
   to the application. In this manner applications only see SIR
   addresses, they do not have visibility into ILA addresses.

   ILA translations can transform addresses from one type to another. In
   network virtualization virtual addresses can be translated into ILA
   and SIR addresses, and conversely ILA and SIR addresses can be
   translated to virtual addresses.

2.2 Network topology

   ILA nodes are nodes in the network that perform ILA translations. An
   ILA router is a node that performs ILA address translation and packet
   forwarding to implement overlay network functionality. ILA routers
   perform translations on packets sent by end nodes for transport
   across an underlay network. Packets received by ILA routers on the
   underlay network have their addresses reversed translated for
   reception at an end node. An ILA host is an end node that implements
   ILA functionality for transmitting or receiving packets.

   ILA nodes are responsible for transit of packets over an underlay
   network. On ingress to an ILA node (host or router) the virtual or
   SIR address of a destination is translated to an ILA address. At the
   a peer ILA node, the reverse translation is performed before handing
   packets to an application.
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   The figure below provides an example topology using ILA. ILA
   translations performed in one direction between Host A and Host B are
   denoted. Host A sends a packet with a destination SIR address (step
   (1)). An ILA router in the path translates the SIR address to an ILA
   address with a locator set to Host B, referring to the location of
   the node indicated by the identifier in the SIR address. The packet
   is forwarded over the network and delivered to a peer ILA node (step
   2).  The peer ILA node, in this case another ILA router, translates
   the destination address back to a SIR address and forwards to the
   final destination (step 3).

    +--------+                                                +--------+
    | Host A +-+                                         +--->| Host B |
    |        | |              (2) ILA                   (’)   |        |
    +--------+ |            ...addressed....           (   )  +--------+
               V  +---+--+  .  packet      .  +---+--+  (_)
   (1) SIR     |  | ILA  |----->-------->---->| ILA  |   |   (3) SIR
    addressed  +->|router|  .              .  |router|->-+    addressed
    packet        +---+--+  .     IPv6     .  +---+--+        packet
                   /        .    Network   .
                  /         .              .   +--+-++--------+
    +--------+   /          .              .   |ILA ||  Host  |
    |  Host  +--+           .              .- -|host||        |
    |        |              .              .   +--+-++--------+
    +--------+              ................

2.3 Translations and mappings

   Address translation is the mechanism employed by ILA. Logical or
   virtual addresses are translated to topological IPv6 addresses for
   transport to the proper destination. Translation occurs in the upper
   sixty-four bits of an address, the low order sixty-four bits contains
   an identifier that is immutable and is not used to route a packet.

   Each ILA node maintains a mapping table. This table maps identifiers
   to locators. The mappings are dynamic as nodes with identifiers can
   be created, destroyed, or migrated between physical hosts. Mappings
   are propagated amongst ILA routers or hosts in a network using
   mapping propagation protocols (mapping propagation protocols will be
   described in other specifications).

   Identifiers are not statically bound to a host on the network, and in
   fact their binding (or location) may change. This is the basis for
   network virtualization and address migration. An identifier is mapped
   to a locator at any given time, and a set of identifier to locator
   mappings is propagated throughout a network to allow communications.
   The mappings are kept synchronized so that if an identifier migrates
   to a new physical host, its identifier to locator mapping is updated.
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2.4 ILA routing

   ILA is intended to be sufficiently lightweight so that all the hosts
   in a network could potentially send and receive ILA addressed
   packets. In order to scale this model and allow for hosts that do not
   participate in ILA, a routing topology may be applied. A simple
   routing topology is illustrated below.

                               +---------+--+
      (1) Default SIR route    |ILA router  |  (2) Translated dest.
            +->->->->->->->->->|            |->->->->->+
            |                  +------------+          |
            |                                          V
       +--------++-----+                            +-----++--------+
       |        ||     |                            |     ||        |
       |   Host || ILA |                            | ILA || Host   |
       |        ||host |->->->->->->->->->->->->->->| host||        |
       +--------++-----+     (5) Direct route       +-----++--------+
                .    .
                .    . (3) Resolve
   (4) Resolve  .    .     Request      +--------------+
       Reply    .    ..................>|              |
                .                       | ILA resolver |
                ........................|              |
                                        +--------------+

   An ILA router can be addressed by an "anycast" SIR prefix so that it
   receives packets sent on the network with SIR addresses. When an ILA
   router receives a SIR addressed packet (step (1) in the diagram) it
   will perform the ILA translation and send the ILA addressed packet to
   the destination ILA node (step (2)).

   If a sending host is ILA capable the triangular routing can be
   eliminated by performing an ILA resolution protocol. This entails the
   host sending an ILA resolve request that specifies the SIR address to
   resolve (step (3) in the figure). An ILA resolver can respond to a
   resolver request with the identifier to locator mapping (step (4)).
   Subsequently, the ILA host can perform ILA translation and send
   directly to the destination specified in the locator (step (5) in the
   figure). The ILA resolution protocol will be specified in a companion
   document.

   In this model an ILA host maintains a cache of identifier mappings
   for identifiers that it is currently communicating with. ILA routers
   are expected to maintain a complete list of identifier to locator
   mappings within the SIR domains that they service.
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3 Address formats

3.1 ILA address format

   An ILA address is composed of a locator and an identifier where each
   occupies sixty-four bits (similar to the encoding in ILNP [RFC6741]).

     |            64 bits             |            64 bits            |
     +--------------------------------+-------------------------------+
     |             Locator            |           Identifier          |
     +----------------------------------------------------------------+

3.2 Locators

   Locators are routable network address prefixes that create
   topological addresses for physical hosts within the network. They may
   be assigned from a global address block [RFC3587], or be based on
   unique local IPv6 unicast addresses as described in [RFC4193].

   The format of an ILA address with a global unicast locator is:

      |<--------------- Locator --------------->|
      |3 bits| N bits        | M bits  | 61-N-M | 64 bits              |
      +------+-------------+---------+---------------------------------+
      | 001  | Global prefix | Subnet  | Host   |      Identifier      |
      +------+---------------+---------+--------+----------------------+

   The format of an ILA address with a unique local IPv6 unicast locator
   is:

      |<--------------- Locator --------->|
      | 7 bits |1|  40 bits   |  16 bits  |          64 bits           |
      +--------+-+------------+-----------+----------------------------+
      | FC00   |L| Global ID  | Host      |        Identifier          |
      +--------+-+------------+-----------+----------------------------+

3.3 Identifiers

   The format of an ILA identifier is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Type|C|                    Identifier                         |
     +-+-+-+-+                                                       |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   Fields are:

      o Type: Type of the identifier (see section 3.3.2).

      o C: The C-bit. This indicates that checksum-neutral mapping
        applied (see section 3.3.1).

      o Identifier: Identifier value.

3.3.1 Checksum neutral-mapping format

   If the C-bit is set the low order sixteen bits of an identifier
   contain the adjustment for checksum-neutral mapping (see section
   4.4.1 for description of checksum-neutral mapping). The format of an
   identifier with checksum neutral mapping is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Type|1|                    Identifier                         |
     +-+-+-+-+                       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |  Checksum-neutral adjustment  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3.2 Identifier types

   Identifier types allow standard encodings for common uses of
   identifiers. Defined identifier types are:

      0: interface identifier

      1: locally unique identifier

      2: virtual networking identifier for IPv4 address

      3: virtual networking identifier for IPv6 unicast address

      4: virtual networking identifier for IPv6 multicast address

      5-7: Reserved

3.3.2.1 Interface identifiers

   The interface identifier type indicates a plain local scope interface
   identifier. When this type is used the address is a normal IPv6
   address without identifier-locator semantics. The purpose of this
   type is to allow normal IPv6 addresses to be defined within the same
   networking prefix as ILA addresses. Type bits and C-bit MUST be zero.
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   The format of an ILA interface identifier address is:

      |         64 bits            |3 bits|1|       60 bits           |
      +----------------------------+------+---------------------------+
      |          Prefix            |  0x0 |0|         IID             |
      +---------------------------------------------------------------+

3.3.2.2 Locally unique identifiers

   Locally unique identifiers (LUI) can be created for various
   addressable objects within a network. These identifiers are in a flat
   sixty bit space and must be unique within a SIR domain (unique within
   a site for instance). To simplify administration, hierarchical
   allocation of locally unique identifiers may be performed. The format
   of an ILA address with locally unique identifiers is:

      |         64  bits           |3 bits|1|        60 bits          |
      +----------------------------+------+---------------------------+
      |          Locator           |  0x1 |C| Locally unique ident.   |
      +---------------------------------------------------------------+

   The figure below illustrates the translation from SIR address to an
   ILA address as would be performed when a node sends to a SIR address.
   Note the low order 16 bites of the identifier may be modified as the
   checksum-neutral adjustment. The reverse translation of ILA address
   to SIR address is symmetric.

      +----------------------------+------+---------------------------+
      |          SIR prefix        |  0x1 |0|      Identifier         |
      +---------------------------------------------------------------+
                     |                     |              |
           SIR prefix to locator     C-bit if needed      |
                     V                     V              V
      +----------------------------+------+---------------------------+
      |          Locator           |  0x1 |C|      Identifier         |
      +---------------------------------------------------------------+

3.3.2.3 Virtual networking identifiers for IPv4

   This type defines a format for encoding an IPv4 virtual address and
   virtual network identifier within an identifier. The format of an ILA
   address for IPv4 virtual networking is:

      |         64 bits            |3 bits|1| 28 bits |    32 bits     |
      +----------------------------+------+-----------+----------------+
      |          Locator           |  0x2 |C|  VNID   |    VADDR       |
      +----------------------------------------------------------------+
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   VNID is a virtual network identifier and VADDR is a virtual address
   within the virtual network indicated by the VNID. The VADDR can be an
   IPv4 unicast or multicast address, and may often be in a private
   address space (i.e. [RFC1918]) used in the virtual network.

   Translating a virtual IPv4 address into an ILA or SIR address and the
   reverse translation are straight forward. Note that the low order 16
   bits of the IPv6 address may be modified as the checksum-neutral
   adjustment and that this translation implies protocol translation
   when sending IPv4 packets over an ILA IPv6 network.

                                                      +----------------+
                                                      |  IPv4 address  |
                                                      +----------------+
                                                              ^
                                                              |
                                                              V
      +----------------------------+------+-----------+----------------+
      |   Locator or SIR prefix    |  0x2 |C|  VNID   |  IPv4 address  |
      +----------------------------------------------------------------+

3.3.2.4 Virtual networking identifiers for IPv6 unicast

   In this format, a virtual network identifier and virtual IPv6 unicast
   address are encoded within an identifier. To facilitate encoding of
   virtual addresses, there is a unique mapping between a VNID and a
   ninety-six bit prefix of the virtual address. The format an IPv6
   unicast encoding with VNID in an ILA address is:

      |           64 bits            |3 bits|1| 28 bits    |  32 bits  |
      +------------------------------+------+--------------+-----------+
      |            Locator           |  0x3 |C|  VNID      |  VADDR6L  |
      +----------------------------------------------------------------+

   VADDR6L contains the low order 32 bits of the IPv6 virtual address.
   The upper 96 bits of the virtual address are inferred from the VNID
   to prefix mapping. Note that for ILA translations the low order
   sixteen of the VADDR6L may be modified for checksum-neutral
   adjustment.

   The figure below illustrates encoding a tenant IPv6 virtual unicast
   address into a ILA or SIR address.
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      +----------------------------------------------+-----------------+
      |            Tenant prefix                     |  VADDR6L        |
      +-----------------------+-------------------------------+--------+
                              |                               |
                              +-prefix to VNID-+              |
                                               |              |
                                               v              v
      +---------------------------+------+-----------+-----------------+
      |   Locator or SIR prefix   |  0x3 |C| VNID    |  VADDR6L        |
      +----------------------------------------------------------------+

   This encoding is reversible, given an ILA address, the virtual
   address visible to the tenant can be deduced:

      +---------------------------+------+-----------+-----------------+
      |   Locator or SIR prefix   |  0x3 |C| VNID    |  VADDR6L        |
      +----------------------------------------+-----------------------+
                                               |              |
                              +-VNID to prefix-+              |
                              |                               |
                              v                               v
      +----------------------------------------------+-----------------+
      |            Tenant prefix                     |  VADDR6L        |
      +----------------------------------------------------------------+

3.3.2.5 Virtual networking identifiers for IPv6 multicast

   In this format, a virtual network identifier and virtual IPv6
   multicast address are encoded within an identifier.

      /* IPv6 multicast address with VNID encoding in an ILA address */
      |         64 bits          |3 bits|1|28 bits   |4 bits| 28 bits  |
      +--------------------------+------+------------------------------+
      |          Locator         |  0x4 |C|  VNID    |Scope |  MADDR6L |
      +----------------------------------------------------------------+

   This format encodes an IPv6 multicast address in an identifier. The
   scope indicates multicast address scope as defined in [RFC7346].
   MADDR6L is the low order 28 bits of the multicast address. The full
   multicast address is thus:

     ff0<Scope>::<MADDRL6 high 12 bits>:<MADDRL6 low 16 bits>

   And so can encode multicast addresses of the form:

     ff0X::0 to ff0X::0fff:ffff

   The figure below illustrates encoding a tenant IPv6 virtual multicast
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   address in an ILA or SIR address.  Note that low order sixteen bits
   of MADDR6L may be modified to be the checksum-neutral adjustment.

      | 12 bits | 4 bits|        84 bits                    | 28 bits  |
      +---------+-------+-----------------------------------+----------+
      |  0xfff  | Scope |           0’s                     |  MADDR6L |
      +-------------+---------------------------------------------+----+
                    |                                             |
                    +------------------------------------+        |
                                                         |        |
                                                         v        v
      +--------------------------+------+------------------------------+
      |   Locator or SIR prefix  |  0x4 |C|  VNID    |Scope |  MADDR6L |
      +----------------------------------------------------------------+

   This translation is reversible:

      +--------------------------+------+------------------------------+
      |   Locator or SIR prefix  |  0x4 |C|  VNID    |Scope |  MADDR6L |
      +----------------------------------------------------------------+
                                                         |        |
                    +------------------------------------+        |
                    |                                             |
                    V                                             V
      +---------+-------+-----------------------------------+----------+
      |  0xfff  | Scope |           0’s                     |  MADDR6L |
      +-------------+---------------------------------------------+----+

3.4 Standard identifier representation addresses

   An identifier identifies objects or nodes in a network. For instance,
   an identifier may refer to a specific host, virtual machine, or
   tenant system. When a host initiates a connection or sends a packet,
   it uses the identifier to indicate the peer endpoint of the
   communication. The endpoints of an established connection context
   also referenced by identifiers. It is only when the packet is
   actually being sent over a network that the locator for the
   identifier needs to be resolved.

   In order to maintain compatibility with existing networking stacks
   and applications, identifiers are encoded in IPv6 addresses using a
   standard identifier representation (SIR) address. A SIR address is a
   combination of a prefix which occupies what would be the locator
   portion of an ILA address, and the identifier in its usual location.
   The format of a SIR address is:
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      |            64 bits             |3 bits|1|       60 bits        |
      +--------------------------------+-------------------------------+
      |           SIR prefix           | Type |0|      Identifier      |
      +----------------------------------------------------------------+

   The C-bit (checksum-neutral mapping) MUST be zero for a SIR address.
   Type may be any identifier type except zero (interface identifiers)

   A SIR prefix may be site-local, or globally routable. A globally
   routable SIR prefix facilitates connectivity between hosts on the
   Internet and ILA nodes. A gateway between a site’s network and the
   Internet can translate between SIR prefix and locator for an
   identifier. A network may have multiple SIR prefixes where each
   prefix defines a unique identifier space.

   Locators MUST only be associated with one SIR prefix. This ensures
   that if a translation from a SIR address to an ILA address is
   performed when sending a packet, the reverse translation at the
   receiver yields the same SIR address that was seen at the
   transmitter. This also ensures that a reverse checksum-neutral
   mapping can be performed at a receiver to restore the addresses that
   were included in a pseudo header for setting a transport checksum.

   A standard identifier representation address can be used as the
   externally visible address for a node. This can used throughout the
   network, returned in DNS AAAA records [RFC3363], used in logging,
   etc. An application can use a SIR address without knowledge that it
   encodes an identifier.

3.4.1 SIR for locally unique identifiers

   The SIR address for a locally unique identifier has format:

      |            64  bits            |3 bits|1|       60 bits        |
      +--------------------------------+-------------------------------+
      |           SIR prefix           |  0x1 |0|Locally unique ident. |
      +----------------------------------------------------------------+

3.4.2 SIR for virtual addresses

   A virtual address can be encoded using the standard identifier
   representation. For example, the SIR address for an IPv6 virtual
   address may be:

      |           64 bits              |3 bits|1| 28 bits  |  32 bits  |
      +--------------------------------+------+------------+-----------+
      |          SIR prefix            |  0x3 |0|   VNID   |  VADDRL6  |
      +----------------------------------------------------------------+
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   Note that this allows three representations of the same address in he
   network: as a virtual address, a SIR address, and an ILA address.

3.4.3 SIR domains

   Each SIR prefix defines a SIR domain. A SIR domain is a unique name
   space for identifiers within a domain. The full identity of a node is
   thus determined by an identifier and SIR domain (SIR prefix).
   Locators MUST map to only one SIR domain in order to ensure that
   translation from a locator to SIR prefix is unambiguous.

4 Operation

   This section describes operation methods for using identifier-locator
   addressing.

4.1 Identifier to locator mapping

   An application initiates a communication or flow using a SIR address
   or virtual address for a destination. In order to send a packet on
   the network, the destination address is translated by an ILA router
   or an ILA host in the path. An ILA node maintains a list of mappings
   from identifier to locator to perform this translation.

   The mechanisms of propagating and maintaining identifier to locator
   mappings are outside the scope of this document.

4.2 Address translations

   With ILA, address translation is performed to convert SIR addresses
   to ILA addresses, and ILA addresses to SIR addresses. Translation is
   usually done on a destination address as a form of source routing,
   however translation on source virtual addresses to SIR addresses can
   also be done to support some network virtualization scenarios (see
   appendix A.7 for example).

4.2.1 SIR to ILA address translation

   When translating a SIR address to an ILA address the SIR prefix in
   the address is overridden with a locator, and checksum neutral
   mapping may be performed. Since this operation is potentially done
   for every packet the process should be very efficient (particularly
   the lookup and checksum processing operations).

   The typical steps to transmit a packet using ILA are:

      1) Host stack creates a packet with source address set to a local
         address (possibly a SIR address) for the local identity, and
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         the destination address is set to the SIR address or virtual
         address for the peer. The peer address may have been discovered
         through DNS or other means.

      2) An ILA router or host translates the packet to use the locator.
         If the original destination address is a SIR address then the
         SIR prefix is overwritten with the locator. If the original
         packet is a virtually addressed tenant packet then the virtual
         address is translated per section 3.3.2. The locator is
         discovered by a lookup in the locator to identifier mappings.

      3) The ILA node performs checksum-neutral mapping if configured
         for that (section 4.4.1).

      4) Packet is forwarded on the wire. The network routes the packet
         to the host indicated by the locator.

4.2.2 ILA to SIR address translation

   When a destination node (ILA router or end host) receives an ILA
   addressed packet, the ILA address MUST be translated back to a SIR
   address (or tenant address) before upper layer processing.

   The steps of receive processing are:

      1) Packet is received. The destination locator is verified to
         match a locator assigned to the host.

      2) A lookup is performed on the destination identifier to find if
         it addresses a local identifier. If match is found, either the
         locator is overwritten with SIR prefix (for locally unique
         identifier type) or the address is translated back to a tenant
         virtual address as shown in appendix A.7.

      3) Perform reverse checksum-neutral mapping if C-bit is set
         (section 4.4.1).

      4) Perform any optional policy checks; for instance that the
         source may send a packet to the destination address, that
         packet is not illegitimately crossing virtual networks, etc.

      5) Forward packet to application processing.

4.3 Virtual networking operation

   When using ILA with virtual networking identifiers, address
   translation is performed to convert tenant virtual network and
   virtual addresses to ILA addresses, and ILA addresses back to a
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   virtual network and tenant’s virtual addresses. Translation may occur
   on either source address, destination address, or both (see scenarios
   for virtual networking in Appendix A). Address translation is
   performed similar to the SIR translation cases described above.

4.3.1 Crossing virtual networks

   With explicit configuration, virtual network hosts may communicate
   directly with virtual hosts in another virtual network by using SIR
   addresses for virtualization in both the source and destination
   addresses. This might be done to allow services in one virtual
   network to be accessed from another (by prior agreement between
   tenants). See appendix A.13 for example of ILA addressing for such a
   scenario.

4.3.2 IPv4/IPv6 protocol translation

   An IPv4 tenant may send a packet that is converted to an IPv6 packet
   with ILA addresses.  Similarly, an IPv6 packet with ILA addresses may
   be converted to an IPv4 packet to be received by an IPv4-only tenant.
   These are IPv4/IPv6 stateless protocol translations as described in
   [RFC6144] and [RFC6145]. See appendix A.12 for a description of these
   scenarios.

4.4 Transport layer checksums

   Packets undergoing ILA translation may encapsulate transport layer
   checksums (e.g. TCP or UDP) that include a pseudo header that is
   affected by the translation.

   ILA provides two alternatives do deal with this:

      o Perform a checksum-neutral mapping to ensure that an
        encapsulated transport layer checksum is kept correct on the
        wire.

      o Send the checksum as-is, that is send the checksum value based
        on the pseudo header before translation.

   Some intermediate devices that are not the actual end point of a
   transport protocol may attempt to validate transport layer checksums.
   In particular, many Network Interface Cards (NICs) have offload
   capabilities to validate transport layer checksums (including any
   pseudo header) and return a result of validation to the host.
   Typically, these devices will not drop packets with bad checksums,
   they just pass a result to the host. Checksum offload is a
   performance benefit, so if packets have incorrect checksums on the
   wire this benefit is lost. With this incentive, applying a checksum-
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   neutral mapping is the recommended alternative. If it is known that
   the addresses of a packet are not included in a transport checksum,
   for instance a GRE packet is being encapsulated, then a source may
   choose not to perform checksum-neutral mapping.

4.4.1 Checksum-neutral mapping

   When a change is made to one of the IP header fields in the IPv6
   pseudo-header checksum (such as one of the IP addresses), the
   checksum field in the transport layer header may become invalid.
   Fortunately, an incremental change in the area covered by the
   Internet standard checksum [RFC1071] will result in a well-defined
   change to the checksum value [RFC1624].  So, a checksum change caused
   by modifying part of the area covered by the checksum can be
   corrected by making a complementary change to a different 16-bit
   field covered by the same checksum.

   ILA can perform a checksum-neutral mapping when a SIR prefix or
   virtual address is translated to a locator in an IPv6 address, and
   performs the reverse mapping when translating a locator back to a SIR
   prefix or virtual address. The low order sixteen bits of the
   identifier contain the checksum adjustment value for ILA.

   On transmission, the translation process is:

      1) Compute the one’s complement difference between the SIR prefix
         and the locator. Fold this value to 16 bits (add-with-carry
         four 16-bit words of the difference).

      2) Add-with-carry the bit-wise not of the 0x1000 (i.e. 0xefff) to
         the value from #1. This compensates the checksum for setting
         the C-bit.

      3) Add-with-carry the value from #2 to the low order sixteen bits
         of the identifier.

      4) Set the resultant value from #3 in the low order sixteen bits
         of the identifier and set the C-bit.

   Note that the "adjustment" (the 16-bit value set in the identifier in
   set #3) is fixed for a given SIR to locator mapping, so the
   adjustment value can be saved in an associated data structure for a
   mapping to avoid computing it for each translation.

   On reception of an ILA addressed packet, if the C-bit is set in an
   ILA address:

      1) Compute the one’s complement difference between the locator in
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         the address and the SIR prefix that the locator is being
         translated to. Fold this value to 16 bits (add-with-carry four
         16-bit words of the difference).

      2) Add-with-carry 0x1000 to the value from #1. This compensates
         the checksum for clearing the C-bit.

      3) Add-with-carry the value from #2 to the low order sixteen bits
         of the identifier.

      4) Set the resultant value from #3 in the low order sixteen bits
         of the identifier and clear the C-bit. This restores the
         original identifier sent in the packet.

4.4.2 Sending an unmodified checksum

   When sending an unmodified checksum, the checksum is incorrect as
   viewed in the packet on the wire. At the receiver, ILA translation of
   the destination ILA address back to the SIR address occurs before
   transport layer processing. This ensures that the checksum can be
   verified when processing the transport layer header containing the
   checksum. Intermediate devices are not expected to drop packets due
   to a bad transport layer checksum.

4.5 Address selection

   There may be multiple possibilities for creating either a source or
   destination address. A node may be associated with more than one
   identifier, and there may be multiple locators for a particular
   identifier. The choice of locator or identifier is implementation or
   configuration specific. The selection of an identifier occurs at flow
   creation and must be invariant for the duration of the flow. Locator
   selection must be done at least once per flow, and the locator
   associated with the destination of a flow may change during the
   lifetime of the flow (for instance in the case of a migrating
   connection it will change). ILA address selection should follow
   specifications in Default Address Selection for Internet Protocol
   Version 6 (IPv6) [RFC6724].

4.6 Duplicate identifier detection

   As part of implementing the locator to identifier mapping, duplicate
   identifier detection should be implemented in a centralized control
   plane. A registry of identifiers could be maintained (possibly in
   association the identifier to locator mapping database). When a node
   creates an identifier it registers the identifier, and when the
   identifier is no longer in use (e.g. task completes) the identifier
   is unregistered. The control plane should able to detect a
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   registration attempt for an existing identifier and deny the request.

4.7 ICMP error handling

   A packet that contains an ILA address may cause ICMP errors within
   the network. In this case the ICMP data contains an IP header with an
   ILA address. ICMP messages are sent back to the source address in the
   packet. Upon receiving an ICMP error the host will process it
   differently depending on whether it is ILA capable.

4.7.1 Handling ICMP errors by ILA capable hosts

   If a host is ILA capable it can attempt to reverse translate the ILA
   address in the destination of a header in the ICMP data back to a SIR
   address that was originally used to transmit the packet. The steps
   are:

      1) Assume that the upper sixty-four bits of the destination
         address in the ICMP data is a locator. Try match these bits
         back to a SIR address. If the host is only in one SIR domain,
         then the mapping to SIR address is implicit. If the host is in
         multiple domains then a locator to SIR addresses table can be
         maintained for this lookup.

      2) If the identifier is marked with checksum-neutral mapping, undo
         the checksum-neutral using the SIR address found in #1. The
         resulting identifier address is potentially the original
         address used to send the packet.

      3) Lookup the identifier in the identifier to locator mapping
         table. If an entry is found compare the locator in the entry to
         the locator (upper sixty-four bits) of the destination address
         in the IP header of the ICMP data. If these match then proceed
         to next step.

      4) Overwrite the upper sixty-four bits of the destination address
         in the ICMP data with the found SIR address and overwrite the
         low order sixty-four bits with the found identifier (the result
         of undoing checksum-neutral mapping). The resulting address
         should be the original SIR address used in sending. The ICMP
         error packet can then be received by the stack for further
         processing.

4.7.2 Handling ICMP errors by non-ILA capable hosts

   A non-ILA capable host may receive an ICMP error generated by the
   network that contains an ILA address in an IP header contained in the
   ICMP data. This would happen in the case that an ILA router performed
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   translation on a packet the host sent and that packet subsequently
   generated an ICMP error. In this case the host receiving the error
   message will attempt to find the connection state corresponding to
   the packet in headers the ICMP data. Since the host is unaware of ILA
   the lookup for connection state should fail. Because the host cannot
   recover the original addresses it used to send the packet, it won’t
   be able any to derive any useful information about the original
   destination of the packet that it sent.

   If packets for a flow are always routed through an ILA router in both
   directions, for example ILA routers are coincident with edge routes
   in a network, then ICMP errors could be intercepted by an
   intermediate node which could translate the destination addresses in
   ICMP data back to the original SIR addresses. A receiving host would
   then see the destination address in the packet of the ICMP data to be
   that it used to transmit the original packet.

4.8 Multicast

   ILA is generally not intended for use with multicast. In the case of
   multicast, routing of packets is based on the source address. Neither
   the SIR address nor an ILA address is suitable for use as a source
   address in a multicast packet. A SIR address is unroutable and hence
   would make a multicast packet unroutable if used as a source address.
   Using an ILA address as the source address makes the multicast packet
   routable, but this exposes ILA address to applications which is
   especially problematic on a multicast receiver that doesn’t support
   ILA.

   If all multicast receivers are known to support ILA, a local locator
   address may be used in the source address of the multicast packet. In
   this case, each receiver will translate the source address from an
   ILA address to a SIR address before delivering packets to an
   application.

5 Motivation for ILA

5.1 Use cases

5.1.1 Multi-tenant virtualization

   In multi-tenant virtualization overlay networks are established for
   tenants to provide virtual networks. Each tenant may have one or more
   virtual networks and a tenant’s nodes are assigned virtual addresses
   within virtual networks. Identifier-locator addressing may be used as
   an alternative to traditional network virtualization encapsulation
   protocols used to create overlay networks (e.g. VXLAN [RFC7348]).
   Section 5.2.4 describes the advantages of using ILA in lieu of
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   encapsulation protocols.

   Tenant systems (e.g. VMs) run on physical hosts and may migrate to
   different hosts. A tenant system is identified by a virtual address
   and virtual networking identifier of a corresponding virtual network.
   ILA can encode the virtual address and a virtual networking
   identifier in an ILA identifier. Each identifier is mapped to a
   locator that indicates the current host where the tenant system
   resides. Nodes that send to the tenant system set the locator per the
   mapping. When a tenant system migrates its identifier to locator
   mapping is updated and communicating nodes will use the new mapping.

5.1.2 Datacenter virtualization

   Datacenter virtualization virtualizes networking resources. Various
   objects within a datacenter can be assigned addresses and serve as
   logical endpoints of communication. A large address space, for
   example that of IPv6, allows addressing to be used beyond the
   traditional concepts of host based addressing. Addressed objects can
   include tasks, virtual IP addresses (VIPs), pieces of content, disk
   blocks, etc. Each object has a location which is given by the host on
   which an object resides. Some objects may be migratable between hosts
   such that their location changes over time.

   Objects are identified by a unique identifier within a namespace for
   the datacenter (appendix B discusses methods to create unique
   identifiers for ILA). Each identifier is mapped to a locator that
   indicates the current host where the object resides. Nodes that send
   to an object set the locator per the mapping. When an object migrates
   its identifier to locator mapping is updated and communicating nodes
   will use the new mapping.

   A datacenter object of particular interest is tasks, units of
   execution for for applications. The goal of virtualzing tasks is to
   maximize resource efficiency and job scheduling. Tasks share many
   properties of tenant systems, however they are finer grained objects,
   may have a shorter lifetimes, and are likely created in greater
   numbers. Appendix C provides more detail and motivation for
   virtualizing tasks using ILA.

5.1.3 Device mobility

   ILA may be applied as a solution for mobile devices. These are
   devices, smart phones for instance, that physically move between
   different networks. The goal of mobility is to provide a seamless
   transition when a device moves from one network to another.

