
INTAREA R. Bonica
Internet-Draft R. Thomas
Updates: RFC 4884 (if approved) Juniper Networks
Intended status: Standards Track J. Linkova
Expires: September 3, 2017 Google
 C. Lenart
 Verizon
 March 2, 2017

 Extended Ping (Xping)
 draft-bonica-intarea-eping-04

Abstract

 This document describes a new diagnostic tool called Extended Ping
 (Xping). Network operators execute Xping to determine the status of
 a remote interface. In this respect, Xping is similar to Ping.
 Xping differs from Ping in that it does not require network
 reachability between itself and remote interface whose status is
 being queried.

 Xping relies on two new ICMP messages, called Extended Echo Request
 and Extended Echo Reply. Both ICMP messages are defined herein.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 3, 2017.

Bonica, et al. Expires September 3, 2017 [Page 1]

Internet-Draft Extended Ping (eping) March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Problem Statement . 2
 2. ICMP Extended Echo Request 4
 2.1. Interface Identification Object 6
 3. ICMP Extended Echo Reply 7
 4. ICMP Extended Echo and Extended Echo Reply Processing 9
 4.1. Code Field Processing 10
 5. The Xping Application . 10
 6. Use-Cases . 12
 6.1. Unnumbered Interfaces 12
 6.2. Link-local Interfaces 12
 6.3. Unadvertised Interfaces 13
 7. Updates to RFC 4884 . 13
 8. IANA Considerations . 13
 9. Security Considerations 14
 10. Acknowledgements . 15
 11. References . 15
 11.1. Normative References 15
 11.2. Informative References 16
 Authors’ Addresses . 16

1. Problem Statement

 Network operators use Ping [RFC2151] to determine whether a remote
 interface is operational. Ping sends an ICMP [RFC0792] [RFC4443]
 Echo message to the interface being probed and waits for an ICMP Echo
 Reply. If Ping receives the expected ICMP Echo Reply, it reports
 that the probed interface is operational.

 In order for the ICMP Echo message to reach the probed interface, the
 probed interface must be addressed appropriately. IP addresses are
 scoped as follows:

Bonica, et al. Expires September 3, 2017 [Page 2]

Internet-Draft Extended Ping (eping) March 2017

 o Global [RFC4291]

 o Private [RFC1918]

 o Link-local [RFC3927] [RFC4291]

 Global addresses are the most widely scoped. A globally addressed
 interface can be reached from any node on the Internet. By contrast,
 link-local addresses are the least widely scoped. An interface whose
 only address is link-local can be reached from on-link interfaces
 only.

 Network operators seek to decrease their dependence on widely-scoped
 interface addressing. For example:

 o The operator of an IPv4 network currently assigns global addresses
 to all interfaces. In order to conserve scarce IPv4 address
 space, this operator seeks to renumber selected interfaces with
 private addresses.

 o The operator of an IPv4 network currently assigns private
 addresses to all interfaces. In order to achieve operational
 efficiencies, this operator seeks to leave selected interfaces
 unnumbered.

 o The operator of an IPv6 network currently assigns global addresses
 to all interfaces. In order to achieve operational efficiencies,
 this operator seeks to number selected interfaces with link-local
 addresses only [RFC7404]

 When a network operator renumbers an interface, replacing a more
 widely scoped address with one that is less widely scoped, the
 operator also reduces the number of nodes from which Ping can probe
 the interface. Therefore, many network operators who rely on Ping
 remain dependant upon widely scoped interface addressing.

 This document describes a new diagnostic tool called Extended Ping
 (Xping). Network operators use Xping to determine the status of a
 remote interface. In this respect, Xping is similar to Ping. Xping
 differs from Ping in that it does not require reachability between
 the probing node and the probed interface. Or, said another way,
 Xping does not require reachability between the node upon which it
 executes and the interface whose status is being queried.

 Xping relies on two new informational ICMP messages, called Extended
 Echo Request and Extended Echo Reply. The Extended Echo Request
 message makes a semantic distinction between the destination
 interface and the probed interface. The destination interface is the

Bonica, et al. Expires September 3, 2017 [Page 3]

Internet-Draft Extended Ping (eping) March 2017

 interface to which the Extended Echo Request message is delivered.
 It must be reachable from the probing node. The probed interface is
 the interface whose status is being queried. It does not need to be
 reachable from the probing node. However, the destination and probed
 interfaces must be local to one another (i.e., both interfaces must
 belong to the same node).

 Because the Extended Echo Request message makes a distinction between
 the destination and probed interfaces, Xping can probe every
 interface on a node if it can reach any interface on the node. In
 many cases, this allows network operators to decrease their
 dependence on widely scoped interface addressing.

 Network operators can use Xping to determine the operational status
 of the probed interface. They can also use Xping to determine which
 protocols (e.g., IPv4, IPv6) are active on the interface. However,
 they cannot use Xping to obtain other information regarding the
 interface (e.g., bandwidth, MTU). In order to obtain such
 information, they should use other network management protocols
 (e.g., SNMP, Netconf).

 This document is divided into sections, with Section 2 describing the
 Extended Echo Request message and Section 3 describing the Extended
 Echo Reply message. Section 4 describes how the probed node
 processes the Extended Echo Request message and Section 5 describes
 the Xping application. Section 6 describes uses cases.

2. ICMP Extended Echo Request

 The ICMP Extended Echo Request message is defined for both ICMPv4 and
 ICMPv6. Like any ICMP message, the ICMP Extended Echo Request
 message is encapsulated in an IP header. The ICMPv4 version of the
 Extended Echo Request message is encapsulated in an IPv4 header,
 while the ICMPv6 version is encapsulated in an IPv6 header.

 Figure 1 depicts the ICMP Extended Echo Request message.

Bonica, et al. Expires September 3, 2017 [Page 4]

Internet-Draft Extended Ping (eping) March 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Identifier | Sequence Number |
 +-+
 | ICMP Extension Structure

 Figure 1: ICMP Extended Echo Request Message

 IP Header fields:

 o Source Address: The Source Address MUST be valid IPv4 or IPv6
 unicast address belonging to the sending node.

 o Destination Address: Identifies the destination interface (i.e.,
 the interface to which this message will be delivered).

 ICMP fields:

 o Type: Extended Echo Request. The value for ICMPv4 is TBD by IANA.
 The value for ICMPv6 is also TBD by IANA.

 o Code: 0

 o Checksum: For ICMPv4, see RFC 792. For ICMPv6, see RFC 4443.

 o Identifier: An identifier to aid in matching Extended Echo Replies
 to Extended Echo Requests. May be zero.

 o Sequence Number: A sequence number to aid in matching Extended
 Echo Replies to Extended Echo Requests. May be zero.

 o ICMP Extension Structure: Identifies the probed interface, by
 name, index or address.

 If the ICMP Extension Structure identifies the probed interface by
 address, that address can be a member of any address family. For
 example:

 o An ICMPv4 Extended Echo Request message can carry an ICMP
 Extension Structure that identifies the probed interface by IPv4
 address

Bonica, et al. Expires September 3, 2017 [Page 5]

Internet-Draft Extended Ping (eping) March 2017

 o An ICMPv4 Extended Echo Request message can carry an ICMP
 Extension Structure that identifies the probed interface by IPv6
 address

 o An ICMPv6 Extended Echo Request message can carry an ICMP
 Extension Structure that identifies the probed interface by IPv4
 address

 o An ICMPv6 Extended Echo Request message can carry an ICMP
 Extension Structure that identifies the probed interface by IPv6
 address

 Section 7 of [RFC4884] defines the ICMP Extension Structure. As per
 RFC 4884, the Extension Structure contains exactly one Extension
 Header followed by one or more objects. When applied to the ICMP
 Extended Echo Request message, the ICMP Extension Structure contains
 one or two instances of the Interface Identification Object
 (Section 2.1).

 In most cases, a single instance of the Interface Identification
 Object can identify the probed interface. However, two instance are
 required when neither uniquely identifies a interface (e.g., an IPv6
 link-local address and an IEEE 802 address).

2.1. Interface Identification Object

 The Interface Identification Object identifies the probed interface
 by name, index, or address. Like any other ICMP Extension Object, it
 contains an Object Header and Object Payload. The Object Header
 contains the following fields:

 o Class-Num: Interface Identification Object. Value is TBD by IANA

 o C-type: Values are: (1) Identifies Interface By Name, (2)
 Identifies Interface By Index, and (3) Identifies Interface By
 Address

 o Length: Length of the object, measured in octets, including the
 object header and object payload.

 If the Interface Identification Object identifies the probed
 interface by name, the object payload contains the human-readable
 interface name. The interface name SHOULD be the full MIB-II ifName
 [RFC2863], if less than 255 octets, or the first 255 octets of the
 ifName, if the ifName is longer. The interface name MAY be some
 other human-meaningful name of the interface. The interface name
 MUST be represented in the UTF-8 charset [RFC3629] using the Default
 Language [RFC2277].

Bonica, et al. Expires September 3, 2017 [Page 6]

Internet-Draft Extended Ping (eping) March 2017

 If the Interface Identification Object identifies the probed
 interface by index, the length is equal to 8 and the payload contains
 the MIB-II ifIndex [RFC 2863].

 If the Interface Identification Object identifies the probed
 interface by address, the payload is as depicted in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AFI | Reserved |
 +-+
 | Address

 Figure 2: Interface Identification Object - C-type 3 Payload

 Payload fields are defined as follows:

 o Address Family Identifier (AFI): This 16-bit field identifies the
 type of address represented by the Address field. All values
 found in the IANA registry of Address Family Numbers (available
 from <http://www.iana.org>) are valid in this field.
 Implementations MUST support values (1) IPv4, (2) IPv6, (6) IEEE
 802, (16389) 48-bit MAC and (16390) 64-bit MAC. They MAY support
 other values.

 o Reserved: This 16-bit field MUST be set to zero and ignored upon
 receipt.

 o Address: This variable-length field represents an address
 associated with the probed interface.

3. ICMP Extended Echo Reply

 The ICMP Extended Echo Reply message is defined for both ICMPv4 and
 ICMPv6. Like any ICMP message, the ICMP Extended Echo Reply message
 is encapsulated in an IP header. The ICMPv4 version of the Extended
 Echo Reply message is encapsulated in an IPv4 header, while the
 ICMPv6 version is encapsulated in an IPv6 header.

 Figure 3 depicts the ICMP Extended Echo Reply message.

Bonica, et al. Expires September 3, 2017 [Page 7]

Internet-Draft Extended Ping (eping) March 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Identifier | Sequence Number |
 +-+
 | Proto Flags |S| RESERVED |
 +-+

 Figure 3: ICMP Extened Echo Reply Message

 IP Header fields:

 o Source address: Copied from the Destination Address field of the
 invoking Extended Echo Request message.

 o Destination address: Copied from the Source Address field of the
 invoking Extended Echo Request message.

 ICMP fields:

 o Type: Extended Echo Reply. The value for ICMPv4 is TBD by IANA.
 The value for ICMPv6 is also TBD by IANA.

 o Code: (0) No Error, (1) Malformed Query, (2) No Such Interface,
 (3) Multiple Interfaces Satisfy Query

 o Checksum: For ICMPv4, see RFC 792. For ICMPv6, see RFC 4443.

 o Identifier: Copied from the Identifier field of the invoking
 Extended Echo Request packet.

 o Sequence Number: Copied from the Sequence Number field of the
 invoking Extended Echo Request packet.

 o Proto Flags: Each bit in this field represents a protocol. The
 bit is set if the S-bit is set and the corresponding protocol is
 running on the probed interface. Bit mappings are as follows: Bit
 0 (IPv4), Bit 1 (IPv6), Bit 2 (Ethernet), Bits 3-7 (Reserved)

 o S Bit: This bit is set if the Code field is equal to No Error (0)
 and the probed interface is active. Otherwise, this bit is clear.

Bonica, et al. Expires September 3, 2017 [Page 8]

Internet-Draft Extended Ping (eping) March 2017

 o Reserved: This field MUST be set to zero and ignored upon receipt.

4. ICMP Extended Echo and Extended Echo Reply Processing

 When a node receives an ICMP Extended Echo Request message and any of
 the following conditions apply, the node MUST silently discard the
 incoming message:

 o The node does not recognize ICMP Extended Echo Request messages

 o The node has not explicitly enabled ICMP Extended Echo
 functionality

 o The node has not explicitly enabled the incoming ICMP Extended
 Echo Request type (i.e., by ifName, by IfIndex, by Address)

 o The incoming ICMP Extend Echo Request carries a source address
 that is not authorized for the incoming ICMP Extended Echo Request
 type

 o The Source Address of the incoming messages is not a unicast
 address

 Otherwise, when a node receives an ICMPv4 Extended Echo Request, it
 MUST format an ICMP Extended Echo Reply as follows:

 o Don’t Fragment flag (DF) is 1

 o More Fragments flag is 0

 o Fragment Offset is 0

 o TTL is 255

 o Protocol is ICMP

 When a node receives an ICMPv6 Extended Echo Request, it MUST format
 an ICMPv6 Extended Echo Reply as follows:

 o Hop Limit is 255

 o Next Header is ICMPv6

 In either case, the responding node MUST:

 o Copy the source address from the Extended Echo Request message to
 the destination address of the Extended Echo Reply

Bonica, et al. Expires September 3, 2017 [Page 9]

Internet-Draft Extended Ping (eping) March 2017

 o Copy the destination address from the Extended Echo Request
 message to the source address of the Extended Echo Reply

 o Set the DiffServ codepoint to CS0 [RFC4594]

 o Set the ICMP Type to Extended Echo Reply

 o Copy the Identifier from the Extended Echo Request message to the
 Extended Echo Reply

 o Copy the sequence number from the Extended Echo Request message to
 the Extended Echo Reply

 o Set the Code field as described Section 4.1

 o If the Code Field is equal to No Error (0) and the probed
 interface is active, set the S-Bit. Otherwise, clear the S-Bit.

 o If the S-bit is set, set Protocol Flags as appropriate.
 Otherwise, clear all Protocol Flags.

 o Set the checksum appropriately

 o Forward the ICMP Extended Echo Reply to its destination

 The status of the probed interface is determined exactly as if it had
 been probed by a directly connected neighbor using traditional ping.