   Each mobile device is identified by unique identifier within some
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   provider domain. ILA encodes the identifier for the device in an ILA
   identifier. Each identifier is mapped to a locator that indicates the
   current network or point of attachment for the device. Nodes that
   send to the device set the locator per the mapping. When a mobile
   device moves between networks its identifier to locator mapping is
   updated and communicating nodes will use the new mapping.

5.2 Alternative methods

   This section discusses the merits of alternative solution that have
   been proposed to provide network virtualization or mobility in IPv6.

5.2.1 ILNP

   ILNP splits an address into a locator and identifier in the same
   manner as ILA. ILNP has characteristics, not present in ILA, that
   prevent it from being a practical solution:

      o ILNP requires that transport layer protocol implementations must
        be modified to work over ILNP.

      o ILNP can only be implemented in end hosts, not within the
        network. This essentially requires that all end hosts need to be
        modified to participate in mobility.

      o ILNP employs IPv6 extension headers which are mostly considered
        non-deployable. ILA does not use these.

      o Core support for ILA is in upstream Linux, to date there is no
        publicly available source code for ILNP.

      o ILNP involves DNS to distribute mapping information, ILA assumes
        mapping information is not part of naming.

5.2.2 Flow label as virtual network identifier

   The IPv6 flow label could conceptually be used as a 20-bit virtual
   network identifier in order to indicate a packet is sent on an
   overlay network. In this model the addresses may be virtual addresses
   within the specified virtual network. Presumably, the tuple of flow-
   label and addresses could be used by switches to forward virtually
   addressed packets.

   This approach has some issues:

      o Forwarding virtual packets to their physical location would
        require specialized switch support.
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      o The flow label is only twenty bits, this is too small to be a
        discriminator in forwarding a virtual packet to a specific
        destination. Conceptually, the flow label might be used in a
        type of label switching to solve that.

      o The flow label is not considered immutable in transit,
        intermediate devices may change it.

      o The flow label is not part of the pseudo header for transport
        checksum calculation, so it is not covered by any transport (or
        other) checksums.

5.2.3 Extension headers

   To accomplish network virtualization an extension header, as a
   destination or routing option, could be used that contains the
   virtual destination address of a packet. The destination address in
   the IPv6 header would be the topological address for the location of
   the virtual node. Conceivably, segment routing could be used to
   implement network virtualization in this manner.

   This technique has some issues:

      o Intermediate devices must not insert extension headers
        [RFC2460bis].

      o Extension headers introduce additional packet overhead which may
        impact performance.

      o Extension headers are not covered by transport checksums (as the
        addresses would be) nor any other checksum.

      o Extension headers are not widely supported in network hardware
        or devices. For instance, several NIC offloads don’t work in the
        presence of extension headers.

5.2.4 Encapsulation techniques

   Various encapsulation techniques have been proposed for implementing
   network virtualization and mobility. LISP is an example of an
   encapsulation that is based on locator identifier separation similar
   to ILA. The primary drawback of encapsulation is complexity and per
   packet overhead. For, instance when LISP is used with IPv6 the
   encapsulation overhead is fifty-six bytes and two IP headers are
   present in every packet. This adds considerable processing costs,
   requires considerations to handle path MTU correctly, and certain
   network accelerations may be lost.
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6  IANA Considerations

   There are no IANA considerations in this specification.
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Appendix A: Communication scenarios

   This section describes the use of identifier-locator addressing in
   several scenarios.

A.1 Terminology for scenario descriptions

   A formal notation for identifier-locator addressing with ILNP is
   described in [RFC6740]. We extend this to include for network
   virtualization cases.

   Basic terms are:

      A = IP Address
      I = Identifier
      L = Locator
      LUI = Locally unique identifier
      VNI = Virtual network identifier
      VA  = An IPv4 or IPv6 virtual address
      VAX = An IPv6 networking identifier (IPv6 VA mapped to VAX)
      SIR = Prefix for standard identifier representation
      VNET = IPv6 prefix for a tenant (assumed to be globally routable)
      Iaddr = IPv6 address of an Internet host

   An ILA IPv6 address is denoted by

     L:I

   A SIR address with a locally unique identifier and SIR prefix is
   denoted by

     SIR:LUI

   A virtual identifier with a virtual network identifier and a virtual
   IPv4 address is denoted by

     VNI:VA

   An ILA IPv6 address with a virtual networking identifier for IPv4
   would then be denoted

     L:(VNI:VA)

   The local and remote address pair in a packet or endpoint is denoted

     A,A

   An address translation sequence from SIR addresses to ILA addresses
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   for transmission on the network and back to SIR addresses at a
   receiver has notation:

     A,A -> L:I,A -> A,A

A.2 Identifier objects

   Identifier-locator addressing is broad enough in scope to address
   many different types of networking entities. For the purposes of this
   section we classify these as "objects" and "tenant systems".

   Objects encompass uses where nodes are address by local unique
   identifiers (LUI). In the scenarios below objects are denoted by OBJ.

   Tenant systems are those associated with network virtualization that
   have virtual addresses (that is they are addressed by VNI:VA). In the
   scenarios below tenant systems are denoted by TS.

A.3 Reference network for scenarios

   The figure below provides an example network topology with ILA
   addressing in use. In this example, there are four hosts in the
   network with locators L1, L2, L3, and L4. There three objects with
   identifiers O1, O2, and O3, as well as a common networking service
   with identifier S1. There are two virtual networks VNI1 and VNI2, and
   four tenant systems addressed as: VA1 and VA2 in VNI1, VA3 and VA4 in
   VNI2. The network is connected to the Internet via a gateway.
         ‘                     .............
                               .           .
   +-----------------+         . Internet  .         +-----------------+
   |    Host L1      |         .           .         |    Host L2      |
   | +-------------+ |         .............         | +-------------+ |
   | | TS VNI1:VA1 | |               |               | | TS VNI1:VA2 | |
   | +-------------+ +---+     +-----+-----+     +---+ +-------------+ |
   | +-------------+ |   |     | Gateway   |     |   | +-------------+ |
   | | OBJ O1      | |   |     +-----+-----+     |   | | TS VNI2:VA3 | |
   | +-------------+ |   |           |           |   | +-------------+ |
   +-----------------+   |     .............     |   +-----------------+
                         +-----.           .-----+
   +-----------------+         . Underlay  .         +-----------------+
   |   Host L3       |   +-----.  Network  .---+     |    Host L4      |
   | +-------------+ |   |     .............   |     | +-------------+ |
   | |  OBJ O2     | |   |                     |     | | VM VNI2:VA4 | |
   | +-------------+ +---+                     +-----| +-------------+ |
   | +-------------+ |                               | +-------------+ |
   | |  OBJ O3     | |                               | | Serv. S1    | |
   | +-------------+ |                               | +-------------+ |
   +-----------------+                               +-----------------+
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   Several communication scenarios can be considered:

      1) Object to object
      2) Object to Internet
      3) Internet to object
      4) Tenant system to local service
      5) Object to tenant system
      6) Tenant system to Internet
      7) Internet to tenant system
      8) IPv4 tenant system to service
      9) Tenant system to tenant system same virtual network using IPv6
      10) Tenant system to tenant system in same virtual network using
   IPv4
      11) Tenant system to tenant system in different virtual network
   using IPv6
      12) Tenant system to tenant system in different virtual network
   using IPv4
      13) IPv4 tenant system to IPv6 tenant system in different virtual
   networks

A.4 Scenario 1: Object to task

   The transport endpoints for object to object communication are the
   SIR addresses for the objects. When a packet is sent on the wire, the
   locator is set in the destination address of the packet. On reception
   the destination addresses is converted back to SIR representation for
   processing at the transport layer.

   If object O1 is communicating with object O2, the ILA translation
   sequence would be:

     SIR:O1,SIR:O2 ->                     // Transport endpoints on O1
     SIR:O1,L3:O2 ->                      // ILA used on the wire
     SIR:O1,SIR:O2                        // Received at O2

A.5 Scenario 2: Object to Internet

   Communication from an object to the Internet is accomplished through
   use of a SIR address (globally routable) in the source address of
   packets. No ILA translation is needed in this path.

   If object O1 is sending to an address Iaddr on the Internet, the
   packet addresses would be:

     SIR:O1,Iaddr

A.6 Scenario 3: Internet to object
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   An Internet host transmits a packet to a task using an externally
   routable SIR address. The SIR prefix routes the packet to a gateway
   for the datacenter. The gateway translates the destination to an ILA
   address.

   If a host on the Internet with address Iaddr sends a packet to object
   O3, the ILA translation sequence would be:

     Iaddr,SIR:O3 ->                      // Transport endpoint at Iaddr
     Iaddr,L1:O3 ->                       // On the wire in datacenter
     Iaddr,SIR:O3                         // Received at O3

A.7 Scenario 4: Tenant system to service

   A tenant can communicate with a datacenter service using the SIR
   address of the service.

   If TS VA1 is communicating with service S1, the ILA translation
   sequence would be:

     VNET:VA1,Saddr->                     // Transport endpoints in TS
     SIR:(VNET:VA1):Saddr->               // On the wire
     SIR:(VNET:VA1):Saddr                 // Received at S1

   Where VNET is the address prefix for the tenant and Saddr is the IPv6
   address of the service.

   The ILA translation sequence in the reverse path, service to tenant
   system, would be:

     Saddr,SIR:(VNET:VA1)                 // Transport endpoints in S1
     Saddr,L1:(VNET:VA1)                  // On the wire
     Saddr,VNET:VA1                       // Received at the TS

   Note that from the point of view of the service task there is no
   material difference between a peer that is a tenant system versus one
   which is another task.

A.8 Scenario 5: Object to tenant system

   An object can communicate with a tenant system through it’s
   externally visible address.

   If object O2 is communicating with TS VA4, the ILA translation
   sequence would be:

     SIR:O2,VNET:VA4 ->                // Transport endpoints at T2
     SIR:O2,L4:(VNI2:VAX4) ->          // On the wire
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     SIR:O2,VNET:VA4                   // Received at TS

A.9 Scenario 6: Tenant system to Internet

   Communication from a TS to the Internet assumes that the VNET for the
   TS is globally routable, hence no ILA translation would be needed.

   If TS VA4 sends a packet to the Internet, the addresses would be:

     VNET:VA4,Iaddr

A.10 Scenario 7: Internet to tenant system

   An Internet host transmits a packet to a tenant system using an
   externally routable tenant prefix and address. The prefix routes the
   packet to a gateway for the datacenter. The gateway translates the
   destination to an ILA address.

   If a host on the Internet with address Iaddr is sending to TS VA4,
   the ILA translation sequence would be:

     Iaddr,VNET:VA4 ->                   // Endpoint at Iaddr
     Iaddr,L4:(VNI2:VAX4) ->             // On the wire in datacenter
     Iaddr,VNET:VA4                      // Received at TS

A.11 Scenario 8: IPv4 tenant system to object

   A TS that is IPv4-only may communicate with an object using protocol
   translation. The object would be represented as an IPv4 address in
   the tenant’s address space, and stateless NAT64 should be usable as
   described in [RFC6145].

   If TS VA2 communicates with object O3, the ILA translation sequence
   would be:

     VA2,ADDR3 ->                        // IPv4 endpoints at TS
     SIR:(VNI1:VA2),L3:O3 ->             // On the wire in datacenter
     SIR:(VNI1:VA2),SIR:O3               // Received at task

   VA2 is the IPv4 address in the tenant’s virtual network, ADDR4 is an
   address in the tenant’s address space that maps to the network
   service.

   The reverse path, task sending to a TS with an IPv4 address, requires
   a similar protocol translation.

   For object O3 communicate with TS VA2, the ILA translation sequence
   would be:
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     SIR:O3,SIR:(VNI1:VA2) ->           // Endpoints at T4
     SIR:O3,L2:(VNI1:VA2) ->            // On the wire in datacenter
     ADDR4,VA2                          // IPv4 endpoint at TS

A.12 Tenant to tenant system in the same virtual network

   ILA may be used to allow tenants within a virtual network to
   communicate without the need for explicit encapsulation headers.

A.12.1 Scenario 9: TS to TS in the same VN using IPV6

   If TS VA1 sends a packet to TS VA2, the ILA translation sequence
   would be:

     VNET:VA1,VNET:VA2 ->                // Endpoints at VA1
     VNET:VA1,L2:(VNI1,VAX2) ->          // On the wire
     VNET:VA1,VNET:VA2 ->                // Received at VA2

A.12.2 Scenario 10: TS to TS in same VN using IPv4

   For two tenant systems to communicate using IPv4 and ILA, IPv4/IPv6
   protocol translation is done both on the transmit and receive.

   If TS VA1 sends an IPv4 packet to TS VA2, the ILA translation
   sequence would be:

     VA1,VA2 ->                          // Endpoints at VA1
     SIR:(VNI1:VA1),L2:(VNI1,VA2) ->     // On the wire
     VA1,VA2                             // Received at VA2

   Note that the SIR is chosen by an ILA node  as an appropriate SIR
   prefix in the underlay network. Tenant systems do not use SIR address
   for this communication, they only use virtual addresses.

A.13 Tenant system to tenant system in different virtual networks

   A tenant system may be allowed to communicate with another tenant
   system in a different virtual network. This should only be allowed
   with explicit policy configuration.

A.13.1 Scenario 11: TS to TS in different VNs using IPV6

   For TS VA4 to communicate with TS VA1 using IPv6 the translation
   sequence would be:

     VNET2:VA4,VNET1:VA1->                // Endpoint at VA4
     VNET2:VA4,L1:(VNI1,VAX1)->           // On the wire
     VNET2:VA4,VNET1:VA1                  // Received at VA1
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   Note that this assumes that VNET1 and VNET2 are globally routable
   between the two virtual networks.

A.13.2 Scenario 12: TS to TS in different VNs using IPv4

   To allow IPv4 tenant systems in different virtual networks to
   communicate with each other, an address representing the peer would
   be mapped into each tenant’s address space. IPv4/IPv6 protocol
   translation is done on transmit and receive.

   For TS VA4 to communicate with TS VA1 using IPv4 the translation
   sequence may be:

     VA4,SADDR1 ->                        // IPv4 endpoint at VA4
     SIR:(VNI2:VA4),L1:(VNI1,VA1)->       // On the wire
     SADDR4,VA1                           // Received at VA1

      SADDR1 is the mapped address for VA1 in VA4’s address space, and
      SADDR4 is the mapped address for VA4 in VA1’s address space.

A.13.3 Scenario 13: IPv4 TS to IPv6 TS in different VNs

   Communication may also be mixed so that an IPv4 tenant system can
   communicate with an IPv6 tenant system in another virtual network.
   IPv4/IPv6 protocol translation is done on transmit.

   For TS VA4 using IPv4 to communicate with TS VA1 using IPv6 the
   translation sequence may be:

     VA4,SADDR1 ->                        // IPv4 endpoint at VA4
     SIR:(VNI2:VA4),L1:(VNI1,VAX1)->      // On the wire
     SIR:(VNI2:VA4),VNET1:VA1             // Received at VA1

   SADDR1 is the mapped IPv4 address for VA1 in VA4’s address space.

   In the reverse direction, TS VA1 using IPv6 would communicate with TS
   VA4 with the translation sequence:

     VNET1:VA1,SIR:(VNI2:VA4)             // Endpoint at VA1
     VNET1:VA1,L4:(VNI2:VA4)              // On the wire
     SADDR1,VA4                           // Received at VA4
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Appendix B: unique identifier generation

   The unique identifier type of ILA identifiers can address 2**60
   objects. This appendix describes some method to perform allocation of
   identifiers for objects to avoid duplicated identifiers being
   allocated.

B.1 Globally unique identifiers method

   For small to moderate sized deployments the technique for creating
   locally assigned global identifiers described in [RFC4193] could be
   used. In this technique a SHA-1 digest of the time of day in NTP
   format and an EUI-64 identifier of the local host is performed. N
   bits of the result are used as the globally unique identifier.

   The probability that two or more of these IDs will collide can be
   approximated using the formula:

       P = 1 - exp(-N**2 / 2**(L+1))

   where P is the probability of collision, N is the number of
   identifiers, and L is the length of an identifier.

   The following table shows the probability of a collision for a range
   of identifiers using a 60-bit length.

         Identifiers      Probability of Collision
                1000      4.3368*10^-13
               10000      4.3368*10^-11
              100000      4.3368*10^-09
             1000000      4.3368*10^-07

   Note that locally unique identifiers may be ephemeral, for instance a
   task may only exist for a few seconds. This should be considered when
   determining the probability of identifier collision.

B.2 Universally Unique Identifiers method

   For larger deployments, hierarchical allocation may be desired. The
   techniques in Universally Unique Identifier (UUID) URN ([RFC4122])
   can be adapted for allocating unique object identifiers in sixty
   bits. An identifier is split into two components: a registrar prefix
   and sub-identifier. The registrar prefix defines an identifier block
   which is managed by an agent, the sub-identifier is a unique value
   within the registrar block.

   For instance, each host in a network could be an agent so that unique
   identifiers for objects could be created autonomously be the host.
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   The identifier might be composed of a twenty-four bit host identifier
   followed by a thirty-six bit timestamp. Assuming that a host can
   allocate up to 100 identifiers per second, this allows about 21.8
   years before wrap around.

      /* LUI identifier with host registrar and timestamp  */
      |3 bits|1|    24 bits      |               36  bits              |
      +------+-------------------+-------------------------------------+
      | 0x1  |C| Host identifier |        Timestamp Identifier         |
      +----------------------------------------------------------------+

Appendix C: Datacenter task virtualization

   This section describes some details to apply ILA to virtualizing
   tasks in a datacenter.

C.1 Address per task

   Managing the port number space for services within a datacenter is a
   nontrivial problem. When a service task is created, it may run on
   arbitrary hosts. The typical scenario is that the task will be
   started on some machine and will be assigned a port number for its
   service. The port number must be chosen dynamically to not conflict
   with any other port numbers already assigned to tasks on the same
   machine (possibly even other instances of the same service). A
   canonical name for the service is entered into a database with the
   host address and assigned port. When a client wishes to connect to
   the service, it queries the database with the service name to get
   both the address of an instance as well as its port number. Note that
   DNS is not adequate for the service lookup since it does not provide
   port numbers.

   With ILA, each service task can be assigned its own IPv6 address and
   therefore will logically be assigned the full port space for that
   address. This a dramatic simplification since each service can now
   use a publicly known port number that does not need to unique between
   services or instances. A client can perform a lookup on the service
   name to get an IP address of an instance and then connect to that
   address using a well known port number. In this case, DNS is
   sufficient for directing clients to instances of a service.

C.2 Job scheduling

   In the usual datacenter model, jobs are scheduled to run as tasks on
   some number of machines. A distributed job scheduler provides the
   scheduling which may entail considerable complexity since jobs will
   often have a variety of resource constraints. The scheduler takes
   these constraints into account while trying to maximize utility of
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   the datacenter in terms utilization, cost, latency, etc. Datacenter
   jobs do not typically run in virtual machines (VMs), but may run
   within containers. Containers are mechanisms that provide resource
   isolation between tasks running on the same host OS. These resources
   can include CPU, disk, memory, and networking.

   A fundamental problem arises in that once a task for a job is
   scheduled on a machine, it often needs to run to completion. If the
   scheduler needs to schedule a higher priority job or change resource
   allocations, there may be little recourse but to kill tasks and
   restart them on a different machine. In killing a task, progress is
   lost which results in increased latency and wasted CPU cycles. Some
   tasks may checkpoint progress to minimize the amount of progress
   lost, but this is not a very transparent or general solution.

   An alternative approach is to allow transparent job migration. The
   scheduler may migrate running jobs from one machine to another.

C.3 Task migration

   Under the orchestration of the job scheduler, the steps to migrate a
   job may be:

      1) Stop running tasks for the job.
      2) Package the runtime state of the job. The runtime state is
         derived from the containers for the jobs.
      3) Send the runtime state of the job to the new machine where the
         job is to run.
      4) Instantiate the job’s state on the new machine.
      5) Start the tasks for the job continuing from the point at which
         it was stopped.

   This model similar to virtual machine (VM) migration except that the
   runtime state is typically much less data-- just task state as
   opposed to a full OS image. Task state may be compressed to reduce
   latency in migration.

C.3.1 Address migration

   ILA facilitates address (specifically SIR address) migration between
   hosts as part of task migration or for other purposes. The steps in
   migrating an address might be:

      1) Configure address on the target host.

      2) Suspend use of the address on the old host. This includes
         handling established connections (see next section). A state
         may be established to drop packets or send ICMP destination
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         unreachable when packets to the migrated address are received.

      3) Update the identifier to locator mapping database. Depending on
         the control plane implementation this may include pushing the
         new mapping to hosts.

      4) Communicating hosts will learn of the new mapping via a control
         plane either by participation in a protocol for mapping
         propagation or by the ILA resolution protocol.

C.3.2 Connection migration

   When a task and its addresses are migrated between machines, the
   disposition of existing TCP connections needs to be considered.

   The simplest course of action is to drop TCP connections across a
   migration. Since migrations should be relatively rare events, it is
   conceivable that TCP connections could be automatically closed in the
   network stack during a migration event. If the applications running
   are known to handle this gracefully (i.e. reopen dropped connections)
   then this may be viable.

   For seamless migration, open connections may be migrated between
   hosts. Migration of these entails pausing the connection, packaging
   connection state and sending to target, instantiating connection
   state in the peer stack, and restarting the connection. From the time
   the connection is paused to the time it is running again in the new
   stack, packets received for the connection should be silently
   dropped. For some period of time, the old stack will need to keep a
   record of the migrated connection. If it receives a packet, it should
   either silently drop the packet or forward it to the new location.
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Abstract

   This specification describes Generic UDP Encapsulation (GUE), which
   is a scheme for using UDP to encapsulate packets of different IP
   protocols for transport across layer 3 networks. By encapsulating
   packets in UDP, specialized capabilities in networking hardware for
   efficient handling of UDP packets can be leveraged. GUE specifies
   basic encapsulation methods upon which higher level constructs, such
   as tunnels and overlay networks for network virtualization, can be
   constructed. GUE is extensible by allowing optional data fields as
   part of the encapsulation, and is generic in that it can encapsulate
   packets of various IP protocols.
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1. Introduction

   This specification describes Generic UDP Encapsulation (GUE) which is
   a general method for encapsulating packets of arbitrary IP protocols
   within User Datagram Protocol (UDP) [RFC0768] packets. Encapsulating
   packets in UDP facilitates efficient transport across networks.
   Networking devices widely provide protocol specific processing and
   optimizations for UDP (as well as TCP) packets. Packets for atypical
   IP protocols (those not usually parsed by networking hardware) can be
   encapsulated in UDP packets to maximize deliverability and to
   leverage flow specific mechanisms for routing and packet steering.

   GUE provides an extensible header format for including optional data
   in the encapsulation header. This data potentially covers items such
   as the virtual networking identifier, security data for validating or
   authenticating the GUE header, congestion control data, etc. GUE also
   allows private optional data in the encapsulation header. This
   feature can be used by a site or implementation to define local
   custom optional data, and allows experimentation of options that may
   eventually become standard.

   This document does not define any specific GUE extensions.
   [GUEEXTENS] specifies a set of core extensions and [GUE4NVO3] defines
   an extension for using GUE with network virtualization.

   The motivation for the GUE protocol is described in section 6.

1.1. Terminology and acronyms

   GUE              Generic UDP Encapsulation

   GUE Header       A variable length protocol header that is composed
                    of a primary four byte header and zero or more four
                    byte words for optional header data

   GUE packet       A UDP/IP packet that contains a GUE header and GUE
                    payload within the UDP payload

   Encapsulator     A network node that encapsulates a packet in GUE

   Decapsulator     A network node that decapsulates and processes
                    packets encapsulated in GUE

   Data message     An encapsulated packet in the GUE payload that is
                    addressed to the protocol stack for an associated
                    protocol

   Control message  A formatted message in the GUE payload that is
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                    implicitly addressed to the decapsulator to monitor
                    or control the state or behavior of a tunnel

   Flags            A set of bit flags in the primary GUE header

   Extension field
                    An optional field in a GUE header whose presence is
                    indicated by corresponding flag(s)

   C-bit            A single bit flag in the primary GUE header that
                    indicates whether the GUE packet contains a control
                    message or data message

   Hlen             A field in the primary GUE header that gives the
                    length of the GUE header

   Proto/ctype      A field in the GUE header that holds either the IP
                    protocol number for a data message or a type for a
                    control message

   Private data     Optional data in the GUE header that can be used for
                    private purposes

   Outer IP header  Refers to the outer most IP header or packet when
                    encapsulating a packet over IP

   Inner IP header  Refers to an encapsulated IP header when an IP
                    packet is encapsulated

   Outer packet     Refers to an encapsulating packet

   Inner packet     Refers to a packet that is encapsulated

1.2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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2. Base packet format

   A GUE packet is comprised of a UDP packet whose payload is a GUE
   header followed by a payload which is either an encapsulated packet
   of some IP protocol or a control message such as an OAM (Operations,
   Administration, and Management) message. A GUE packet has the general
   format:

   +-------------------------------+
   |                               |
   |        UDP/IP header          |
   |                               |
   |-------------------------------|
   |                               |
   |         GUE Header            |
   |                               |
   |-------------------------------|
   |                               |
   |      Encapsulated packet      |
   |      or control message       |
   |                               |
   +-------------------------------+

   The GUE header is variable length as determined by the presence of
   optional extension fields.

2.1. GUE version

   The first two bits of the GUE header contain the GUE protocol version
   number. The rest of the fields after the GUE version number are
   defined based on the version number. Versions 0 and 1 are described
   in this specification; versions 2 and 3 are reserved.

3. Version 0

   Version 0 of GUE defines a generic extensible format to encapsulate
   packets by Internet protocol number.
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3.1. Header format

   The header format for version 0 of GUE in UDP is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+\
   |        Source port            |      Destination port         | |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP
   |           Length              |          Checksum             | |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+/
   | 0 |C|   Hlen  |  Proto/ctype  |             Flags             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ˜                  Extensions Fields (optional)                 ˜
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ˜                    Private data (optional)                    ˜
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The contents of the UDP header are:

      o Source port: If connection semantics (section 5.6.1) are applied
        to an encapsulation, this is set to the local source port for
        the connection. When connection semantics are not applied, this
        is set to a flow entropy value for use with ECMP (Equal-Cost
        Mulit-Path [RFC2992]). The properties of flow entropy are
        described in section 5.11.

      o Destination port: If connection semantics (section 5.6.1) are
        applied to an encapsulation, this is set to the destination port
        for the tuple. If connection semantics are not applied this is
        set to the GUE assigned port number, 6080.

      o Length: Canonical length of the UDP packet (length of UDP header
        and payload).

      o Checksum: Standard UDP checksum (handling is described in
        section 5.7).

   The GUE header consists of:

      o Ver: GUE protocol version (0).

      o C: C-bit: When set indicates a control message, not set
        indicates a data message.
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      o Hlen: Length in 32-bit words of the GUE header, including
        optional extension fields but not the first four bytes of the
        header. Computed as (header_len - 4) / 4 where header_len is the
        total header length in bytes. All GUE headers are a multiple of
        four bytes in length. Maximum header length is 128 bytes.

      o Proto/ctype: When the C-bit is set, this field contains a
        control message type for the payload (section 3.2.2). When C-bit
        is not set, the field holds the Internet protocol number for the
        encapsulated packet in the payload (section 3.2.1). The control
        message or encapsulated packet begins at the offset provided by
        Hlen.

      o Flags: Header flags that may be allocated for various purposes
        and may indicate presence of extension fields. Undefined header
        flag bits MUST be set to zero on transmission.

      o Extension Fields: Optional fields whose presence is indicated by
        corresponding flags.

      o Private data: Optional private data block (see section 3.4). If
        the private block is present, it immediately follows that last
        extension field present in the header. The private block is
        considered to be part of the GUE header. The length of this data
        is determined by subtracting the starting offset from the header
        length.

3.2. Proto/ctype field

   The proto/ctype fields either contains an Internet protocol number
   (when the C-bit is not set) or GUE control message type (when the C-
   bit is set).

3.2.1 Proto field

   When the C-bit is not set, the proto/ctype field MUST contain an IANA
   Internet Protocol Number. The protocol number is interpreted relative
   to the IP protocol that encapsulates the UDP packet (i.e. protocol of
   the outer IP header). The protocol number serves as an indication of
   the type of the next protocol header which is contained in the GUE
   payload at the offset indicated in Hlen. Intermediate devices may
   parse the GUE payload per the number in the proto/ctype field, and
   header flags cannot affect the interpretation of the proto/ctype
   field.

   When the outer IP protocol is IPv4, the proto field MUST be set to a
   valid IP protocol number usable with IPv4; it MUST NOT be set to a
   number for IPv6 extension headers or ICMPv6 options (number 58). An
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   exception is that the destination options extension header using the
   PadN option MAY be used with IPv4 as described in section 3.6. The
   "no next header" protocol number (59) also MAY be used with IPv4 as
   described below.

   When the outer IP protocol is IPv6, the proto field can be set to any
   defined protocol number except that it MUST NOT be set to Hop-by-hop
   options (number 0). If a received GUE packet in IPv6 contains a
   protocol number that is an extension header (e.g. Destination
   Options) then the extension header is processed after the GUE header
   is processed as though the GUE header is an extension header.

   IP protocol number 59 ("No next header") can be set to indicate that
   the GUE payload does not begin with the header of an IP protocol.
   This would be the case, for instance, if the GUE payload were a
   fragment when performing GUE level fragmentation. The interpretation
   of the payload is performed through other means (such as flags and
   extension fields), and intermediate devices MUST NOT parse packets
   based on the IP protocol number in this case.

3.2.2 Ctype field

   When the C-bit is set, the proto/ctype field MUST be set to a valid
   control message type. A value of zero indicates that the GUE payload
   requires further interpretation to deduce the control type. This
   might be the case when the payload is a fragment of a control
   message, where only the reassembled packet can be interpreted as a
   control message.

   Control messages will be defined in an IANA registry. Control message
   types 1 through 127 may be defined in by RFCs. Types 128 through 255
   are reserved to be user defined for experimentation or private
   control messages.

   This document does not specify any standard control message types
   other than type 0.

3.3. Flags and extension fields

   Flags and associated extension fields are the primary mechanism of
   extensibility in GUE. As mentioned in section 3.1, GUE header flags
   indicate the presence of optional extension fields in the GUE header.
   [GUEXTENS] defines a basic set of GUE extensions.

3.3.1. Requirements

   There are sixteen flag bits in the GUE header. Some flags indicate
   the presence of an extension fields. The size of an extension field
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   indicated by a flag MUST be fixed.

   Flags can be paired together to allow different lengths for an
   extension field. For example, if two flag bits are paired, a field
   can possibly be three different lengths-- that is bit value of 00
   indicates no field present; 01, 10, and 11 indicate three possible
   lengths for the field. Regardless of how flag bits are paired, the
   lengths and offsets of optional fields corresponding to a set of
   flags MUST be well defined.

   Extension fields are placed in order of the flags. New flags are to
   be allocated from high to low order bit contiguously without holes.
   Flags allow random access, for instance to inspect the field
   corresponding to the Nth flag bit, an implementation only considers
   the previous N-1 flags to determine the offset. Flags after the Nth
   flag are not pertinent in calculating the offset of the Nth flag.
   Random access of flags and fields permits processing of optional
   extensions in an order that is independent of their position in the
   packet. The processing order of extensions defined in [GUEEXTENS]
   demonstrates this property.