4.1. Code Field Processing

 The following rules govern how the Code should be set:

 o If the query is malformed, set the Code to Malformed Query (1)

 o Otherwise, if the ICMP Extension Structure does not identify any
 local interfaces, set the Code to No Such Interface (2)

 o Otherwise, if the ICMP Extension Structure identifies more than
 one local interfaces, set the Code to Multiple Interfaces Satisfy
 Query (3)

 o Otherwise, set the code to No Error (0)

5. The Xping Application

 The Xping application accepts input parameters, sets a counter and
 enters a loop to be exited when the counter is equal to zero. On
 each iteration of the loop, Xping emits an ICMP Extended Echo

Bonica, et al. Expires September 3, 2017 [Page 10]

Internet-Draft Extended Ping (eping) March 2017

 Request, decrements the counter, sets a timer, waits for the timer to
 expire. If an expected ICMP Extended Echo Reply arrives while Xping
 is waiting for the timer to expire, Xping relays information returned
 by that message to its user. However, on each iteration of the loop,
 Xping waits for the timer to expire, regardless of whether an
 Extended Echo Reply message arrives.

 Xping accepts the following parameters:

 o Count

 o Wait

 o Source Interface Address

 o Hop Count

 o Destination Interface Address

 o Probed Interface Identifier

 Count is a positive integer whose default value is 3. Count
 determines the number of times that Xping iterates through the above-
 mentioned loop.

 Wait is a positive integer whose minimum and default values are 1.
 Wait determines the duration of the above-mentioned timer, measured
 in seconds.

 Source Interface Address specifies the source address of ICMP
 Extended Echo Request. The Source Interface Address MUST be a
 unicast address and MUST identify an interface that is local to the
 probing node.

 The destination Interface Address identifies the interface to which
 the ICMP Extended Echo Request message is sent. It can be an IPv4 or
 IPv6 address. If it is an IPv4 address, Xping emits an ICMPv4
 message. If it is an IPv6 address, Xping emits an ICMPv6 message.

 The probed interface is the interface whose status is being queried.
 If the probed interface identifier is not specified, the Xping
 application invokes the traditional Ping application and terminates.
 If the probed interface identifier is specified, it can be any of the
 following:

 o an interface name

Bonica, et al. Expires September 3, 2017 [Page 11]

Internet-Draft Extended Ping (eping) March 2017

 o an address from any address family (e.g., IPv4, IPv6, IEEE 802,
 48-bit MAC, 64-bit MAC)

 o an ifIndex

 The probed interface identifier can have any scope. For example, the
 probed interface identifier can be:

 o an IPv6 address, whose scope is global

 o an IPv6 address, whose scope is link-local

 o an interface name, whose scope is node-local

 o an ifIndex, whose scope is node-local

 If the probed interface identifier is an address, it does not need to
 be of the same address family as the destination interface address.
 For example, Xping accepts an IPv4 destination interface address and
 an IPv6 probed interface identifier.

6. Use-Cases

 In the use cases below, Xping can be used to determine the
 operational status of a forwarding interface. Other management
 protocols (e.g., SNMP) might also be used to obtain this information.
 However, we assume that those management protocols are not viable
 options, either because they are too heavyweight or they are not
 supported on the relevant nodes.

6.1. Unnumbered Interfaces

 An IPv4 network contains many routers. On each router, a loopback
 interface is numbered from global address space and all forwarding
 interfaces are unnumbered. Network operations staff need a tool that
 they can execute on any router in the network to determine the
 operational status of any forwarding interface in the network.

6.2. Link-local Interfaces

 An IPv6 network contains many routers. On each router, a loopback
 interface is numbered from global address space and some or all
 forwarding interfaces are numbered from link-local address space.
 Network operations staff need a tool that they can execute on any
 router in the network to determine the operational status of any
 forwarding interface in the network.

Bonica, et al. Expires September 3, 2017 [Page 12]

Internet-Draft Extended Ping (eping) March 2017

6.3. Unadvertised Interfaces

 A network contains many routers. On each router, the loopback
 interface and all forwarding interfaces are numbered from global
 address space. However, some forwarding interfaces do not
 participate in any routing protocol nor are they advertised by any
 routing protocol. Network operations staff need a tool that they can
 execute on any router in the network to determine the operational
 status of any forwarding interface in the network.

7. Updates to RFC 4884

 Section 4.6 of RFC 4884 provides a list of extensible ICMP messages
 (i.e., messages that can carry the ICMP Extension Structure). This
 document adds the ICMP Extended Echo message and the ICMP Extended
 Echo Reply message to that list.

8. IANA Considerations

 This document requests the following actions from IANA:

 o Add an entry to the "ICMP Type Number" registry, representing the
 Extended Echo Request. This entry has one code (0).

 o Add an entry to the "Internet Control Message Protocol version 6
 (ICMPv6) Parameters" registry, representing the Extended Echo
 Request. This entry has one code (0).

 o Add an entry to the "ICMP Type Number" registry, representing the
 Extended Echo Reply. This entry has the following codes: (0) No
 Error, (1) Malformed Query, (2) No Such Interface, (3) Multiple
 Interfaces Satisfy Query. Protocol Flag Bit mappings are as
 follows: Bit 0 (IPv4), Bit 1 (IPv6), Bit 2 (Ethernet), Bits 3-15
 (Reserved).

 o Add an entry to the "Internet Control Message Protocol version 6
 (ICMPv6) Parameters" registry, representing the Extended Echo
 Reply. This entry has the following codes: (0) No Error, (1)
 Malformed Query, (2) No Such Interface, (3) Multiple Interfaces
 Satisfy Query. Protocol Flag Bit mappings are as follows: Bit 0
 (IPv4), Bit 1 (IPv6), Bit 2 (Ethernet), Bits 3-15 (Reserved).

 o Add an entry to the "ICMP Extension Object Classes and Class Sub-
 types" registry, representing the Interface Identification Object.
 It has C-types Reserved (0), Identifies Interface By Name (1),
 Identifies Interface By Index (2), Identifies Interface By Address
 (3)

Bonica, et al. Expires September 3, 2017 [Page 13]

Internet-Draft Extended Ping (eping) March 2017

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

9. Security Considerations

 The following are legitimate uses of Xping:

 o to determine the operational status of an interface

 o to determine which protocols (e.g., IPv4, IPv6) are active on an
 interface

 However, malicious parties can use Xping to obtain additional
 information. For example, a malicious party can use Xping to
 discover interface names. Having discovered an interface name, the
 malicious party may be able to infer additional information.
 Additional information may include:

 o interface bandwidth

 o the type of device that supports the interface (e.g., vendor
 identity)

 o the operating system version that the above-mentioned device
 executes

 Understanding this risk, network operators establish policies that
 restrict access to ICMP Extended Echo functionality. In order to
 enforce these polices, nodes that support ICMP Extended Echo
 functionality MUST support the following configuration options:

 o Enable/disable ICMP Extended Echo functionality. By default, ICMP
 Extend Echo functionality is disabled.

 o Define enabled query types (i.e., by ifName, by ifIndex, by
 Address). By default, all query types are disabled.

 o For each enabled query type, define the prefixes from which ICMP
 Extended Echo Request messages are permitted

 o For each interface, determine whether ICMP Echo Request messages
 are accepted

 When a node receives an ICMP Extended Echo Request message that it is
 not configured to support, it MUST silently discard the message. See
 Section 4 for details.

Bonica, et al. Expires September 3, 2017 [Page 14]

Internet-Draft Extended Ping (eping) March 2017

 In order to protect local resources, implementations SHOULD rate-
 limit incoming ICMP Extended Echo Request messages.

10. Acknowledgements

 Thanks to Jeff Haas, Carlos Pignataro, Jonathan Looney and Joe Touch
 for their thoughtful review of this document.

11. References

11.1. Normative References

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, DOI 10.17487/RFC0792, September 1981,
 <http://www.rfc-editor.org/info/rfc792>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, DOI 10.17487/RFC2277,
 January 1998, <http://www.rfc-editor.org/info/rfc2277>.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,
 <http://www.rfc-editor.org/info/rfc2863>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", RFC 4443,
 DOI 10.17487/RFC4443, March 2006,
 <http://www.rfc-editor.org/info/rfc4443>.

 [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
 "Extended ICMP to Support Multi-Part Messages", RFC 4884,
 DOI 10.17487/RFC4884, April 2007,
 <http://www.rfc-editor.org/info/rfc4884>.

Bonica, et al. Expires September 3, 2017 [Page 15]

Internet-Draft Extended Ping (eping) March 2017

11.2. Informative References

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <http://www.rfc-editor.org/info/rfc1918>.

 [RFC2151] Kessler, G. and S. Shepard, "A Primer On Internet and TCP/
 IP Tools and Utilities", FYI 30, RFC 2151,
 DOI 10.17487/RFC2151, June 1997,
 <http://www.rfc-editor.org/info/rfc2151>.

 [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 DOI 10.17487/RFC3927, May 2005,
 <http://www.rfc-editor.org/info/rfc3927>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration
 Guidelines for DiffServ Service Classes", RFC 4594,
 DOI 10.17487/RFC4594, August 2006,
 <http://www.rfc-editor.org/info/rfc4594>.

 [RFC7404] Behringer, M. and E. Vyncke, "Using Only Link-Local
 Addressing inside an IPv6 Network", RFC 7404,
 DOI 10.17487/RFC7404, November 2014,
 <http://www.rfc-editor.org/info/rfc7404>.

Authors’ Addresses

 Ron Bonica
 Juniper Networks
 2251 Corporate Park Drive
 Herndon, Virginia 20171
 USA

 Email: rbonica@juniper.net

Bonica, et al. Expires September 3, 2017 [Page 16]

Internet-Draft Extended Ping (eping) March 2017

 Reji Thomas
 Juniper Networks
 Elnath-Exora Business Park Survey
 Bangalore, Karnataka 560103
 India

 Email: rejithomas@juniper.net

 Jen Linkova
 Google
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 USA

 Email: furry@google.com

 Chris Lenart
 Verizon
 22001 Loudoun County Parkway
 Ashburn, Virginia 20147
 USA

 Email: chris.lenart@verizon.com

Bonica, et al. Expires September 3, 2017 [Page 17]

intarea B. Bruneau
Internet-Draft Ecole polytechnique
Intended status: Informational P. Pfister
Expires: September 14, 2017 Cisco
 D. Schinazi
 T. Pauly
 Apple
 E. Vyncke, Ed.
 Cisco
 March 13, 2017

 Proposals to discover Provisioning Domains
 draft-bruneau-intarea-provisioning-domains-00

Abstract

 This document describes one possible way for hosts to retrieve
 additional information about their Internet access configuration.
 The set of configuration items required to access the Internet is
 called a Provisioning Domain (PvD) and is identified by a Fully
 Qualified Domain Name.

 This document separates the way of getting the Provisioning Domain
 identifier, the way of getting the Provisioning Domain information
 and the potential information contained in the Provisioning Domain.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Bruneau, et al. Expires September 14, 2017 [Page 1]

Internet-Draft Possibilities for PvDs March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 2.1. Requirements Language 4
 3. Retrieving the PvD ID . 4
 3.1. Using One Router Advertisement per PvD 4
 3.2. Rationale for not selecting other techniques 5
 3.2.1. Using DNS-SD . 5
 3.2.2. Using Reverse DNS lookup 5
 3.3. IoT Considerations 6
 3.4. Linking IPv4 Information to an IPv6 PvD 6
 4. Getting the full set of PvD information 6
 4.1. Using the PvD Bootstrap Information Option 7
 4.2. Downloading a JSON file over HTTPS 7
 4.2.1. Advantages . 7
 4.2.2. Disadvantages . 8
 4.3. Using DNS TXT ressource records (not selected) 8
 4.3.1. Advantages . 8
 4.3.2. Disadvantages . 8
 4.3.3. Using DNS SRV ressource records 8
 5. PvD Information . 9
 5.1. PvD Name . 9
 5.2. Trust of the bootstrap PvD 10
 5.3. Reachability . 11
 5.4. DNS Configuration . 12
 5.5. Connectivity Characteristics 13
 5.6. Connection monetary cost 14
 5.6.1. Conditions . 15
 5.6.2. Price . 15
 5.6.3. Examples . 16
 5.7. Private Extensions 17
 5.8. Examples . 17

Bruneau, et al. Expires September 14, 2017 [Page 2]

Internet-Draft Possibilities for PvDs March 2017

 5.8.1. Using JSON . 17
 5.8.2. Using DNS TXT records 18
 6. Use case examples . 19
 6.1. Multihoming . 19
 6.2. VPN/Extranet example 19
 7. Security Considerations 19
 8. Acknowledgements . 19
 9. References . 19
 9.1. Normative references 19
 9.2. Informative references 20
 Authors’ Addresses . 20

1. Introduction

 It has become very common in modern networks that hosts have Internet
 or more specific access through different networking interfaces,
 tunnels, or next-hop routers. The concept of Provisioning Domain
 (PvD) was defined in RFC7556 [RFC7556] as a set of network
 configuration information which can be used by hosts in order to
 access the network. In this document, PvDs are associated with a
 Fully Qualified Domain Name (called PvD ID) which is used within the
 host to identify correlated sets of configuration data and also used
 to retrieve additional information about the services that the
 network provides.

 Devices connected to the Internet through multiple interfaces would
 typically be provisioned with one PvD per interface, but it is worth
 noting that multiple PvDs with different PvD IDs could be provisioned
 on any host interface, as well as noting that the same PvD ID could
 be used on different interfaces in order to inform the host that both
 PvDs, on different interfaces, ultimately provide equivalent
 services.

 This document proposes multiple methods allowing the host to to
 retrieve the PvD ID associated with a set of networking discover the
 PvD and retrieve the PvD information. It also explains configuration
 as well as the methods and format in order to retrieve some of the
 parameters that can describe a PvD.

2. Terminology

 PvD A provisioning domain, usually with a set of
 provisioning domain information; for more
 information, see [RFC7556].

Bruneau, et al. Expires September 14, 2017 [Page 3]

Internet-Draft Possibilities for PvDs March 2017

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

3. Retrieving the PvD ID

 In this document, each provisioning domain is identified by a PvD ID.
 The PvD ID is a Fully Qualified Domain Name which belongs to the
 network operator to avoid conflicts among network operators. The
 same PvD ID can exist in several access networks if the set of
 configuration information is identical in all those networks (such as
 in all home networks of a residential subscriber). Within a host,
 the PvD ID SHOULD be associated to all the configuration information
 associated to this PvD ID; this allows for easy update and removal of
 information while keeping a consistent state.

 This section assumes that IPv6 Router Advertisements are used to
 discover the PvD ID and explains why this technique was selected.

3.1. Using One Router Advertisement per PvD

 Hosts receive implicit PvDs by the means of Router Advertisements
 (RA).