   Flags (or paired flags) are idempotent such that new flags MUST NOT
   cause reinterpretation of old flags. Also, new flags MUST NOT alter
   interpretation of other elements in the GUE header nor how the
   message is parsed (for instance, in a data message the proto/ctype
   field always holds an IP protocol number as an invariant).

   The set of available flags can be extended in the future by defining
   a "flag extensions bit" that refers to a field containing an
   additional set of flags.

3.3.2. Example GUE header with extension fields

   An example GUE header for a data message encapsulating an IPv4 packet
   and containing the VNID and Security extension fields (both defined
   in [GUEXTENS]) is shown below:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 |0|    3    |      94       |1|0 0 1|          0            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             VNID                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                           Security                            +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   In the above example, the first flag bit is set which indicates that
   the VNID extension is present this is a 32 bit field. The second
   through fourth bits of the flags are paired flags that indicate the
   presence of a security field with eigth possible sizes. In this
   example 001 indicates a sixty-four bit security field.

3.4. Private data

   An implementation MAY use private data for its own use. The private
   data immediately follows the last field in the GUE header and is not
   a fixed length. This data is considered part of the GUE header and
   MUST be accounted for in header length (Hlen). The length of the
   private data MUST be a multiple of four and is determined by
   subtracting the offset of private data in the GUE header from the
   header length. Specifically:

      Private_length = (Hlen * 4) - Length(flags)

   where "Length(flags)" returns the sum of lengths of all the extension
   fields present in the GUE header. When there is no private data
   present, the length of the private data is zero.

   The semantics and interpretation of private data are implementation
   specific. The private data may be structured as necessary, for
   instance it might contain its own set of flags and extension fields.

   An encapsulator and decapsulator MUST agree on the meaning of private
   data before using it. The mechanism to achieve this agreement is
   outside the scope of this document but could include implementation-
   defined behavior, coordinated configuration, in-band communication
   using GUE control messages, or out-of-band messages.

   If a decapsulator receives a GUE packet with private data, it MUST
   validate the private data appropriately. If a decapsulator does not
   expect private data from an encapsulator, the packet MUST be dropped.
   If a decapsulator cannot validate the contents of private data per
   the provided semantics, the packet MUST also be dropped. An
   implementation MAY place security data in GUE private data which if
   present MUST be verified for packet acceptance.

3.5. Message types

3.5.1. Control messages

   Control messages carry formatted data that are implicitly addressed
   to the decapsulator to monitor or control the state or behavior of a
   tunnel (OAM). For instance, an echo request and corresponding echo
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   reply message can be defined to test for liveness.

   Control messages are indicated in the GUE header when the C-bit is
   set. The payload is interpreted as a control message with type
   specified in the proto/ctype field. The format and contents of the
   control message are indicated by the type and can be variable length.

   Other than interpreting the proto/ctype field as a control message
   type, the meaning and semantics of the rest of the elements in the
   GUE header are the same as that of data messages. Forwarding and
   routing of control messages should be the same as that of a data
   message with the same outer IP and UDP header and GUE flags; this
   ensures that control messages can be created that follow the same
   path as data messages.

3.5.2. Data messages

   Data messages carry encapsulated packets that are addressed to the
   protocol stack for the associated protocol. Data messages are a
   primary means of encapsulation and can be used to create tunnels for
   overlay networks.

   Data messages are indicated in GUE header when the C-bit is not set.
   The payload of a data message is interpreted as an encapsulated
   packet of an Internet protocol indicated in the proto/ctype field.
   The encapsulated packet immediately follows the GUE header.

3.6. Hiding the transport layer protocol number

   The GUE header indicates the Internet protocol of an encapsulated
   packet. A protocol number is either contained in the Proto/ctype
   field of the primary GUE header or in the Payload Type field of a GUE
   Transform extension field (used to encrypt the payload with DTLS,
   [GUEEXTENS). If the transport protocol number needs to be hidden from
   the network, then a trivial destination options can be used.

   The PadN destination option [RFC2460] can be used to encode the
   transport protocol as a next header of an extension header (and
   maintain alignment of encapsulated transport headers). The
   Proto/ctype field or Payload Type field of the GUE Transform field is
   set to 60 to indicate that the first encapsulated header is a
   destination options extension header.

   The format of the extension header is below:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Next Header |    2      |     1     |      0    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   For IPv4, it is permitted in GUE to used this precise destination
   option to contain the obfuscated protocol number. In this case next
   header MUST refer to a valid IP protocol for IPv4. No other extension
   headers or destination options are permitted with IPv4.

4. Version 1

   Version 1 of GUE allows direct encapsulation of IPv4 and IPv6 in UDP.
   In this version there is no GUE header; a UDP packet carries an IP
   packet. The first two bits of the UDP payload for GUE are the GUE
   version and coincide with the first two bits of the version number in
   the IP header. The first two version bits of IPv4 and IPv6 are 01, so
   we use GUE version 1 for direct IP encapsulation which makes two bits
   of GUE version to also be 01.

   This technique is effectively a means to compress out the GUE header
   when encapsulating IPv4 or IPv6 packets and there are no flags or
   extension fields present. This method is compatible to use on the
   same port number as packets with the GUE header (GUE version 0
   packets). This technique saves encapsulation overhead on costly links
   for the common use case of IP encapsulation, and also obviates the
   need to allocate a separate port number for IP-over-UDP
   encapsulation.

4.1. Direct encapsulation of IPv4

   The format for encapsulating IPv4 directly in UDP is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+\
   |        Source port            |      Destination port         | |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP
   |           Length              |          Checksum             | |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+/
   |0|1|0|0|  IHL  |Type of Service|          Total Length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Identification        |Flags|      Fragment Offset    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Time to Live |   Protocol    |   Header Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Source IPv4 Address                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Destination IPv4 Address                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Note that 0100 value IP version field express the GUE version as 1
   (bits 01) and IP version as 4 (bits 0100).
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4.2. Direct encapsulation of IPv6

   The format for encapsulating IPv6 directly in UDP is demonstrated
   below:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+\
   |        Source port            |      Destination port         | |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP
   |           Length              |          Checksum             | |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+/
   |0|1|1|0| Traffic Class |           Flow Label                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Payload Length        |     NextHdr   |   Hop Limit   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                                                               |
   +                        Source IPv6 Address                    +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                                                               |
   +                      Destination IPv6 Address                 +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Note that 0110 value IP version field expresses the GUE version as 1
   (bits 01) and IP version as 6 (bits 0110).

5. Operation

   The figure below illustrates the use of GUE encapsulation between two
   hosts. Host 1 is sending packets to Host 2. An encapsulator performs
   encapsulation of packets from Host 1. These encapsulated packets
   traverse the network as UDP packets. At the decapsulator, packets are
   decapsulated and sent on to Host 2. Packet flow in the reverse
   direction need not be symmetric; GUE encapsulation is not required in
   the reverse path.

Herbert, Yong, Zia      Expires September, 2017                [Page 15]



Internet Draft         Generic UDP Encapsulation          March 13, 2017

   +---------------+                       +---------------+
   |               |                       |               |
   |    Host 1     |                       |     Host 2    |
   |               |                       |               |
   +---------------+                       +---------------+
          |                                        ^
          V                                        |
   +---------------+   +---------------+   +---------------+
   |               |   |               |   |               |
   | Encapsulator  |-->|    Layer 3    |-->| Decapsulator  |
   |               |   |    Network    |   |               |
   +---------------+   +---------------+   +---------------+

   The encapsulator and decapsulator may be co-resident with the
   corresponding hosts, or may be on separate nodes in the network.

5.1. Network tunnel encapsulation

   Network tunneling can be achieved by encapsulating layer 2 or layer 3
   packets. In this case the encapsulator and decapsulator nodes are the
   tunnel endpoints. These could be routers that provide network tunnels
   on behalf of communicating hosts.

5.2. Transport layer encapsulation

   When encapsulating layer 4 packets, the encapsulator and decapsulator
   should be co-resident with the hosts. In this case, the encapsulation
   headers are inserted between the IP header and the transport packet.
   The addresses in the IP header refer to both the endpoints of the
   encapsulation and the endpoints for terminating the transport
   protocol. Note that the transport layer ports in the encapsulated
   packet are independent of the UDP ports in the outer packet.

   Details about performing transport layer encapsulation are discussed
   in [TOU].

5.3. Encapsulator operation

   Encapsulators create GUE data messages, set the fields of the UDP
   header, set flags and optional extension fields in the GUE header,
   and forward packets to a decapsulator.

   An encapsulator can be an end host originating the packets of a flow,
   or can be a network device performing encapsulation on behalf of
   hosts (routers implementing tunnels for instance). In either case,
   the intended target (decapsulator) is indicated by the outer
   destination IP address and destination port in the UDP header.
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   If an encapsulator is tunneling packets -- that is encapsulating
   packets of layer 2 or layer 3 protocols (e.g. EtherIP, IPIP, or ESP
   tunnel mode) -- it SHOULD follow standard conventions for tunneling
   of one protocol over another. For instance, if an IP packet is being
   encapsualated in GUE then diffserv interaction [RFC2983] and ECN
   propagation for tunnels [RFC6040] SHOULD be followed.

5.4. Decapsulator operation

   A decapsulator performs decapsulation of GUE packets. A decapsulator
   is addressed by the outer destination IP address of a GUE packet.
   The decapsulator validates packets, including fields of the GUE
   header.

   If a decapsulator receives a GUE packet with an unsupported version,
   unknown flag, bad header length (too small for included extension
   fields), unknown control message type, bad protocol number, an
   unsupported payload type, or an otherwise malformed header, it MUST
   drop the packet. Such events MAY be logged subject to configuration
   and rate limiting of logging messages. No error message is returned
   back to the encapsulator. Note that set flags in a GUE header that
   are unknown to a decapsulator MUST NOT be ignored. If a GUE packet is
   received by a decapsulator with unknown flags, the packet MUST be
   dropped.

5.4.1. Processing a received data message

   If a valid data message is received, the UDP and GUE headers are
   (logically) removed from the packet. The outer IP header remains
   intact and the next protocol in the IP header is set to the protocol
   from the proto field in the GUE header. The resulting packet is then
   resubmitted into the protocol stack to process that packet as though
   it was received with the protocol in the GUE header.

   As an example, consider that a data message is received where GUE
   encapsulates an IP packet. In this case proto field in the GUE header
   is set 94 for IPIP:

   +-------------------------------------+
   |   IP header (next proto = 17,UDP)   |
   |-------------------------------------|
   |                  UDP                |
   |-------------------------------------|
   |         GUE (proto = 94,IPIP)       |
   |-------------------------------------|
   |         IP header and packet        |
   +-------------------------------------+
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   The receiver removes the UDP and GUE headers and sets the next
   protocol field in the IP packet to IPIP, which is derived from the
   GUE proto field. The resultant packet would have the format:

   +-------------------------------------+
   |   IP header (next proto = 94,IPIP)  |
   |-------------------------------------|
   |         IP header and packet        |
   +-------------------------------------+

   This packet is then resubmitted into the protocol stack to be
   processed as an IPIP packet.

5.4.2. Processing a received control message

   If a valid control message is received, the packet MUST be processed
   as a control message. The specific processing to be performed depends
   on the ctype in the GUE header.

5.5. Router and switch operation

   Routers and switches SHOULD forward GUE packets as standard UDP/IP
   packets. The outer five-tuple should contain sufficient information
   to perform flow classification corresponding to the flow of the inner
   packet. A switch does not normally need to parse a GUE header, and
   none of the flags or extension fields in the GUE header are expected
   to affect routing.

   A router MUST NOT modify a GUE header when forwarding a packet. It
   MAY encapsulate a GUE packet in another GUE packet, for instance to
   implement a network tunnel (i.e. by encapsulating an IP packet with a
   GUE payload in another IP packet as a GUE payload). In this case, the
   router takes the role of an encapsulator, and the corresponding
   decapsulator is the logical endpoint of the tunnel. When
   encapsulating a GUE packet within another GUE packet, there are no
   specified provisions to automatically GUE copy flags or fields to the
   outer GUE header. Each layer of encapsulation is considered
   independent.

5.6. Middlebox interactions

   A middle box MAY interpret some flags and extension fields of the GUE
   header for classification purposes, but is not required to understand
   any of the flags or extension fields in GUE packets. A middle box
   MUST NOT drop a GUE packet merely because there are flags unknown to
   it. The header length in the GUE header allows a middlebox to inspect
   the payload packet without needing to parse the flags or extension
   fields.
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5.6.1. Inferring connection semantics

   A middlebox might infer bidirectional connection semantics for a UDP
   flow. For instance, a stateful firewall might create a five-tuple
   rule to match flows on egress, and a corresponding five-tuple rule
   for matching ingress packets where the roles of source and
   destination are reversed for the IP addresses and UDP port numbers.
   To operate in this environment, a GUE tunnel SHOULD be configured to
   assume connected semantics defined by the UDP five tuple and the use
   of GUE encapsulation needs to be symmetric between both endpoints.
   The source port set in the UDP header MUST be the destination port
   the peer would set for replies. In this case the UDP source port for
   a tunnel would be a fixed value and not set to be flow entropy as
   described in section 5.11.

   The selection of whether to make the UDP source port fixed or set to
   a flow entropy value for each packet sent SHOULD be configurable for
   a tunnel.

5.6.2. NAT

   IP address and port translation can be performed on the UDP/IP
   headers adhering to the requirements for NAT with UDP [RFC4787]. In
   the case of stateful NAT, connection semantics MUST be applied to a
   GUE tunnel as described in section 5.6.1. GUE endpoints MAY also
   invoke STUN [RFC5389] or ICE [RFC5245] to manage NAT port mappings
   for encapsulations.

5.7. Checksum Handling

   The potential for mis-delivery of packets due to corruption of IP,
   UDP, or GUE headers needs to be considered. Historically, the UDP
   checksum would be considered sufficient as a check against corruption
   of either the UDP header and payload or the IP addresses.
   Encapsulation protocols, such as GUE, can be originated or terminated
   on devices incapable of computing the UDP checksum for packet. This
   section discusses the requirements around checksum and alternatives
   that might be used when an endpoint does not support UDP checksum.

5.7.1. Requirements

   One of the following requirements MUST be met:

  o UDP checksums are enabled (for IPv4 or IPv6).

  o The GUE header checksum is used (defined in [GUEEXTENS]).

  o Use zero UDP checksums. This is always permissible with IPv4; in
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    IPv6, they can only be used in accordance with applicable
    requirements in [RFC8086], [RFC6935], and [RFC6936].

5.7.2. UDP Checksum with IPv4

    For UDP in IPv4, the UDP checksum MUST be processed as specified in
    [RFC768] and [RFC1122] for both transmit and receive. An
    encapsulator MAY set the UDP checksum to zero for performance or
    implementation considerations. The IPv4 header includes a checksum
    that protects against mis-delivery of the packet due to corruption
    of IP addresses. The UDP checksum potentially provides protection
    against corruption of the UDP header, GUE header, and GUE payload.
    Enabling or disabling the use of checksums is a deployment
    consideration that should take into account the risk and effects of
    packet corruption, and whether the packets in the network are
    already adequately protected by other, possibly stronger mechanisms
    such as the Ethernet CRC. If an encapsulator sets a zero UDP
    checksum for IPv4, it SHOULD use the GUE header checksum as
    described in [GUEEXTENS].

    When a decapsulator receives a packet, the UDP checksum field MUST
    be processed. If the UDP checksum is non-zero, the decapsulator MUST
    verify the checksum before accepting the packet. By default, a
    decapsulator SHOULD accept UDP packets with a zero checksum. A node
    MAY be configured to disallow zero checksums per [RFC1122].
    Configuration of zero checksums can be selective. For instance, zero
    checksums might be disallowed from certain hosts that are known to
    be sending over paths subject to packet corruption. If verification
    of a non-zero checksum fails, a decapsulator lacks the capability to
    verify a non-zero checksum, or a packet with a zero-checksum was
    received and the decapsulator is configured to disallow, the packet
    MUST be dropped.

5.7.3. UDP Checksum with IPv6

    In IPv6, there is no checksum in the IPv6 header that protects
    against mis-delivery due to address corruption. Therefore, when GUE
    is used over IPv6, either the UDP checksum or the GUE header
    checksum SHOULD be used. The UDP checksum and GUE header checksum
    SHOULD not be used at the same time since that would be mostly
    redundant.

    If neither the UDP checksum or the GUE header checksum is used, then
    the requirements for using zero IPv6 UDP checksums in [RFC6935] and
    [RFC6936] MUST be met.

    When a decapsulator receives a packet, the UDP checksum field MUST
    be processed. If the UDP checksum is non-zero, the decapsulator MUST
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    verify the checksum before accepting the packet. By default a
    decapsulator MUST only accept UDP packets with a zero checksum if
    the GUE header checksum is used and is verified. If verification of
    a non-zero checksum fails, a decapsulator lacks the capability to
    verify a non-zero checksum, or a packet with a zero-checksum and no
    GUE header checksum was received, the packet MUST be dropped.

5.8. MTU and fragmentation

    Standard conventions for handling of MTU (Maximum Transmission Unit)
    and fragmentation in conjunction with networking tunnels
    (encapsulation of layer 2 or layer 3 packets) SHOULD be followed.
    Details are described in MTU and Fragmentation Issues with In-the-
    Network Tunneling [RFC4459].

    If a packet is fragmented before encapsulation in GUE, all the
    related fragments MUST be encapsulated using the same UDP source
    port. An operator SHOULD set MTU to account for encapsulation
    overhead and reduce the likelihood of fragmentation.

    Alternatively to IP fragmentation, the GUE fragmentation extension
    can be used. GUE fragmentation is described in [GUEEXTENS].

5.9. Congestion control

    Per requirements of [RFC5405], if the IP traffic encapsulated with
    GUE implements proper congestion control no additional mechanisms
    should be required.

    In the case that the encapsulated traffic does not implement any or
    sufficient control, or it is not known whether a transmitter will
    consistently implement proper congestion control, then congestion
    control at the encapsulation layer MUST be provided per [RFC5405].
    Note that this case applies to a significant use case in network
    virtualization in which guests run third party networking stacks
    that cannot be implicitly trusted to implement conformant congestion
    control.

    Out of band mechanisms such as rate limiting, Managed Circuit
    Breaker [CIRCBRK], or traffic isolation MAY be used to provide
    rudimentary congestion control. For finer-grained congestion control
    that allows alternate congestion control algorithms, reaction time
    within an RTT, and interaction with ECN, in-band mechanisms might be
    warranted.

5.10. Multicast

    GUE packets can be multicast to decapsulators using a multicast
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    destination address in the encapsulating IP headers. Each receiving
    host will decapsulate the packet independently following normal
    decapsulator operations. The receiving decapsulators need to agree
    on the same set of GUE parameters and properties; how such an
    agreement is reached is outside the scope of this document.

    GUE allows encapsulation of unicast, broadcast, or multicast
    traffic. Flow entropy (the value in the UDP source port) can be
    generated from the header of encapsulated unicast or
    broadcast/multicast packets at an encapsulator. The mapping
    mechanism between the encapsulated multicast traffic and the
    multicast capability in the IP network is transparent and
    independent of the encapsulation and is otherwise outside the scope
    of this document.

5.11. Flow entropy for ECMP

5.11.1. Flow classification

    A major objective of using GUE is that a network device can perform
    flow classification corresponding to the flow of the inner
    encapsulated packet based on the contents in the outer headers.

    Hardware devices commonly perform hash computations on packet
    headers to classify packets into flows or flow buckets. Flow
    classification is done to support load balancing of flows across a
    set of networking resources. Examples of such load balancing
    techniques are Equal Cost Multipath routing (ECMP), port selection
    in Link Aggregation, and NIC device Receive Side Scaling (RSS).
    Hashes are usually either a three-tuple hash of IP protocol, source
    address, and destination address; or a five-tuple hash consisting of
    IP protocol, source address, destination address, source port, and
    destination port. Typically, networking hardware will compute five-
    tuple hashes for TCP and UDP, but only three-tuple hashes for other
    IP protocols. Since the five-tuple hash provides more granularity,
    load balancing can be finer-grained with better distribution. When a
    packet is encapsulated with GUE and connection semantics are not
    applied, the source port in the outer UDP packet is set to a flow
    entropy value that corresponds to the flow of the inner packet. When
    a device computes a five-tuple hash on the outer UDP/IP header of a
    GUE packet, the resultant value classifies the packet per its inner
    flow.

    Examples of deriving flow entropy for encapsulation are:

      o If the encapsulated packet is a layer 4 packet, TCP/IPv4 for
        instance, the flow entropy could be based on the canonical five-
        tuple hash of the inner packet.
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      o If the encapsulated packet is an AH transport mode packet with
        TCP as next header, the flow entropy could be a hash over a
        three-tuple: TCP protocol and TCP ports of the encapsulated
        packet.

      o If a node is encrypting a packet using ESP tunnel mode and GUE
        encapsulation, the flow entropy could be based on the contents
        of the clear-text packet. For instance, a canonical five-tuple
        hash for a TCP/IP packet could be used.

   [RFC6438] discusses methods to compute and set flow entropy value for
   IPv6 flow labels. Such methods can also be used to create flow
   entropy values for GUE.

5.11.2. Flow entropy properties

   The flow entropy is the value set in the UDP source port of a GUE
   packet. Flow entropy in the UDP source port SHOULD adhere to the
   following properties:

      o The value set in the source port is within the ephemeral port
        range (49152 to 65535 [RFC6335]). Since the high order two bits
        of the port are set to one, this provides fourteen bits of
        entropy for the value.

      o The flow entropy has a uniform distribution across encapsulated
        flows.

      o An encapsulator MAY occasionally change the flow entropy used
        for an inner flow per its discretion (for security, route
        selection, etc). To avoid thrashing or flapping the value, the
        flow entropy used for a flow SHOULD NOT change more than once
        every thirty seconds (or a configurable value).

      o Decapsulators, or any networking devices, SHOULD NOT attempt to
        interpret flow entropy as anything more than an opaque value.
        Neither should they attempt to reproduce the hash calculation
        used by an encapasulator in creating a flow entropy value. They
        MAY use the value to match further receive packets for steering
        decisions, but MUST NOT assume that the hash uniquely or
        permanently identifies a flow.

      o Input to the flow entropy calculation is not restricted to ports
        and addresses; input could include flow label from an IPv6
        packet, SPI from an ESP packet, or other flow related state in
        the encapsulator that is not necessarily conveyed in the packet.

      o The assignment function for flow entropy SHOULD be randomly
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        seeded to mitigate denial of service attacks. The seed may be
        changed periodically.

5.12 Negotiation of acceptable flags and extension fields

   An encapsulator and decapsulator need to achieve agreement about GUE
   parameters will be used in communications. Parameters include GUE
   version, flags and extension fields that can be used, security
   algorithms and keys, supported protocols and control messages, etc.
   This document proposes different general methods to accomplish this,
   however the details of implementing these are considered out of
   scope.

   Possible negotiation methods are:

      o Configuration. The parameters used for a tunnel are configured
        at each endpoint.

      o Negotiation. A tunnel negotiation can be performed. This could
        be accomplished in-band of GUE using control messages or private
        data.

      o Via a control plane. Parameters for communicating with a tunnel
        endpoint can be set in a control plane protocol (such as that
        needed for nvo3).

      o Via security negotiation. Use of security typically implies a
        key exchange between endpoints. Other GUE parameters may be
        conveyed as part of that process.

6. Motivation for GUE

   This section presents the motivation for GUE with respect to other
   encapsulation methods.

6.1. Benefits of GUE

      * GUE is a generic encapsulation protocol. GUE can encapsulate
        protocols that are represented by an IP protocol number. This
        includes layer 2, layer 3, and layer 4 protocols.

      * GUE is an extensible encapsulation protocol. Standard optional
        data such as security, virtual networking identifiers,
        fragmentation are being defined.

      * For extensilbity, GUE uses flag fields as opposed to TLVs as
        some other encapsulation protocols do. Flag fields are strictly
        ordered, allow random access, and an efficient use of header
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        space.

      * GUE allows private data to be sent as part of the encapsulation.
        This permits experimentation or customization in deployment.

      * GUE allows sending of control messages such as OAM using the
        same GUE header format (for routing purposes) as normal data
        messages.

      * GUE maximizes deliverability of non-UDP and non-TCP protocols.

      * GUE provides a means for exposing per flow entropy for ECMP for
        atypical protocols such as SCTP, DCCP, ESP, etc.

6.2 Comparison of GUE to other encapsulations

   A number of different encapsulation techniques have been proposed for
   the encapsulation of one protocol over another. EtherIP [RFC3378]
   provides layer 2 tunneling of Ethernet frames over IP. GRE [RFC2784],
   MPLS [RFC4023], and L2TP [RFC2661] provide methods for tunneling
   layer 2 and layer 3 packets over IP. NVGRE [RFC7637] and VXLAN
   [RFC7348] are proposals for encapsulation of layer 2 packets for
   network virtualization. IPIP [RFC2003] and Generic packet tunneling
   in IPv6 [RFC2473] provide methods for tunneling IP packets over IP.

   Several proposals exist for encapsulating packets over UDP including
   ESP over UDP [RFC3948], TCP directly over UDP [TCPUDP], VXLAN
   [RFC7348], LISP [RFC6830] which encapsulates layer 3 packets,
   MPLS/UDP [RFC7510], and Generic UDP Encapsulation for IP Tunneling
   (GRE over UDP)[RFC8086]. Generic UDP tunneling [GUT] is a proposal
   similar to GUE in that it aims to tunnel packets of IP protocols over
   UDP.

   GUE has the following discriminating features:

      o UDP encapsulation leverages specialized network device
        processing for efficient transport. The semantics for using the
        UDP source port for flow entropy as input to ECMP are defined in
        section 5.11.

      o GUE permits encapsulation of arbitrary IP protocols, which
        includes layer 2 3, and 4 protocols.

      o Multiple protocols can be multiplexed over a single UDP port
        number. This is in contrast to techniques to encapsulate
        protocols over UDP using a protocol specific port number (such
        as ESP/UDP, GRE/UDP, SCTP/UDP). GUE provides a uniform and
        extensible mechanism for encapsulating all IP protocols in UDP
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        with minimal overhead (four bytes of additional header).

      o GUE is extensible. New flags and extension fields can be
        defined.

      o The GUE header includes a header length field. This allows a
        network node to inspect an encapsulated packet without needing
        to parse the full encapsulation header.

      o Private data in the encapsulation header allows local
        customization and experimentation while being compatible with
        processing in network nodes (routers and middleboxes).

      o GUE includes both data messages (encapsulation of packets) and
        control messages (such as OAM).

      o The flags-field model facilitates efficient implementation of
        extensibility in hardware. For example, a TCAM can be use to
        parse a known set of N flags where the number of entries in the
        TCAM is 2^N. By contrast, the number of TCAM entries needed to
        parse a set of N arbitrarily ordered TLVS is approximately e*N!.

7. Security Considerations

   There are two important considerations of security with respect to
   GUE.

      o Authentication and integrity of the GUE header.

      o Authentication, integrity, and confidentiality of the GUE
        payload.

   GUE security is provided by extensions for security defined in
   [GUEEXTENS]. These extensions include methods to authenticate the GUE
   header and encrypt the GUE payload.

   The GUE header can be authenticated using a security extension for an
   HMAC. Securing the GUE payload can be accomplished use of the GUE
   Payload Transform that can provide DTLS [RFC6347] in the payload of a
   GUE packet to encrypt the payload.

   A hash function for computing flow entropy (section 5.11) SHOULD be
   randomly seeded to mitigate some possible denial service attacks.

8. IANA Considerations

8.1. UDP source port
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   A user UDP port number assignment for GUE has been assigned:

          Service Name: gue
          Transport Protocol(s): UDP
          Assignee: Tom Herbert <therbert@google.com>
          Contact: Tom Herbert <therbert@google.com>
          Description: Generic UDP Encapsulation
          Reference: draft-herbert-gue
          Port Number: 6080
          Service Code: N/A
          Known Unauthorized Uses: N/A
          Assignment Notes: N/A
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8.2. GUE version number

   IANA is requested to set up a registry for the GUE version number.
   The GUE version number is 2 bits containing four possible values.
   This document defines version 0 and 1. New values are assigned in
   accordance with RFC Required policy [RFC5226].

      +----------------+-------------+---------------+
      | Version number | Description | Reference     |
      +----------------+-------------+---------------+
      | 0              | Version 0   | This document |
      |                |             |               |
      | 1              | Version 1   | This document |
      |                |             |               |
      | 2..3           | Unassigned  |               |
      +----------------+-------------+---------------+

8.3. Control types

   IANA is requested to set up a registry for the GUE control types.
   Control types are 8 bit values.  New values for control types 1-127
   are assigned in accordance with RFC Required policy [RFC5226].

      +----------------+------------------+---------------+
      |  Control type  | Description      | Reference     |
      +----------------+------------------+---------------+
      | 0              | Need further     | This document |
      |                |  interpretation  |               |
      |                |                  |               |
      | 1..127         | Unassigned       |               |
      |                |                  |               |
      | 128..255       | User defined     | This document |
      +----------------+------------------+---------------+

8.4. Flag-fields

   IANA is requested to create a "GUE flag-fields" registry to allocate
   flags and extension fields used with GUE. This shall be a registry of
   bit assignments for flags, length of extension fields for
   corresponding flags, and descriptive strings. There are sixteen bits
   for primary GUE header flags (bit number 0-15). New values are
   assigned in accordance with RFC Required policy [RFC5226].
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      +-------------+--------------+-------------+--------------------+
      |  Flags bits | Field size   | Description | Reference          |
      +-------------+--------------+-------------+--------------------+
      | Bit 0       | 4 bytes      | VNID        | [GUE4NVO3]         |
      |             |              |             |                    |
      | Bit 1..3    | 001->8 bytes | Security    | [GUEEXTENS]        |
      |             | 010->16 bytes|             |                    |
      |             | 011->32 bytes|             |                    |
      |             |              |             |                    |
      | Bit 4       | 8 bytes      | Fragmen-    | [GUEEXTENS]        |
      |             |              |  tation     |                    |
      |             |              |             |                    |
      | Bit 5       | 4 bytes      | Payload     | [GUEEXTENS]        |
      |             |              |  transform  |                    |
      |             |              |             |                    |
      | Bit 6       | 4 bytes      | Remote      | [GUEEXTENS]        |
      |             |              |  checksum   |                    |
      |             |              |  offload    |                    |
      |             |              |             |                    |
      | Bit 7       | 4 bytes      | Checksum    | [GUEEXTENS]        |
      |             |              |             |                    |
      | Bit 8..15   |              | Unassigned  |                    |
      +-------------+--------------+-------------+--------------------+

   New flags are to be allocated from high to low order bit contiguously
   without holes.
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Appendix A: NIC processing for GUE

   This appendix provides some guidelines for Network Interface Cards
   (NICs) to implement common offloads and accelerations to support GUE.
   Note that most of this discussion is generally applicable to other
   methods of UDP based encapsulation.