 A router MAY add a single PvD ID Option in its RAs. The PvD ID
 specified in this option is then associated with all the Prefix
 Information Options (PIO) included in the RA (albeit it is expected
 that only one PIO will be included in the RA). All other information
 contained in the RA (notably the RDNSS and Route Information Option)
 are to be associated with the PvD ID. The set of information
 contained in the RA forms the bootstrap (or hint) PvD. A new RA
 option will be required to convey the PvD ID.

 When a host receives an RA which does not include a PvD ID Option,
 the set of information included in the RA (such as Recursive DNS
 server, IPv6 prefix) is attached to an implicit PvD identified by the
 local interface ID on which the RA is received, and by the link-local
 address of the router sending the RA.

 In the cases where a router should provide multiple independent PvDs
 to all hosts, including non-PvD aware hosts, it should send multiple
 RAs, as proposed in [I-D.bowbakova-rtgwg-enterprise-pa-multihoming]
 using different source link-local addresses (LLA); the datalink layer
 (MAC) address could be the same for all the different RA. If the
 router is actually a VRRP instance, then the procedure is identical

Bruneau, et al. Expires September 14, 2017 [Page 4]

Internet-Draft Possibilities for PvDs March 2017

 except that the virtual link-layer address is used as well as virtual
 link-layer addresses.

 Using RA allows for an early discovery of the PvD ID as it is early
 in the interface start-up. As RA is usually processed in the kernel,
 this requires a host OS upgrade. The RA SHOULD contain other PvD
 information as explained in section Section 4.1.

3.2. Rationale for not selecting other techniques

 There are other techniques to discover the PvD ID that were not
 selected by the authors and reviewers, this section explains why.
 The design goal was to be as reliable as possible (do not depend on
 Internet connectivity) and as fast as possible.

3.2.1. Using DNS-SD

 For each received RA including a RDNSS option as well as a DNS search
 list option, the host MAY retrieve the PvD ID by querying the
 configured DNS server for records of type PTR associated with
 _pvd.<DNS search name>. If a PvD ID is configured, the DNS recursive
 resolver MUST reply with the PvD ID as a PTR record. NXDOMAIN is
 returned otherwise.

 When the RDNSS address is link-local, the host MAY retrieve the PvD
 ID before configuring its global scope address(es).

 Relying on a valid DNS service at the interface bootstrap can lead
 into delay to start the interface or starting without enough
 information: for example when the RDNSS is a non local address and
 there is no Internet connectivity.

3.2.2. Using Reverse DNS lookup

 [I-D.stenberg-mif-mpvd-dns] proposes a solution to get the name of
 the PvD using a reverse DNS lookup based on the host global
 address(es). It merely relies on prepending a well-known prefix
 ’_pvd’ to the reverse lookup, for example ’ _pvd....ip6.arpa.’.

 However, the PvD information is typically provided by the network
 operator, whereas the reverse DNS zone could be delegated from the
 operator to the network user, in which case it would not work.

 It also requires a fully functional global address to retrieve the
 information which may be too late for a correct host configuration.
 One advantage is that it does not require any change in the IPv6
 protocol and no change in the host kernel or even in the CPE.

Bruneau, et al. Expires September 14, 2017 [Page 5]

Internet-Draft Possibilities for PvDs March 2017

3.3. IoT Considerations

 TBD: should state that when end-host (IoT) cannot impletement
 completely this RFC it MAY select any of the PvD or the router SHOULD
 send a single unicast RA (hence a single PvD) in response to the RS
 or none if it detects that it cannot offer the right set of network
 services.

3.4. Linking IPv4 Information to an IPv6 PvD

 The document describes IPv6-only PvD but there are multiple ways to
 link the set of IPv4 configuration information received by DHCPv4:

 o correlation based on the data-link layer address of the source, if
 the IPv6 RA and the DHCPv4 response have the same data-link layer
 address, then the information contained in the IPv4 DHCP can be
 linked to the IPv6 PvD;

 o correlation based on the interface when there is no data-link
 address on the link (such as a 3GPP link), then the information
 contained in the IPv4 PDP context can be linked to the IPv6 PvD
 (*** TO BE VERIFIED before going -01);

 o correlation based on the DNS search list, if the DNS search lists
 are identical between the IPv6 RDNSS and the DHCPV4 response, then
 the information contained in the IPv4 DHCP response can be linked
 to the IPv6 PvD.

 The correlation could be useful for some PvD information such as
 Internet reachability, use of captive portal, display name of the
 PvD, ...

 In cases where the IPv4 configuration information could not be
 associated with a PvD, hosts MUST consider it as attached to an
 independent implicit PvD containing no other information than what is
 provided through DHCPv4.

4. Getting the full set of PvD information

 Once the PvD ID is known, it MAY be used to retrieve additional
 information. PvD Information is modeled as a key-value dictionary
 which keys are ASCII strings of arbitrary length, and values are
 either strings (encoding can vary), ordered list of values
 (recursively), or a dictionary (recursively).

 The PvD Information may be retrieved from multiple sources (from the
 bootstrap PvD contained in the RA to the secondary/extended PvD
 described in this section); the PvD ID is then used to correlate the

Bruneau, et al. Expires September 14, 2017 [Page 6]

Internet-Draft Possibilities for PvDs March 2017

 information from different sources. The way a host should operate
 when receiving conflicting information is TBD but it SHOULD at least
 override information from less authenticated sources (RA) by more
 authenticated sources (via TLS).

4.1. Using the PvD Bootstrap Information Option

 Routers MAY transmit, in addition to the PvD ID option, a PvD
 Bootstrap Information option, containing a first subset of PvD
 information. The additional pieces of bootstrap PvD information data
 set are transmitted using the short-hand notation proposed in
 Section 5. This requires another RA option.

 As there is a size limit on the amount of information a single RA can
 convey, it is likely that the PvD Bootstrap Information option may
 not contain the whole set of PvD Information. The set of PvD
 information included in the RA is called PvD Bootstrap Information.

4.2. Downloading a JSON file over HTTPS

 The host SHOULD try to download a JSON formatted file over HTTPS in
 order to get more PvD information.

 The host MUST perform an HTTP query to https://<PvD-ID>/v1.json. If
 the HTTP status of the answer is greater than 400 the host MUST
 abandon and consider that there is no additional PvD information. If
 the HTTP status of the answer is between 300 and 400 it MUST follow
 the redirection(s). If the HTTP status of the answer is between 200
 and 300 the host MAY get a file containing a single JSON object.

 The host MUST respect the cache information in the HTTP header, if
 any, and at expiration of the downloaded object, it must fetch a
 fresher version if any.

4.2.1. Advantages

 The JSON format allows advanced structures.

 It can be secured using HTTPS (and DNSSEC).

 It is easier to update a file on a web server than to edit DNS
 records. It can be especially important if we want providers to be
 able to often update the remaining phone plan of the user.

Bruneau, et al. Expires September 14, 2017 [Page 7]

Internet-Draft Possibilities for PvDs March 2017

4.2.2. Disadvantages

 It is slower than using DNS because HTTPS uses TCP and TLS and needs
 more packets to be exchanged to get the file.

 An additional HTTPS server must be deployed and configured.

4.3. Using DNS TXT ressource records (not selected)

 This approach was not selected during the design team meeting but has
 kept here for reference, it will be removed after global consensus is
 reached.

 The host could perform a DNS query for TXT resource records (RR) for
 the FQDN used as PvD ID (alternatively for _pvd.<PvD-ID>). For each
 retrieved PvD ID, the DNS query MUST be sent to the DNS server
 configured from the same router advertisement as the PvD ID. Syntax
 of the TXT response is defined in Section 5 (Section 5).

4.3.1. Advantages

 It requires a single round-time trip in order to retrieve the PvD
 Information.

 It can be secured using DNSSEC.

4.3.2. Disadvantages

 A TXT record is limited to 65535 characters in theory but large size
 of TXT records could require either DNS over TCP (so loosing the
 1-RTT advantage) or fragmented UDP packets (which could be dropped by
 a bad choice of security policy). Large TXT records could also be
 used to mount an amplification attack.

4.3.3. Using DNS SRV ressource records

 It is expected that the DNS TXT records will be sufficient for the
 host to configure itself with basic networking and policy
 configuration. Nevertheless, if further information is required, or
 when a different security model shall be used to access the PvD
 Information, a SRV Resource Record including a full URL MAY be
 included as a response, expecting the host to query this URL in order
 to retrieve additional PvD information.

Bruneau, et al. Expires September 14, 2017 [Page 8]

Internet-Draft Possibilities for PvDs March 2017

5. PvD Information

 PvD information is a set of key-value pairs. Keys are ASCII
 character strings. Values are either a character string, an ordered
 list of values, or an embedded dictionary. Value types and default
 behavior with respect to some specific keys MAY be further specified
 (recursively). Some keys have a default value as described in the
 following sections. When there is an expiration time in a PvD, then
 the information MUST be refreshed before the expiration time. The
 behavior of a host when the refresh operation is not successful is
 TBD.

 Nodes using the PvD MUST support the two encodings:

 JSON syntax for the complete set of PvD information;

 short-hand notation for the bootstrap PvD.

 When the PvD information is transferred as a JSON file, then the key
 used is the second column of the following table. The syntax of the
 JSON file is obvioulsy JSON and is richer than the short-hand
 notation specified in the next paragraph.

 When transmitting more information than the PvD ID in the RA (or when
 DNS TXT resource records are used), the shorthand notataion for PvD
 information is used and consists of a string containing several
 "key=value;" substrings. The "key" is the first column of the
 following tables, the value is encoded as:

 Shorthand notation for values:

 integer: expressed in decimal format with a ’.’ (dot) used for
 decimals;

 string: expressed as UTF-8 encoded string, delimited by single
 quote character, the single quote character can be expressed by
 two consecutive single quote character;

 boolean: expressed as ’0’ for false and ’1’ for true;

 IPv6 address: printed as RFC5952 [RFC5952].

5.1. PvD Name

 PvD SHOULD have a human readable name in order to be presented on a
 GUI. The name can also be localized.

Bruneau, et al. Expires September 14, 2017 [Page 9]

Internet-Draft Possibilities for PvDs March 2017

 +------------+------------+---------------+--------------+----------+
DNS TXT ke	JSON key	Description	Type	JSON
y/Bootstra				Example
p PvD key				
+------------+------------+---------------+--------------+----------+				
n	name	User-visible	human-	"Foobar
		service name,	readable	Service"
		SHOULD be	UTF-8 string	
		part of the		
		bootstrap PvD		
nl10n	localizedN	Localized	human-	"Service
	ame	user-visible	readable	Blabla"
		service name,	UTF-8 string	
		language can		
		be selected		
		based on the		
		HTTP Accept-		
		Language		
		header in the		
		request.		
 +------------+------------+---------------+--------------+----------+

5.2. Trust of the bootstrap PvD

 The content of the bootstrap PvD (from the original RA) cannot be
 trusted as it is not authenticated. But, the extended PvD can be
 associated with the PvD ID (as the PvD ID is used to construct the
 extended PvD URL) and trusted by the used of TLS. The extended PvD
 SHOULD therefore include the following information elements and, if
 they are present, the host MUST verify that the all PIO of the RA
 fits into the master prefix list. If any PIO prefix from the
 bootstrap PvD does not fit in the master prefix array, then all
 information received by the bootstrap PvD must be invalidated. In
 short, the masterIPv6Prefix received over TLS is used to authenticate
 the bootstrap PvD.

 The values of the bootstrap PvD (RDNSS, ...) are overwritten by the
 values contained in the trusted extended PvD if they are present.

Bruneau, et al. Expires September 14, 2017 [Page 10]

Internet-Draft Possibilities for PvDs March 2017

 +-----+------------------+-------------+----------+-----------------+
DNS	JSON key	Description	Type	JSON Example
TXT				
key				
+-----+------------------+-------------+----------+-----------------+				
mp6	masterIpv6Prefix	All the	Array of	["2001:db8::/32
		IPv6	IPv6	"]
		prefixes	prefixes	
		linked to		
		this PvD		
		(such as a		
		/29 for the		
		ISP).		
 +-----+------------------+-------------+----------+-----------------+

5.3. Reachability

 The following set of keys can be used to specify the set of services
 for which the respective PvD should be used. If present they MUST be
 honored by the client, i.e., if the PvD is marked as not usable for
 Internet access (walled garden), then it MUST NOT be used for
 Internet access. If the usability is limited to a certain set of
 domain or address prefixes (typical VPN access), then a different PvD
 MUST be used for other destinations.

Bruneau, et al. Expires September 14, 2017 [Page 11]

Internet-Draft Possibilities for PvDs March 2017

 +-----+---------------+---------------+-----------+-----------------+
DNS	JSON key	Description	Type	JSON Example
TXT				
key				
+-----+---------------+---------------+-----------+-----------------+				
s	noInternet	Internet	boolean	true
		inaccessible		
cp	captivePortal	Presence of a	boolean	false
		captive		
		portal		
z	dnsZones	DNS zones	array of	["foo.com","sub
		accessible	DNS zone	.bar.com"]
		and		
		searchable		
6	prefixes6	IPv6-prefixes	array of	["2001:db8:a::/
		accessible	IPv6	48","2001:db8:b
		via this PvD	prefixes	:c::/64"]
4	prefixes4	IPv4-prefixes	array of	["192.0.2.0/24"
		accessible	IPv4	,"2.3.0.0/16"]
			prefixes	
			in CIDR	
			reachable	
			via this	
			PvD	
 +-----+---------------+---------------+-----------+-----------------+

5.4. DNS Configuration

 The following set of keys can be used to specify the DNS
 configuration for the respective PvD. If present, they MUST be
 honored and used by the client whenever it wishes to access a
 resource described by the PvD.

 +-----+------------+-------------+-----------+----------------------+
DNS	JSON key	Description	Value	JSON Example
TXT				
key				
+-----+------------+-------------+-----------+----------------------+				
r	dnsServers	Recursive	array of	["2001:db8::1","192.
		DNS server	IPv6 and	0.2.2"]
			IPv4	
			addresses	
d	dnsSearch	DNS search	array of	["foo.com","sub.bar.
		domains	search	com"]
			domains	
 +-----+------------+-------------+-----------+----------------------+

Bruneau, et al. Expires September 14, 2017 [Page 12]

Internet-Draft Possibilities for PvDs March 2017

5.5. Connectivity Characteristics

 NOTE: open question to the authors/reviewers: should this document
 include this section or is it useless?

 The following set of keys can be used to signal certain
 characteristics of the connection towards the PvD.

 They should reflect characteristics of the overall access technology
 which is not limited to the link the host is connected to, but rather
 a combination of the link technology, CPE upstream connectivity, and
 further quality of service considerations.

 +------+------------------+------------+--------------+-------------+
DNS	JSON key	Descriptio	Type	JSON
TXT		n		Example
key				
+------+------------------+------------+--------------+-------------+				
tp	throughputMax	Maximum	object({down	{"down":
		achievable	(int),	10000,
		throughput	up(int)}) in	"up": 5000}
		(e.g. CPE	kb/s	
		downlink/u		
		plink)		
lt	latencyMin	Minimum	object({down	{"down":
		achievable	(int),	10, "up":
		latency	up(int)}) in	20}
			ms	
rl	reliabilityMax	Maximum	object({down	{"down":
		achievable	(int),	1000, "up":
		reliabilit	up(int)}) in	800}
		y	1/1000	
cp	captivePortal	Captive	URL of the	"https://ex
		portal	portal	ample.com"
nat	NAT	IPv4 NAT	boolean	true
		in place		
natt	NAT Time-out	The value	Integer	30
o		in seconds		
		of the NAT		
		time-out		
srh	segmentRoutingHe	The IPv6	Binary	...
	ader	Segment	string	
		Routing		
		Header to		
		be used		
		between		
		the IPv6		
		header and		

Bruneau, et al. Expires September 14, 2017 [Page 13]

Internet-Draft Possibilities for PvDs March 2017

		any other		
		headers		
		when using		
		this PvD		
srhD	segmentRoutingHe	The DNS	Ascii string	srh.pvd-foo
NS	aderDnsFQDN	FQDN which		.example.or
		is used to		g
		retrieved		
		the actual		
		IPv6		
		Segment		
		Routing		
		Header to		
		be used		
		between		
		the IPv6		
		header and		
		any other		
		headers		
		when using		
		this PvD		
cost	cost	Cost of	object	See Section
		using the		5.6
		connection		
 +------+------------------+------------+--------------+-------------+

5.6. Connection monetary cost

 NOTE: This section is included as a request for comment on the
 potential use and syntax.

 The billing of a connection can be done in a lot of different ways.
 The user can have a global traffic threshold per month, after which
 his throughput is limited, or after which he/she pays each megabyte.
 He/she can also have an unlimited access to some websites, or an
 unlimited access during the weekends.

 We propose to split the final billing in elementary billings, which
 have conditions (a start date, an end date, a destination IP
 address...). The global billing is an ordered list of elementary
 billings. To know the cost of a transmission, the host goes through
 the list, and the first elementary billing whose the conditions are
 fulfilled gives the cost. If no elementary billing conditions match
 the request, the host MUST make no assumption about the cost.

Bruneau, et al. Expires September 14, 2017 [Page 14]

Internet-Draft Possibilities for PvDs March 2017

5.6.1. Conditions

 Here are the potential conditions for an elementary billing. All
 conditions MUST be fulfill.

 Note: the final version should use short-hand key names.

 +-----------+-------------+---------------+-------------------------+
 | Key | Description | Type | JSON Example |
 +-----------+-------------+---------------+-------------------------+
beginDate	Date before	ISO 8601	"1977-04-22T06:00:00Z"
	which the		
	billing is		
	not valid		
endDate	Date after	ISO 8601	"1977-04-22T06:00:00Z"
	which the		
	billing is		
	not valid		
domains	FQDNs whose	array(string)	["deezer.com","spotify.
	the billing		com"]
	is limited		
prefixes4	IPv4	array(string)	["78.40.123.182/32","78
	prefixes		.40.123.183/32"]
	whose the		
	billing is		
	limited		
prefixes6	IPv6	array(string)	["2a00:1450:4007:80e::2
	prefixes		00e/64"]
	whose the		
	billing is		
	limited		
 +-----------+-------------+---------------+-------------------------+

5.6.2. Price

 Here are the different possibilities for the cost of an elementary
 billing. A missing key means "all/unlimited/unrestricted". If the
 elementary billing selected has a trafficRemaining of 0 kb, then it
 means that the user has no access to the network. Actually, if the
 last elementary billing has a trafficRemaining parameter, it means
 that when the user will reach the threshold, he/she will not have
 access to the network anymore.

Bruneau, et al. Expires September 14, 2017 [Page 15]

Internet-Draft Possibilities for PvDs March 2017

 +------------------+------------------+--------------+--------------+
 | Key | Description | Type | JSON Example |
 +------------------+------------------+--------------+--------------+
pricePerGb	The price per	float	2
	Gigabit	(currency	
		per Gb)	
currency	The currency	ISO 4217	"EUR"
	used		
throughputMax	The maximum	float (kb/s)	1000
	achievable		
	throughput		
trafficRemaining	The traffic	float (kb)	96000000
	remaining		
 +------------------+------------------+--------------+--------------+

5.6.3. Examples

 Example for a user with 20 GB per month for 40 EUR, then reach a
 threshold, and with unlimited data during weekends and to deezer:

 [
 {
 "domains": ["deezer.com"]
 },
 {
 "prefixes4": ["78.40.123.182/32","78.40.123.183/32"]
 },
 {
 "beginDate": "2016-07-16T00:00:00Z",
 "endDate": "2016-07-17T23:59:59Z",
 },
 {
 "beginDate": "2016-06-20T00:00:00Z",
 "endDate": "2016-07-19T23:59:59Z",
 "trafficRemaining": 96000000
 },
 {
 "throughputMax": 1000
 }
]

 If the host tries to download data from deezer.com, the conditions of
 the first elementary billing are fulfilled, so the host takes this
 elementary billing, finds no cost indication in it and so deduces
 that it is totally free. If the host tries to exchange data with
 youtube.com and the date is 2016-07-14T19:00:00Z, the conditions of
 the first, second and third elementary billing are not fulfilled.
 But the conditions of the fourth are. So the host takes this

Bruneau, et al. Expires September 14, 2017 [Page 16]

Internet-Draft Possibilities for PvDs March 2017

 elementary billing and sees that there is a threshold, 12 GB are
 remaining.

 Another example for a user abroad, who has 3 GB per year abroad, and
 then pay each MB:

 [
 {
 "beginDate": "2016-02-10T00:00:00Z",
 "endDate": "2017-02-09T23:59:59Z",
 "trafficRemaining": 9200000
 },
 {
 "pricePerGb": 30,
 "currency": "EUR"
 }
]

5.7. Private Extensions

 keys starting with "x-" are reserved for private use and can be
 utilized to provide vendor-, user- or enterprise-specific
 information. It is RECOMMENDED to use one of the patterns "x-FQDN-
 KEY" or "x-PEN-KEY" where FQDN is a fully qualified domain name or
 PEN is a private enterprise number [PEN] under control of the author
 of the extension to avoid collisions.

5.8. Examples

5.8.1. Using JSON

Bruneau, et al. Expires September 14, 2017 [Page 17]

Internet-Draft Possibilities for PvDs March 2017

 {
 "name": "Orange France",
 "localizedName": "Orange France",
 "dnsServers": ["8.8.8.8", "8.8.4.4"],
 "throughputMax": {
 "down": 100000,
 "up": 20000
 },
 "cost": [
 {
 "domains": ["deezer.com"]
 },
 {
 "prefixes4": ["78.40.123.182/32","78.40.123.183/32"]
 },
 {
 "beginDate": "2016-07-16T00:00:00Z",
 "endDate": "2016-07-17T23:59:59Z",
 },
 {
 "beginDate": "2016-06-20T00:00:00Z",
 "endDate": "2016-07-19T23:59:59Z",
 "trafficRemaining": 96000000
 },
 {
 "throughputMax": 1000
 }
]
 }

5.8.2. Using DNS TXT records

 n=Orange France
 r=8.8.8.8,8.8.4.4
 tp=100000,20000
 cost+0+domains=deezer.com
 cost+1+prefixes4=78.40.123.182/32,78.40.123.183/32
 cost+2+beginDate=2016-07-16T00:00:00Z
 cost+2+endDate=2016-07-17T23:59:59Z
 cost+3+beginDate=2016-06-20T00:00:00Z
 cost+3+endDate=2016-07-19T23:59:59Z
 cost+3+trafficRemaining=96000000
 cost+4+throughputMax=1000

Bruneau, et al. Expires September 14, 2017 [Page 18]

Internet-Draft Possibilities for PvDs March 2017

6. Use case examples

 TBD: 1 or 2 examples when PvD are critical

6.1. Multihoming

 First example could be multihoming (very much in-line with bowbakova
 draft).

6.2. VPN/Extranet example

 using PvD to reach a specific destination (such as VPN or extranet).

7. Security Considerations

 While the PvD ID can be forged easily, if the host retrieve the
 extended PvD via TLS, then the host can trust the content of the
 extended PvD and verifies that the RA prefix(es) are indeed included
 in the master prefixed of the extended PvD.

8. Acknowledgements

 Many thanks to M. Stenberg and S. Barth: Section 5.3, Section 5.5
 and Section 5.7 are from their document [I-D.stenberg-mif-mpvd-dns].

 Thanks also to Ray Bellis, Lorenzo Colitti, Marcus Keane, Erik Kline,
 Jen Lenkova, Mark Townsley and James Woodyatt for useful and
 interesting brainstorming sessions.

9. References

9.1. Normative references

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <http://www.rfc-editor.org/info/rfc5952>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <http://www.rfc-editor.org/info/rfc7556>.

Bruneau, et al. Expires September 14, 2017 [Page 19]

Internet-Draft Possibilities for PvDs March 2017

9.2. Informative references

 [I-D.bowbakova-rtgwg-enterprise-pa-multihoming]
 Baker, F., Bowers, C., and J. Linkova, "Enterprise
 Multihoming using Provider-Assigned Addresses without
 Network Prefix Translation: Requirements and Solution",
 draft-bowbakova-rtgwg-enterprise-pa-multihoming-01 (work
 in progress), October 2016.

 [I-D.stenberg-mif-mpvd-dns]
 Stenberg, M. and S. Barth, "Multiple Provisioning Domains
 using Domain Name System", draft-stenberg-mif-mpvd-dns-00
 (work in progress), October 2015.

 [PEN] IANA, "Private Enterprise Numbers",
 <https://www.iana.org/assignments/enterprise-numbers>.

Authors’ Addresses

 Basile Bruneau
 Ecole polytechnique
 Vannes 56000
 France

 Email: basile.bruneau@polytechnique.edu

 Pierre Pfister
 Cisco
 11 Rue Camille Desmoulins
 Issy-les-Moulineaux 92130
 France

 Email: ppfister@cisco.com

 David Schinazi
 Apple

 Email: dschinazi@apple.com

 Tommy Pauly
 Apple

 Email: tpauly@apple.com

Bruneau, et al. Expires September 14, 2017 [Page 20]

Internet-Draft Possibilities for PvDs March 2017

 Eric Vyncke (editor)
 Cisco
 De Kleetlaan, 6
 Diegem 1831
 Belgium

 Email: evyncke@cisco.com

Bruneau, et al. Expires September 14, 2017 [Page 21]

INTERNET-DRAFT T. Herbert
Intended Status: Proposed Standard Facebook
Expires: May 1, 2017 L. Yong
 Huawei
 F. Templin
 Boeing

 October 28, 2016

 Extensions for Generic UDP Encapsulation
 draft-herbert-gue-extensions-01

Abstract

 This specification defines a set of the fundamental optional
 extensions for Generic UDP Encapsulation (GUE). The extensions
 defined in this specification are the security option, payload
 transform option, checksum option, fragmentation option, and the
 remote checksum offload option.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

T. Herbert Expires May 1, 2016 [Page 1]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. GUE header format with optional extensions 4
 3. Security option . 5
 3.1. Extension field format 6
 3.2. Usage . 6
 3.3. Cookies . 7
 3.4. HMAC . 7
 3.4.1. Extension field format 7
 3.4.2. Selecting a hash algorithm 8
 3.4.3. Pre-shared key management 8
 3.5. Interaction with other optional extensions 9
 4. Fragmentation option . 9
 4.1. Motivation . 9
 4.2. Scope . 11
 4.3. Extension field format 11
 4.4. Fragmentation procedure 12
 4.5. Reassembly procedure 14
 4.6. Security Considerations 16
 5. Payload transform option 16
 5.1. Extension field format 16
 5.2. Usage . 17
 5.3. Interaction with other optional extensions 17
 5.4. DTLS transform . 18
 6. Remote checksum offload option 18
 6.1. Extension field format 19
 6.2. Usage . 19
 6.2.1. Transmitter operation 19
 6.2.2. Receiver operation 20
 6.3. Security Considerations 21
 7. Checksum option . 21
 7.1. Extension field format 21
 7.2. Requirements . 22
 7.3. GUE checksum pseudo header 22
 7.4. Usage . 24
 7.4.1. Transmitter operation 24

T. Herbert Expires May 1, 2016 [Page 2]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 7.4.2.Receiver operation 24
 7.5. Security Considerations 25
 8. Processing order of options 25
 9. Security Considerations 26
 10. IANA Consideration . 27
 11. References . 27
 11.1. Normative References 27
 11.2. Informative References 28
 Authors’ Addresses . 29

T. Herbert Expires May 1, 2016 [Page 3]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

1. Introduction

 Generic UDP Encapsulation (GUE) [I.D.nvo3-gue] is a generic and
 extensible encapsulation protocol. This specification defines a
 fundamental set of optional extensions for version 0 of GUE. These
 extensions are the security option, payload transform option,
 checksum option, fragmentation option, and the remote checksum
 offload option.

2. GUE header format with optional extensions

 The format of a version 0 GUE header with the optional extensions
 defined in this specification is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+\
 | Source port | Destination port | UDP
 +-+/
 | Length | Checksum |
 +-+
 | 0 |C| Hlen | Proto/ctype |V| SEC |F|T|R|K| Rsvd Flags |
 +-+
 | VNID (optional) |
 +-+
 | |
 ˜ Security (optional) ˜
 | |
 +-+
 | |
 + Fragmentation (optional) +
 | |
 +-+
 | Payload transform (optional |
 +-+
 | Remote checksum offload (optional) |
 +-+
 | Checksum (optional) |
 +-+
 | |
 ˜ Private data (optional) ˜
 | |
 +-+

 The contents of the UDP header are described in [I.D.herbert-gue].