A.1. Receive multi-queue

   Contemporary NICs support multiple receive descriptor queues (multi-
   queue). Multi-queue enables load balancing of network processing for
   a NIC across multiple CPUs. On packet reception, a NIC selects the
   appropriate queue for host processing. Receive Side Scaling is a
   common method which uses the flow hash for a packet to index an
   indirection table where each entry stores a queue number. Flow
   Director and Accelerated Receive Flow Steering (aRFS) allow a host to
   program the queue that is used for a given flow which is identified
   either by an explicit five-tuple or by the flow’s hash.

   GUE encapsulation is compatible with multi-queue NICs that support
   five-tuple hash calculation for UDP/IP packets as input to RSS. The
   flow entropy in the UDP source port ensures classification of the
   encapsulated flow even in the case that the outer source and
   destination addresses are the same for all flows (e.g. all flows are
   going over a single tunnel).

   By default, UDP RSS support is often disabled in NICs to avoid out-
   of-order reception that can occur when UDP packets are fragmented. As
   discussed above, fragmentation of GUE packets is mostly avoided by
   fragmenting packets before entering a tunnel, GUE fragmentation, path
   MTU discovery in higher layer protocols, or operator adjusting MTUs.
   Other UDP traffic might not implement such procedures to avoid
   fragmentation, so enabling UDP RSS support in the NIC might be a
   considered tradeoff during configuration.

A.2. Checksum offload
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   Many NICs provide capabilities to calculate standard ones complement
   payload checksum for packets in transmit or receive. When using GUE
   encapsulation, there are at least two checksums that are of interest:
   the encapsulated packet’s transport checksum, and the UDP checksum in
   the outer header.

A.2.1. Transmit checksum offload

   NICs can provide a protocol agnostic method to offload transmit
   checksum (NETIF_F_HW_CSUM in Linux parlance) that can be used with
   GUE. In this method, the host provides checksum related parameters in
   a transmit descriptor for a packet. These parameters include the
   starting offset of data to checksum, the length of data to checksum,
   and the offset in the packet where the computed checksum is to be
   written. The host initializes the checksum field to pseudo header
   checksum.

   In the case of GUE, the checksum for an encapsulated transport layer
   packet, a TCP packet for instance, can be offloaded by setting the
   appropriate checksum parameters.

   NICs typically can offload only one transmit checksum per packet, so
   simultaneously offloading both an inner transport packet’s checksum
   and the outer UDP checksum is likely not possible.

   If an encapsulator is co-resident with a host, then checksum offload
   may be performed using remote checksum offload (described in
   [GUEEXTENS]). Remote checksum offload relies on NIC offload of the
   simple UDP/IP checksum which is commonly supported even in legacy
   devices. In remote checksum offload, the outer UDP checksum is set
   and the GUE header includes an option indicating the start and offset
   of the inner "offloaded" checksum. The inner checksum is initialized
   to the pseudo header checksum. When a decapsulator receives a GUE
   packet with the remote checksum offload option, it completes the
   offload operation by determining the packet checksum from the
   indicated start point to the end of the packet, and then adds this
   into the checksum field at the offset given in the option. Computing
   the checksum from the start to end of packet is efficient if
   checksum-complete is provided on the receiver.

   Another alternative when an encapsulator is co-resident with a host
   is to perform Local Checksum Offload [LCO]. In this method, the inner
   transport layer checksum is offloaded and the outer UDP checksum can
   be deduced based on the fact that the portion of the packet covered
   by the inner transport checksum will sum to zero (or at least the bit
   wise "not" of the inner pseudo header).

A.2.2. Receive checksum offload
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   GUE is compatible with NICs that perform a protocol agnostic receive
   checksum (CHECKSUM_COMPLETE in Linux parlance). In this technique, a
   NIC computes a ones complement checksum over all (or some predefined
   portion) of a packet. The computed value is provided to the host
   stack in the packet’s receive descriptor. The host driver can use
   this checksum to "patch up" and validate any inner packet transport
   checksum, as well as the outer UDP checksum if it is non-zero.

   Many legacy NICs don’t provide checksum-complete but instead provide
   an indication that a checksum has been verified (CHECKSUM_UNNECESSARY
   in Linux). Usually, such validation is only done for simple TCP/IP or
   UDP/IP packets. If a NIC indicates that a UDP checksum is valid, the
   checksum-complete value for the UDP packet is the "not" of the pseudo
   header checksum. In this way, checksum-unnecessary can be converted
   to checksum-complete. So, if the NIC provides checksum-unnecessary
   for the outer UDP header in an encapsulation, checksum conversion can
   be done so that the checksum-complete value is derived and can be
   used by the stack to validate checksums in the encapsulated packet.

A.3. Transmit Segmentation Offload

   Transmit Segmentation Offload (TSO) is a NIC feature where a host
   provides a large (greater than MTU size) TCP packet to the NIC, which
   in turn splits the packet into separate segments and transmits each
   one. This is useful to reduce CPU load on the host.

   The process of TSO can be generalized as:

      - Split the TCP payload into segments which allow packets with
        size less than or equal to MTU.

      - For each created segment:

        1. Replicate the TCP header and all preceding headers of the
           original packet.

        2. Set payload length fields in any headers to reflect the
           length of the segment.

        3. Set TCP sequence number to correctly reflect the offset of
           the TCP data in the stream.

        4. Recompute and set any checksums that either cover the payload
           of the packet or cover header which was changed by setting a
           payload length.

   Following this general process, TSO can be extended to support TCP
   encapsulation in GUE.  For each segment the Ethernet, outer IP, UDP
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   header, GUE header, inner IP header (if tunneling), and TCP headers
   are replicated. Any packet length header fields need to be set
   properly (including the length in the outer UDP header), and
   checksums need to be set correctly (including the outer UDP checksum
   if being used).

   To facilitate TSO with GUE, it is recommended that extension fields
   do not contain values that need to be updated on a per segment basis.
   For example, extension fields should not include checksums, lengths,
   or sequence numbers that refer to the payload. If the GUE header does
   not contain such fields then the TSO engine only needs to copy the
   bits in the GUE header when creating each segment and does not need
   to parse the GUE header.

A.4. Large Receive Offload

   Large Receive Offload (LRO) is a NIC feature where packets of a TCP
   connection are reassembled, or coalesced, in the NIC and delivered to
   the host as one large packet. This feature can reduce CPU utilization
   in the host.

   LRO requires significant protocol awareness to be implemented
   correctly and is difficult to generalize. Packets in the same flow
   need to be unambiguously identified. In the presence of tunnels or
   network virtualization, this may require more than a five-tuple match
   (for instance packets for flows in two different virtual networks may
   have identical five-tuples). Additionally, a NIC needs to perform
   validation over packets that are being coalesced, and needs to
   fabricate a single meaningful header from all the coalesced packets.

   The conservative approach to supporting LRO for GUE would be to
   assign packets to the same flow only if they have identical five-
   tuple and were encapsulated the same way. That is the outer IP
   addresses, the outer UDP ports, GUE protocol, GUE flags and fields,
   and inner five tuple are all identical.

Appendix B: Implementation considerations

B.1. Priveleged ports

   Using the source port to contain a flow entropy value disallows the
   security method of a receiver enforcing that the source port be a
   privileged port. Privileged ports are defined by some operating
   systems to restrict source port binding. Unix, for instance,
   considered port number less than 1024 to be privileged.

   Enforcing that packets are sent from a privileged port is widely
   considered an inadequate security mechanism and has been mostly
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   deprecated. To approximate this behavior, an implementation could
   restrict a user from sending a packet destined to the GUE port
   without proper credentials.

B.2. Setting flow entropy as a route selector

   An encapsulator generating flow entropy in the UDP source port could
   modulate the value to perform a type of multipath source routing.
   Assuming that networking switches perform ECMP based on the flow
   hash, a sender can affect the path by altering the flow entropy.  For
   instance, a host can store a flow hash in its PCB for an inner flow,
   and might alter the value upon detecting that packets are traversing
   a lossy path. Changing the flow entropy for a flow SHOULD be subject
   to hysteresis (at most once every thirty seconds) to limit the number
   of out of order packets.

B.3. Hardware protocol implementation considerations

   Low level data path protocol, such is GUE, are often supported in
   high speed network device hardware. Variable length header (VLH)
   protocols like GUE are often considered difficult to efficiently
   implement in hardware. In order to retain the important
   characteristics of an extensible and robust protocol, hardware
   vendors may practice "constrained flexibility". In this model, only
   certain combinations or protocol header parameterizations are
   implemented in hardware fast path. Each such parameterization is
   fixed length so that the particular instance can be optimized as a
   fixed length protocol. In the case of GUE, this constitutes specific
   combinations of GUE flags, fields, and next protocol. The selected
   combinations would naturally be the most common cases which form the
   "fast path", and other combinations are assumed to take the "slow
   path".

   In time, needs and requirements of the protocol may change which may
   manifest themselves as new parameterizations to be supported in the
   fast path. To allow allow this extensibility, a device practicing
   constrained flexibility should allow the fast path parameterizations
   to be programmable.
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1. Introduction

   The Internet layering architecture is loosely based on the ISO seven
   layer stack, in which data units traverse the stack by being wrapped
   inside data units of the next layer down [Cl88][Zi80]. A tunnel is a
   mechanism for transmitting data units between endpoints by wrapping
   them as data units of the same or higher layers, e.g., IP in IP
   (Figure 1) or IP in UDP (Figure 2).

                        +----+----+--------------+
                        | IP’| IP |     Data     |
                        +----+----+--------------+

                           Figure 1 IP inside IP
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                     +----+-----+----+--------------+
                     | IP’| UDP | IP |     Data     |
                     +----+-----+----+--------------+

                   Figure 2 IP in UDP in IP in Ethernet

   This document focuses on tunnels that transit IP packets, i.e., in
   which an IP packet is the payload of another protocol, other than a
   typical link layer. A tunnel is a virtual link that can help decouple
   the network topology seen by transiting packets from the underlying
   physical network [To98][RFC2473]. Tunnels were critical in the
   development of multicast because not all routers were capable of
   processing multicast packets [Er94]. Tunnels allowed multicast
   packets to transit efficiently between multicast-capable routers over
   paths that did not support native link-layer multicast. Similar
   techniques have been used to support incremental deployment of other
   protocols over legacy substrates, such as IPv6 [RFC2546].

   Use of tunnels is common in the Internet. The word "tunnel" occurs in
   nearly 1,500 RFCs (of nearly 8,000 current RFCs, close to 20%), and
   is supported within numerous protocols, including:

   o  IP in IP / mobile IP - IPv4 in IPv4 tunnels
      [RFC2003][RFC2473][RFC5944]

   o  IP in IPv6 - IPv6 or IPv4 in IPv6 [RFC2473]

   o  IPsec - includes a tunnel mode to enable encryption or
      authentication of the an entire IP datagram inside another IP
      datagram [RFC4301]

   o  Generic Router Encapsulation (GRE) - a shim layer for tunneling
      any network layer in any other network layer, as in IP in GRE in
      IP [RFC2784][RFC7588][RFC7676], or inside UDP in IP [RFC8086]

   o  MPLS - a shim layer for tunneling IP over a circuit-like path over
      a link layer [RFC3031] or inside UDP in IP [RFC7510], in which
      identifiers are rewritten on each hop, often used for traffic
      provisioning

   o  LISP - a mechanism that uses multipoint IP tunnels to reduce
      routing table load within an enclave of routers at the expense of
      more complex tunnel ingress encapsulation tables [RFC6830]

   o  TRILL - a mechanism that uses multipoint L2 tunnels to enable use
      of L3 routing (typically IS-IS) in an enclave of Ethernet bridges
      [RFC5556][RFC6325]
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   o  Generic UDP Encapsulation (GUE) - IP in UDP in IP [He16]

   o  Automatic Multicast Tunneling (AMT) - IP in UDP in IP for
      multicast [RFC7450]

   o  L2TP - PPP over IP, to extend a subscriber’s DSL/FTTH connection
      from an access line provider to an ISP [RFC3931]

   o  L2VPNs - provides a link topology different from that provided by
      physical links [RFC4664]; many of these are not classical tunnels,
      using only tags (Ethernet VLAN tags) rather than encapsulation

   o  L3VPNs - provides a network topology different from that provided
      by ISPs [RFC4176]

   o  NVO3 - data center network sharing (to be determined, which may
      include use of GUE or other tunnels) [RFC7364]

   o  PWE3 - emulates wire-like services over packet-switched services
      [RFC3985]

   o  SEAL/AERO -IP in IP tunneling with an additional shim header
      designed to overcome the limitations of RFC2003 [RFC5320][Te16]

   The variety of tunnel mechanisms raises the question of the role of
   tunnels in the Internet architecture and the potential need for these
   mechanisms to have similar and predictable behavior. In particular,
   the ways in which packet sizes (i.e., Maximum Transmission Unit or
   MTU) mismatch and error signals (e.g., ICMP) are handled may benefit
   from a coordinated approach.

   Regardless of the layer in which encapsulation occurs, tunnels
   emulate a link. The only difference is that a link operates over a
   physical communication channel, whereas a tunnel operates over other
   software protocol layers. Because tunnels are links, they are subject
   to the same issues as any link, e.g., MTU discovery, signaling, and
   the potential utility of native support for broadcast and multicast
   [RFC3819]. Tunnels have some advantages over native links, being
   potentially easier to reconfigure and control because they can
   generally rely on existing out-of-band communication between its
   endpoints.

   The first attempt to use large-scale tunnels was to transit multicast
   traffic across the Internet in 1988, and this resulted in ’tunnel
   collapse’. At the time, tunnels were not implemented as
   encapsulation-based virtual links, but rather as loose source routes
   on un-encapsulated IP datagrams [RFC1075]. Then, as now, routers did
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   not support use of the loose source route IP option at line rate, and
   the multicast traffic caused overload of the so-called "slow path"
   processing of IP datagrams in software. Using encapsulation tunnels
   avoided that collapse by allowing the forwarding of encapsulated
   packets to use the "fast path" hardware processing [Er94].

   The remainder of this document describes the general principles of IP
   tunneling and discusses the key considerations in the design of any
   protocol that tunnels IP datagrams. It derives its conclusions from
   the equivalence of tunnels and links and from requirements of
   existing standards for supporting IPv4 and IPv6 as payloads.

2. Conventions used in this document

2.1. Key Words

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [RFC2119].

   In this document, these key words will appear with that
   interpretation only when in ALL CAPS. Lower case uses of these words
   are not to be interpreted as carrying RFC-2119 significance.

2.2. Terminology

   This document uses the following terminology. Optional words in the
   term are indicated in parentheses, e.g., "(link or network)
   interface" or "egress (interface)".

   Terms from existing RFCs:

   o  Messages: variable length data labeled with globally-unique
      endpoint IDs, also known as a datagram for IP messages [RFC791].

   o  Node: a physical or logical network device that participates as
      either a host [RFC1122][RFC6434] or router [RFC1812]. This term
      originally referred to gateways since some very early RFCs [RFC5],
      but is currently the common way to describe a point in a network
      at which messages are processed.

   o  Host or endpoint: a node that sources or sinks messages labeled
      from/to its IDs, typically known as a host for both IP and higher-
      layer protocol messages [RFC1122].

   o  Source or sender: the node that generates a message [RFC1122].

Touch, Townsley       Expires September 13, 2017               [Page 6]



Internet-Draft         Tunnels in the Internet               March 2017

   o  Destination or receiver: the node that consumes a message
      [RFC1122].

   o  Router or gateway: a node that relays IP messages using
      destination IDs and local context [RFC1812]. Routers also act as
      hosts when they source or sink messages. Also known as a forwarder
      for IP messages. Note that the notion of router is relative to the
      layer at which message processing is considered [To16].

   o  Link: a communications medium (or emulation thereof) that
      transfers IP messages between nodes without traversing a router
      (as would require decrementing the hop count) [RFC1122][RFC1812].

   o  (Link or network) Interface: a location on a link co-located with
      a node where messages depart onto that link or arrive from that
      link. On physical links, this interface formats the message for
      transmission and interprets the received signals.

   o  Path: a sequence of one or more links over which an IP message
      traverses between source and destination nodes (hosts or routers).

   o  (Link) MTU: the largest message that can transit a link [RFC791],
      also often referred to simply as "MTU". It does not include the
      size of link-layer information, e.g., link layer headers or
      trailers, i.e., it refers to the message that the link can carry
      as a payload rather than the message as it appears on the link.
      This is thus the largest network layer packet (including network
      layer headers, e.g., IP datagram) that can transit a link. Note
      that this need not be the native size of messages on the link,
      i.e., the link may internally fragment and reassemble messages.
      For IPv4, the smallest MTU must be at least 68 bytes [RFC791], and
      for IPv6 the smallest MTU must be at least 1280 bytes [RFC2460].

   o  EMTU_S (effective MTU for sending): the largest message that can
      transit a link, possibly also accounting for fragmentation that
      happens before the fragments are emitted onto the link [RFC1122].
      When source fragmentation is not possible, EMTU_S = (link) MTU.
      For IPv4, this is MUST be at least 68 bytes [RFC791] and for IPv6
      this MUST be at least 1280 bytes [RFC2460].

   o  EMTU_R (effective MTU to receive): the largest payload message
      that a receiver must be able to accept. This thus also represents
      the largest message that can traverse a link, taking into account
      reassembly at the receiver that happens after the fragments are
      received [RFC1122]. For IPv4, this is MUST be at least 576 bytes
      [RFC791] and for IPv6 this MUST be at least 1500 bytes [RFC2460].
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   o  Path MTU (PMTU): the largest message that can transit a path of
      links [RFC1191][RFC1981]. Typically, this is the minimum of the
      link MTUs of the links of the path, and represents the largest
      network layer message (including network layer headers) that can
      transit a path without requiring fragmentation while in transit.
      Note that this is not the largest network packet that can be sent
      between a source and destination, because that network packet
      might have been fragmented at the network layer of the source and
      reassembled at the network layer of the destination (if
      supported).

   o  Tunnel: a protocol mechanism that transits messages between an
      ingress interface and egress interface using encapsulation to
      allow an existing network path to appear as a single link
      [RFC1853]. Note that a protocol can be used to tunnel itself (IP
      over IP). There is essentially no difference between a tunnel and
      the conventional layering of the ISO stack (i.e., by this
      definition, Ethernet is can be considered tunnel for IP). A tunnel
      is also known as a virtual link.

   o  Ingress (interface): the virtual link interface of a tunnel that
      receives messages within a node, encapsulates them according to
      the tunnel protocol, and transmits them into the tunnel [RFC2983].
      An ingress is the tunnel equivalent of the outgoing (departing)
      network interface of a link, and its encapsulation processing is
      the tunnel equivalent of encoding a message for transmission over
      a physical link. The ingress virtual link interface can be co-
      located with the traffic source.

      The term ’ingress’ in other RFCs also refers to ’network ingress’,
      which is the entry point of traffic to a transit network. Because
      this document focuses on tunnels, the term "ingress" used in the
      remainder of this document implies "tunnel ingress".

   o  Egress (interface): a virtual link interface of a tunnel that
      receives messages that have finished transiting a tunnel and
      presents them to a node [RFC2983]. For reasons similar to ingress,
      the term ’egress’ will refer to ’tunnel egress’ throughout the
      remainder of this document. An egress is the tunnel equivalent of
      the incoming (arriving) network interface of a link and its
      decapsulation processing is the tunnel equivalent of interpreting
      a signal received from a physical link. The egress decapsulates
      messages for further transit to the destination. The egress
      virtual link interface can be co-located with the traffic
      destination.
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   o  Ingress node: network device on which an ingress is attached as a
      virtual link interface [RFC2983]. Note that a node can act as both
      an ingress node and an egress node at the same time, but typically
      only for different tunnels.

   o  Egress node: device where an egress is attached as a virtual link
      interface [RFC2983]. Note that a device can act as both a ingress
      node and an egress node at the same time, but typically only for
      different tunnels.

   o  Inner header: the header of the message as it arrives to the
      ingress [RFC2003].

   o  Outer header(s): the headers added to the message by the ingress,
      as part of the encapsulation for tunnel transit [RFC2003].

   o  Mid-tunnel fragmentation: Fragmentation of the message during the
      tunnel transit, as could occur for IPv4 datagrams with DF=0
      [RFC2983].

   o  Atomic packet or datagram: an IP packet that has not been
      fragmented and which cannot be fragmented further [RFC6864]

   The following terms are introduced by this document:

   o  (Tunnel) transit packet: the packet arriving at a node connected
      to a tunnel that enters the ingress interface and exits the egress
      interface, i.e., the packet carried over the tunnel. This is
      sometimes known as the ’tunneled packet’, i.e., the packet carried
      over the tunnel. This is the tunnel equivalent of a network layer
      packet as it would traverse a link. This document focuses on IPv4
      and IPv6 transit packets.

   o  (Tunnel) link packet: packets that traverse from ingress interface
      to egress interface, in which resides all or part of a transit
      packet. This is the tunnel equivalent of a link layer packet as it
      would traverse a link, which is why we use the same terminology.

   o  Tunnel MTU: the largest transit packet that can traverse a tunnel,
      i.e., the tunnel equivalent of a link MTU, which is why we use the
      same terminology. This is the largest transit packet which can be
      reassembled at the egress interface.

   o  Tunnel atom: the largest transit packet that can traverse a tunnel
      as an atomic packet, i.e., without requiring tunnel link packet
      fragmentation either at the ingress or on-path between the ingress
      and egress.
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   o  Inner fragmentation: fragmentation of the transit packet that
      arrives at the ingress interface before any additional headers are
      added. This can only correctly occur for IPv4 DF=0 datagrams.

   o  Outer fragmentation: source fragmentation of the tunnel link
      packet after encapsulation; this can involve fragmenting the
      outermost header or any of the other (if any) protocol layers
      involved in encapsulation.

   o  Maximum frame size (MFS): the link-layer equivalent of the MTU,
      using the OSI term ’frame’. For Ethernet, the MTU (network packet
      size) is 1500 bytes but the MFS (link frame size) is 1518 bytes
      originally, and 1522 bytes assuming VLAN (802.1Q) tagging support.

   o  EMFS_S: the link layer equivalent of EMTU_S.

   o  EMFS_R: the link layer equivalent of EMTU_R.

   o  Path MFS: the link layer equivalent of PMTU.

3. The Tunnel Model

   A network architecture is an abstract description of a distributed
   communications system, its components and their relationships, the
   requisite properties of those components and the emergent properties
   of the system that result [To03]. Such descriptions can help explain
   behavior, as when the OSI seven-layer model is used as a teaching
   example [Zi80]. Architectures describe capabilities - and, just as
   importantly, constraints.

   A network can be defined as a system of endpoints and relays
   interconnected by communication paths, abstracting away issues of
   naming in order to focus on message forwarding. To the extent that
   the Internet has a single, coherent interpretation, its architecture
   is defined by its core protocols (IP [RFC791], TCP [RFC793], UDP
   [RFC768]) whose messages are handled by hosts, routers, and links
   [Cl88][To03], as shown in Figure 3:

               +------+    ------      ------    +------+
               |      |   /      \    /      \   |      |
               | HOST |--+ ROUTER +--+ ROUTER +--| HOST |
               |      |   \      /    \      /   |      |
               +------+    ------      ------    +------+

                   Figure 3 Basic Internet architecture
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   As a network architecture, the Internet is a system of hosts
   (endpoints) and routers (relays) interconnected by links that
   exchange messages when possible. "When possible" defines the
   Internet’s "best effort" principle. The limited role of routers and
   links represents the End-to-End Principle [Sa84] and longest-prefix
   match enables hierarchical forwarding using compact tables.

   Although the definitions of host, router, and link seem absolute,
   they are often relative as viewed within the context of one protocol
   layer, each of which can be considered a distinct network
   architecture. An Internet gateway is an OSI Layer 3 router when it
   transits IP datagrams but it acts as an OSI Layer 2 host as it
   sources or sinks Layer 2 messages on attached links to accomplish
   this transit capability. In this way, one device (Internet gateway)
   behaves as different components (router, host) at different layers.

   Even though a single device may have multiple roles - even
   concurrently - at a given layer, each role is typically static and
   determined by context. An Internet gateway always acts as a Layer 2
   host and that behavior does not depend on where the gateway is viewed
   from within Layer 2. In the context of a single layer, a device’s
   behavior is typically modeled as a single component from all
   viewpoints in that layer (with some notable exceptions, e.g., Network
   Address Translators, which appear as hosts and routers, depending on
   the direction of the viewpoint [To16]).

3.1. What is a Tunnel?

   A tunnel can be modeled as a link in another network
   [To98][To01][To03]. In Figure 4, a source host (Hsrc) and destination
   host (Hdst) communicating over a network M in which two routers (Ra
   and Rd) are connected by a tunnel. Keep in mind that it is possible
   that both network N and network M can both be components of the
   Internet, i.e., there may be regular traffic as well as tunneled
   traffic over any of the routers shown.

                     --_                         --
         +------+   /  \                        /  \   +------+
         | Hsrc |--+ Ra +      --      --      + Rd +--| Hdst |
         +------+   \  //\    /  \    /  \    /\\  /   +------+
                     --/I \--+ Rb +--+ Rc +--/E \--
                       \  /   \  /    \  /   \  /
                        \/     --      --     \/
                       <------ Network N ------->
         <-------------------- Network M --------------------->

                         Figure 4 The big picture
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   The tunnel consists of two interfaces - an ingress (I) and an egress
   (E) that lie along a path connected by network N. Regardless of how
   the ingress and egress interfaces are connected, the tunnel serves as
   a link between the nodes it connects (here, Ra and Rd).

   IP packets arriving at the ingress interface are encapsulated to
   traverse network N. We call these packets ’tunnel transit packets’
   (or just ’transit packets’) because they will transit the tunnel
   inside one or more of what we call ’tunnel link packets’. Transit
   packets correspond to network (IP) packets traversing a conventional
   link and tunnel link packets correspond to the packets of a
   conventional link layer (which can be called just ’link packets’).

   Link packets use the source address of the ingress interface and the
   destination address of the egress interface - using whatever address
   is appropriate to the Layer at which the ingress and egress
   interfaces operate (Layer 2, Layer 3, Layer 4, etc.). The egress
   interface decapsulates those messages, which then continue on network
   M as if emerging from a link. To transit packets and to the routers
   the tunnel connects (Ra and Rd), the tunnel acts as a link and the
   ingress and egress interfaces act as network interfaces to that link.

   The model of each component (ingress and egress interfaces) and the
   entire system (tunnel) depends on the layer from which they are
   viewed. From the perspective of the outermost hosts (Hsrc and Hdst),
   the tunnel appears as a link between two routers (Ra and Rd). For
   routers along the tunnel (e.g., Rb and Rc), the ingress and egress
   interfaces appear as the endpoint hosts on network N.

   When the tunnel network (N) is implemented using the same protocol as
   the endpoint network (M), the picture looks flatter (Figure 5), as if
   it were running over a single network. However, this appearance is
   incorrect - nothing has changed from the previous case. From the
   perspective of the endpoints, Rb and Rc and network N don’t exist and
   aren’t visible, and from the perspective of the tunnel, network M
   doesn’t exist. The fact that network N and M use the same protocol,
   and may traverse the same links is irrelevant.

                   --_         --      --          --
       +------+   /  \  /\    /  \    /  \    /\  /  \   +------+
       | Hsrc |--+ Ra +/I \--+ Rb +--+ Rc +--/E \+ Rd +--| Hdst |
       +------+   \  / \  /   \  /    \  /   \  / \  /   +------+
                   --   \/     --      --     \/   --
                         <---- Network N ----->
           <------------------ Network M ------------------->

                     Figure 5 IP in IP network picture
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3.2. View from the Outside

   As already observed, from outside the tunnel, to network M, the
   entire tunnel acts as a link (Figure 6). Consequently all
   requirements for links supporting IP also apply to tunnels [RFC3819].

                   --_                             --
       +------+   /  \                            /  \   +------+
       | Hsrc |--+ Ra +--------------------------+ Rd +--| Hdst |
       +------+   \  /                            \  /   +------+
                   --                              --
           <------------------ Network M ------------------->

                Figure 6 Tunnels as viewed from the outside

   For example, the IP datagram hop counts (IPv4 Time-to-Live [RFC791]
   and IPv6 Hop Limit [RFC2460]) are decremented when traversing a
   router, but not when traversing a link - or thus a tunnel. Similarly,
   because the ingress and egress are interfaces on this outer network,
   they should never issue ICMP messages. A router or host would issue
   the appropriate ICMP, e.g., "packet too big" (IPv4 fragmentation
   needed and DF set [RFC792] or IPv6 packet too big [RFC4443]), when
   trying to send a packet to the egress, as it would for any interface.

   Tunnels have a tunnel MTU - the largest message that can transit that
   tunnel, just as links have a link MTU. Tis MTU may not reflect the
   native message size of hops within a multihop link (or tunnel) and
   the same is true for a tunnel. In both cases, the MTU is defined by
   the link’s (or tunnel’s) effective MTU to receive (EMTU_R).

3.3. View from the Inside

   Within network N, i.e., from inside the tunnel itself, the ingress
   interface is a source of tunnel link packets and the egress interface
   is a sink - so both are viewed as hosts on network N (Figure 7).
   Consequently [RFC1122] Internet host requirements apply to ingress
   and egress interfaces when Network N uses IP (and thus the
   ingress/egress interfaces use IP encapsulation).

                   _           --      --
                        /\    /  \    /  \    /\
                       /I \--+ Rb +--+ Rc +--/E \
                       \  /   \  /    \  /   \  /
                        \/     --      --     \/
                         <---- Network N ----->

            Figure 7 Tunnels, as viewed from within the tunnel
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   Viewed from within the tunnel, the outer network (M) doesn’t exist.
   Tunnel link packets can be fragmented by the source (ingress
   interface) and reassembled at the destination (egress interface),
   just as at conventional hosts. The path between ingress and egress
   interfaces has a path MTU, but the endpoints can exchange messages as
   large as can be reassembled at the destination (egress interface),
   i.e., the EMTU_R of the egress interface. However, in both cases,
   these MTUs refer to the size of the message that can transit the
   links and between the hosts of network N, which represents a link
   layer to network M. I.e., the MTUs of network N represent the maximum
   frame sizes (MFSs) of the tunnel as a link in network M.

   Information about the network - i.e., regarding network N MTU sizes,
   network reachability, etc. - are relayed from the destination (egress
   interface) and intermediate routers back to the source (ingress
   interface), without regard for the external network (M). When such
   messages arrive at the ingress interface, they may affect the
   properties of that interface (e.g., its reported MTU to network M),
   but they should never directly cause new ICMPs in the outer network
   M. Again, events at interfaces don’t generate ICMP messages; it would
   be the host or router at which that interface is attached that would
   generate ICMPs, e.g., upon attempting to use that interface.

3.4. Location of the Ingress and Egress

   The ingress and egress interfaces are endpoints of the tunnel. Tunnel
   interfaces may be physical or virtual. The interface may be
   implemented inside the node where the tunnel attaches, e.g., inside a
   host or router. The interface may also be implemented as a "bump in
   the wire" (BITW), somewhere along a link between the two nodes the
   link interconnects. IP in IP tunnels are often implemented as
   interfaces on nodes, whereas IPsec tunnels are sometimes implemented
   as BITW. These implementation variations determine only whether
   information available at the link endpoints (ingress/egress
   interfaces) can be easily shared with the connected network nodes.