T. Herbert Expires May 1, 2016 [Page 4]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 The GUE header consists of:

 o Ver: Version. Set to 0 to indicate GUE encapsulation header.
 Note that version 1 does not allow options.

 o C: C-bit. Indicates the GUE payload is a control message when
 set, a data message when not set. GUE optional extensions can be
 used with either control or data messages unless otherwise
 specified in the option definition.

 o Hlen: Length in 32-bit words of the GUE header, including
 optional extension fields but not the first four bytes of the
 header. Computed as (header_len - 4) / 4. The length of the
 encapsulated packet is determined from the UDP length and the
 Hlen: encapsulated_packet_length = UDP_Length - 12 - 4*Hlen.

 o Proto/ctype: If the C-bit is not set this indicates IP protocol
 number for the packet in the payload; if the C bit is set this
 is the type of control message in the payload. The next header
 begins at the offset provided by Hlen. When the payload
 transform option or fragmentation option is used this field may
 be set to protocol number 59 for a data message, or zero for a
 control message, to indicate no next header for the payload.

 o V: Indicates the network virtualization extension (VNID) field
 is present. The VNID option is described in [I.D.hy-nvo3-gue-4-
 nvo].

 o SEC: Indicates security extension field is present. The security
 option is described in section 3.

 o F: Indicates fragmentation extension field is present. The
 fragmentation option is described in section 4.

 o T: Indicates payload transform extension field is present. The
 payload transform option is described in section 5.

 o R: Indicates the remote checksum extension field is present. The
 remote checksum offload option is described in section 6.

 o K: Indicates checksum extension field is present. The checksum
 option is described in section 7.

 o Private data is described in [I.D.nvo3-gue].

3. Security option

 The GUE security option provides origin authentication and integrity

T. Herbert Expires May 1, 2016 [Page 5]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 protection of the GUE header at tunnel end points to guarantee
 isolation between tunnels and mitigate Denial of Service attacks.

3.1. Extension field format

 The presence of the GUE security option is indicated in the SEC flag
 bits of the GUE header.

 The format of the security option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 ˜ Security ˜
 | |
 +-+

 The fields of the option are:

 o Security (variable length). Contains the security information.
 The specific semantics and format of this field is expected to
 be negotiated between the two communicating nodes.

 To provide security capability, the SEC flags MUST be set. Different
 sizes are allowed to allow different methods and extensibility. The
 use of the security field is expected to be negotiated out of band
 between two tunnel end points.

 The values in the SEC flags are:

 o 000b - No security field

 o 001b - 64 bit security field

 o 010b - 128 bit security field

 o 011b - 256 bit security field

 o 100b - 388 bit security field (HMAC)

 o 101b, 110b, 111b - Reserved values

3.2. Usage

 The GUE security field should be used to provide integrity and
 authentication of the GUE header. Security parameters (interpretation
 of security field, key management, etc.) are expected to be

T. Herbert Expires May 1, 2016 [Page 6]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 negotiated out of band between two communicating hosts. Two security
 algorithms are defined below.

3.3. Cookies

 The security field may be used as a cookie. This would be similar to
 the cookie mechanism described in L2TP [RFC3931], and the general
 properties should be the same. A cookie may be used to validate the
 encapsulation. The cookie is a shared value between an encapsulator
 and decapsulator which should be chosen randomly and may be changed
 periodically. Different cookies may used for logical flows between
 the encapsulator and decapsulator, for instance packets sent with
 different VNIDs in network virtualization [I.D.hy-nvo3-gue-4-nvo]
 might have different cookies. Cookies may be 64, 128, or 256 bits in
 size.

3.4. HMAC

 Key-hashed message authentication code (HMAC) is a strong method of
 checking integrity and authentication of data. This sections defines
 a GUE security option for HMAC. Note that this is based on the HMAC
 TLV description in "IPv6 Segment Routing Header (SRH)" [I.D.previdi-
 6man-sr-header].

3.4.1. Extension field format

 The HMAC option is a 288 bit field (36 octets). The security flags
 are set to 100b to indicates the presence of a 288 bit security
 field.

 The format of the field is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HMAC Key-id |
 +-+
 | |
 ˜ HMAC (256 bits) ˜
 | |
 +-+

 Fields are:

 o HMAC Key-id: opaque field to allow multiple hash algorithms or
 key selection

 o HMAC: Output of HMAC computation

T. Herbert Expires May 1, 2016 [Page 7]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 The HMAC field is the output of the HMAC computation (per RFC 2104
 [RFC2104]) using a pre-shared key identified by HMAC Key-id and of
 the text which consists of the concatenation of:

 o The IP addresses

 o The GUE header including all private data and all optional
 extensions that are present except for the security option

 The purpose of the HMAC option is to verify the validity, the
 integrity and the authorization of the GUE header itself.

 The HMAC Key-id field allows for the simultaneous existence of
 several hash algorithms (SHA-256, SHA3-256 ... or future ones) as
 well as pre-shared keys. The HMAC Key-id field is opaque, i.e., it
 has neither syntax nor semantic. Having an HMAC Key-id field allows
 for pre-shared key roll-over when two pre-shared keys are supported
 for a while GUE endpoints converge to a fresher pre-shared key.

3.4.2. Selecting a hash algorithm

 The HMAC field in the HMAC option is 256 bit wide. Therefore, the
 HMAC MUST be based on a hash function whose output is at least 256
 bits. If the output of the hash function is 256, then this output is
 simply inserted in the HMAC field. If the output of the hash function
 is larger than 256 bits, then the output value is truncated to 256 by
 taking the least-significant 256 bits and inserting them in the HMAC
 field.

 GUE implementations can support multiple hash functions but MUST
 implement SHA-2 [FIPS180-4] in its SHA-256 variant.

3.4.3. Pre-shared key management

 The field HMAC Key-id allows for:

 o Key roll-over: when there is a need to change the key (the hash
 pre-shared secret), then multiple pre-shared keys can be used
 simultaneously. A decapsulator can have a table of <HMAC Key-
 id, pre-shared secret> for the currently active and future keys.

 o Different algorithms: by extending the previous table to <HMAC
 Key-id, hash function, pre-shared secret>, the decapsulator can
 also support simultaneously several hash algorithms (see section
 Section 5.2.1)

 The pre-shared secret distribution can be done:

T. Herbert Expires May 1, 2016 [Page 8]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 o In the configuration of the endpoints

 o Dynamically using a trusted key distribution such as [RFC6407]

 The intent of this document is NOT to define yet-another-key-
 distribution-protocol.

3.5. Interaction with other optional extensions

 If GUE fragmentation (section 4) is used in concert with the GUE
 security option, the security option processing is performed after
 fragmentation at the encapsulator and before reassembly at the
 decapsulator.

 The GUE payload transform option (section 5) may be used in concert
 with the GUE security option. The payload transform option could be
 used to encrypt the GUE payload to provide privacy for an
 encapsulated packet during transit. The security option provides
 authentication and integrity for the GUE header (including the
 payload transform field in the header). The two functions are
 processed separately at tunnel end points. A GUE tunnel can use both
 functions or use one of them. Section 5.3 details handling for when
 both are used in a packet.

4. Fragmentation option

 The fragmentation option allows an encapsulator to perform
 fragmentation of packets being ingress to a tunnel. Procedures for
 fragmentation and reassembly are defined in this section. This
 specification adapts the procedures for IP fragmentation and
 reassembly described in [RFC0791] and [RFC2460]. Fragmentation may be
 performed on both data and control messages in GUE.

4.1. Motivation

 This section describes the motivation for having a fragmentation
 option in GUE.

 MTU and fragmentation issues with In-the-Network Tunneling are
 described in [RFC4459]. Considerations need to be made when a packet
 is received at a tunnel ingress point which may be too large to
 traverse the path between tunnel endpoints.

 There are four suggested alternatives in [RFC4459] to deal with this:

 1) Fragmentation and Reassembly by the Tunnel Endpoints

 2) Signaling the Lower MTU to the Sources

T. Herbert Expires May 1, 2016 [Page 9]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 3) Encapsulate Only When There is Free MTU

 4) Fragmentation of the Inner Packet

 Many tunneling protocol implementations have assumed that
 fragmentation should be avoided, and in particular alternative #3
 seems preferred for deployment. In this case, it is assumed that an
 operator can configure the MTUs of links in the paths of tunnels to
 ensure that they are large enough to accommodate any packets and
 required encapsulation overhead. This method, however, may not be
 feasible in certain deployments and may be prone to misconfiguration
 in others.

 Similarly, the other alternatives have drawbacks that are described
 in [RFC4459]. Alternative #2 implies use of something like Path MTU
 Discovery which is not known to be sufficiently reliable. Alternative
 #4 is not permissible with IPv6 or when the DF bit is set for IPv4,
 and it also introduces other known issues with IP fragmentation.

 For alternative #1, fragmentation and reassembly at the tunnel
 endpoints, there are two possibilities: encapsulate the large packet
 and then perform IP fragmentation, or segment the packet and then
 encapsulate each segment (a non-IP fragmentation approach).

 Performing IP fragmentation on an encapsulated packet has the same
 issues as that of normal IP fragmentation. Most significant of these
 is that the Identification field is only sixteen bits in IPv4 which
 introduces problems with wraparound as described in [RFC4963].

 The second possibility follows the suggestion expressed in [RFC2764]
 and the fragmentation feature described in the AERO protocol
 [I.D.templin-aerolink], that is for the tunneling protocol itself to
 incorporate a segmentation and reassembly capability that operates at
 the tunnel level. In this method fragmentation is part of the
 encapsulation and an encapsulation header contains the information
 for reassembly. This differs from IP fragmentation in that the IP
 headers of the original packet are not replicated for each fragment.

 Incorporating fragmentation into the encapsulation protocol has some
 advantages:

 o At least a 32 bit identifier can be defined to avoid issues of
 the 16 bit Identification in IPv4.

 o Encapsulation mechanisms for security and identification, such
 as virtual network identifiers, can be applied to each segment.

 o This allows the possibility of using alternate fragmentation and

T. Herbert Expires May 1, 2016 [Page 10]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 reassembly algorithms (e.g. fragmentation with Forward Error
 Correction).

 o Fragmentation is transparent to the underlying network so it is
 unlikely that fragmented packet will be unconditionally dropped
 as might happen with IP fragmentation.

4.2. Scope

 This specification describes the mechanics of fragmentation in
 Generic UDP Encapsulation. The operational aspects and details for
 higher layer implementation must be considered for deployment, but
 are considered out of scope for this document. The AERO protocol
 [I.D.templin-aerolink] defines one use case of fragmentation with
 encapsulation.

4.3. Extension field format

 The presence of the GUE fragmentation option is indicated by the F
 bit in the GUE header.

 The format of the fragmentation option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Fragment offset |Res|M| Orig-proto | |
 +-+ +
 | Identification |
 +-+

 The fields of the option are:

 o Fragment offset: This field indicates where in the datagram this
 fragment belongs. The fragment offset is measured in units of 8
 octets (64 bits). The first fragment has offset zero.

 o Res: Two bit reserved field. Must be set to zero for
 transmission. If set to non-zero in a received packet then the
 packet MUST be dropped.

 o M: More fragments bit. Set to 1 when there are more fragments
 following in the datagram, set to 0 for the last fragment.

 o Orig-proto: The control type (when C-bit is set) or the IP
 protocol (when C-bit is not set) of the fragmented packet.

 o Identification: 40 bits. Identifies fragments of a fragmented

T. Herbert Expires May 1, 2016 [Page 11]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 packet.

 Pertinent GUE header fields to fragmentation are:

 o C-bit: This is set for each fragment based on the whether the
 original packet being fragmented is a control or data message.

 o Proto/ctype - For the first fragment (fragment offset is zero)
 this is set to that of the original packet being fragmented
 (either will be a control type or IP protocol). For other
 fragments, this is set to zero for a control message being
 fragmented, or to "No next header" (protocol number 59) for a
 data message being fragmented.

 o F bit - Set to indicate presence of the fragmentation extension
 field.

4.4. Fragmentation procedure

 If an encapsulator determines that a packet must be fragmented (eg.
 the packet’s size exceeds the Path MTU of the tunnel) it should
 divide the packet into fragments and send each fragment as a separate
 GUE packet, to be reassembled at the decapsulator (tunnel egress).

 For every packet that is to be fragmented, the source node generates
 an Identification value. The Identification must be different than
 that of any other fragmented packet sent within the past 60 seconds
 (Maximum Segment Lifetime) with the same tunnel identification-- that
 is the same outer source and destination addresses, same UDP ports,
 same orig-proto, and same virtual network identifier if present.

 The initial, unfragmented, and unencapsulated packet is referred to
 as the "original packet". This will be a layer 2 packet, layer 3
 packet, or the payload of a GUE control message:

 +-------------------------------//------------------------------+
 | Original packet |
 | (e.g. an IPv4, IPv6, Ethernet packet) |
 +------------------------------//-------------------------------+

 Fragmentation and encapsulation are performed on the original packet
 in sequence. First the packet is divided up in to fragments, and then
 each fragment is encapsulated. Each fragment, except possibly the
 last ("rightmost") one, is an integer multiple of 8 octets long.
 Fragments MUST be non-overlapping. The number of fragments should be
 minimized, and all but the last fragment should be approximately
 equal in length.

T. Herbert Expires May 1, 2016 [Page 12]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 The fragments are transmitted in separate "fragment packets" as:

 +--------------+--------------+---------------+--//--+----------+
 | first | second | third | | last |
 | fragment | fragment | fragment | | fragment |
 +--------------+--------------+---------------+--//--+----------+

 Each fragment is encapsulated as the payload of a GUE packet. This is
 illustrated as:

 +------------------+----------------+-----------------------+
 | IP/UDP header | GUE header | first |
 | | w/ frag option | fragment |
 +------------------+----------------+-----------------------+

 +------------------+----------------+-----------------------+
 | IP/UDP header | GUE header | second |
 | | w/ frag option | fragment |
 +------------------+----------------+-----------------------+
 o
 o
 +------------------+----------------+-----------------------+
 | IP/UDP header | GUE header | last |
 | | w/ frag option | fragment |
 +------------------+----------------+-----------------------+

 Each fragment packet is composed of:

 (1) Outer IP and UDP headers as defined for GUE encapsulation.

 o The IP addresses and UDP ports must be the same for all
 fragments of a fragmented packet.

 (2) A GUE header that contains:

 o The C-bit which is set to the same value for all the
 fragments of a fragmented packet based on whether a control
 message or data message was fragmented.

 o A proto/ctype. In the first fragment this is set to the
 value corresponding to the next header of the original
 packet and will be either an IP protocol or a control type.
 For subsequent fragments, this field is set to 0 for a
 fragmented control message or 59 (no next header) for a
 fragmented data message.

 o The F bit is set and fragment extension field is present.