3.5. Implications of This Model

   This approach highlights a few key features of a tunnel as a network
   architecture construct:

   o  To the transit packets, tunnels turn a network (Layer 3) path into
      a (Layer 2) link

   o  To nodes the tunnel traverses, the tunnel ingress and egress
      interfaces act as hosts that source and sink tunnel link packets
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   The consequences of these features are as follow:

   o  Like a link MTU, a tunnel MTU is defined by the effective MTU of
      the receiver (i.e., EMTU_R of the egress).

   o  The messages inside the tunnel are treated like any other link
      layer, i.e., the MTU is determined by the largest (transit)
      payload that traverses the link.

   o  The tunnel path MFS is not relevant to the transited traffic.
      There is no mechanism or protocol by which it can be determined.

   o  Because routers, not links, alter hop counts [RFC1812], hopcounts
      are not decremented solely by the transit of a tunnel. A packet
      with a hop count of zero should successfully transit a link (and
      thus a tunnel) that connects two hosts.

   o  The addresses of a tunnel ingress and egress interface correspond
      to link layer addresses to the transit packet. Like links, some
      tunnels may not have their own addresses. Like network interfaces,
      ingress and egress interfaces typically require network layer
      addresses.

   o  Like network interfaces, the ingress and egress interfaces are
      never a direct source of ICMP messages but may provide information
      to their attached host or router to generate those ICMP messages
      during the processing of transit packets.

   o  Like network interfaces and links, two nodes may be connected by
      any combination of tunnels and links, including multiple tunnels.
      As with multiple links, existing network layer forwarding
      determines which IP traffic uses each link or tunnel.

   These observations make it much easier to determine what a tunnel
   must do to transit IP packets, notably it must satisfy all
   requirements expected of a link [RFC1122][RFC3819]. The remainder of
   this document explores these implications in greater detail.

3.6. Fragmentation

   There are two places where fragmentation can occur in a tunnel,
   called ’outer fragmentation’ and ’inner fragmentation’. This document
   assumes that only outer fragmentation is viable because it is the
   only approach that works for both IPv4 datagrams with DF=1 and IPv6.
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3.6.1. Outer Fragmentation

   Outer fragmentation is shown in Figure 8. The bottom of the figure
   shows the network topology, where transit packets originate at the
   source, enter the tunnel at the ingress interface for encapsulation,
   exit the tunnel at the egress interface where they are decapsulated,
   and arrive at the destination. The packet traffic is shown above the
   topology, where the transit packets are shown at the top. In this
   diagram, the ingress interface is located on router ’Ra’ and the
   egress interface is located on router ’Rd’.

   When the link packet - which is the encapsulated transit packet -
   would exceed the tunnel MTU, the packet needs to be fragmented. In
   this case the packet is fragmented at the outer (link) header, with
   the fragments shown as (b1) and (b2). The outer header indicates
   fragmentation (as ’ and "), the inner (transit) header occurs only in
   the first fragment, and the inner (transit) data is broken across the
   two packets. These fragments are reassembled at the egress interface
   during decapsulation in step (c), where the resulting link packet is
   reassembled and decapsulated so that the transit packet can continue
   on its way to the destination.

    Transit packet
    +----+----+                                              +----+----+
    | iH | iD |------+ -  -  -  -  -  -  -  -  -  -  +------>| iH | iD |
    +----+----+      |                               |       +----+----+
                     v Link packet                   |
              +----+----+----+               +----+----+----+
          (a) | oH | iH | iD |               | oH | iH | iD | (d)
              +----+----+----+               +----+----+----+
                     |                               ^
                     |    Link packet fragment #1    |
                     |       +----+----+-----+       |
                (b1) +----- >| oH’| iH | iD1 |-------+ (c)
                     |       +----+----+-----+       |
                     |                               |
                     |    Link packet fragment #2    |
                     |       +----+-----+            |
                (b2) +----- >| oH"| iD2 |------------+
                             +----+-----+
   +-----+    +--+ +---+                           +---+ +--+    +-----+
   |     |    |  |/     \                         /     \|  |    |     |
   | Src |----|Ra|Ingress|=======================|Egress |Rd|----| Dst |
   |     |    |  |\     /                         \     /|  |    |     |
   +-----+    +--+ +---+                           +---+ +--+    +-----+

             Figure 8 Fragmentation of the (outer) link packet
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   Outer fragmentation isolates the tunnel encapsulation duties to the
   ingress and egress interfaces. This can be considered a benefit in
   clean, layered network design, but also may require complex egress
   interface decapsulation, especially where tunnels aggregate large
   amounts of traffic, such as may result in IP ID overload (see Sec.
   4.1.4). Outer fragmentation is valid for any tunnel link protocol
   that supports fragmentation (e.g., IPv4 or IPv6), in which the tunnel
   endpoints act as the host endpoints of that protocol.

   Along the tunnel, the inner (transit) header is contained only in the
   first fragment, which can interfere with mechanisms that ’peek’ into
   lower layer headers, e.g., as for relayed ICMP (see Sec. 4.3).

3.6.2. Inner Fragmentation

   Inner fragmentation distributes the impact of tunnel fragmentation
   across both egress interface decapsulation and transit packet
   destination, as shown in Figure 9; this can be especially important
   when the tunnel would otherwise need to source (outer) fragment large
   amounts of traffic. However, this mechanism is valid only when the
   transit packets can be fragmented on-path, e.g., as when the transit
   packets are IPv4 datagrams with DF=0.

   Again, the network topology is shown at the bottom of the figure, and
   the original packets show at the top. Packets arrive at the ingress
   node (router Ra) and are fragmented there based into transit packet
   fragments #1 (a1) and #2 (a2). These fragments are encapsulated at
   the ingress interface in steps (b1) and (b2) and each resulting link
   packet traverses the tunnel. When these link packets arrive at the
   egress interface they are decapsulated in steps (c1) and (c2) and the
   egress node (router) forwards the transit packet fragments to their
   destination. This destination is then responsible for reassembling
   the transit packet fragments into the original transit packet (d).

   Along the tunnel, the inner headers are copied into each fragment,
   and so can be ’peeked at’ inside the tunnel (see Sec. 4.3).
   Fragmentation shifts from the ingress interface to the ingress router
   and reassembly shifts from the egress interface to the destination.
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    Transit packet
   +----+----+                                               +----+----+
   | iH | iD |-+ - - - - -  -  -  -  -  -  -  -  -  -  -  - >| iH | iD |
   +----+----+ |                                             +----+----+
               v Transit packet fragment #1                         ^
            +----+-----+                           +----+-----+     |
       (a1) | iH’| iD1 |                           | iH’| iD1 |-----+(d)
            +----+-----+                           +----+-----+     ^
               |     |        Link packet #1         ^              |
               |     |       +----+----+-----        |              |
               | (b1)+----- >| oH | iH’| iD1 |-------+(c1)          |
               |             +----+----+-----+                      |
               |                                                    |
               v Transit packet fragment #2                         |
            +----+-----+                           +----+-----+     |
       (a2) | iH"| iD2 |                           | iH"| iD2 |-----+
            +----+-----+                           +----+-----+
                     |        Link packet #2         |
                     |       +----+----+-----+       |
                 (b2)+----- >| oH | iH"| iD2 |-------+(c2)
                             +----+----+-----+
   +-----+    +--+ +---+                           +---+ +--+    +-----+
   |     |    |  |/     \                         /     \|  |    |     |
   | Src |----|Ra|Ingress|=======================|Egress |Rd|----| Dst |
   |     |    |  |\     /                         \     /|  |    |     |
   +-----+    +--+ +---+                           +---+ +--+    +-----+

           Figure 9 Fragmentation of the inner (transit) packet

3.6.3. The Necessity of Outer Fragmentation

   Fragmentation is critical for tunnels that support transit packets
   for protocols with minimum MTU requirements, while operating over
   tunnel paths using protocols that have their own MTU requirements.
   Depending on the amount of space used by encapsulation, these two
   minimums will ultimately interfere (especially when a protocol
   transits itself either directly, as with IP-in-IP, or indirectly, as
   in IP-in-GRE-in-IP), and the transit packet will need to be
   fragmented to both support a tunnel MTU while traversing tunnels with
   their own tunnel path MTUs.

   Outer fragmentation is the only solution that supports all IPv4 and
   IPv6 traffic, because inner fragmentation is allowed only for IPv4
   datagrams with DF=0.
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4. IP Tunnel Requirements

   The requirements of an IP tunnel are defined by the requirements of
   an IP link because both transit IP packets. A tunnel thus must
   transit the IP minimum MTU, i.e., 68 bytes for IPv4 [RFC793] and 1280
   bytes for IPv6 [RFC2460] and a tunnel must support address resolution
   when there is more than one egress interface for that tunnel.

   The requirements of the tunnel ingress and egress interfaces are
   defined by the network over which they exchange messages (link
   packets). For IP-over-IP, this means that the ingress interface MUST
   NOT exceed the IP fragment identification field uniqueness
   requirements [RFC6864]. Uniqueness is more difficult to maintain at
   high packet rates for IPv4, whose fragment ID field is only 16 bits.

   These requirements remain even though tunnels have some unique
   issues, including the need for additional space for encapsulation
   headers and the potential for tunnel MTU variation.

4.1. Encapsulation Header Issues

   Tunneling uses encapsulation uses a non-link protocol as a link
   layer. The encapsulation layer thus has the same requirements and
   expectations as any other IP link layer when used to transit IP
   packets. These relationships are addressed in the following
   subsections.

4.1.1. General Principles of Header Fields Relationships

   Some tunnel specifications attempt to relate the header fields of the
   transit packet and tunnel link packet. In some cases, this
   relationship is warranted, whereas in other cases the two protocol
   layers need to be isolated from each other. For example, the tunnel
   link header source and destination addresses are network endpoints in
   the tunnel network N, but have no meaning in the outer network M. The
   two sets of addresses are effectively independent, just as are other
   network and link addresses.

   Because the tunneled packet uses source and destination addresses
   with a separate meaning, it is inappropriate to copy or reuse the
   IPv4 Identification (ID) or IPv6 Fragment ID fields of the tunnel
   transit packet (see Section 4.1.4). Similarly, the DF field of the
   transit packet is not related to that field in the tunnel link packet
   header (presuming both are IPv4) (see Section 4.2). Most other fields
   are similarly independent between the transit packet and tunnel link
   packet. When a field value is generated in the encapsulation header,
   its meaning should be derived from what is desired in the context of
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   the tunnel as a link. When feedback is received from these fields,
   they should be presented to the tunnel ingress and egress as if they
   were network interfaces. The behavior of the node where these
   interfaces attach should be identical to that of a conventional link.

   There are exceptions to this rule that are explicitly intended to
   relay signals from inside the tunnel to the network outside the
   tunnel, typically relevant only when the tunnel network N and the
   outer network M use the same network. These apply only when that
   coordination is defined, as with explicit congestion notification
   (ECN) [RFC6040] (see Section 4.3.2), and differentiated services code
   points (DSCPs) [RFC2983]. Equal-cost multipath routing may also
   affect how some encapsulation fields are set, including IPv6 flow
   labels [RFC6438] and source ports for transport protocols when used
   for tunnel encapsulation [RFC8085] (see Section 4.3.4).

4.1.2. Addressing Fields

   Tunnel ingresses and egresses have addresses associated with the
   encapsulation protocol. These addresses are the source and
   destination (respectively) of the encapsulated packet while
   traversing the tunnel network.

   Tunnels may or may not have addresses in the network whose traffic
   they transit (e.g., network M in Figure 4). In some cases, the tunnel
   is an unnumbered interface to a point-to-point virtual link. When the
   tunnel has multiple egresses, tunnel interfaces require separate
   addresses in network M.

   To see the effect of tunnel interface addresses, consider traffic
   sourced at router Ra in Figure 4. Even before being encapsulated by
   the ingress, traffic needs a source IP network address that belongs
   to the router. One option is to use an address associated with one of
   the other interfaces of the router [RFC1122]. Another option is to
   assign a number to the tunnel interface itself. Regardless of which
   address is used, the resulting IP packet is then encapsulated by the
   tunnel ingress using the ingress address as a separate operation.

4.1.3. Hop Count Fields

   The Internet hop count field is used to detect and avoid forwarding
   loops that cannot be corrected without a synchronized reboot. The
   IPv4 Time-to-Live (TTL) and IPv6 Hop Limit field each serve this
   purpose [RFC791][RFC2460]. The IPv4 TTL field was originally intended
   to indicate packet expiration time, measured in seconds. A router is
   required to decrement the TTL by at least one or the number of
   seconds the packet is delayed, whichever is larger [RFC1812]. Packets
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   are rarely held that long, and so the field has come to represent the
   count of the number of routers traversed. IPv6 makes this meaning
   more explicit.

   These hop count fields represent the number of network forwarding
   elements (routers) traversed by an IP datagram. An IP datagram with a
   hop count of zero can traverse a link between two hosts because it
   never visits a router (where it would need to be decremented and
   would have been dropped).

   An IP datagram traversing a tunnel thus need not have its hop count
   modified, i.e., the tunnel transit header need not be affected. A
   zero hop count datagram should be able to traverse a tunnel as easily
   as it traverses a link. A router MAY be configured to decrement
   packets traversing a particular link (and thus a tunnel), which may
   be useful in emulating a tunnel path as if it were a network path
   that traversed one or more routers, but this is strictly optional.
   The ability of the outer network M and tunnel network N to avoid
   indefinitely looping packets does not rely on the hop counts of the
   transit packet and tunnel link packet being related.

   The hop count field is also used by several protocols to determine
   whether endpoints are ’local’, i.e., connected to the same subnet
   (link-local discovery and related protocols [RFC4861]). A tunnel is a
   way to make a remote network address appear directly-connected, so it
   makes sense that the other ends of the tunnel appear local and that
   such link-local protocols operate over tunnels unless configured
   explicitly otherwise. When the interfaces of a tunnel are numbered,
   these can be interpreted the same way as if they were on the same
   link subnet.

4.1.4. IP Fragment Identification Fields

   Both IPv4 and IPv6 include an IP Identification (ID) field to support
   IP datagram fragmentation and reassembly [RFC791][RFC1122][RFC2460].
   When used, the ID field is intended to be unique for every packet for
   a given source address, destination address, and protocol, such that
   it does not repeat within the Maximum Segment Lifetime (MSL).

   For IPv4, this field is in the default header and is meaningful only
   when either source fragmented or DF=0 ("non-atomic packets")
   [RFC6864]. For IPv6, this field is contained in the optional Fragment
   Header [RFC2460]. Although IPv6 supports only source fragmentation,
   the field may occur in atomic fragments [RFC6946].

   Although the ID field was originally intended for fragmentation and
   reassembly, it can also be used to detect and discard duplicate
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   packets, e.g., at congested routers (see Sec. 3.2.1.5 of [RFC1122]).
   For this reason, and because IPv4 packets can be fragmented anywhere
   along a path, all non-atomic IPv4 packets and all IPv6 packets
   between a source and destination of a given protocol must have unique
   ID values over the potential fragment reordering period
   [RFC2460][RFC6864].

   The uniqueness of the IP ID is a known problem for high speed nodes,
   because it limits the speed of a single protocol between two
   endpoints [RFC4963]. Although this RFC suggests that the uniqueness
   of the IP ID is moot, tunnels exacerbate this condition. A tunnel
   often aggregates traffic from a number of different source and
   destination addresses, of different protocols, and encapsulates them
   in a header with the same ingress and egress addresses, all using a
   single encapsulation protocol. If the ingress enforces IP ID
   uniqueness, this can either severely limit tunnel throughput or can
   require substantial resources; the alternative is to ignore IP ID
   uniqueness and risk reassembly errors. Although fragmentation is
   somewhat rare in the current Internet at large, but it can be common
   along a tunnel. Reassembly errors are not always detected by other
   protocol layers (see Sec. 4.3.3) , and even when detected they can
   result in excessive overall packet loss and can waste bandwidth
   between the egress and ultimate packet destination.

   The 32-bit IPv6 ID field in the Fragment Header is typically used
   only during source fragmentation. The size of the ID field is
   typically sufficient that a single counter can be used at the tunnel
   ingress, regardless of the endpoint addresses or next-header
   protocol, allowing efficient support for very high throughput
   tunnels.

   The smaller 16-bit IPv4 ID is more difficult to correctly support. A
   recent update to IPv4 allows the ID to be repeated for atomic
   packets. When either source fragmentation or on-path fragmentation is
   supported, the tunnel ingress may need to keep independent ID
   counters for each tunnel source/destination/protocol tuple.

4.1.5. Checksums

   IP traffic transiting a tunnel needs to expect a similar level of
   error detection and correction as it would expect from any other
   link. In the case of IPv4, there are no such expectations, which is
   partly why it includes a header checksum [RFC791].

   IPv6 omitted the header checksum because it already expects most link
   errors to be detected and dropped by the link layer and because it
   also assumes transport protection [RFC2460]. When transiting IPv6
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   over IPv6, the tunnel fails to provide the expected error detection.
   This is why IPv6 is often tunneled over layers that include separate
   protection, such as GRE [RFC2784].

   The fragmentation created by the tunnel ingress can increase the need
   for stronger error detection and correction, especially at the tunnel
   egress to avoid reassembly errors. The Internet checksum is known to
   be susceptible to reassembly errors that could be common [RFC4963],
   and should not be relied upon for this purpose. This is why some
   tunnel protocols, e.g., SEAL and AERO [RFC5320][Te16], include a
   separate checksum. This requirement can be undermined when using UDP
   as a tunnel with no UDP checksum (as per [RFC6935][RFC6936]) when
   fragmentation occurs because the egress has no checksum with which to
   validate reassembly. For this reason, it is safe to use UDP with a
   zero checksum for atomic tunnel link packets only; when used on
   fragments, whether generated at the ingress or en-route inside the
   tunnel, omission of such a checksum can result in reassembly errors
   that can cause additional work (capacity, forwarding processing,
   receiver processing) downstream of the egress.

4.2. MTU Issues

   Link MTUs, IP datagram limits, and transport protocol segment sizes
   are already related by several requirements
   [RFC768][RFC791][RFC1122][RFC1812][RFC2460] and by a variety of
   protocol mechanisms that attempt to establish relationships between
   them, including path MTU discovery (PMTUD) [RFC1191][RFC1981],
   packetization layer path MTU discovery (PLMTUD) [RFC4821], as well as
   mechanisms inside transport protocols [RFC793][RFC4340][RFC4960]. The
   following subsections summarize the interactions between tunnels and
   MTU issues, including minimum tunnel MTUs, tunnel fragmentation and
   reassembly, and MTU discovery.

4.2.1. Minimum MTU Considerations

   There are a variety of values of minimum MTU values to consider, both
   in a conventional network and in a tunnel as a link in that network.
   These are indicated in Figure 10, an annotated variant of Figure 4.
   Note that a (link) MTU (a) corresponds to a tunnel MTU (d) and that a
   path MTU (b) corresponds to a tunnel path MTU (e). The tunnel MTU is
   the EMTU_R of the egress interface, because that defines the largest
   transit packet message that can traverse the tunnel as a link in
   network M. The ability to traverse the hops of the tunnel - in
   network N - is not related, and only the ingress need be concerned
   with that value.
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                    --_                            --
        +------+   /  \                           /  \   +------+
        | Hsrc |--+ Ra +       --       --       + Rd +--| Hdst |
        +------+   \  //\     /  \     /  \     /\\  /   +------+
                    --/I \---+ Rb +---+ Rc +---/E \--
                      \  /    \  /     \  /    \  /
                       \/      --       --      \/
                        <----- Network N ------->
         <-------------------- Network M --------------------->

   Communication in network M viewed at that layer:
    (a)         <->          Link MTU
    (b)                <---- Tunnel MTU --------->
    (c)         <----------- Path MTU ----------------->
    (d) <------------------- EMTU_R --------------------------->

   Communication in network N viewed at that layer:
    (e)                   <--> Link MTU
    (f)                   <--- Path MTU ------>
    (g)                 <----- EMTU_R --------->

   Communication in network N viewed from network M:
    (h)                   <--> MFS
    (i)                   <--- Path MFS ------>
    (j)                 <----- EMFS_R --------->

                    Figure 10 The variety of MTU values

   Consider the following example values. For IPv6 transit packets, the
   minimum (link) MTU (a) is 1280 bytes, which similarly applies to
   tunnels as the tunnel MTU (b). The path MTU (c) is the minimum of the
   links (including tunnels as links) along a path, and indicates the
   smallest IP message (packet or fragment) that can traverse a path
   between a source and destination without on-path fragmentation (e.g.,
   supported in IPv4 with DF=0). Path MTU discovery, either at the
   network layer (PMTUD [RFC1191][RFC1981]) or packetization layer
   (PLPMTUD [RFC4821]) attempts to tune the source IP packets and
   fragments (i.e., EMTU_S) to fit within this path MTU size to avoid
   fragmentation and reassembly [Ke95]. The minimum EMTU_R (c) is 1500
   bytes, i.e., the minimum MTU for endpoint-to-endpoint communication.

   The tunnel is a source-destination communication in network N.
   Messages between the tunnel source (the ingress interface) and tunnel
   destination (egress interface) similarly experience a variety of
   network N MTU values, including a link MTU (e), a path MTU (f), and
   an EMTU_R (g). The network N EMTU_S is limited by the path MTU, and
   the source-destination message maximum is limited by EMTU_R, just as
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   it was in for those types of MTUs in network M. For an IPv6 network
   N, its link and path MTUs must be at least 1280 and its EMTU_R must
   be at least 1500.

   However, viewed from the context of network M, these network N MTUs
   are link layer properties, i.e., maximum frame sizes (MFS). The
   network N EMTU_R determines the largest message that can transit
   between the source (ingress) and destination (egress), but viewed
   from network M this is a link layer, i.e., EMFS_R. The tunnel EMTU_R
   is EMFS_R minus the link (encapsulation) headers includes the
   encapsulation headers of the link layer. Just as the path MTU has no
   bearing on EMTU_R, the path MFS in network N has no bearing on the
   MTU of the tunnel.

   For IPv6 networks M and N, these relationships are summarized as
   follows:

   o  Network M MTU = 1280, the largest transit packet (i.e., payload)
      over a single IPv6 link in the base network without source
      fragmentation

   o  Network M path MTU = 1280, the transit packet (i.e., payload) that
      can traverse a path of links in the base network without source
      fragmentation

   o  Network M EMTU_R = 1500, the largest transit packet (i.e.,
      payload) that can traverse a path in the base network with source
      fragmentation

   o  Network N MTU = 1280 (for the same reasons as for network M)

   o  Network N path MTU = 1280 (for the same reasons as for network M)

   o  Network N EMTU_R = 1500 (for the same reasons as for network M)

   o  Tunnel MTU = 1500-encapsulation (typically 1460), the network N
      EMTU_R payload

   o  Tunnel atom = largest network M message that transits a tunnel
      using network N as a link layer without fragmentation: 1280-
      encapsulation, i.e., the network N EMTU_S payload, treating EMTU_S
      as a network M EMFS_S.
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   The difference between the network N MTU and its treatment as a link
   layer in network M is the reason why the tunnel ingress interfaces
   need to support fragmentation and tunnel egress interfaces need to
   support reassembly in the encapsulation layer(s). The high cost of
   fragmentation and reassembly is why it is useful for applications to
   avoid sending messages too close to the size of the tunnel path MTU
   [Ke95], although there is no signaling mechanism that can achieve
   this (see Section 4.2.3).

4.2.2. Fragmentation

   A tunnel interacts with fragmentation in two different ways. As a
   link in network M, transit packets might be fragmented before they
   reach the tunnel - i.e., in network M either during source
   fragmentation (if generated at the same node as the ingress
   interface) or forwarding fragmentation (for IPv4 DF=0 datagrams). In
   addition, link packets traversing inside the tunnel may require
   fragmentation by the ingress interface - i.e., source fragmentation
   by the ingress as a host in network N. These two fragmentation
   operations are no more related than are conventional IP fragmentation
   and ATM segmentation and reassembly; one occurs at the (transit)
   network layer, the other at the (virtual) link layer.

   Although many of these issues with tunnel fragmentation and MTU
   handling were discussed in [RFC4459], that document described a
   variety of alternatives as if they were independent. This document
   explains the combined approach that is necessary.

   Like any other link, an IPv4 tunnel must transit 68 byte packets
   without requiring source fragmentation [RFC791][RFC1122] and an IPv6
   tunnel must transit 1280 byte packets without requiring source
   fragmentation [RFC2460]. The tunnel MTU interacts with routers or
   hosts it connects the same way as would any other link MTU. The
   pseudocode examples in this section use the following values:

   o  TP: transit packet

   o  TPsize: size of the transit packet (including its headers)

   o  encaps: ingress encapsulation overhead (tunnel link headers)

   o  tunMTU: tunnel MTU, i.e., network N egress EMTU_R - encaps.

   o  tunAtom: tunnel atom size, equal to the egress host-level EMTU_S -
      encaps.
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   These rules apply at the host/router where the tunnel is attached,
   i.e., at the network layer of the transit packet (we assume that all
   tunnels, including multipoint tunnels, have a single, uniform MTU).
   These are basic source fragmentation rules (or transit
   refragmentation for IPv4 DF=0 datagrams), and have no relation to the
   tunnel itself other than to consider the tunnel MTU as the effective
   link MTU of the next hop.

   Inside the source during transit packet generation or a router during
   transit packet forwarding, the tunnel is treated as if it were any
   other link (i.e., this is not tunnel processing, but rather typical
   source or router processing), as indicated in the pseudocode in
   Figure 11.

      if (TPsize > tunMTU) then
         if (TP can be on-path fragmented, e.g., IPv4 DF=0) then
            split TP into fragments of tunMTU size
            and send each fragment to the tunnel ingress interface
         else
            drop the TP and send ICMP "too big" to TP source
         endif
      else
         send TP to the tunnel ingress
      endif

         Figure 11 Router / host packet size processing algorithm

   The tunnel ingress acts as host on the tunnel path, i.e., as source
   fragmentation of tunnel link packets (we assume that all tunnels,
   even multipoint tunnels, have a single, uniform tunnel MTU), using
   the pseudocode shown in Figure 12. Note that ingress source
   fragmentation occurs in the encapsulation process, which may involve
   more than one protocol layer. In those cases, fragmentation can occur
   at any of the layers of encapsulation in which it is supported, based
   on the configuration of the ingress.

      if (TPsize <= tunAtom) then
         encapsulate the TP and emit
      else
         if (tunAtom < TPsize) then
            fragment TP into tunAtom chunks
            encapslate each chunk and emit
         endif
      endif

                  Figure 12 Ingress processing algorithm
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   Just as a network interface should never receive a message larger
   than its MTU, a tunnel should never receive a message larger than its
   tunnel MTU limit (see the host/router processing above). A router
   attempting to process such a message would already have generated an
   ICMP "packet too big" and the transit packet would have been dropped
   before entering into this algorithm. Similarly, a host would have
   generated an error internally and aborted the attempted transmission.

   As an example, consider IPv4 over IPv6 or IPv6 over IPv6 tunneling,
   where IPv6 encapsulation adds a 40 byte fixed header plus IPv6
   options (i.e., IPv6 header extensions) of total size ’EHsize’. The
   tunnel MTU will be at least 1500 - (40 + EHsize) bytes. The tunnel
   path MTU will be at least 1280 - (40 + EHsize) bytes. Transit packets
   larger than 1460-EHsize will be dropped by a node before ingress
   processing. Considering these minimum values, the previous algorithm
   uses actual values shown in the pseudocode in Figure 13.

      if (TPsize <= (1240 - EHsize)) then
         encapsulate TP and emit
      else
         if ((1240 - EHsize) < TPsize) then
            fragment TP  into (1240 - EHsize) chunks
            encapsulate each chunk and emit
         endif
      endif

           Figure 13 Ingress processing for an tunnel over IPv6

   An IPv6 tunnel supports IPv6 transit only if EHsize is 180 bytes or
   less; otherwise the incoming transit packet would have been dropped
   as being too large by the host/router. Similarly, an IPv6 tunnel
   supports IPv4 transit only if EHsize is 884 bytes or less. In this
   example, transit packets of up to (1240 - Ehsize) can traverse the
   tunnel without ingress source fragmentation and egress reassembly.

   When using IP directly over IP, the minimum transit packet EMTU_R for
   IPv4 is 576 bytes and for IPv6 is 1500 bytes. This means that tunnels
   of IPv4-over-IPv4, IPv4-over-IPv6, and IPv6-over-IPv6 are possible
   without additional requirements, but this may involve ingress
   fragmentation and egress reassembly. IPv6 cannot be tunneled directly
   over IPv4 without additional requirements, notably that the egress
   EMTU_R is at least 1280 bytes.

   When ongoing ingress fragmentation and egress reassembly would be
   prohibitive or costly, larger MTUs can be supported by design and
   confirmed either out-of-band (by design) or in-band (e.g., using
   PLPMTUD [RFC4821], as done in SEAL [RFC5320] and AERO [Te16]).
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4.2.3. Path MTU Discovery

   Path MTU discovery (PMTUD) enables a network path to support a larger
   PMTU than it can assume from the minimum requirements of protocol
   over which it operates. Note, however, that PMTUD never discovers
   EMTU_R that is larger than the required minimum; that information is
   available to some upper layer protocols, such as TCP [RFC1122], but
   cannot be determined at the IP layer.

   There is temptation to optimize tunnel traversal so that packets are
   not fragmented between ingress and egress, i.e., to attempt tune the
   network M PMTU to the tunnel atom size (i.e., the ingress EMTU_S
   minus encapsulation overhead) rather than the tunnel MTU, to avoid
   ingress fragmentation.

   This is often impossible because the ICMP "packet too big" message
   (IPv4 fragmentation needed [RFC792] or IPv6 packet too big [RFC4443])
   indicates the complete failure of a link to transit a packet, not a
   preference for a size that matches that internal the mechanism of the
   link. ICMP messages are intended to indicate whether a tunnel MTU is
   insufficient; there is no ICMP message that can indicate when a
   transit packet is "too bit to for the tunnel path MTU, but not larger
   than the tunnel MTU". If there were, endpoints might receive that
   message for IP packets larger than 40 bytes (the payload of a single
   ATM cell, allowing for the 8-byte AAL5 trailer), but smaller than 9K
   (the ATM EMTU_R payload).

   In addition, attempting to try to tune the network transit size to
   natively match that of the link internal transit can be hazardous for
   many reasons:

   o  The tunnel is capable of transiting packets as large as the
      network N EMTU_R - encapsulation, which is always at least as
      large as the tunnel MTU and typically is larger.

   o  ICMP has only one type of error message regarding large packets -
      "too big", i.e., too large to transit. There is no optimization
      message of "bigger than I’d like, but I can deal with if needed".

   o  IP tunnels often involve some level of recursion, i.e.,
      encapsulation over itself [RFC4459].

   Tunnels that use IPv4 as the encapsulation layer SHOULD set DF=0, but
   this requires generating unique fragmentation ID values, which may
   limit throughput [RFC6864]. These tunnels might have difficulty
   assuming ingress EMTU_S values over 64 bytes, so it may not be
   feasible to assume that larger packets with DF=1 are safe.
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   Recursive tunneling occurs whenever a protocol ends up encapsulated
   in itself. This happens directly, as when IPv4 is encapsulated in
   IPv4, or indirectly, as when IP is encapsulated in UDP which then is
   a payload inside IP. It can involve many layers of encapsulation
   because a tunnel provider isn’t always aware of whether the packets
   it transits are already tunneled.

   Recursion is impossible when the tunnel transit packets are limited
   to that of the native size of the ingress payload. Arriving tunnel
   transit packets have a minimum supported size (1280 for IPv6) and the
   tunnel PMFS has the same requirement; there would be no room for the
   tunnel’s "link layer" headers, i.e., the encapsulation layer. The
   result would be an IPv6 tunnel that cannot satisfy IPv6 transit
   requirements.

   It is more appropriate to require the tunnel to satisfy IP transit
   requirements and enforce that requirement at design time or during
   operation (the latter using PLPMTUD [RFC4821]). Conventional path MTU
   discovery (PMTUD) relies on existing endpoint ICMP processing of
   explicit negative feedback from routers along the path via "message
   to big" ICMP packets in the reverse direction of the tunnel
   [RFC1191][RFC1981]. This technique is susceptible to the "black hole"
   phenomenon, in which the ICMP messages never return to the source due
   to policy-based filtering [RFC2923]. PLPMTUD requires a separate,
   direct control channel from the egress to the ingress that provides
   positive feedback; the direct channel is not blocked by policy
   filters and the positive feedback ensures fail-safe operation if
   feedback messages are lost [RFC4821].

4.3. Coordination Issues

   IP tunnels interact with link layer signals and capabilities in a
   variety of ways. The following subsections address some key issues of
   these interactions. In general, they are again informed by treating a
   tunnel as any other link layer and considering the interactions
   between the IP layer and link layers [RFC3819].

4.3.1. Signaling

   In the current Internet architecture, signaling goes upstream, either
   from routers along a path or from the destination, back toward the
   source. Such signals are typically contained in ICMP messages, but
   can involve other protocols such as RSVP, transport protocol signals
   (e.g., TCP RSTs), or multicast control or transport protocols.

   A tunnel behaves like a link and acts like a link interface at the
   nodes where it is attached. As such, it can provide information that
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   enhances IP signaling (e.g., ICMP), but itself does not directly
   generate ICMP messages.

   For tunnels, this means that there are two separate signaling paths.
   The outer network M nodes can each signal the source of the tunnel
   transit packets, Hsrc (Figure 14). Inside the tunnel, the inner
   network N nodes can signal the source of the tunnel link packets, the
   ingress I (Figure 15).

           +--------+---------------------------+--------+
           |        |                           |        |
           v        --_                         --       v
        +------+   /  \                        /  \   +------+
        | Hsrc |--+ Ra +      --      --      + Rd +--| Hdst |
        +------+   \  //\    /  \    /  \    /\\  /   +------+
                    --/I \--+ Rb +--+ Rc +--/E \--
                      \  /   \  /    \  /   \  /
                       \/     --      --     \/
                        <---- Network N ----->
        <-------------------- Network M --------------------->

                   Figure 14 Signals outside the tunnel

                        +-----+-------+------+
                    --_ |     |       |      |  --
        +------+   /  \ v     |       |      | /  \   +------+
        | Hsrc |--+ Ra +      --      --      + Rd +--| Hdst |
        +------+   \  //\    /  \    /  \    /\\  /   +------+
                    --/I \--+ Rb +--+ Rc +--/E \--
                      \  /   \  /    \  /   \  /
                       \/     --      --     \/
                        <----- Network N ---->
        <--------------------- Network M -------------------->

                    Figure 15 Signals inside the tunnel

   These two signal paths are inherently distinct except where
   information is exchanged between the network interface of the tunnel
   (the ingress) and its attached node (Ra, in both figures).

   It is always possible for a network interface to provide hints to its
   attached node (host or router), which can be used for optimization.
   In this case, when signals inside the tunnel indicate a change to the
   tunnel, the ingress (i.e., the tunnel network interface) can provide
   information to the router (Ra, in both figures), so that Ra can
   generate the appropriate signal in return to Hsrc. This relaying may
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   be difficult, because signals inside the tunnel may not return enough
   information to the ingress to support direct relaying to Hsrc.

   In all cases, the tunnel ingress needs to determine how to relay the
   signals from inside the tunnel into signals back to the source. For
   some protocols this is either simple or impossible (such as for
   ICMP), for others, it can even be undefined (e.g., multicast). In
   some cases, the individual signals relayed from inside the tunnel may
   result in corresponding signals in the outside network, and in other
   cases they may just change state of the tunnel interface. In the
   latter case, the result may cause the router Ra to generate new ICMP
   errors when later messages arrive from Hsrc or other sources in the
   outer network.

   The meaning of the relayed information must be carefully translated.
   An ICMP error within a tunnel indicates a failure of the path inside
   the tunnel to support an egress EMTU_S. It can be very difficult to
   convert that ICMP error into a corresponding ICMP message from the
   ingress node back to the transit packet source. The ICMP message may
   not contain enough of a packet prefix to extract the transit packet
   header sufficient to generate the appropriate ICMP message. The
   relationship between the egress EMTU_S and the transit packet may be
   indirect, e.g., the ingress node may be performing source
   fragmentation that should be adjusted instead of propagating the ICMP
   upstream.

   Some messages have detailed specifications for relaying between the
   tunnel link packet and transit packet, including Explicit Congestion
   Notification (ECN [RFC6040]) and multicast (IGMP, e.g.).

4.3.2. Congestion

   Tunnels carrying IP traffic (i.e., the focus of this document) need
   not react directly to congestion any more than would any other link
   layer [RFC8085]. IP transit packet traffic is already expected to be
   congestion controlled.

   It is useful to relay network congestion notification between the
   tunnel link and the tunnel transit packets. Explicit congestion
   notification requires that ECN bits are copied from the tunnel
   transit packet to the tunnel link packet on encapsulation, as well as
   copied back at the egress based on a combination of the bits of the
   two headers [RFC6040]. This allows congestion notification within the
   tunnel to be interpreted as if it were on the direct path.
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4.3.3. Multipoint Tunnels and Multicast

   Multipoint tunnels are tunnels with more than two ingress/egress
   endpoints. Just as tunnels emulate links, multipoint tunnels emulate
   multipoint links, and can support multicast as a tunnel capability.
   Multipoint tunnels can be useful on their own, or may be used as part
   of more complex systems, e.g., LISP and TRILL configurations
   [RFC6830][RFC6325].

   Multipoint tunnels require a support for egress determination, just
   as multipoint links do. This function is typically supported by ARP
   [RFC826] or ARP emulation (e.g., LAN Emulation, known as LANE
   [RFC2225]) for multipoint links. For multipoint tunnels, a similar
   mechanism is required for the same purpose - to determine the egress
   address for proper ingress encapsulation (e.g., LISP Map-Service
   [RFC6833]).

   All multipoint systems - tunnels and links - might support different
   MTUs between each ingress/egress (or link entrance/exit) pair. In
   most cases, it is simpler to assume a uniform MTU throughout the
   multipoint system, e.g., the minimum MTU supported across all
   ingress/egress pairs. This applies to both the ingress EMTU_S and
   ingress EMTU_S (the latter determining the tunnel MTU).

   A multipoint tunnel MUST have support for broadcast and multicast, in
   exactly the same way as this is already required for multipoint links
   [RFC3819]. Both modes can be supported either by a native mechanism
   inside the tunnel or by emulation using serial replication at the
   tunnel ingress (e.g., AMT [RFC7450]), in the same way that links may
   provide the same support either natively (e.g., via promiscuous or
   automatic replication in the link itself) or network interface
   emulation (e.g., as for non-broadcast multiaccess networks, i.e.,
   NBMAs).

   IGMP snooping enables IP multicast to be coupled with native link
   layer multicast support [RFC4541]. A similar technique may be
   relevant to couple transit packet multicast to tunnel link packet
   multicast, but the coupling of the protocols may be more complex
   because many tunnel link protocols rely on their own network N
   multicast control protocol, e.g., via PIM-SM [RFC6807][RFC7761].

4.3.4. Load Balancing

   Load balancing can impact the way in which a tunnel operates. In
   particular, multipath routing inside the tunnel can impact some of
   the tunnel parameters to vary, both over time and for different
   transit packets. The use of multiple paths can be the result of MPLS
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   link aggregation groups (LAGs), equal-cost multipath routing (ECMP
   [RFC2991]), or other load balancing mechanisms. In some cases, the
   tunnel exists as the mechanism to support ECMP, as for GRE in UDP
   [RFC8086].

   A tunnel may have multiple paths between the ingress and egress with
   different path MTU values, causing the ingress EMTU_S to vary
   [RFC7690]. Rather than track individual values, the EMTU_S can be set
   to the minimum of these different path MTU values.

   IPv6 packets include a flow label to enable multipath routing to keep
   packets of a single flow following the same path. It is helpful to
   preserve the semantics of that flow label as an aggregate identifier
   inside the encapsulated link packets of a tunnel. This is achieved by
   hashing the transit IP addresses and flow label to generate a new
   flow label for use between the ingress and egress addresses
   [RFC6438]. It is not useful to simply copy the flow label from the
   transit packet into the link packet because of collisions that might
   arise if a label is used for flows between different transit packet
   addresses that traverse the same tunnel.

4.3.5. Recursive Tunnels

   The rules described in this document already support tunnels over
   tunnels, sometimes known as "recursive" tunnels, in which IP is
   transited over IP either directly or via intermediate encapsulation
   (IP-UDP-IP, as in GUE [He16]).

   There are known hazards to recursive tunneling, notably that the
   independence of the tunnel transit header and tunnel link header hop
   counts can result in a tunneling loop. Such looping can be avoided
   when using direct encapsulation (IP in IP) by use of a header option
   to track the encapsulation count and to limit that count [RFC2473].
   This looping cannot be avoided when other protocols are used for
   tunneling, e.g., IP in UDP in IP, because the encapsulation count may
   not be visible where the recursion occurs.

5. Observations

   The following subsections summarize the observations of this document
   and a summary of issues with existing tunnel protocol specifications.
   It also includes advice for tunnel protocol designers, implementers,
   and operators. It also includes

5.1. Summary of Recommendations

   o  Tunnel endpoints are network interfaces, tunnel are virtual links
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       o ICMP messages MUST NOT be generated by the tunnel (as a link)

       o ICMP messages received by the ingress inside link change the
          link properties (they not generate transit-layer ICMP
          messages)

       o Link headers (hop, ID, options) are largely independent of
          arriving ID (with few exceptions based on translation, not
          direct copying, e.g., ECN and IPv6 flow IDs)

   o  MTU values should treat the tunnel as any other link

       o Require source ingress source fragmentation and egress
          reassembly at the tunnel link packet layer

       o The tunnel MTU is the tunnel egress EMTU_S less headers, and
          not related at all to the ingress-egress MFS

   o  Tunnels must obey core IP requirements

       o Obey IPv4 DF=0 on arrival at a node (nodes MUST NOT fragment
          IPv4 packets where DF=0)

       o Shut down an IP tunnel if the tunnel MTU falls below the
          required minimum

5.2. Impact on Existing Encapsulation Protocols

   Many existing and proposed encapsulation protocols are inconsistent
   with the guidelines of this document. The following list summarizes
   only those inconsistencies, but omits places where a protocol is
   inconsistent solely by reference to another protocol.

   [should this be inverted as a table of issues and a list of which
   RFCs have problems?]

   o  IP in IP / mobile IP [RFC2003][RFC4459] - IPv4 in IPv4

       o Sets link DF when transit DF=1 (fails without PLPMTUD)

       o Drops at egress if hopcount = 0 (host-host tunnels fail)

       o Drops based on transit source (same as router IP, matches
          egress), i.e., performs routing functions it should not
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       o Ingress generates ICMP messages (based on relayed context),
          rather than using inner ICMP messages to set interface
          properties only

       o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

   o  IPv6 tunnels [RFC2473] -- IPv6 or IPv4 in IPv6

       o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

       o Decrements transiting packet hopcount (by 1)

       o Copies traffic class from tunnel link to tunnel transit header

       o Ignores IPv4 DF=0 and fragments at that layer upon arrival

       o Fails to retain soft ingress state based on inner ICMP messages
          affecting tunnel MTU

       o Tunnel ingress issues ICMPs

       o Fragments IPv4 over IPv6 fragments only if IPv4 DF=0
          (misinterpreting the "can fragment the IPv4 packet" as
          permission to fragment at the IPv6 link header)

   o  IPsec tunnel mode (IP in IPsec in IP) [RFC4301] -- IP in IPsec

       o Uses security policy to set, clear, or copy DF (rather than
          generating it independently, which would also be more secure)

       o Intertwines tunnel selection with security selection, rather
          than presenting tunnel as an interface and using existing
          forwarding (as with transport mode over IP-in-IP [RFC3884])

   o  GRE (IP in GRE in IP or IP in GRE in UDP in IP)
      [RFC2784][RFC7588][RFC7676][RFC8086]

       o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

       o Requires ingress to generate ICMP errors

       o Copies IPv4 DF to outer IPv4 DF

       o Violates IPv6 MTU requirements when using IPv6 encapsulation

   o  LISP [RFC6830]
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       o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

       o Requires ingress to generate ICMP errors

       o Copies inner hop limit to outer

   o  L2TP [RFC3931]

       o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

       o Requires ingress to generate ICMP errors

   o  PWE [RFC3985]

       o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

       o Requires ingress to generate ICMP errors

   o  GUE (Generic UDP encapsulation) [He16] - IP (et. al) in UDP in IP

       o Allows inner encapsulation fragmentation

   o  Geneve [RFC7364][Gr16] - IP (et al.) in Geneve in UDP in IP

       o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

   o  SEAL/AERO [RFC5320][Te16] - IP in SEAL/AERO in IP

       o Some issues with SEAL (MTU, ICMP), corrected in AERO

   o  RTG DT encapsulations [No16]

       o Assumes fragmentation can be avoided completely

       o Allows encapsulation protocols that lack fragmentation

       o Relies on ICMP PTB to correct for tunnel path MTU

   o  No known issues

       o L2VPN (framework for L2 virtualization) [RFC4664]

       o L3VPN (framework for L3 virtualization) [RFC4176]

       o MPLS (IP in MPLS) [RFC3031]

       o TRILL (Ethernet in Ethernet) [RFC5556][RFC6325]
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5.3. Tunnel Protocol Designers

   [To be completed]

   Recursive tunneling + minimum MTU = frag/reassembly is inevitable, at
   least to be able to split/join two fragments

   Account for egress MTU/path MTU differences.

   Include a stronger checksum.

   Ensure the egress MTU is always larger than the path MTU.

   Ensure that the egress reassembly can keep up with line rate OR
   design PLPMTUD into the tunneling protocol.

5.3.1. For Future Standards

   [To be completed]

   Larger IPv4 MTU (2K? or just 2x path MTU?) for reassembly

   Always include frag support for at least two frags; do NOT try to
   deprecate fragmentation.

   Limit encapsulation option use/space.

   Augment ICMP to have two separate messages: PTB vs P-bigger-than-
   optimal

   Include MTU as part of BGP as a hint - SB

   Hazards of multi-MTU draft-van-beijnum-multi-mtu-04

5.3.2. Diagnostics

   [To be completed]

   Some current implementations include diagnostics to support
   monitoring the impact of tunneling, especially the impact on
   fragmentation and reassembly resources, the status of path MTU
   discovery, etc.

   >> Because a tunnel ingress/egress is a network interface, it SHOULD
   have similar resources as any other network interface. This includes
   resources for packet processing as well as monitoring.
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5.4. Tunnel Implementers

   [To be completed]

   Detect when the egress MTU is exceeded.

   Detect when the egress MTU drops below the required minimum and shut
   down the tunnel if that happens - configuring the tunnel down and
   issuing a hard error may be the only way to detect this anomaly, and
   it’s sufficiently important that the tunnel SHOULD be disabled. This
   is always better than blindly assuming the tunnel has been deployed
   correctly, i.e., that the solution has been engineered.

   Do NOT decrement the TTL as part of being a tunnel. It’s always
   already OK for a router to decrement the TTL based on different next-
   hop routers, but TTL is a property of a router not a link.

5.5. Tunnel Operators

   [To be completed]

   Keep the difference between "enforced by operators" vs. "enforced by
   active protocol mechanism" in mind. It’s fine to assume something the
   tunnel cannot or does not test, as long as you KNOW you can assume
   it. When the assumption is wrong, it will NOT be signaled by the
   tunnel. Do NOT decrement the TTL as part of being a tunnel. It’s
   always already OK for a router to decrement the TTL based on
   different next-hop routers, but TTL is a property of a router not a
   link.

   Consider the circuit breakers doc to provide diagnostics and last-
   resort control to avoid overload for non-reactive traffic (see
   Gorry’s RFC-to-be)

   Do NOT decrement the TTL as part of being a tunnel. It’s always
   already OK for a router to decrement the TTL based on different next-
   hop routers, but TTL is a property of a router not a link.

   >>>> PLPMTUD can give multiple conflicting PMTU values during ECMP or
   LAG if PMTU is cached per endpoint pair rather than per flow -- but
   so can PMTUD! This is another reason why ICMP should never drive up
   the effective MTU (if aggregate, treat as the minimum of received
   messages over an interval).
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6. Security Considerations

   Tunnels may introduce vulnerabilities or add to the potential for
   receiver overload and thus DOS attacks. These issues are primarily
   related to the fact that a tunnel is a link that traverses a network
   path and to fragmentation and reassembly. ICMP signal translation
   introduces a new security issue and must be done with care. ICMP
   generation at the router or host attached to a tunnel is already
   covered by existing requirements (e.g., should be throttled).

   Tunnels traverse multiple hops of a network path from ingress to
   egress. Traffic along such tunnels may be susceptible to on-path and
   off-path attacks, including fragment injection, reassembly buffer
   overload, and ICMP attacks. Some of these attacks may not be as
   visible to the endpoints of the architecture into which tunnels are
   deployed and these attacks may thus be more difficult to detect.

   Fragmentation at routers or hosts attached to tunnels may place an
   undue burden on receivers where traffic is not sufficiently diffuse,
   because tunnels may induce source fragmentation at hosts and path
   fragmentation (for IPv4 DF=0) more for tunnels than for other links.
   Care should be taken to avoid this situation, notably by ensuring
   that tunnel MTUs are not significantly different from other link
   MTUs.

   Tunnel ingresses emitting IP datagrams MUST obey all existing IP
   requirements, such as the uniqueness of the IP ID field. Failure to
   either limit encapsulation traffic, or use additional ingress/egress
   IP addresses, can result in high speed traffic fragments being
   incorrectly reassembled.

   Tunnels are susceptible to attacks at both the inner and outer
   network layers. The tunnel ingress/egress endpoints appear as network
   interfaces in the outer network, and are as susceptible as any other
   network interface. This includes vulnerability to fragmentation
   reassembly overload, traffic overload, and spoofed ICMP messages that
   misreport the state of those interfaces. Similarly, the
   ingress/egress appear as hosts to the path traversed by the tunnel,
   and thus are as susceptible as any other host to attacks as well.

   [management?]

   [Access control?]

   describe relationship to [RFC6169] - JT (as per INTAREA meeting
   notes, don’t cover Teredo-specific issues in RFC6169, but include
   generic issues here)
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7. IANA Considerations

   This document has no IANA considerations.

   The RFC Editor should remove this section prior to publication.
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APPENDIX A: Fragmentation efficiency

A.1. Selecting fragment sizes

   There are different ways to fragment a packet. Consider a network
   with a PMTU as shown in Figure 16, where packets are encapsulated
   over the same network layer as they arrive on (e.g., IP in IP). If a
   packet as large as the PMTU arrives, it must be fragmented to
   accommodate the additional header.

         X===========================X (transit PMTU)
         +----+----------------------+
         | iH | DDDDDDDDDDDDDDDDDDDD |
         +----+----------------------+
           |
           |  X===========================X (tunnel 1 MTU)
           |  +---+----+------------------+
       (a) +->| H’| iH | DDDDDDDDDDDDDDDD |
           |  +---+----+------------------+
           |      |
           |      |  X===========================X (tunnel 2 MTU)
           |      |  +----+---+----+-------------+
           | (a1) +->| nH’| H | iH | DDDDDDDDDDD |
           |      |  +----+---+----+-------------+
           |      |
           |      |  +----+-------+
           | (a2) +->| nH"| DDDDD |
           |         +----+-------+
           |
           |  +---+------+
       (b) +->| H"| DDDD |
              +---+------+
                  |
                  |  +----+---+------+
             (b1) +->| nH’| H"| DDDD |
                     +----+---+------+

                   Figure 16 Fragmenting via maximum fit

   Figure 16 shows this process using "maximum fit", assuming outer
   fragmentation as an example (the situation is the same for inner
   fragmentation, but the headers that are affected differ). In maximum
   fit, the arriving packet is split into (a) and (b), where (a) is the
   size of the first tunnel, i.e., the tunnel 1 MTU (the maximum that
   fits over the first tunnel). However, this tunnel then traverses over
   another tunnel (number 2), whose impact the first tunnel ingress has
   not accommodated. The packet (a) arrives at the second tunnel
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   ingress, and needs to be encapsulated again, but it needs to be
   fragmented as well to fit into the tunnel 2 MTU, into (a1) and (a2).
   In this case, packet (b) arrives at the second tunnel ingress and is
   encapsulated into (b1) without fragmentation, because it is already
   below the tunnel 2 MTU size.

   In Figure 17, the fragmentation is done using "even split", i.e., by
   splitting the original packet into two roughly equal-sized
   components, (c) and (d). Note that (d) contains more packet data,
   because (c) includes the original packet header because this is an
   example of outer fragmentation. The packets (c) and (d) arrive at the
   second tunnel encapsulator, and are encapsulated again; this time,
   neither packet exceeds the tunnel 2 MTU, and neither requires further
   fragmentation.

         X===========================X (transit PMTU)
         +----+----------------------+
         | iH | DDDDDDDDDDDDDDDDDDDD |
         +----+----------------------+
           |
           |  X===========================X (tunnel 1 MTU)
           |  +---+----+----------+
       (c) +->| H’| iH | DDDDDDDD |
           |  +---+----+----------+
           |      |
           |      |  X===========================X (tunnel 2 MTU)
           |      |  +----+---+----+----------+
           | (c1) +->| nH | H’| iH | DDDDDDDD |
           |         +----+---+----+----------+
           |
           |  +---+--------------+
       (d) +->| H"| DDDDDDDDDDDD |
              +---+--------------+
                  |
                  |  +----+---+--------------+
             (d1) +->| nH | H"| DDDDDDDDDDDD |
                     +----+---+--------------+

                  Figure 17 Fragmenting via "even split"

A.2. Packing

   Encapsulating individual packets to traverse a tunnel can be
   inefficient, especially where headers are large relative to the
   packets being carried. In that case, it can be more efficient to
   encapsulate many small packets in a single, larger tunnel payload.
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   This technique, similar to the effect of packet bursting in Gigabit
   Ethernet (regardless of whether they’re encoded using L2 symbols as
   delineators), reduces the overhead of the encapsulation headers
   (Figure 18). It reduces the work of header addition and removal at
   the tunnel endpoints, but increases other work involving the packing
   and unpacking of the component packets carried.

                     +-----+-----+
                     | iHa | iDa |
                     +-----+-----+
                           |
                           |     +-----+-----+
                           |     | iHb | iDb |
                           |     +-----+-----+
                           |           |
                           |           |     +-----+-----+
                           |           |     | iHc | iDc |
                           |           |     +-----+-----+
                           |           |           |
                           v           v           v
                +----+-----+-----+-----+-----+-----+-----+
                | oH | iHa | iHa | iHb | iDb | iHc | iDc |
                +----+-----+-----+-----+-----+-----+-----+

                  Figure 18 Packing packets into a tunnel
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Abstract

   Several IPv6 transition mechanisms require the usage of stateless or
   stateful translators (commonly named as NAT64) able to allow IP/ICMP
   communication between IPv4 and IPv6 networks.

   Those translators are using either a default well-known prefix, and/
   or one or several additional network specific prefixes, which need to
   be configured into the nodes willing to use the translator.
   Different translators will likely have different IPv6 prefixes, to
   attract traffic to the correct translator.  Thus, an automatic
   translator prefix discovery method is necessary.

   This document defines a DHCPv6-based method to inform DHCPv6 clients
   the set of IPv6 and IPv4 prefixes it serves.  This DHCPv6 option can
   be used by several transition mechanisms such as SIIT, 464XLAT, EAM.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 7, 2017.
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1.  Introduction

   Stateless IP/ICMP Translation (SIIT) [RFC7915] describes the basic
   translation mechanism (NAT64), which is actually used as the base for
   most of the related translation protocols.

   Stateful NAT64 [RFC6146] describes how to allow IPv6-only clients to
   contact IPv4 servers using unicast UDP, TCP or ICMP.

   464XLAT [RFC6877] describes an IPv4-over-IPv6 solution as one
   technique for IPv4 service extension and encouragement of IPv6
   deployment.  The 464XLAT architecture uses IPv4/IPv6 translation,
   described in [RFC6144], and standardized in [RFC6052], [RFC7915], and
   [RFC6146].  It encourages the IPv6 transition by making IPv4 service
   reachable across IPv6-only networks and providing IPv6 and IPv4
   connectivity to single-stack IPv4 or IPv6 servers and peers.  In the
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   464XLAT architecture, the CLAT (customer-side NAT46 translator) must
   determine which of potentially several PLAT (provider-side NAT64
   translator) IPv6 prefix to use in order to send a packet to the PLAT
   with connectivity to its destination.

   [RFC7050] describes a mechanism to learn the PLAT-side IPv6 prefix
   for protocol translation by DNS64 [RFC6147].  Although it supports
   multiple PLAT-side prefix by responding with multiple AAAA records to
   a DNS64 query, it does not support mapping IPv4 prefixes to IPv6
   prefix, which would be required, for example, if one PLAT has
   connectivity to the general Internet following a default route,
   another has connectivity to a BGP peer, and a third has connectivity
   to a network using private addressing [RFC1918].  Therefore, in the
   scenario with multiple PLATs, [RFC7050] does not directly support
   destination-based IPv4 routing among PLATs; instead, the DNS64
   database must contain equivalent information.  It also requires the
   additional deployment of DNS64 service in customer-side networks,
   which is not required in 464XLAT deployment.

   464XLAT is in fact, a usage case of Stateful NAT64.

   Explicit Address Mappings for Stateless IP/ICMP Translation [RFC7757]
   extends SIIT with an Explicit Address Mapping (EAM) algorithm to
   facilitate stateless IP/ICMP translation between arbitrary (non-
   IPv4-translatable) IPv6 endpoints and IPv4.

   This document proposes a method for the translator (NAT64) IPv6
   prefix discovery based on DHCPv6, which is widely deployed and
   supported in customer networks.  It defines two new DHCPv6 options
   for use by a DHCPv6 client to discover the translator IPv6
   prefix(es).  Also, the proposed mechanism can deal with the scenario
   with multiple independent DNS64 databases supporting separate
   translators.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  New DHCPv6 Option

3.1.  NAT64 Prefix List Option Format

   The NAT Prefix List Option is a container for NAT64 Prefix Option(s).
   A NAT64 Prefix List Option MAY contain multiple NAT64 Prefix Options.

   The format of the NAT64 Prefix List Option is:
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      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   OPTION_NAT64_PREFIX_LIST    |       option-length           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                      NAT64_PREFIX-options                     +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   o  option-code: OPTION_NAT64_PREFIX_LIST (TBA1)

   o  option-length: length of NAT64_PREFIX-options, specified in
      octets.

   o  NAT64_PREFIX-options: one or more OPTION_NAT64_PREFIX options.

3.2.  NAT64 Prefix Option Format

   The NAT64 Prefix Option is encapsulated in the NAT64 Prefix List
   Option.  This option allows the mapping of destination IPv4 address
   ranges (contained in the IPv4 Prefix List) to a NAT64 IPv6 prefix.
   If there is more than one such prefix, each prefix comes in its own
   option, with its associated IPv4 prefix list.  In this way, the
   DHCPv6 client can select the NAT64 with the corresponding destination
   IPv4 address.

   The format of the NAT64 Prefix Option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     OPTION_NAT64_PREFIX      |         option-length          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         NAT64-Type           |         NAT64-prelen           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         NAT64-prefix                          |
     |                       (variable length)                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                           (optional)                          .
     .              IPv4 Prefix List (variable length)               .
     .                       (see Figure 3)                          .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | IPv4-prelen   |   IPv4 Prefix (32 bits)                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    (cont.)    | IPv4-prelen   | IPv4 Prefix (32 bits)         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    IPv4 Prefix (cont)         |             ...               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              ...                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   o  option-code: OPTION_NAT64_PREFIX (TBA2)

   o  type-field: NAT64-Type (TBA3)

   o  option-length: 1 + length of NAT64-prefix + length of IPv4 Prefix
      List, specified in octets.

   o  NAT64-prelen: length of NAT64-prefix.

   o  NAT64-prefix: The NAT64 IPv6 prefix that the DHCPv6 client use for
      IPv6 address synthesis.

   o  IPv4 Prefix List: This is an optional field.  The format of the
      IPv4 Prefix List is shown in Figure 3.  It is a list of zero or
      more IPv4 Prefixes.  Each entry is formed by IPv4-prelen and IPv4
      Prefix.  The total length of the field is 5*number of IPv4
      prefixes.

   o  IPv4-prelen: the length of the IPv4 Prefix.

   o  IPv4 Prefix: the destination-based IPv4 Prefix.  The length is 4
      octets.

4.  Client Behavior

   The client requests the OPTION_NAT64_PREFIX_LIST option using the
   Option Request option (ORO) in every Solicit, Request, Renew, Rebind,
   and Information-request message.  The NAT64-Type field defines the
   mechanism being used.  If the DHCPv6 server includes the
   OPTION_NAT64_PREFIX_LIST option in its response, the DHCPv6 client
   may use the contained NAT64-prefix to translate the destination IPv4
   address into the destination IPv6 address.

   When receiving the OPTION_NAT64_PREFIX option with IPv4 Prefix List,
   the DHCPv6 client MUST record the received IPv6 prefix and the
   corresponding IPv4 prefixes in IPv4 Prefix List.  When receiving the
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   OPTION_NAT64_PREFIX option without IPv4 Prefix List, the DHCPv6
   client MUST treat the IPv6 prefix and the default IPv4 prefix
   0.0.0.0/0 as one of the records.

   If the DHCPv6 client loses contact with the DHCPv6 server, the DHCPv6
   client SHOULD clear the prefix(es) it learned from the DHCPv6 server.

   When translating the destination IPv4 address into the destination
   IPv6 address, DHCPv6 client MUST search an IPv4 routing database
   using the longest-match-first rule and select the IPv6 prefix
   offering that IPv4 prefix.

5.  Message Flow Illustration

   The figure below shows an example of message flow for a Client
   learning IPv6 prefixes using DHCPv6.

   In this example, two IPv6 prefixes are provided by the DHCPv6 server.
   The first IPv6 prefix is 2001:db8:122:300::/56, the corresponding
   IPv4 prefixes are 192.0.2.0/24 and 198.51.100.0/24.  The second IPv6
   prefix is 2001:db8:122::/48, the corresponding IPv4 prefix is
   192.0.2.128/25.