T. Herbert Expires May 1, 2016 [Page 13]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 o Other GUE options. Note that options apply to the individual
 GUE packet. For instance, the security option would be
 validated before reassembly.

 (3) The GUE fragmentation option. The contents of the extension
 field include:

 o Orig-proto specifies the protocol of the original packet.

 o A Fragment Offset containing the offset of the fragment, in
 8-octet units, relative to the start of the of the original
 packet. The Fragment Offset of the first ("leftmost")
 fragment is 0.

 o An M flag value of 0 if the fragment is the last
 ("rightmost") one, else an M flag value of 1.

 o The Identification value generated for the original packet.

 (4) The fragment itself.

4.5. Reassembly procedure

 At the destination, fragment packets are decapsulated and reassembled
 into their original, unfragmented form, as illustrated:

 +-------------------------------//------------------------------+
 | Original packet |
 | (e.g. an IPv4, IPv6, Ethernet packet) |
 +------------------------------//-------------------------------+

 The following rules govern reassembly:

 The IP/UDP/GUE headers of each packet are retained until all
 fragments have arrived. The reassembled packet is then composed
 of the decapsulated payloads in the GUE packets, and the
 IP/UDP/GUE headers are discarded.

 When a GUE packet is received with the fragment extension, the
 proto/ctype field in the GUE header must be validated. In the
 case that the packet is a first fragment (fragment offset is
 zero), the proto/ctype in the GUE header must equal the orig-
 proto value in the fragmentation option. For subsequent
 fragments (fragment offset is non-zero) the proto/ctype in the
 GUE header must be 0 for a control message or 59 (no-next-hdr)
 for a data message. If the proto/ctype value is invalid for a
 received packet it MUST be dropped.

T. Herbert Expires May 1, 2016 [Page 14]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 An original packet is reassembled only from GUE fragment packets
 that have the same outer source address, destination address,
 UDP source port, UDP destination port, GUE header C-bit, virtual
 network identifier if present, orig-proto value in the
 fragmentation option, and Fragment Identification. The protocol
 type or control message type (depending on the C-bit) for the
 reassembled packet is the value of the GUE header proto/ctype
 field in the first fragment.

 The following error conditions may arise when reassembling fragmented
 packets with GUE encapsulation:

 If insufficient fragments are received to complete reassembly of
 a packet within 60 seconds (or a configurable period) of the
 reception of the first-arriving fragment of that packet,
 reassembly of that packet must be abandoned and all the
 fragments that have been received for that packet must be
 discarded.

 If the payload length of a fragment is not a multiple of 8
 octets and the M flag of that fragment is 1, then that fragment
 must be discarded.

 If the length and offset of a fragment are such that the payload
 length of the packet reassembled from that fragment would exceed
 65,535 octets, then that fragment must be discarded.

 If a fragment overlaps another fragment already saved for
 reassembly then the new fragment that overlaps the existing
 fragment MUST be discarded.

 If the first fragment is too small then it is possible that it
 does not contain the necessary headers for a stateful firewall.
 Sending small fragments like this has been used as an attack on
 IP fragmentation. To mitigate this problem, an implementation
 should ensure that the first fragment contains the headers of
 the encapsulated packet at least through the transport header.

 A GUE node must be able to accept a fragmented packet that,
 after reassembly and decapsulation, is as large as 1500 octets.
 This means that the node must configure a reassembly buffer that
 is at least as large as 1500 octets plus the maximum-sized
 encapsulation headers that may be inserted during encapsulation.
 Implementations may find it more convenient and efficient to
 configure a reassembly buffer size of 2KB which is large enough
 to accommodate even the largest set of encapsulation headers and
 provides a natural memory page size boundary.

T. Herbert Expires May 1, 2016 [Page 15]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

4.6. Security Considerations

 Exploits that have been identified with IP fragmentation are
 conceptually applicable to GUE fragmentation.

 Attacks on GUE fragmentation can be mitigated by:

 o Hardened implementation that applies applicable techniques from
 implementation of IP fragmentation.

 o Application of GUE security (section 3) or IPsec [RFC4301].
 Security mechanisms can prevent spoofing of fragments from
 unauthorized sources.

 o Implement fragment filter techniques for GUE encapsulation as
 described in [RFC1858] and [RFC3128].

 o Do not accepted data in overlapping segments.

 o Enforce a minimum size for the first fragment.

5. Payload transform option

 The payload transform option indicates that the GUE payload has been
 transformed. Transforming a payload is done by running a function
 over the data and possibly modifying it (encrypting it for instance).
 The payload transform option indicates the method used to transform
 the data so that a decapsulator is able to validate and reverse the
 transformation to recover the original data. Payload transformations
 could include encryption, authentication, CRC coverage, and
 compression. This specification defines a transformation for DTLS.

5.1. Extension field format

 The presence of the GUE payload transform option is indicated by the
 T bit in the GUE header.

 The format of Payload Transform Field is:

 +-+
 | Type | P_C_type | Data |
 +-+

 The fields of the option are:

 Type: Payload Transform Type or Code point. Each payload transform
 mechanism must have one code point registered in IANA. This
 document specifies:

T. Herbert Expires May 1, 2016 [Page 16]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 0x01: for DTLS [RFC6347]

 0x80˜0xFF: for private payload transform types

 A private payload transform type can be used for
 experimental purpose or vendor proprietary mechanisms.

 P_C_type: Indicates the protocol or control type of the
 untransformed payload. When payload transform option is
 present, proto/ctype in the GUE header should set to 59 ("No
 next header") for a data message and zero for a control
 message. The IP protocol or control message type of the
 untransformed payload must be encoded in this field.

 The benefit of this rule is to prevent a middle box from
 inspecting the encrypted payload according to GUE next
 protocol. The assumption here is that a middle box may
 understand GUE base header but does not understand GUE
 option flag definitions.

 Data: A field that can be set according to the requirements of
 each payload transform type. If the specification for a
 payload transform type does not specify how this field is to
 be set, then the field MUST be set to zero.

5.2. Usage

 The payload transform option provides a mechanism to transform or
 interpret the payload of a GUE packet. The Type field provides the
 method used to transform the payload, and the P_C_type field provides
 the protocol or control message type of the of payload before being
 transformed. The payload transformation option is generic so that it
 can have both security related uses (such as DTLS) as well as non
 security related uses (such as compression, CRC, etc.).

 An encapsulator performs payload transformation before transmission,
 and a decapsulator must perform the reverse transformation before
 accepting a packet. For example, if an encapsulator transforms a
 payload by encrypting it, the peer decaspsulator must decrypt the
 payload before accepting the packet. If a decapsulator fails to
 perform the reverse transformation or cannot validate the
 transformation it MUST discard the packet and MAY generate an alert
 to the management system.

5.3. Interaction with other optional extensions

 If GUE fragmentation (section 4) is used in concert with the GUE
 transform option, the transform option processing is performed after

T. Herbert Expires May 1, 2016 [Page 17]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 fragmentation at the encapsulator and before reassembly at the
 decapsulator. If the payload transform changes the size of the data
 being fragmented this must be taken into account during
 fragmentation.

 If both the security option and the payload transform are used in a
 GUE packet, an encapsulator must perform the payload transformation
 first, set the payload transform option in the GUE header, and then
 create the security option. A decapsulator does processing in
 reverse-- the security option is processed (GUE header is validated)
 and then the reverse payload transform is performed.

 In order to get flow entropy from the payload, an encapsulator should
 derive the flow entropy before performing a payload transform.

5.4. DTLS transform

 The payload of a GUE packet can be secured using Datagram Transport
 Layer Security [RFC6347]. An encapsulator would apply DTLS to the GUE
 payload so that the payload packets are encrypted and the GUE header
 remains in plaintext. The payload transform option is set to indicate
 that the payload should be interpreted as a DTLS record.

 The payload transform option for DLTS is:

 +-+
 | 1 | P_C_type | 0 |
 +-+

 DTLS [RFC6347] provides packet fragmentation capability. To avoid
 packet fragmentation performed multiple times, a GUE encapsulator
 SHOULD only perform the packet fragmentation at packet encapsulation
 process, i.e., not in payload encryption process.

 DTLS usage [RFC6347] is limited to a single DTLS session for any
 specific tunnel encapsulator/decapsulator pair (identified by source
 and destination IP addresses). Both IP addresses MUST be unicast
 addresses - multicast traffic is not supported when DTLS is used. A
 GUE tunnel decapsulator implementation that supports DTLS can
 establish DTLS session(s) with one or multiple tunnel encapsulators,
 and likewise a GUE tunnel encapsulator implementation can establish
 DTLS session(s) with one or multiple decapsulators.

6. Remote checksum offload option

 Remote checksum offload is mechanism that provides checksum offload
 of encapsulated packets using rudimentary offload capabilities found
 in most Network Interface Card (NIC) devices. Many NIC

T. Herbert Expires May 1, 2016 [Page 18]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 implementations can only offload the outer UDP checksum in UDP
 encapsulation. Remote checksum offload is described in [UDPENCAP].

 In remote checksum offload the outer header checksum, that in the
 outer UDP header, is enabled in packets and, with some additional
 meta information, a receiver is able to deduce the checksum to be set
 for an inner encapsulated packet. Effectively this offloads the
 computation of the inner checksum. Enabling the outer checksum in
 encapsulation has the additional advantage that it covers more of the
 packet than the inner checksum including the encapsulation headers.

6.1. Extension field format

 The presence of the GUE remote checksum offload option is indicated
 by the R bit in the GUE header.

 The format of remote checksum offload field is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Checksum start | Checksum offset |
 +-+

 The fields of the option are:

 o Checksum start: starting offset for checksum computation
 relative to the start of the encapsulated payload. This is
 typically the offset of a transport header (e.g. UDP or TCP).

 o Checksum offset: Offset relative to the start of the
 encapsulated packet where the derived checksum value is to be
 written. This typically is the offset of the checksum field in
 the transport header (e.g. UDP or TCP).

6.2. Usage

6.2.1. Transmitter operation

 The typical actions to set remote checksum offload on transmit are:

 1) Transport layer creates a packet and indicates in internal
 packet meta data that checksum is to be offloaded to the NIC
 (normal transport layer processing for checksum offload). The
 checksum field is populated with the bitwise not of the
 checksum of the pseudo header or zero as appropriate.

 2) Encapsulation layer adds its headers to the packet including

T. Herbert Expires May 1, 2016 [Page 19]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 the remote checksum offload option. The start offset and
 checksum offset are set accordingly.

 3) Encapsulation layer arranges for checksum offload of the outer
 header checksum (e.g. UDP).

 4) Packet is sent to the NIC. The NIC will perform transmit
 checksum offload and set the checksum field in the outer
 header. The inner header and rest of the packet are transmitted
 without modification.

6.2.2. Receiver operation

 The typical actions a host receiver does to support remote checksum
 offload are:

 1) Receive packet and validate outer checksum following normal
 processing (e.g. validate non-zero UDP checksum).

 2) Validate the remote checksum option. If checksum start is
 greater than the length of the packet, then the packet MUST be
 dropped. If checksum offset is greater then the length of the
 packet minus two, then the packet MUST be dropped.

 3) Deduce full checksum for the IP packet. If a NIC is capable of
 receive checksum offload it will return either the full
 checksum of the received packet or an indication that the UDP
 checksum is correct. Either of these methods can be used to
 deduce the checksum over the IP packet [UDPENCAP].

 4) From the packet checksum, subtract the checksum computed from
 the start of the packet (outer IP header) to the offset in the
 packet indicted by checksum start in the meta data. The result
 is the deduced checksum to set in the checksum field of the
 encapsulated transport packet.

 In pseudo code:

 csum: initialized to checksum computed from start (outer IP
 header) to the end of the packet
 start_of_packet: address of start of packet
 encap_payload_offset: relative to start_of_packet
 csum_start: value from meta data
 checksum(start, len): function to compute checksum from start
 address for len bytes

 csum -= checksum(start_of_packet, encap_payload_offset +
 csum_start)

T. Herbert Expires May 1, 2016 [Page 20]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 5) Write the resultant checksum value into the packet at the
 offset provided by checksum offset in the meta data.

 In pseudo code:

 csum_offset: offset of checksum field

 *(start_of_packet + encap_payload_offset +
 csum_offset) = csum

 6) Checksum is verified at the transport layer using normal
 processing. This should not require any checksum computation
 over the packet since the complete checksum has already been
 provided.

6.3. Security Considerations

 Remote checksum offload allows a means to change the GUE payload
 before being received at a decapsulator. In order to prevent misuse
 of this mechanism, a decapsulator should apply security checks on the
 GUE payload only after checksum remote offload has been processed.

7. Checksum option

 The GUE checksum option provides a checksum that covers the GUE
 header, a GUE pseudo header, and optionally part or all of the GUE
 payload. The GUE pseudo header includes the corresponding IP
 addresses as well as the UDP ports of the encapsulating headers. This
 checksum should provide adequate protection against address
 corruption in IPv6 when the UDP checksum is zero. Additionally, the
 GUE checksum provides protection of the GUE header when the UDP
 checksum is set to zero with either IPv4 or IPv6. In particular, the
 GUE checksum can provide protection for some sensitive data, such as
 the virtual network identifier ([I.D.hy-nvo3-gue-4-nvo]), which when
 corrupted could lead to mis-delivery of a packet to the wrong virtual
 network.

7.1. Extension field format

 The presence of the GUE checksum option is indicated by the K bit in
 the GUE header.

T. Herbert Expires May 1, 2016 [Page 21]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 The format of the checksum extension is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Checksum | Payload coverage |
 +-+

 The fields of the option are:

 o Checksum: Computed checksum value. This checksum covers the GUE
 header (including fields and private data covered by Hlen), the
 GUE pseudo header, and optionally all or part of the payload
 (encapsulated packet).

 o Payload coverage: Number of bytes of payload to cover in the
 checksum. Zero indicates that the checksum only covers the GUE
 header and GUE pseudo header. If the value is greater than the
 encapsulated payload length, the packet must be dropped.

7.2. Requirements

 The GUE header checksum should be set on transmit when using a zero
 UDP checksum with IPv6.

 The GUE header checksum should be used when the UDP checksum is zero
 for IPv4 if the GUE header includes data that when corrupted can lead
 to misdelivery or other serious consequences, and there is no other
 mechanism that provides protection (no security field that checks
 integrity for instance).

 The GUE header checksum should not be set when the UDP checksum is
 non-zero. In this case the UDP checksum provides adequate protection
 and this avoids convolutions when a packet traverses NAT that does
 address translation (in that case the UDP checksum is required).

7.3. GUE checksum pseudo header

 The GUE pseudo header checksum is included in the GUE checksum to
 provide protection for the IP and UDP header elements which when
 corrupted could lead to misdelivery of the GUE packet. The GUE pseudo
 header checksum is similar to the standard IP pseudo header defined
 in [RFC0768] and [RFC0793] for IPv4, and in [RFC2460] for IPv6.

T. Herbert Expires May 1, 2016 [Page 22]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 The GUE pseudo header for IPv4 is:

 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Source port | Destination port |
 +-+

 The GUE pseudo header for IPv6 is:

 +-+
 | |
 + +
 | |
 + Source Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+
 | Source port | Destination port |
 +-+

 Note that the GUE pseudo header does not include payload length or
 protocol as in the standard IP pseudo headers. The length field is
 deemed unnecessary because:

 o If the length is corrupted this will usually be detected by a
 checksum validation failure on the inner packet.

 o Fragmentation of packets in a tunnel should occur on the inner
 packet before being encapsulated or GUE fragmentation (section
 4) may be performed at tunnel ingress. GUE packets are not
 expected to be fragmented when using IPv6. See RFC6936 for
 considerations of payload length and IPv6 checksum.

 o A corrupted length field in itself should not lead to
 misdelivery of a packet.

T. Herbert Expires May 1, 2016 [Page 23]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 o Without the length field, the GUE pseudo header checksum is the
 same for all packets of flow. This is a useful property for
 optimizations such as TCP Segment Offload (TSO).

7.4. Usage

 The GUE checksum is computed and verified following the standard
 process for computing the Internet checksum [RFC1071]. Checksum
 computation may be optimized per the mathematical properties
 including parallel computation and incremental updates.

7.4.1. Transmitter operation

 The procedure for setting the GUE checksum on transmit is:

 1) Create the GUE header including the checksum and payload
 coverage fields. The checksum field is initially set to zero.

 2) Calculate the 1’s complement checksum of the GUE header from
 the start of the GUE header through the its length as indicated
 in GUE Hlen.

 3) Calculate the checksum of the GUE pseudo header for IPv4 or
 IPv6.

 4) Calculate checksum of payload portion if payload coverage is
 enabled (payload coverage field is non-zero). If the length of
 the payload coverage is odd, logically append a single zero
 byte for the purposes of checksum calculation.

 5) Add and fold the computed checksums for the GUE header, GUE
 pseudo header and payload coverage. Set the bitwise not of the
 result in the GUE checksum field.

7.4.2.Receiver operation

 If the GUE checksum option is present, the receiver must validate the
 checksum before processing any other fields or accepting the packet.

 The procedure for verifying the checksum is:

 1) If the payload coverage length is greater than the length of
 the encapsulated payload then drop the packet.

 2) Calculate the checksum of the GUE header from the start of the
 header to the end as indicated by Hlen.

 3) Calculate the checksum of the appropriate GUE pseudo header.

T. Herbert Expires May 1, 2016 [Page 24]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 4) Calculate the checksum of payload if payload coverage is
 enabled (payload coverage is non-zero). If the length of the
 payload coverage is odd logically append a single zero byte for
 the purposes of checksum calculation.

 5) Sum and fold the computed checksums for the GUE header, GUE
 pseudo header, and payload coverage. If the result is all 1
 bits (-0 in 1’s complement arithmetic), the checksum is valid
 and the packet is accepted; otherwise the checksum is
 considered invalid and the packet must be dropped.

7.5. Security Considerations

 The checksum option is only a mechanism for corruption detection, it
 is not a security mechanism. To provide integrity checks or
 authentication of the GUE header, the GUE security option should be
 used.

8. Processing order of options

 Options must be processed in a specific order for both sending and
 receive.

 The order of processing options to send a GUE packet are:

 1) Set VNID option.

 2) Fragment if necessary and set fragmentation option. VNID is
 copied into each fragment. Note that if payload transformation
 will increase the size of the payload that must be accounted
 for when deciding how to fragment

 3) Perform payload transform (potentially on a fragment) and set
 payload transform option.

 4) Set Remote checksum offload.

 5) Set security option.

 6) Calculate GUE checksum and set checksum option.

 On reception the order of actions is reversed.

 1) Verify GUE checksum.

 2) Verify security option.

T. Herbert Expires May 1, 2016 [Page 25]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 3) Adjust packet for remote checksum offload.

 4) Perform payload transformation (i.e. decrypt payload)

 5) Perform reassembly.

 6) Receive on virtual network indicated by VNID.

 Note that the relative processing order of private fields is
 unspecified.

9. Security Considerations

 If the integrity and privacy of data packets being transported
 through GUE is a concern, GUE security option and payload encryption
 using the the transform option SHOULD be used to remove the concern.
 If the integrity is the only concern, the tunnel may consider use of
 GUE security only for optimization. Likewise, if the privacy is the
 only concern, the tunnel may use GUE encryption function only.

 If GUE payload already provides secure mechanism, e.g., the payload
 is IPsec packets, it is still valuable to consider use of GUE
 security.

 GUE may rely on other secure tunnel mechanisms such as DTLS [RFC6347]
 over the whole UDP payload for securing the whole GUE packet or IPsec
 [RFC4301] to achieve the secure transport over an IP network or
 Internet.

 IPsec [RFC4301] was designed as a network security mechanism, and
 therefore it resides at the network layer. As such, if the tunnel is
 secured with IPsec, the UDP header would not be visible to
 intermediate routers in either IPsec tunnel or transport mode. The
 big drawback here prohibits intermediate routers to perform load
 balancing based on the flow entropy in UDP header. In addition, this
 method prohibits any middle box function on the path.

 By comparison, DTLS [RFC6347] was designed with application security
 and can better preserve network and transport layer protocol
 information than IPsec [RFC4301]. Using DTLS over UDP to secure the
 GUE tunnel, both GUE header and payload will be encrypted. In order
 to differentiate plaintext GUE header from encrypted GUE header, the
 destination port of the UDP header between two must be different,
 which essentially requires another standard UDP port for GUE with
 DTLS. The drawback on this method is to prevent a middle box
 operation to GUE tunnel on the path.

 Use of two independent tunnel mechanisms such as GUE and DTLS over

T. Herbert Expires May 1, 2016 [Page 26]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 UDP to carry a network protocol over an IP network adds some overlap
 and complexity. For example, fragmentation will be done twice.

 As the result, a GUE tunnel SHOULD use the security mechanisms
 specified in this document to provide secure transport over an IP
 network or Internet when it is needed. GUE encapsulation can be used
 as a secure transport mechanism over an IP network and Internet.

10. IANA Consideration

 IANA is requested to assign flags for the extensions defined in this
 specification. Specifically, an assignment is requested for the V,
 SEC, F, T, R, and K flags in the "GUE flag-fields" registry (proposed
 in [I.D.nvo3-gue]).

 IANA is requested to set up a registry for the GUE payload transform
 types. Payload transform types are 8 bit values. New values for
 control types 1-127 are assigned via Standards Action [RFC5226].

 +----------------+------------------+---------------+
 | Transform type | Description | Reference |
 +----------------+------------------+---------------+
 | 0 | Reserved | This document |
 | | | |
 | 1 | DTLS | This document |
 | | | |
 | 2..127 | Unassigned | |
 | | | |
 | 128..255 | User defined | This document |
 +----------------+------------------+---------------+

11. References

11.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [I.D.nvo3-gue] T. Herbert, L. Yong, and O. Zia, "Generic UDP

T. Herbert Expires May 1, 2016 [Page 27]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 Encapsulation" draft-ietf-nvo3-gue-03

11.2. Informative References

 [RFC6407] Weis, B., Rowles, S., and T. Hardjono, "The Group Domain of
 Interpretation", RFC 6407, DOI 10.17487/RFC6407, October
 2011, <http://www.rfc-editor.org/info/rfc6407>.
 [RFC1071] Braden, R., Borman, D., and C. Partridge, "Computing the
 Internet checksum", RFC1071, September 1988.

 [RFC1624] Rijsinghani, A., Ed., "Computation of the Internet Checksum
 via Incremental Update", RFC1624, May 1994.

 [RFC1936] Touch, J. and B. Parham, "Implementing the Internet
 Checksum in Hardware", RFC1936, April 1996.

 [RFC4459] MTU and Fragmentation Issues with In-the-Network Tunneling.
 P. Savola. April 2006.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, DOI 10.17487/RFC4963,
 July 2007, <http://www.rfc-editor.org/info/rfc4963>.

 [RFC2764] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, A. Malis, "A
 Framework for IP Based Virtual Private Networks", RFC2764,
 February 2000.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC1858] Ziemba, G., Reed, D., and P. Traina, "Security
 Considerations for IP Fragment Filtering", RFC 1858,
 October 1995.

 [RFC3128] Miller, I., "Protection Against a Variant of the Tiny
 Fragment Attack (RFC 1858)", RFC 3128, June 2001.

 [RFC3931] Lau, J., Townsley, W., et al, "Layer Two Tunneling Protocol
 - Version 3 (L2TPv3)", RFC3931, 1999

 [RFC5925] Touch, J., et al, "The TCP Authentication Option", RFC5925,
 June 2010.

 [RFC6347] Rescoria, E., Modadugu, N., "Datagram Transport Layer
 Security Version 1.2", RFC6347, 2012.

 [I.D.hy-nvo3-gue-4-nvo] Yong, L., Herbert, T., "Generic UDP
 Encapsulation (GUE) for Network Virtualization Overlay"

T. Herbert Expires May 1, 2016 [Page 28]

INTERNET DRAFT draft-herbert-gue-extensions-00 October 28, 2016

 draft-hy-nvo3-gue-4-nvo-03

 [I.D.draft-mathis-frag-harmful] M. Mathis, J. Heffner, and B.
 Chandler, "Fragmentation Considered Very Harmful"

 [I.D.previdi-6man-sr-header] Previdi S. et al, "IPv6 Segment Routing
 Header (SRH) draft-ietf-6man-segment-routing-header-02

 [I.D.templin-aerolink] F. Templin, "Transmission of IP Packets over
 AERO Links" draft-templin-aerolink-62

 [I.D.
 [UDPENCAP] T. Herbert, "UDP Encapsulation in Linux",
 http://people.netfilter.org/pablo/netdev0.1/papers/UDP-
 Encapsulation-in-Linux.pdf

Authors’ Addresses

 Tom Herbert
 Facebook
 1 Hacker Way
 Menlo Park, CA
 USA

 EMail: tom@herbertland.com

 Lucy Yong
 Huawei USA
 5340 Legacy Dr.
 Plano, TX 75024
 USA

 Email: lucy.yong@huawei.com

 Fred L. Templin
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

T. Herbert Expires May 1, 2016 [Page 29]

INTERNET-DRAFT Tom Herbert
Intended Status: Informational Quantonium
Expires: September 14, 2017 Petr Lapukhov
 Facebook
 March 13, 2017

 Identifier-locator addressing for IPv6
 draft-herbert-nvo3-ila-04

Abstract

 This specification describes identifier-locator addressing (ILA) for
 IPv6. Identifier-locator addressing differentiates between location
 and identity of a network node. Part of an address expresses the
 immutable identity of the node, and another part indicates the
 location of the node which can be dynamic. Identifier-locator
 addressing can be used to efficiently implement overlay networks for
 network virtualization as well as solutions for use cases in
 mobility.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Herbert Expires September 14, 2017 [Page 1]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1 Introduction . 4
 1.1 Terminology . 4
 2 Architectural overview . 6
 2.1 Addressing . 6
 2.2 Network topology . 6
 2.3 Translations and mappings 7
 2.4 ILA routing . 8
 3 Address formats . 9
 3.1 ILA address format . 9
 3.2 Locators . 9
 3.3 Identifiers . 9
 3.3.1 Checksum neutral-mapping format 10
 3.3.2 Identifier types . 10
 3.3.2.1 Interface identifiers 10
 3.3.2.2 Locally unique identifiers 11
 3.3.2.3 Virtual networking identifiers for IPv4 11
 3.3.2.4 Virtual networking identifiers for IPv6 unicast . . 12
 3.3.2.5 Virtual networking identifiers for IPv6 multicast . 13
 3.4 Standard identifier representation addresses 14
 3.4.1 SIR for locally unique identifiers 15
 3.4.2 SIR for virtual addresses 15
 3.4.3 SIR domains . 16
 4 Operation . 16
 4.1 Identifier to locator mapping 16
 4.2 Address translations . 16
 4.2.1 SIR to ILA address translation 16
 4.2.2 ILA to SIR address translation 17
 4.3 Virtual networking operation 17
 4.3.1 Crossing virtual networks 18
 4.3.2 IPv4/IPv6 protocol translation 18
 4.4 Transport layer checksums 18
 4.4.1 Checksum-neutral mapping 19
 4.4.2 Sending an unmodified checksum 20
 4.5 Address selection . 20
 4.6 Duplicate identifier detection 20

Herbert Expires September 14, 2017 [Page 2]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 4.7 ICMP error handling . 21
 4.7.1 Handling ICMP errors by ILA capable hosts 21
 4.7.2 Handling ICMP errors by non-ILA capable hosts 21
 4.8 Multicast . 22
 5 Motivation for ILA . 22
 5.1 Use cases . 22
 5.1.1 Multi-tenant virtualization 22
 5.1.2 Datacenter virtualization 23
 5.1.3 Device mobility . 23
 5.2 Alternative methods . 24
 5.2.1 ILNP . 24
 5.2.2 Flow label as virtual network identifier 24
 5.2.3 Extension headers 25
 5.2.4 Encapsulation techniques 25
 6 IANA Considerations . 26
 7 References . 27
 7.1 Normative References 27
 7.2 Informative References 27
 8 Acknowledgments . 28
 Appendix A: Communication scenarios 29
 A.1 Terminology for scenario descriptions 29
 A.2 Identifier objects . 30
 A.3 Reference network for scenarios 30
 A.4 Scenario 1: Object to task 31
 A.5 Scenario 2: Object to Internet 31
 A.6 Scenario 3: Internet to object 31
 A.7 Scenario 4: Tenant system to service 32
 A.8 Scenario 5: Object to tenant system 32
 A.9 Scenario 6: Tenant system to Internet 33
 A.10 Scenario 7: Internet to tenant system 33
 A.11 Scenario 8: IPv4 tenant system to object 33
 A.12 Tenant to tenant system in the same virtual network 34
 A.12.1 Scenario 9: TS to TS in the same VN using IPV6 34
 A.12.2 Scenario 10: TS to TS in same VN using IPv4 34
 A.13 Tenant system to tenant system in different virtual
 networks . 34
 A.13.1 Scenario 11: TS to TS in different VNs using IPV6 . . . 34
 A.13.2 Scenario 12: TS to TS in different VNs using IPv4 . . . 35
 A.13.3 Scenario 13: IPv4 TS to IPv6 TS in different VNs . . . 35
 Appendix B: unique identifier generation 36
 B.1 Globally unique identifiers method 36
 B.2 Universally Unique Identifiers method 36
 Appendix C: Datacenter task virtualization 37
 C.1 Address per task . 37
 C.2 Job scheduling . 37
 C.3 Task migration . 38
 C.3.1 Address migration 38
 C.3.2 Connection migration 39

Herbert Expires September 14, 2017 [Page 3]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

1 Introduction

 This specification describes the address formats, protocol operation,
 and communication scenarios of identifier-locator addressing (ILA).
 In identifier-locator addressing, an IPv6 address is split into a
 locator and an identifier component. The locator indicates the
 topological location in the network for a node, and the identifier
 indicates the node’s identity which refers to the logical or virtual
 node in communications. Locators are routable within a network, but
 identifiers typically are not. An application addresses a peer
 destination by identifier. Identifiers are mapped to locators for
 transit in the network. The on-the-wire address is composed of a
 locator and an identifier: the locator is sufficient to route the
 packet to a physical host, and the identifier allows the receiving
 host to translate and forward the packet to the addressed
 application.