   When the DHCPv6 client receives the packet with destination IPv4
   address 192.0.2.1, according to the rule of longest prefix match, the
   NAT64 with IPv6 prefix 2001:db8:122::/48 is chosen.  In the same way,
   the NAT64 with IPv6 prefix 2001:db8:122::/48 is chosen.
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   +---------------+                                +-----------------+
   | DHCPv6 Client |                                |  DHCPv6 server  |
   +---------------+                                +-----------------+
        |            DHCPv6 query for IPv6 prefix            |
        |--------------------------------------------------->|
        |   ORO with OPTION_NAT64_PREFIX_LIST                |
        |                                                    |
        |   DHCPv6 response with:                            |
        |      NAT64PREFIX{                                  |
        |         NAT64-v6-pre = 2001:db8:122:300::/56       |
        |         NAT64-v4-pre = 192.0.2.0/24                |
        |         NAT64-v4-pre = 198.51.100.0/24}            |
        |      NAT64PREFIX{                                  |
        |         NAT64-v6-pre = 2001:db8:122::/48           |
        |         NAT64-v4-pre = 192.0.2.128/25}             |
        |<---------------------------------------------------|
        |                                                    |
        |
        |                     +-----------------+   +-----------------+
        |                     |     NAT64 1     |   |     NAT64 2     |
        |                     +-----------------+   +-----------------+
        |                        NAT64-v6-pre =        NAT64-v6-pre =
        |                    2001:db8:122:300::/56  2001:db8:122::/48
        |                        NAT64-v4-pre =        NAT64-v4-pre =
        |                        192.0.2.0/24          192.0.2.128/25
        |                        198.51.100.0/24             |
        |                              |                     |
        |       Dest IPv4 addr:        |                     |
        |        192.0.2.1             |                     |
        |       Dest IPv6 addr:        |                     |
        |  2001:db8:122:300::c000:201  |                     |
        |----------------------------->|                     |
        |                              |                     |
        |                                                    |
        |     Dest IPv4 addr: 192.0.2.193                    |
        |     Dest IPv6 addr: 2001:db8:122::c000:2c1         |
        |--------------------------------------------------->|

6.  Security Considerations

   Considerations for security in this type of environment are primarily
   around the operation of the DHCPv6 protocol and the databases it
   uses.

   In the DHCPv6 server, should the database be compromised, it will
   deliver incorrect data to its DHCPv6 clients.  In the DHCPv6 client,
   should its database be compromised by attack or polluted by an
   incorrect DHCPv6 server database, it will route data incorrectly.  In
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   both cases, the security of the systems and their databases in an
   operational matter, not managed by protocol.

   However, the operation of the DHCPv6 protocol itself is also required
   to be correct - the server and its clients must recognize valid
   requests and reject invalid ones.  Therefore, DHCPv6 exchanges MUST
   be secured as described in [RFC3315].

7.  IANA Considerations

   We request that IANA allocate two DHCPv6 option codes for use by
   OPTION_V6_PLATPREFIX_LIST and OPTION_V6_PLATPREFIX from the "Option
   Codes" table.  Similarly, a request to IANA for assigning the
   NAT64-Type field codes.  The following initial values are assigned in
   this document (values are 16-bit unsigned intergers).

                         Name       |  Value  |   RFC
                   -----------------+---------+---------
                      Unspecified   |  0x00   | RFC6052
                         SIIT       |  0x01   | RFC7915
                     Stateful NAT64 |  0x02   | RFC6146
                       EAM-SIIT     |  0x03   | RFC7757
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1.  Introduction

   IPv4 and IPv6 can in general handle two forms of links; point-to-
   point links when only have two IP nodes (self and remote), and multi-
   access links with one or more nodes attached to the link.  For the
   multi-access links IP in general, and particular protocols like ARP
   and IPv6 Neighbor Discovery, makes a few assumptions about transitive
   and reflexive connectivity i.e., that all nodes attached to the link
   can send packets to all other nodes.

   There are cases where for various reasons and deployments one wants
   what looks like one link from the perspective of IP and routing, yet
   the L2 connectivity is restrictive.  A key property is that an IP
   subnet prefix is assigned to the link, and IP routing sees it as a
   regular multi-access link.  But a host attached to the link might not
   be able to send packets to all other hosts attached to the link.  The
   motivation for this is outside the scope of this document, but in
   summary the motivation to preserve the subnet view as seen by IP
   routing is to conserve IP(v4) address space, and the motivation to
   restrict communication on the link could be due to (security) policy
   or potentially wireless connectivity approaches.
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   This intentional and partial partition appears in a few different
   forms.  For DSL [TR-101] and Cable [DOCSIS-MULPI] the pattern is to
   have a single access router on the link, and all the hosts can send
   and receive from the access router, but host-to-host communication is
   blocked.  A richer set of restrictions are possible for Private VLANs
   (PVLAN) [RFC5517], which has a notion of three different ports i.e.
   attachment points: isolated, community, and promiscuous.  Note that
   other techniques operate at L2/L3 boundary like [RFC4562] but those
   are out of scope for this document.

   The possible connectivity patterns for PVLAN appears to be a superset
   of the DSL and Cable use of split horizon, thus this document
   specifies the PVLAN behavior, shows the impact on IP/ARP/ND, and
   specifies how IP/ARP/ND must operate to work with PVLAN.

   If private VLANs, or the split horizon subset, has been configured at
   layer 2 for the purposes of IPv4 address conservation, then that
   layer 2 configuration will affect IPv6 even though IPv6 might not
   have the same need for address conservation.

2.  Keywords and Terminology

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in [RFC2119].

   The following terms from [RFC4861] are used without modifications:

   node           a device that implements IP.
   router         a node that forwards IP packets not explicitly
                  addressed to itself.
   host           any node that is not a router.
   link           a communication facility or medium over which nodes
                  can communicate at the link layer, i.e., the layer
                  immediately below IP.  Examples are Ethernets (simple
                  or bridged), PPP links, X.25, Frame Relay, or ATM
                  networks as well as Internet-layer (or higher-layer)
                  "tunnels", such as tunnels over IPv4 or IPv6 itself.
   interface      a node’s attachment to a link.
   neighbors      nodes attached to the same link.

   This document defines the following set of terms:

   bridge         a layer-2 device which implements 802.1Q
   port           a bridge’s attachment to another bridge or to a node.
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3.  Private VLAN

   A private VLAN is a structure which uses two or more 802.1Q (VLAN)
   values to separate what would otherwise be a single VLAN, viewed by
   IP as a single broadcast domain, into different types of ports with
   different L2 forwarding behavior between the different ports.  A
   private VLAN consists of a single primary VLAN and multiple secondary
   VLANs.

   From the perspective of both a single bridge and a collection of
   interconnected bridges there are three different types of ports use
   to attach nodes plus an inter-bridge port:

   o  Promiscuous: A promiscuous port can send packets to all ports that
      are part of the private VLAN.  Such packets are sent using the
      primary VLAN ID.
   o  Isolated: Isolated VLAN ports can only send packets to promiscuous
      ports.  Such packets are sent using an isolated VLAN ID.
   o  Community: A community port is associated with a per-community
      VLAN ID, and can send packets to both ports in the same community
      VLAN and promiscuous ports.
   o  Inter-bridge: A port used to connect a bridge to another bridge.

3.1.  Bridge Behavior

   Once a bridge or a set of interconnected bridges have been configured
   with both the primary and isolated VLAN ID, and zero or more
   community VLAN IDs associated with the private VLAN, the following
   forward behaviors apply to the bridge:

   o  A packet received on an isolated port MUST NOT be forwarded out an
      isolated or community port; it SHOULD (subject to bandwidth/
      resource issues) be forwarded out promiscuous and inter-bridge
      ports.
   o  A packet received on a community port MUST NOT be forwarded out an
      isolated port or a community port with a different VLAN ID; it
      SHOULD be forwarded out promiscuous and inter-bridge ports as well
      as community ports that have the same community VLAN ID.
   o  A packet received on a promiscuous port SHOULD be forwarded out
      all types of ports in the private VLAN.
   o  A packet received on an inter-bridge port with an isolated VLAN ID
      should be forwarded as a packet received on an isolated port.
   o  A packet received on an inter-bridge port with a community VLAN ID
      should be forwarded as a packet received on a community port
      associated with that VLAN ID.
   o  A packet received on an inter-bridge port with a promiscuous VLAN
      ID should be forwarded as a packet received on a promiscuous port.
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   In addition to the above VLAN filtering and implied MAC address
   learning rules, the packet forwarding is also subject to the normal
   802.1Q rules with blocking ports due to spanning-tree protocol etc.

4.  IP over IPPL

   When IP is used over Intentionally Partially Partitioned links like
   private VLANs the normal usage is to attached routers (and
   potentially other shared resources like servers) to promiscuous
   ports, while attaching other hosts to either community or isolated
   ports.  If there is a single host for a given tenant or other domain
   of separation, then it is most efficient to attach that host to an
   isolated port.  If there are multiple hosts in the private VLAN that
   should be able to communicate at layer 2, then they should be
   assigned a common community VLAN ID and attached to ports with that
   VLAN ID.

   The above configuration means that hosts will not be able to
   communicate with each other unless they are in the same community.
   However, mechanisms outside of the scope of this document can be used
   to allow IP communication between such hosts e.g., by having firewall
   or gateway in or beyond the routers connected to the promiscuous
   ports.  When such a policy is in place it is important that all
   packets which cross communities are sent to a router, which can have
   access-control lists or deeper firewall rules to decide which packets
   to forward.

5.  IPv6 over IPPL

   IPv6 Neighbor Discovery [RFC4861] can be used to get all the hosts on
   the link to send all unicast packets except those send to link-local
   destination addresses to the routers.  That is done by setting the
   L-flag (on-link) to zero for all of the Prefix Information options.
   Note that this is orthogonal to whether SLAAC (Stateless Address
   Auto-Configuration) [RFC4862] or DHCPv6 [RFC3315] is used for address
   autoconfiguration.  Setting the L-flag to zero is RECOMMENDED
   configuration for private VLANs.

   If the policy includes allowing some packets that are sent to link-
   local destinations to cross between different tenants, then some for
   of NS/NA proxy is needed in the routers, and the routers need to
   forward packets addressed to link-local destinations out the same
   interface as REQUIRED in [RFC2460].  If the policy allows for some
   packets sent to global IPv6 address to cross between tenants then the
   routers would forward such packets out the same interface.  However,
   with the L=0 setting those global packets will be sent to the default
   router, while the link-local destinations would result in a Neighbor
   Solicitation to resolve the IPv6 to link-layer address binding.
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   Handling such a NS when there are multiple promiscuous ports hence
   multiple routers risks creating loops.  If the router already has a
   neighbor cache entry for the destination it can respond with an NA on
   behalf of the destination.  However, if it does not it MUST NOT send
   a NS on the link, since the NA will be received by the other
   router(s) on the link which can cause an unbounded flood of multicast
   NS packets (all with hoplimit 255), in particular of the host IPv6
   address does not respond.  Note that such an NS/NA proxy is defined
   in [RFC4389] under some topological assumptions such as there being a
   distinct upstream and downstream direction, which is not the case of
   two or more peer routers on the same IPPL.  For that reason NS/NA
   packet proxies as in [RFC4389] MUST NOT be used with IPPL.

   IPv6 includes Duplicate Address Detection [RFC4862], which assumes
   that a link-local IPv6 multicast can be received by all hosts which
   share the same subnet prefix.  That is not the case in a private
   VLAN, hence there could potentially be undetected duplicate IPv6
   addresses.  However, the DAD proxy approach [RFC6957] defined for
   split-horizon behavior can safely be used even when there are
   multiple promiscuous ports hence multiple routers attached to the
   link, since it does not rely on sending Neighbor Solicitations
   instead merely gathers state from received packets.  The use of
   [RFC6957] with private VLAN is RECOMMENDED.

   The Router Advertisements in a private VLAN MUST be sent out on a
   promiscuous VLAN ID so that all nodes on the link receive them.

6.  IPv4 over IPPL

   IPv4 [RFC0791] and ARP [RFC0826] do not have a counterpart to the
   Neighbor Discovery On-link flag.  Hence nodes attached to isolated or
   community ports will always ARP for any destination which is part of
   its configured subnet prefix, and those ARP request packets will not
   be forwarded by the bridges to the target nodes.  Thus the routers
   attached to the promiscuous ports MUST provide a robust proxy ARP
   mechanism if they are to allow any (firewalled) communication between
   nodes from different tenants or separation domains.

   For the ARP proxy to be robust it MUST avoid loops where router1
   attached to the link sends an ARP request which is received by
   router2 (also attached to the link), resulting in an ARP request from
   router2 to be received by router1.  Likewise, it MUST avoids a
   similar loop involving IP packets, where the reception of an IP
   packet results in sending a ARP request from router1 which is proxied
   by router2.  At a minimum, the reception of an ARP request MUST NOT
   result in sending an ARP request, and the routers MUST either be
   configured to know each others MAC addresses, or receive the VLAN
   tagged packets so they can avoid proxying when the packet is received
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   on with the promiscuous VLAN ID.  Note that should there be an IP
   forwarding loop due to proxying back and forth, the IP TTL will
   expire avoiding unlimited loops.

   Any proxy ARP approach MUST work correctly with Address Conflict
   Detection [RFC5227].  ACD depends on ARP probes only receiving
   responses if there is a duplicate IP address, thus the ARP probes
   MUST NOT be proxied.  These ARP probes have a Sender Protocol Address
   of zero, hence they are easy to identify.

   When proxying an ARP request (with a non-zero Sender Protocol
   Address) the router needs to respond by placing its own MAC address
   in the Sender Hardware Address field.  When there are multiple
   routers attached to the private VLAN this will not only result in
   multiple ARP replies for each ARP request, those replies would have a
   different Sender Hardware Address.  That might seem surprising to the
   requesting node, but does not cause an issue with ARP implementations
   that follow the pseudo-code in [RFC0826].

   If the two or more routers attached to the private VLAN implement
   VRRP [RFC5798] the routers MAY use their VRRP MAC address as the
   Sender Hardware Address in the proxied ARP replies, since this
   reduces the risk nodes that do not follow the pseudo-code in
   [RFC0826].  However, if they do so it can cause flapping of the MAC
   tables in the bridges between the routers and the ARPing node.  Thus
   such use is NOT RECOMMENDED in general topologies of bridges but can
   be used when there are no intervening bridges.

7.  Multiple routers

   In addition to the above issues when multiple routers are attached to
   the same PVLAN, the routers need to avoid potential routing loops for
   packets entering the subnet.  When such a packet arrives the router
   might need to send a ARP request (or Neighbor Solicitation) for the
   host, which can trigger the other router to send a proxy ARP (or
   Neighbor Advertisement).  The host, if present, will also respond to
   the ARP/NS.  This issue is described in [PVLAN-HOSTING] in the
   particular case of HSRP.

   When multiple routers are attached to the same PVLAN, wheter they are
   using VRRP, HSRP, or neither, they SHOULD NOT proxy ARP/ND respond to
   a request from another router.  At a minimum a router MUST be
   configurable with a list of IP addresses to which it should not proxy
   respond.  Thus the user can configure that list with the IP
   address(es) of the other router(s) attached to the PVLAN.
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8.  Multicast over IPPL

   Layer 2 multicast or broadcast is used by protocols like ARP
   [RFC0826], IPv6 Neighbor Discovery [RFC4861] and Multicast DNS
   [RFC6762] with link-local scope.  The first two have been discussed
   above.

   Multicast DNS can be handled by implementing using some proxy such as
   [I-D.ietf-dnssd-hybrid] but that is outside of the scope of this
   document.

   IP Multicast which spans across multiple IP links and that have
   senders that are on community or isolated ports require additional
   forwarding mechanisms in the routers that are attached to the
   promiscuous ports, since the routers need to forward such packets out
   to any allowed receivers in the private VLAN without resulting in
   packet duplication.  For multicast senders on isolated ports such
   forwarding would result in the sender potentially receiving the
   packet it transmitted.  For multicast senders on community ports, any
   receivers in the same community VLAN are subject to receiving
   duplicate packets; one copy directly from layer 2 from the sender and
   a second copy forwarded by the multicast router.

   For that reason it is NOT RECOMMENDED to configure outbound multicast
   forwarding from private VLANs.

9.  DHCP Implications

   With IPv4 both a static configuration and a DHCPv4 configuration will
   assign a subnet prefix to any hosts including those attached to the
   isolated or community ports.  Hence the above robust proxy ARP is
   needed even in the case of DHCPv4.

   With IPv6 static configuration, or SLAAC (Stateless Address Auto-
   Configuration) [RFC4862] or DHCPv6 [RFC3315] can be used to configure
   the IPv6 addresses on the interfaces.  However, when DHCPv6 is used
   to configure the IPv6 addresses it does not configure any notion of
   an on-link prefix length.  Thus in that case the on-link
   determination comes from the Router Advertisement.  Hence the above
   approach of setting L=0 in the Prefix Information Option will result
   in packets being sent to the default router(s).

   Hence no special considerations are needed for DHCPv4 or DHCPv6.
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10.  Redirect Implications

   ICMP redirects can be used for both IPv4 and IPv6 to indicate a
   better first-hop router to hosts, and in addition for IPv6 can be
   used to indicate the direct link-layer address to use to send to a
   node which is on the link.  ICMP redirects to another router which
   attached to a promiscious port would work since the host can reach
   it.  However, communication will fail if that port is not promicious.
   In addition, the IPv6 redirect to an on-link host is likely to be
   problematic since a host is likely to be attached to an isolated or
   community port.

   For those reasons it is RECOMMENDED that the sending of IPv4 and IPv6
   redirects is disabled on the routers attached to the IPPL.

11.  Security Considerations

   In general DAD is subject to a Denial of Service attack since a
   malicious host can claim all the IPv6 addresses [RFC3756].  Same
   issue applies to IPv4/ARP when Address Conflict Detection [RFC5227]
   is implemented.

12.  IANA Considerations

   There are no IANA actions needed for this document.
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14.  Appendix: Layer 2 Implications

   While not in scope for this document, there are some observations
   relating to the interaction of IPPL (and private VLANs in particular)
   and layer 2 learning which are worth mentioning.  Depending on the
   details of how the deployed Ethernet bridges perform learning, a side
   effect of using a different .1Q tag for packets sent from the routers
   than for packets sent towards the routers mean that the 802.1Q
   learning and aging process in intermediate bridges might age out the
   MAC address entry for the routers MAC address.  If that happens
   packets sent towards the router will be flooded at layer two.  The
   observed behavior is that an ARP request for the router’s IP address
   will result in re-learning the MAC address.  Thus some operators work
   around this issue by configuring the ARP aging time to be shorter
   than the MAC aging time.
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1.  Introduction

   Many IETF protocols depend on multicast/broadcast for delivery of
   control messages to multiple receivers.  Multicast is used for
   various purposes such as neighborhood discovery, network flooding,
   address resolution, as well as for reduction in media access for the
   transmission of data that is intended for multiple receivers.

   IETF protocols typically rely on network protocol layering in order
   to reduce or eliminate any dependence of higher level protocols on
   the specific nature of the MAC layer protocols or the physical media.
   In the case of multicast transmissions, higher level protocols have
   traditionally been designed as if transmitting a packet to an IP
   address had the same cost in interference and network media access,
   regardless of whether the destination IP address is a unicast address
   or a multicast or broadcast address.  This model was reasonable for
   networks where the physical medium was usually wired, like Ethernet.
   Unfortunately, for many wireless media, the costs to access the
   medium can be quite different.  Some enhancements have been designed
   in IETF protocols that are assumed to work primarily over wilress
   media.  However, these enhancements are usually implemented in
   limited deployments and not widely spread on most wireless networks.

   IEEE 802 wireless protocols have been designed with certain fetures
   to support multicat traffic.  For instance, lower modulations are
   used to transmit multicast frames, so that these can be received by
   all stations in the cell, regardless of the distance or path
   attenuation from the base station or access point.  However, these
   lower modulation transmissions take longer on the medium and
   therefore they reduce the capabilities to transmit more high
   efficiency traffic with higher order modulations to stations that may
   be in closer vicinity.  Due to these and other reasons, some IEEE 802
   working groups like 802.11 have designed several features to improve
   the performance of multicast transmissions at Layer 2 [REF
   11-15-1261-03].  Besides protocol design features, some operational
   and configuration enhancements can also be applied to overcome the
   network performance issues created by multicast traffic.

   This Internet Draft identifies the problems created by the usage of
   multicast traffic over wireless networks.  It also highlights the
   different enhancements that have been designed at IETF and IEEE 802,
   as well as the operational choices that can be taken, to ameliorate
   the effects of multicast traffic.  Some recommendations about the
   usage and combinations of these enhancements are also provided.
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2.  Terminology

   This document uses the following definitions:

   AP
      IEEE 802.11 Access Point.

   STA
      IEEE 802.11 station.

   basic rate
      The "lowest common denominator" data rate at which multicast and
      broadcast traffic is generally transmitted.

   MCS
      Modulation and Coding Scheme.

3.  Identified mulitcast issues

3.1.  Issues at Layer 2 and below

   In this section we list some of the issues related to the use of
   multicast transmissions over IEEE 802 wireless technologies.

3.1.1.  Multicast reliability

   Multicast traffic is typically much less reliable than unicast
   traffic.  Since multicast makes point-to-multipoint communications,
   multiple acknowledgements would be needed to guarantee the reception
   on all recepients.

3.1.2.  Lower data rate

   Because lower MCS have longer range but also lower data rate,
   multicast / broadcast traffic is generally transmitted at the lowest
   common denominator rate, also known as a basic rate.  On IEEE 802.11
   networks (aka Wi-Fi), this rate might be as low as 6 Mbps, when some
   unicast links in the same cell can be operating at rates up to 600
   Mbps.  Transmissions at a lower rate require more occupancy of the
   wireless medium and thus restrict the airtime for all other medium
   communications and degrade the overall capacity.

   Wired multicast affects wireless LANs because the AP extends the
   wired segment and multicast / broadcast frames on the wired LAN side
   are copied to WLAN.  Since broadcast messages are transmitted at the
   most robust MCS, this implies that large frames sent at slow rate
   over the air.
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3.1.3.  Power-save effects on multicast

   Multicast can work poorly with the power-save mechanisms defined in
   IEEE 802.11.

   o  Both unicast and multicast traffic can be delayed by power-saving
      mechanisms.
   o  Unicast is delayed until a STA wakes up and asks for it.
      Additionally, unicast traffic may be delayed to improve power
      save, efficiency and increase probability of aggregation.
   o  Multicast traffic is delayed in a wireless network if any of the
      STAs in that network are power savers.  All STAs have to be awake
      at a known time to receive multicast traffic.
   o  Packets can also be discarded due to buffer limitations in the AP
      and non-AP STA.

3.2.  Issues at Layer 3 and above

   In this section we mention a few representative IETF protocols, and
   describe some possible negative effects due to performance
   degradation when using multicast transmissions for control messages.
   Common uses of multicast include:

   o  Control plane for IPv4 and IPv6
   o  ARP and Neighbor Discovery
   o  Service discovery
   o  Applications (video delivery, stock data etc)
   o  Other L3 protocols (non-IP)

3.2.1.  IPv4 issues

   The following list contains a few representative IPv4 protocols using
   multicast.

   o  ARP
   o  DHCP
   o  mDNS

   After initial configuration, ARP and DHCP occur much less commonly.

3.2.2.  IPv6 issues

   The following list contains a few representative IPv6 protocols using
   multicast.  IPv6 makes much more extensive use of multicast.

   o  DHCPv6
   o  Liveness detection (NUD)
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   o  Some control plane protocols are not very tolerant of packet loss,
      especially neighbor discovery.
   o  Services may be considered lost if several consecutive packets
      fail.

   Address Resolution

   Service Discovery

   Route Discovery

   Decentralized Address Assignment

   Geographic routing

3.2.3.  MLD issues

   Multicast Listener Discovery(MLD) [RFC4541] is often used to identify
   members of a multicast group that are connected to the ports of a
   switch.  Forwarding multicast frames into a WiFi-enabled area can use
   such switch support for hardware forwarding state information.
   However, since IPv6 makes heavy use of multicast, each STA with an
   IPv6 address will require state on the switch for several and
   possibly many multicast solicited-node addresses.  Multicast
   addresses that do not have forwarding state installed (perhaps due to
   hardware memory limitations on the switch) cause frames to be flooded
   on all ports of the switch.

3.2.4.  Spurious Neighbor Discovery

   On the Internet there is a "background radiation" of scanning traffic
   (people scanning for vulnerable machines) and backscatter (responses
   from spoofed traffic, etc).  This means that the router is constantly
   getting packets destined for machines whose IP addresses may or may
   not be in use.  In the cases where the IP is assigned to a machine,
   the router broadcasts an ARP request, gets back an ARP reply, caches
   this and then can deliver traffic to the host.  In the cases where
   the IP address is not in use, the router broadcasts one (or more) ARP
   requests, and never gets a reply.  This means that it does not
   populate the ARP cache, and the next time there is traffic for that
   IP address it will broadcast ARP requests again.

   The rate of these ARP requests is proportional to the size of the
   subnets, the rate of scanning and backscatter, and how long the
   router keeps state on non-responding ARPs.  As it turns out, this
   rate is inversely proportional to how occupied the subnet is (valid
   ARPs end up in a cache, stopping the broadcasting; unused IPs never
   respond, and so cause more broadcasts).  Depending on the address
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   space in use, the time of day, how occupied the subnet is, and other
   unknown factors, on the order of 2000 broadcasts per second have been
   observed at the IETF NOCs.

   On a wired network, there is not a huge difference amongst unicast,
   multicast and broadcast traffic; but this is not true in the wireless
   realm.  Wireless equipment often is unable to send this amount of
   broadcast and multicast traffic.  Consequently, on the wireless
   networks, we observe a significant amount of dropped broadcast and
   multicast packets.  This, in turn, means that when a host connects it
   is often not able to complete DHCP, and IPv6 RAs get dropped, leading
   to users being unable to use the network.

4.  Multicast protocol optimizations

   This section lists some optimizations that have been specified in
   IEEE 802 and IETF that are aimed at reducing or eliminating the
   issues discussed in Section 3.

4.1.  Proxy ARP in 802.11-2012

   The AP knows all associated STAs MAC address and IP address; in other
   words, the AP acts as the central "manager" for all the 802.11 STAs
   in its BSS.  Proxy ARP is easy to implement at the AP, and offers the
   following advantages:

   o  Reduced broadcast traffic (transmitted at low MCS) on the wireless
      medium
   o  STA benefits from extended power save in sleep mode, as ARP
      requests are replied to by AP.
   o  Keeps ARP frames off the wireless medium.
   o  Changes are not needed to STA implementation.

   Here is the specification language from clause 10.23.13 in [2] as
   described in [dot11-proxyarp]:

      When the AP supports Proxy ARP "[...] the AP shall maintain a
      Hardware Address to Internet Address mapping for each associated
      station, and shall update the mapping when the Internet Address of
      the associated station changes.  When the IPv4 address being
      resolved in the ARP request packet is used by a non-AP STA
      currently associated to the BSS, the proxy ARP service shall
      respond on behalf of the non-AP STA"
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4.2.  Buffering to improve Power-Save

   The AP acts on behalf of STAs in various ways.  In order to improve
   the power-saving feature for STAs in its BSS, the AP buffers frames
   for delivery to the STA at the time when the STA is scheduled for
   reception.

4.3.  IPv6 support in 802.11-2012

   IPv6 uses Neighbor Discovery Protocol (NDP) instead Every IPv6 node
   subscribes to special multicast address Neighbor-Solicitation message
   replaces ARP

   Here is the specification language from-10.23.13 in [2]:

      "When an IPv6 address is being resolved, the Proxy Neighbor
      Discovery service shall respond with a Neighbor Advertisement
      message [...] on behalf of an associated STA to an [ICMPv6]
      Neighbor Solicitation message [...].  When MAC address mappings
      change, the AP may send unsolicited Neighbor Advertisement
      Messages on behalf of a STA."

   NDP may be used to request additional information

   o  Maximum Transmission Unit
   o  Router Solicitation
   o  Router Advertisement, etc.

   NDP messages are sent as group addressed (broadcast) frames in
   802.11.  Using the proxy operation helps to keep NDP messages off the
   wireless medium.

4.4.  Conversion of multicast to unicast

   It is often possible to transmit control and data messages by using
   unicast transmissions to each station individually.

4.5.  Directed Multicast Service (DMS)

   There are situations where more is needed than simply converting
   multicast to unicast [Editor’s note: citation needed].  For these
   purposes, DMS enables a client to request that the AP transmit
   multicast group addressed frames destined to the requesting clients
   as individually addressed frames [i.e., convert multicast to
   unicast].

   o  DMS Requires 802.11n A-MSDUs
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   o  Individually addressed frames are acknowledged and are buffered
      for power save clients
   o  Requesting STA may specify traffic characteristics for DMS traffic
   o  DMS was defined in IEEE Std 802.11v-2011

   DMS is not currently implemented in products.  DMS does require
   changes to both AP and STA implementation.

4.6.  GroupCast with Retries (GCR)

   GCR (defined in [dot11aa]) provides greater reliability by using
   either unsolicited retries or a block acknowledgement mechanism.  GCR
   increases probability of broadcast frame reception success, but still
   does not guarantee success.

   For the block acknowledgement mechanism, the AP transmits each group
   addressed frame as conventional group addressed transmission.
   Retransmissions are group addressed, but hidden from non-11aa
   clients.  A directed block acknowledgement scheme is used to harvest
   reception status from receivers; retransmissions are based upon these
   responses.

   GCR is suitable for all group sizes including medium to large groups.
   As the number of devices in the group increases, GCR can send block
   acknowledgement requests to only a small subset of the group.  GCR
   does require changes to both AP and STA implementation.

   GCR may introduce unacceptable latency.  After sending a group of
   data frames to the group, the AP has do the following:

   o  unicast a Block Ack Request (BAR) to a subset of members.
   o  wait for the corresponding Block Ack (BA).
   o  retransmit any missed frames.
   o  resume other operations which may have been delayed.

   This latency may not be acceptable for some traffic.

   There are ongoing extensions in 802.11 to improve GCR performance.

   o  BAR is sent using downlink MU-MIMO (note that downlink MU-MIMO is
      already specified in 802.11-REVmc 4.3).
   o  BA is sent using uplink MU-MIMO (which is a .11ax feature).
   o  Additional 802.11ax extensions are under consideration; see
      [mc-ack-mux]
   o  Latency may also be reduced by simultaneously receiving BA
      information from multiple clients.
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5.  Operational optimizations

   This section lists some operational optimizations that can be
   implemented when deploying wireless IEEE 802 networks to mitigate the
   issues discussed in Section 3.

5.1.  Mitigating Problems from Spurious Neighbor Discovery

   ARP Sponges

         An ARP Sponge sits on a network and learn which IPs addresses
         are actually in use.  It also listen for ARP requests, and, if
         it sees an ARP for an IP address which it believes is not used,
         it will reply with its own MAC address.  This means that the
         router now has an IP to MAC mapping, which it caches.  If that
         IP is later assigned to an machine (e.g using DHCP), the ARP
         sponge will see this, and will stop replying for that address.
         Gratuitous ARPs (or the machine ARPing for its gateway) will
         replace the sponged address in the router ARP table.  This
         technique is quite effective; but, unfortunately, the ARP
         sponge daemons were not really designed for this use (the
         standard one [arpsponge], was designed to deal with the
         disappearance of participants from an IXP) and so are not
         optimized for this purpose.  We have to run one daemon per
         subnet, the tuning is tricky (the scanning rate versus the
         population rate versus retires, etc.) and sometimes the daemons
         just seem to stop, requiring a restart of the daemon and
         causing disruption.

   Router mitigations

         Some routers (often those based on Linux) implement a "negative
         ARP cache" daemon.  Simply put, if the router does not see a
         reply to an ARP it can be configured to cache this information
         for some interval.  Unfortunately, the core routers which we
         are using do not support this.  When a host connects to network
         and gets an IP address, it will ARP for its default gateway
         (the router).  The router will update its cache with the IP to
         host MAC mapping learnt from the request (passive ARP
         learning).

   Firewall unused space

         The distribution of users on wireless networks / subnets
         changes from meeting to meeting (e.g the "IETF-secure" SSID was
         renamed to "IETF", fewer users use "IETF-legacy", etc).  This
         utilization is difficult to predict ahead of time, but we can
         monitor the usage as attendees use the different networks.  By
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         configuring multiple DHCP pools per subnet, and enabling them
         sequentially, we can have a large subnet, but only assign
         addresses from the lower portions of it.  This means that we
         can apply input IP access lists, which deny traffic to the
         upper, unused portions.  This means that the router does not
         attempt to forward packets to the unused portions of the
         subnets, and so does not ARP for it.  This method has proven to
         be very effective, but is somewhat of a blunt axe, is fairly
         labor intensive, and requires coordination.

   Disabling/filtering ARP requests

         In general, the router does not need to ARP for hosts; when a
         host connects, the router can learn the IP to MAC mapping from
         the ARP request sent by that host.  This means that we should
         be able to disable and / or filter ARP requests from the
         router.  Unfortunately, ARP is a very low level / fundamental
         part of the IP stack, and is often offloaded from the normal
         control plane.  While many routers can filter layer-2 traffic,
         this is usually implemented as an input filter and / or has
         limited ability to filter output broadcast traffic.  This means
         that the simple "just disable ARP or filter it outbound" seems
         like a really simple (and obvious) solution, but
         implementations / architectural issues make this difficult or
         awkward in practice.

   NAT

         The broadcasts are overwhelmingly being caused by outside
         scanning / backscatter traffic.  This means that, if we were to
         NAT the entire (or a large portion) of the attendee networks,
         there would be no NAT translation entries for unused addresses,
         and so the router would never ARP for them.  The IETF NOC has
         discussed NATing the entire (or large portions) attendee
         address space, but a: elegance and b: flaming torches and
         pitchfork concerns means we have not attempted this yet.

   Stateful firewalls

         Another obvious solution would be to put a stateful firewall
         between the wireless network and the Internet.  This firewall
         would block incoming traffic not associated with an outbound
         request.  The IETF philosophy has been to have the network as
         open as possible / honor the end-to-end principle.  An attendee
         on the meeting network should be an Internet host, and should
         be able to receive unsolicited requests.  Unfortunately,
         keeping the network working and stable is the first priority
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         and a stateful firewall may be required in order to achieve
         this.

6.  Multicast Considerations for Other Wireless Media

   Many of the causes of performance degradation described in earlier
   sections are also observable for wireless media other than 802.11.

   For instance, problems with power save, excess media occupancy, and
   poor reliability will also affect 802.15.3 and 802.15.4.  However,
   802.15 media specifications do not include similar mechanisms of the
   type that have been developed for 802.11.  In fact, the design
   philosophy for 802.15 is more oriented towards minimality, with the
   result that many such functions would more likely be relegated to
   operation within higher layer protocols.  This leads to a patchwork
   of non-interoperable and vendor-specific solutions.  See [uli] for
   some additional discussion, and a proposal for a task group to
   resolve similar issues, in which the multicast problems might be
   considered for mitigation.

7.  Recommendations

   This section provides some recommendations about the usage and
   combinations of the multicast enhancements described in Section 4 and
   Section 5.

   (FFS)

8.  Security Considerations

   This document does not introduce any security mechanisms, and does
   not have any impact on existing security mechanisms.

9.  IANA Considerations

   This document does not specify any IANA actions.

10.  Informative References

   [arpsponge]
              Arien Vijn, Steven Bakker, , "Arp Sponge", March 2015.

   [dot11]    P802.11, , "Part 11: Wireless LAN Medium Access Control
              (MAC) and Physical Layer (PHY) Specifications", March
              2012.

   [dot11-proxyarp]
              P802.11, , "Proxy ARP in 802.11ax", September 2015.

Perkins, et al.        Expires September 14, 2017              [Page 12]



Internet-Draft      Multicast Over IEEE 802 Wireless          March 2017

   [dot11aa]  P802.11, , "Part 11: Wireless LAN Medium Access Control
              (MAC) and Physical Layer (PHY) Specifications Amendment 2:
              MAC Enhancements for Robust Audio Video Streaming", March
              2012.

   [mc-ack-mux]
              Yusuke Tanaka et al., , "Multiplexing of Acknowledgements
              for Multicast Transmission", July 2015.

   [mc-prob-stmt]
              Mikael Abrahamsson and Adrian Stephens, , "Multicast on
              802.11", March 2015.

   [mc-props]
              Adrian Stephens, , "IEEE 802.11 multicast properties",
              March 2015.

   [RFC4541]  Christensen, M., Kimball, K., and F. Solensky,
              "Considerations for Internet Group Management Protocol
              (IGMP) and Multicast Listener Discovery (MLD) Snooping
              Switches", RFC 4541, DOI 10.17487/RFC4541, May 2006,
              <http://www.rfc-editor.org/info/rfc4541>.

   [uli]      Pat Kinney, , "LLC Proposal for 802.15.4", Nov 2015.

Authors’ Addresses

   Charles E. Perkins
   Futurewei Inc.
   2330 Central Expressway
   Santa Clara, CA  95050
   USA

   Phone: +1-408-330-4586
   Email: charliep@computer.org

   Dorothy Stanley
   Hewlett Packard Enterprise
   2000 North Naperville Rd.
   Naperville, IL  60566
   USA

   Phone: +1 630 979 1572
   Email: dstanley@arubanetworks.com

Perkins, et al.        Expires September 14, 2017              [Page 13]



Internet-Draft      Multicast Over IEEE 802 Wireless          March 2017

   Warren Kumari
   Google
   1600 Amphitheatre Parkway
   Mountain View, CA  94043
   USA

   Email: warren@kumari.net

   Juan Carlos Zuniga
   SIGFOX
   425 rue Jean Rostand
   Labege  31670
   France

   Email: j.c.zuniga@ieee.org

Perkins, et al.        Expires September 14, 2017              [Page 14]



INTAREA                                                      S. Kanugovi
Internet-Draft                                              S. Vasudevan
Intended status: Standards Track                                   Nokia
Expires: September 14, 2017                                       J. Zhu
                                                                   Intel
                                                             F. Baboescu
                                                                Broadcom
                                                                 S. Peng
                                                                  Huawei
                                                          March 13, 2017

 Control Plane Protocols and Procedures for Multiple Access Management
                                Services
               draft-zhu-intarea-mams-control-protocol-00

Abstract

   Today, a device can be simultaneously connected to multiple
   communication networks based on different technology implementations
   and network architectures like WiFi, LTE, DSL.  In such multi-
   connectivity scenario, it is desirable to combine multiple access
   networks or select the best one to improve quality of experience for
   a user and improve overall network utilization and efficiency.  This
   document presents the control plane protocols, as well as describes
   control plane procedures for configuring the user plane in a multi
   access management services (MAMS) framework that can be used to
   flexibly select the combination of uplink and downlink access and
   core network paths, and user plane treatment for improving network
   efficiency and enhanced application quality of experience.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 14, 2017.

Kanugovi, et al.       Expires September 14, 2017               [Page 1]



Internet-Draft                MAMS C-plane                    March 2017

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Conventions used in this document . . . . . . . . . . . . . .   3
   2.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   4.  MAMS Control-Plane Protocol . . . . . . . . . . . . . . . . .   3
     4.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .   3
   5.  MAMS User Plane Protocol  . . . . . . . . . . . . . . . . . .   4
   6.  MAMS Control Plane Procedures . . . . . . . . . . . . . . . .   6
     6.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .   6
     6.2.  Common fields in MAMS Control Messages  . . . . . . . . .   7
     6.3.  Discovery & Capability Exchange . . . . . . . . . . . . .   7
     6.4.  User Plane Configuration  . . . . . . . . . . . . . . . .  10
     6.5.  MAMS Path Quality Estimation  . . . . . . . . . . . . . .  12
     6.6.  MAMS Traffic Steering . . . . . . . . . . . . . . . . . .  13
   7.  Applying MAMS Control Procedures with MPTCP Proxy as User
       Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
   8.  Co-existence of MX Adaptation and MX Convergence Layers . . .  16
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  16
     9.1.  MAMS Control plane security . . . . . . . . . . . . . . .  16
     9.2.  MAMS User plane security  . . . . . . . . . . . . . . . .  16
   10. Contributing Authors  . . . . . . . . . . . . . . . . . . . .  16
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  17
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  17
     11.2.  Informative References . . . . . . . . . . . . . . . . .  17
   Appendix A.  MAMS Control Plane Optimization over Secure
                Connections  . . . . . . . . . . . . . . . . . . . .  18
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  18

Kanugovi, et al.       Expires September 14, 2017               [Page 2]



Internet-Draft                MAMS C-plane                    March 2017

1.  Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Introduction

   Multi Access Management Service (MAMS)
   [I-D.kanugovi-intarea-mams-protocol] is a framework to select and
   configure network paths when multiple connections can serve a client
   device.  It allows the path selection and configuration to adapt to
   dynamic network conditions.  It is based on principles of user plane
   interworking that enables the solution to be deployed as an overlay
   without impacting the underlying networks.

   This document presents the control plane protocols for the MAMS
   framework.  It co-exists and complements user plane protocols (e.g.
   MPTCP [RFC6824] or MPTCP Proxy [I-D.boucadair-mptcp-plain-mode],
   [I-D.wei-mptcp-proxy-mechanism]) by providing a way to negotiate and
   configure them based on client and network capabilities.  It allows
   exchange of network state information and leverages network
   intelligence to optimize the performance of such protocols.

3.  Terminology

   "Anchor Connection": Refers to the network path from the N-MADP to
   the Application Server that corresponds to a specific IP anchor that
   has assigned an IP address to the client.

   "Delivery Connection": Refers to the network path from the N-MADP to
   the client.

   "Network Connection Manager" (NCM), "Client Connection Manager"
   (CCM), "Network Multi Access Data Proxy" (N-MADP), and "Client Multi
   Access Data Proxy" (C-MADP) in this document are to be interpreted as
   described in [I-D.kanugovi-intarea-mams-protocol].

4.  MAMS Control-Plane Protocol

4.1.  Overview

   The MAMS architecture [I-D.kanugovi-intarea-mams-protocol] introduces
   the following functional elements,

   o  Network Connection Manager (NCM) and Client Connection Manager
      (CCM) in the control plane, and
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   o  Network Multi Access Data Proxy (N-MADP) and Client Multi Access
      Data Proxy (C-MADP) handling the user plane.

   Figure 1 shows the default MAMS control plane protocol stack.  HTTPS
   is used for transporting management and control messages between NCM
   and CCM.

                 +------------------------------------------+
                 |    Multi Access (MX) Control Message     |
                 |                                          |
                 +------------------------------------------+
                 |                HTTPS                     |
                 |                                          |
                 +------------------------------------------+
                 |               TCP/TLS                    |
                 |                                          |
                 +------------------------------------------+

           Figure 1: TCP-based MAMS Control Plane Protocol Stack

5.  MAMS User Plane Protocol

   Figure 2 shows the MAMS user plane protocol stack.
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          +-----------------------------------------------------+
          |      User Payload (e.g. IP PDU)                     |
          +-----------------------------------------------------+

       +-----------------------------------------------------------+
       |  +-----------------------------------------------------+  |
       |  | Multi Access (MX) Convergence Sublayer              |  |
       |  +-----------------------------------------------------+  |
       |  +-----------------------------------------------------+  |
       |  | MX Adaptation   | MX Adaptation  | MX Adaptation    |  |
       |  | Sublayer        | Sublayer       | Sublayer         |  |
       |  | (optional)      | (optional)     | (optional)       |  |
       |  +----------------++--------------+-+------------------+  |
       |  | Access #1 IP   | Access #2 IP  | Access #3 IP       |  |
       |  +-----------------------------------------------------+  |
       |                             MAMS User Plane Protocol Stack|
       +-----------------------------------------------------------+

                 Figure 2: MAMS User Plane Protocol Stack

   It consists of the following two Sublayers:

   o  Multi-Access (MX) Convergence Sublayer: This layer performs multi-
      access specific tasks, e.g. access (path) selection, multi-link
      (path) aggregation, splitting/reordering, lossless switching,
      fragmentation, concatenation, etc.  For example, MX Convergence
      layer can be implemented using existing user plane protocols like
      MPTCP or by adapting encapsulating header/trailer schemes (e.g
      Trailer Based MX Convergence as specified in
      [I-D.zhu-intarea-mams-user-protocol]).
   o  Multi-Access (MX) Adaptation Sublayer: This layer performs
      functions to handle tunnelling, network layer security, and NAT.
      For example, MX Adaptation can be implemented using IPsec, DTLS or
      Client NAT (Source NAT at Client with inverse mapping at N-MADP
      [I-D.zhu-intarea-mams-user-protocol] ).  The MX Adaptation Layer
      is optional and can be independently configured for each of the
      Access Links, e.g. in a deployment with LTE (assumed secure) and
      Wi-Fi (assumed not secure), the MX Adaptation Sublayer can be
      omitted for the LTE link but MX Adaptation Sublayer is configured
      as IPsec for the Wi-Fi link.
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6.  MAMS Control Plane Procedures

6.1.  Overview

   CCM and NCM exchange signaling messages to configure the user plane
   functions, C-MADP and N-MADP, at the client and network respectively.
   The means for CCM to obtain the NCM credentials (FQDN or IP Address)
   for sending the initial discovery messages are outside of the scope
   of MAMS document, e.g. using methods like provisioning, DNS.  Once
   the discovery process is successful, the (initial) NCM can update and
   assign additional NCM addresses for sending subsequent control plane
   messages.

   CCM discovers and exchanges capabilities with the NCM.  NCM provides
   the credentials of the N-MADP end-point and negotiates the parameters
   for user plane with the CCM.  CCM configures C-MADP to setup the user
   plane path (e.g.  MPTCP/UDP Proxy Connection) with the N-MADP based
   on the credentials (e.g.  (MPTCP/UDP) Proxy IP address and port,
   Associated Core Network Path), and the parameters exchanged with the
   NCM.  The key procedures are described in details in the following
   sub-sections.

Kanugovi, et al.       Expires September 14, 2017               [Page 6]



Internet-Draft                MAMS C-plane                    March 2017

                      +-----+                +-----+
                      | CCM |                | NCM |
                      +--+--+                +--+--+
                         |    Discovery and     |
                         |    Capability        |
                         |    Exchange          |
                         <---------------------->
                         |                      |
                         |    User Plane        |
                         |    Protocols         |
                         |    Setup             |
                         <---------------------->
                         |    Path Quality      |
                         |    Estimation        |
                         <---------------------->
                         | Network capabilities |
                         | e.g. Radio (RNIS)    |
                         <----------------------+
                         |                      |
                         | Network policies     |
                         <----------------------+
                         +                      +

                  Figure 3: MAMS Control Plane Procedures

6.2.  Common fields in MAMS Control Messages

   Each MAMS control message consists of the following common fields:

   o  Version: indicates the version of MAMS control protocol.
   o  Message Type: indicates the type of the message, e.g.  MX
      Discovery, MX Capability REQ/RSP etc.
   o  Sequence Number: auto-incremented integer to uniquely identify a
      transaction of message exchange, e.g.  MX Capability REQ/RSP.

6.3.  Discovery & Capability Exchange

   Figure 4 shows the MAMS discovery and capability exchange procedure
   consisting of the following key steps:
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         CCM                                                  NCM
          |                                                    |
          +------- MX Discovery Message ---------------------->|
          |                                         +-----------------+
          |                                         |Learn CCM        |
          |                                         | IP address      |
          |                                         |& port           |
          |                                         +-----------------+
          |                                                    |
          |<--------------------------------MX System INFO-----|
          |                                                    |
          |<--------------------------------MX Capability REQ--|
          |------ MX Capability RSP+-------------------------->|
          |                                                    |
          +                                                    +

   Figure 4: MAMS Control Procedure for Discovery & Capability Exchange

   Step 1 (Discovery): CCM periodically sends out the MX Discovery
   Message to a pre-defined (NCM) IP Address/ port until receives an MX
   System INFO message in acknowledgement.

   MX Discovery Message includes the following information:

   o  MAMS Version

   MX System INFO includes the following information:

   o  Number of Anchor Connections

      For each Anchor Connection, it includes the following parameters:

      *  Connection ID: Unique identifier for the Anchor Connection
      *  Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
         LTE)
      *  NCM Endpoint Address (For Control Plane Messages over this
         connection)

         +  IP Address or FQDN (Fully Qualified Domain Name)
         +  Port Number

   Step 2 (Capability Exchange): once receiving a MX discovery message,
   NCM learns the IP address and port number to communicate with CCM,
   and sends out the MX Capability REQ message, including the following
   Parameters:
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   o  MX Feature Activation List: Indicates if the corresponding feature
      is enabled or not, e.g. lossless switching, fragmentation,
      concatenation, Uplink aggregation, Downlink aggregation,
      Measurement, etc.
   o  Number of Anchor Connections (Core Networks)

      For each Anchor Connection, it includes the following parameters:

      *  Connection ID
      *  Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
         LTE)
   o  Number of Delivery Connections (Access Links)

      For each Delivery Connection, it includes the following
      parameters:

      *  Connection ID
      *  Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
         LTE)
   o  MX Convergence Method Support List

      *  Trailer-based MX Convergence;
      *  MPTCP Proxy;
   o  MX Adaptation Method Support List

      *  UDP Tunnel without DTLS;
      *  UDP Tunnel with DTLS;
      *  IPsec Tunnel[RFC3948];
      *  Client NAT;

   In response, CCM sends out the MX Capability RSP message, including
   the following information:

   o  MX Feature Activation List: Indicates if the corresponding feature
      is enabled or not, e.g. lossless switching, fragmentation,
      concatenation, Uplink aggregation, Downlink aggregation,
      Measurement, etc.
   o  Number of Anchor Connections (Core Networks)

      For each Anchor Connection, it includes the following parameters:

      *  Connection ID
      *  Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
         LTE)
   o  Number of Delivery Connections (Access Links)

      For each Delivery Connection, it includes the following
      parameters:
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      *  Connection ID
      *  Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
         LTE)
   o  MX Convergence Method Support List

      *  Trailer-based MX Convergence;
      *  MPTCP Proxy;
   o  MX Adaptation Method Support List

      *  UDP Tunnel without DTLS;
      *  UDP Tunnel with DTLS;
      *  IPsec Tunnel[RFC3948];
      *  Client NAT;

6.4.  User Plane Configuration

   Figure 5 shows the user plane configuration procedure consisting of
   the following key steps:

CCM                                                   NCM
 |                                                    |
 |                                        +-----------+----------------+
 |                                        | NCM prepares N+MADP for    |
 |                                        | User Plane|Setup           |
 |                                        +----------------------------+
 |<----------------------------- MX UP Setup Config---|
 |-----| MX UP Setup CNF+---------------------------->|
+-------------------+                                 |
|Link "X" is up/down|                                 |
+-------------------+                                 |
 |-----|MX Reconfiguration REQ +--------------------->|
 |<------------------------+MX Reconfiguration RSP+---|

       Figure 5: MAMS Control Procedure for User Plane Configuration

   User Plane Protocols Setup: Based on the negotiated capabilities, NCM
   sets up the user plane (Adaptation Layer and Convergence Layer)
   protocols at the N-MADP, and informs the CCM of the user plane
   protocols to setup at the client (C-MADP) and the parameters for
   C-MADP to connect to N-MADP.

   Each MADP instance is responsible for one anchor connection.  The MX
   UP Setup Config consists of the following parameters:
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   o  Number of Anchor Connections (Core Networks)

      For Each Anchor Connection, it includes the following parameters

      *  Anchor Connection ID
      *  Connection Type (e.g., 0: Wi-Fi; 1: 5G NGC; 2: Multi-Fire; 3:
         LTE)
      *  MX Convergence Method

         +  Trailer-based MX Convergence;
         +  MPTCP Proxy;
      *  MX Convergence Method Parameters

         +  Convergence Proxy IP Address
         +  Convergence Proxy Port
      *  Number of Delivery Connections

         For each Delivery Connection, include the following:

         +  Delivery Connection ID
         +  Connection Type (e.g., 0: Wi-Fi; 1: 5G NGC; 2: Multi-Fire;
            3: LTE)
         +  MX Adaptation Method

            -  UDP Tunnel without DTLS;
            -  UDP Tunnel with DTLS;
            -  IPSec Tunnel;
            -  Client NAT;
         +  MX Adaptation Method Parameters

            -  Tunnel Endpoint IP Address
            -  Tunnel Endpoint Port
            -  Shared Secret

   e.g.  When LTE and Wi-Fi are the two user plane accesses, NCM conveys
   to CCM that IPsec needs to be setup as the MX Adaptation Layer over
   the Wi-Fi Access, using the following parameters - IPsec end-point IP
   address, Pre-Shared Key., No Adaptation Layer is needed over the LTE
   Access as it is considered secure with no NAT.  The MX Convergence
   Method is configured as MPTCP Proxy along with parameters for
   connection to the MPTCP Proxy, namely IP Address and Port of the
   MPTCP Proxy for TCP Applications.

   Once the user plane protocols are configured, CCM informs the NCM of
   the status via the MX UP Setup CNF message

   Reconfiguration: when the client detects that the link is up/down or
   the IP address changes (e.g. via APIs provided by the client OS), CCM
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   sends out a MX Reconfiguration REQ Message to setup / release /update
   the connection, and the message SHOULD include the following
   information

   o  Reconfiguration Action: indicate the reconfiguration action (0:
      release; 1: setup; 2: update)
   o  Connection ID: identify the connection for reconfiguration

   If (Reconfiguration Action is setup or update), then include the
   following parameters

   o  IP address of the connection
   o  MTU (Maximum Transmission Unit) size of the connection

6.5.  MAMS Path Quality Estimation

          CCM                                                 NCM
          |                                                    |
          |<--------------+ MX Path Estimation Configuration+--|
          |-----+ MX Path Estimation Results+----------------->|
          |                                                    |

    Figure 6: MAMS Control Plane Procedure for Path Quality Estimation

   NCM sends following the configuration parameters in the MX Path
   Estimation Configuration message to the CCM

   o  Connection ID (of Delivery Connection whose path quality needs to
      be estimated)
   o  Init Probe Test Duration (ms)
   o  Init Probe Test Rate (Mbps)
   o  Init Probe Size (Bytes)
   o  Init Probe Ack Required (0 -> No/1 -> Yes)
   o  Active Probe Frequency (ms)
   o  Active Probe Size (Bytes)
   o  Active Probe Ack Required (0 -> No/1 -> Yes)

   CCM configures the C-MADP for probe reception based on these
   parameters and for collection of the statistics according to the
   following configuration.

   o  Init Probe Results Configuration
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      *  Lost Probes (%)
      *  Probe Delay
      *  Probe Rate
   o  Active Probe Results Configuration

      *  Average Throughput in the last Probe Duration

   The user plane probing is divided into two phases - Initialization
   phase and Active phase.

   o  Initialization phase: A network path that is not included by
      N-MADP for transmission of user data is deemed to be in the
      Initialization phase.  The user data may be transmitted over other
      available network paths.
   o  Active phase: A network path that is included by N-MADP for
      transmission of user data is deemed to be in Active phase.

   In Initialization phase, NCM configures N-MADP to send an MX Idle
   Probe REQ message.  CCM collects the Idle probe statistics from
   C-MADP and sends the MX Path Estimation Results Message to NCM per
   the Initialization Probe Results configuration.

   In Active phase, NCM configures N-MADP to send an MX Active Probe REQ
   message..  C-MADP calculates the metrics as specified by the Active
   Probe Results Configuration.  CCM collects the Active probe
   statistics from C-MADP and sends the MX Path Estimation Results
   Message to NCM per the Active Probe Results configuration.

6.6.  MAMS Traffic Steering

    CCM                                               NCM
     |                                                 |
     |                                +------------------------------+
     |                                |Steer user traffic to Path "X"|
     |                                +------------------------------+
     |<------------------MX Traffic Steering (TS) REQ--|
     |----- MX Traffic Steering (TS) RSP ------------->|

                 Figure 7: MAMS Traffic Steering Procedure

   NCM sends out a MX Traffic Steering (TS) REQ message to steer data
   traffic.  It is also possible to send data traffic over multiple
   connections simultaneously, i.e. aggregation.  The message includes
   the following information:

   o  Connection ID of the Anchor Connection
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   o  Connection ID List of Delivery Connections for DL traffic
   o  Connection ID List of Delivery connections for UL traffic
   o  MX Feature Activation List: each parameter indicates if the
      corresponding feature is enabled or not: lossless switching,
      fragmentation, concatenation, Uplink aggregation, Downlink
      aggregation, Measurement

   In response, CCM sends out a MX Traffic Steering (TS) RSP message,
   including the following information:

   o  MX Feature Activation List: each parameter indicates if the
      corresponding feature is enabled or not: lossless switching,
      fragmentation, concatenation, Uplink aggregation, Downlink
      aggregation

7.  Applying MAMS Control Procedures with MPTCP Proxy as User Plane

   If NCM determines that N-MADP is to be instantiated with MPTCP as the
   MX Convergence Protocol, it exchanges the MPTCP capability support in
   discovery and capability exchange procedures.  NCM then exchanges the
   credentials of the N-MADP instance, setup as MPTCP Proxy, along with
   related parameters to the CCM.  CCM configures C-MADP with these
   parameters to connect with the N-MADP (MPTCP proxy
   [I-D.wei-mptcp-proxy-mechanism], [I-D.boucadair-mptcp-plain-mode])
   instance, on the available network path (Access).

   Figure 8 shows the MAMS assisted MPTCP Proxy control procedure.

   o  For securing the TCP subflow data over links that cannot be
      assumed to be secure, NCM configures MX Adaptation Layer.  E.g.
      NCM can inform CCM to use IPsec as the MX Adaptation Layer over
      the link "X" (e.g.  Wi-Fi).  CCM informs C-MADP to set up IPSec
      (transport mode) with N-MADP using the MPTCP-Proxy IP address to
      protect the TCP subflow over Link "X".
   o  NCM informs the CCM that N-MADP is configured as the MPTCP proxy
      and provides the parameters like MPTCP Proxy IP address/Port.
      C-MADP obtains the IP address & port of MPTCP-Proxy for Link "X"
      locally from CCM.  This is useful if N-MADP is reachable via
      different IP address or/and port, from different access networks.
      The current MPTCP signaling can’t identify or differentiate the
      MPTCP proxy IP address & port among multiple access networks.
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    C-MADP                      N-MADP                        Internet
    (MPTCP)                     (MPTCP-Proxy)                 (TCP)
      |                              |                          |
    +---------------+                |                          |
    |Link "X" is up |                |                          |
    +---------------+                |                          |
      |                              |                          |
    +---------------------+          |                          |
    |obtain MX Adaptation |          |                          |
    |Layer (IPsec) Params |          |                          |
    +---------------------+          |                          |
      |<-- IKEv2 Message Exchange--->|                          |
    +-------------------------------------------+               |
    |  IPSec transport mode is active to protect|               |
    |  IP traffic between C-MADP and MPTCP-Proxy|               |
    +-------------------------------------------+               |
      |                              |                          |
    +------------------+             |                          |
    |obtain MPTCP-Proxy|             |                          |
    |IP address of Link|             |                          |
    |"X" from CCM      |             |                          |
    +------------------+             |                          |
      |                              |                          |
    +--------------------------------|--+                       |
    |  MPTCP Signaling between       |  |                       |
    |  C-MADP and MPTCP-Proxy        |  |                       |
    +--------------------------------|--+                       |
      |                           +---------+                   |
      |                           | inspect |                   |
      |                           | MPTCP   |                   |
      |                           | signal  |                   |
      |                           |  and    |                   |
      |                           |establish|                   |
      |                           |sub-flow |                   |
      |                           | over    |                   |
      |                           | Link "X"|                   |
      |                           +--|------+                   |
      |                       +------------+                    |
      |<======Data===========>|Data Mapping|<----Data---------->|
      |                       +------|-----+                    |

             Figure 8: MAMS-assisted MPTCP Proxy as User Plane
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8.  Co-existence of MX Adaptation and MX Convergence Layers

   MAMS u-plane protocols support multiple combinations and instances of
   user plane protocols to be used in the MX Adaptation and the
   Convergence layer.

   For example, one instance of the MX Convergence Layer can be MPTCP
   Proxy and another instance can be Trailer based.  The MX Adaptation
   for each can be either UDP tunnel or IPsec.  IPSec may be set up when
   network pathneeds to be secured, e.g. to protect the TCP subflow
   traversing the network path between the client and MPTCP proxy.

   Each of the instances of MAMS user plane, i.e. combination of MX
   Convergence and MX Adaptation layer protocols, can coexist
   simultaneously and independently handle different traffic types.

9.  Security Considerations

9.1.  MAMS Control plane security

   For deployment scenarios, where the client is configured (e.g. by the
   network operator) to use a specific network for exchanging control
   plane messages and assume the network path to be secure, MAMS control
   messages will rely on security provided by the underlying transport
   network.

   For deployment scenarios where the security of the network path
   cannot be assumed, NCM and CCM implementations MUST support the
   "https" URI scheme [RFC2818] and Transport Layer Security (TLS)
   [RFC5246] to secure control plane message exchange between the NCM
   and CCM.

   For deployment scenarios where client authentication is desired, HTTP
   Digest Authentication MUST be supported.  TLS Client Authentication
   is the preferred mechanism if it is available.

9.2.  MAMS User plane security

   User data in MAMS framework relies on the security of the underlying
   network transport paths.  When this cannot be assumed, NCM configures
   use of protocols, like IPsec [RFC4301] [RFC3948] in the MX Adaptation
   Layer, for security.
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Appendix A.  MAMS Control Plane Optimization over Secure Connections

   If the connection between CCM and NCM over which the MAMS control
   plane messages are transported is assumed to be secure, UDP is used
   as the transport for management & control messages between NCM and
   UCM (see Figure 9).

          +-----------------------------------------------------+
          |        Multi-Access (MX) Control Message            |
          |-----------------------------------------------------|
          |                UDP                                  |
          |-----------------------------------------------------|

           Figure 9: UDP-based MAMS Control plane Protocol Stack
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