 With identifier-locator addressing network virtualization and
 addressing for mobility can be implemented in an IPv6 network without
 any additional encapsulation headers. Packets sent with identifier-
 locator addresses look like plain unencapsulated packets (e.g. TCP/IP
 packets). This method is transparent to the network, so protocol
 specific mechanisms in network hardware work seamlessly. These
 mechanisms include hash calculation for ECMP, NIC large segment
 offload, checksum offload, etc.

 Many of the concepts for ILA are adapted from Identifier-Locator
 Network Protocol (ILNP) ([RFC6740], [RFC6741]) which defines a
 protocol and operations model for identifier-locator addressing in
 IPv6.

 Section 5 provides a motivation for ILA and comparison of ILA with
 alternative methods that achieve similar functionality.

1.1 Terminology

 ILA Identifier-locator addressing.

 ILA router A network node that performs ILA translation and
 forwarding of translated packets.

 ILA host An end host that is capable of performing ILA
 translations on transmit or receive.

 ILA node A network node capable of performing ILA translations.
 This can be an ILA router or ILA host.

 Locator A network prefix that routes to a physical host.

Herbert Expires September 14, 2017 [Page 4]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 Locators provide the topological location of an
 addressed node. In ILA locators are a sixty-four bit
 prefixes.

 Identifier A number that identifies an addressable node in the
 network independent of its location. ILA identifiers
 are sixty-four bit values.

 ILA address
 An IPv6 address composed of a locator (upper sixty-four
 bits) and an identifier (low order sixty-four bits).

 SIR Standard identifier representation.

 SIR prefix A sixty-four bit network prefix used to identify a SIR
 address.

 SIR address
 An IPv6 address composed of a SIR prefix (upper sixty-
 four bits) and an identifier (lower sixty-four bits).
 SIR addresses are visible to applications and provide a
 means to address nodes independent of their location.

 SIR domain A unique identifier namespace defined by a SIR prefix.
 Each SIR prefix defines a SIR domain.

 ILA translation
 The process of translating the upper sixty-four bits of
 an IPv6 address. Translations may be from a SIR prefix
 to a locator or a locator to a SIR prefix.

 Virtual address
 An IPv6 or IPv4 address that resides in the address
 space of a virtual network. Such addresses may be
 translated to SIR addresses as an external
 representation of the address outside of the virtual
 network, or they may be translated to ILA addresses for
 transit over an underlay network.

 Topological address
 An address that refers to a non-virtual node in a
 network topology. These address physical hosts in a
 network.

Herbert Expires September 14, 2017 [Page 5]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

2 Architectural overview

 Identifier-locator addressing allows a data plane method to implement
 network virtualization without encapsulation and its related
 overheads. The service ILA provides is effectively layer 3 over layer
 3 network virtualization (IPv4 or IPv6 over IPv6).

2.1 Addressing

 ILA performs translations on IPv6 address. There are two types of
 addresses introduced for ILA: ILA addresses and SIR addresses.

 ILA addresses are IPv6 addresses that are composed of a locator
 (upper sixty-four bits) and an identifier (low order sixty-four
 bits). The identifier serves as the logical addresses of a node, and
 the locator indicates the location of the node on the network.

 A SIR address (standard identifier representation) is an IPv6 address
 that contains an identifier and an application visible SIR prefix.
 SIR addresses are visible to the application and can be used as
 connection endpoints. When a packet is sent to a SIR address, an ILA
 router or host overwrites the SIR prefix with a locator corresponding
 to the identifier. When a peer ILA node receives the packet, the
 locator is overwritten with the original SIR prefix before delivery
 to the application. In this manner applications only see SIR
 addresses, they do not have visibility into ILA addresses.

 ILA translations can transform addresses from one type to another. In
 network virtualization virtual addresses can be translated into ILA
 and SIR addresses, and conversely ILA and SIR addresses can be
 translated to virtual addresses.

2.2 Network topology

 ILA nodes are nodes in the network that perform ILA translations. An
 ILA router is a node that performs ILA address translation and packet
 forwarding to implement overlay network functionality. ILA routers
 perform translations on packets sent by end nodes for transport
 across an underlay network. Packets received by ILA routers on the
 underlay network have their addresses reversed translated for
 reception at an end node. An ILA host is an end node that implements
 ILA functionality for transmitting or receiving packets.

 ILA nodes are responsible for transit of packets over an underlay
 network. On ingress to an ILA node (host or router) the virtual or
 SIR address of a destination is translated to an ILA address. At the
 a peer ILA node, the reverse translation is performed before handing
 packets to an application.

Herbert Expires September 14, 2017 [Page 6]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 The figure below provides an example topology using ILA. ILA
 translations performed in one direction between Host A and Host B are
 denoted. Host A sends a packet with a destination SIR address (step
 (1)). An ILA router in the path translates the SIR address to an ILA
 address with a locator set to Host B, referring to the location of
 the node indicated by the identifier in the SIR address. The packet
 is forwarded over the network and delivered to a peer ILA node (step
 2). The peer ILA node, in this case another ILA router, translates
 the destination address back to a SIR address and forwards to the
 final destination (step 3).

 +--------+ +--------+
 | Host A +-+ +--->| Host B |
 | | | (2) ILA (’) | |
 +--------+ | ...addressed.... () +--------+
 V +---+--+ . packet . +---+--+ (_)
 (1) SIR | | ILA |----->-------->---->| ILA | | (3) SIR
 addressed +->|router| . . |router|->-+ addressed
 packet +---+--+ . IPv6 . +---+--+ packet
 / . Network .
 / . . +--+-++--------+
 +--------+ / . . |ILA || Host |
 | Host +--+ . .- -|host|| |
 | | . . +--+-++--------+
 +--------+

2.3 Translations and mappings

 Address translation is the mechanism employed by ILA. Logical or
 virtual addresses are translated to topological IPv6 addresses for
 transport to the proper destination. Translation occurs in the upper
 sixty-four bits of an address, the low order sixty-four bits contains
 an identifier that is immutable and is not used to route a packet.

 Each ILA node maintains a mapping table. This table maps identifiers
 to locators. The mappings are dynamic as nodes with identifiers can
 be created, destroyed, or migrated between physical hosts. Mappings
 are propagated amongst ILA routers or hosts in a network using
 mapping propagation protocols (mapping propagation protocols will be
 described in other specifications).

 Identifiers are not statically bound to a host on the network, and in
 fact their binding (or location) may change. This is the basis for
 network virtualization and address migration. An identifier is mapped
 to a locator at any given time, and a set of identifier to locator
 mappings is propagated throughout a network to allow communications.
 The mappings are kept synchronized so that if an identifier migrates
 to a new physical host, its identifier to locator mapping is updated.

Herbert Expires September 14, 2017 [Page 7]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

2.4 ILA routing

 ILA is intended to be sufficiently lightweight so that all the hosts
 in a network could potentially send and receive ILA addressed
 packets. In order to scale this model and allow for hosts that do not
 participate in ILA, a routing topology may be applied. A simple
 routing topology is illustrated below.

 +---------+--+
 (1) Default SIR route |ILA router | (2) Translated dest.
 +->->->->->->->->->| |->->->->->+
 | +------------+ |
 | V
 +--------++-----+ +-----++--------+
 | || | | || |
 | Host || ILA | | ILA || Host |
 | ||host |->->->->->->->->->->->->->->| host|| |
 +--------++-----+ (5) Direct route +-----++--------+
 . .
 . . (3) Resolve
 (4) Resolve . . Request +--------------+
 Reply >| |
 . | ILA resolver |
 | |
 +--------------+

 An ILA router can be addressed by an "anycast" SIR prefix so that it
 receives packets sent on the network with SIR addresses. When an ILA
 router receives a SIR addressed packet (step (1) in the diagram) it
 will perform the ILA translation and send the ILA addressed packet to
 the destination ILA node (step (2)).

 If a sending host is ILA capable the triangular routing can be
 eliminated by performing an ILA resolution protocol. This entails the
 host sending an ILA resolve request that specifies the SIR address to
 resolve (step (3) in the figure). An ILA resolver can respond to a
 resolver request with the identifier to locator mapping (step (4)).
 Subsequently, the ILA host can perform ILA translation and send
 directly to the destination specified in the locator (step (5) in the
 figure). The ILA resolution protocol will be specified in a companion
 document.

 In this model an ILA host maintains a cache of identifier mappings
 for identifiers that it is currently communicating with. ILA routers
 are expected to maintain a complete list of identifier to locator
 mappings within the SIR domains that they service.

Herbert Expires September 14, 2017 [Page 8]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

3 Address formats

3.1 ILA address format

 An ILA address is composed of a locator and an identifier where each
 occupies sixty-four bits (similar to the encoding in ILNP [RFC6741]).

 | 64 bits | 64 bits |
 +--------------------------------+-------------------------------+
 | Locator | Identifier |
 +--+

3.2 Locators

 Locators are routable network address prefixes that create
 topological addresses for physical hosts within the network. They may
 be assigned from a global address block [RFC3587], or be based on
 unique local IPv6 unicast addresses as described in [RFC4193].

 The format of an ILA address with a global unicast locator is:

 |<--------------- Locator --------------->|
 |3 bits| N bits | M bits | 61-N-M | 64 bits |
 +------+-------------+---------+---------------------------------+
 | 001 | Global prefix | Subnet | Host | Identifier |
 +------+---------------+---------+--------+----------------------+

 The format of an ILA address with a unique local IPv6 unicast locator
 is:

 |<--------------- Locator --------->|
 | 7 bits |1| 40 bits | 16 bits | 64 bits |
 +--------+-+------------+-----------+----------------------------+
 | FC00 |L| Global ID | Host | Identifier |
 +--------+-+------------+-----------+----------------------------+

3.3 Identifiers

 The format of an ILA identifier is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type|C| Identifier |
 +-+-+-+-+ |
 | |
 +-+

Herbert Expires September 14, 2017 [Page 9]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 Fields are:

 o Type: Type of the identifier (see section 3.3.2).

 o C: The C-bit. This indicates that checksum-neutral mapping
 applied (see section 3.3.1).

 o Identifier: Identifier value.

3.3.1 Checksum neutral-mapping format

 If the C-bit is set the low order sixteen bits of an identifier
 contain the adjustment for checksum-neutral mapping (see section
 4.4.1 for description of checksum-neutral mapping). The format of an
 identifier with checksum neutral mapping is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type|1| Identifier |
 +-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Checksum-neutral adjustment |
 +-+

3.3.2 Identifier types

 Identifier types allow standard encodings for common uses of
 identifiers. Defined identifier types are:

 0: interface identifier

 1: locally unique identifier

 2: virtual networking identifier for IPv4 address

 3: virtual networking identifier for IPv6 unicast address

 4: virtual networking identifier for IPv6 multicast address

 5-7: Reserved

3.3.2.1 Interface identifiers

 The interface identifier type indicates a plain local scope interface
 identifier. When this type is used the address is a normal IPv6
 address without identifier-locator semantics. The purpose of this
 type is to allow normal IPv6 addresses to be defined within the same
 networking prefix as ILA addresses. Type bits and C-bit MUST be zero.

Herbert Expires September 14, 2017 [Page 10]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 The format of an ILA interface identifier address is:

 | 64 bits |3 bits|1| 60 bits |
 +----------------------------+------+---------------------------+
 | Prefix | 0x0 |0| IID |
 +---+

3.3.2.2 Locally unique identifiers

 Locally unique identifiers (LUI) can be created for various
 addressable objects within a network. These identifiers are in a flat
 sixty bit space and must be unique within a SIR domain (unique within
 a site for instance). To simplify administration, hierarchical
 allocation of locally unique identifiers may be performed. The format
 of an ILA address with locally unique identifiers is:

 | 64 bits |3 bits|1| 60 bits |
 +----------------------------+------+---------------------------+
 | Locator | 0x1 |C| Locally unique ident. |
 +---+

 The figure below illustrates the translation from SIR address to an
 ILA address as would be performed when a node sends to a SIR address.
 Note the low order 16 bites of the identifier may be modified as the
 checksum-neutral adjustment. The reverse translation of ILA address
 to SIR address is symmetric.

 +----------------------------+------+---------------------------+
 | SIR prefix | 0x1 |0| Identifier |
 +---+
 | | |
 SIR prefix to locator C-bit if needed |
 V V V
 +----------------------------+------+---------------------------+
 | Locator | 0x1 |C| Identifier |
 +---+

3.3.2.3 Virtual networking identifiers for IPv4

 This type defines a format for encoding an IPv4 virtual address and
 virtual network identifier within an identifier. The format of an ILA
 address for IPv4 virtual networking is:

 | 64 bits |3 bits|1| 28 bits | 32 bits |
 +----------------------------+------+-----------+----------------+
 | Locator | 0x2 |C| VNID | VADDR |
 +--+

Herbert Expires September 14, 2017 [Page 11]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 VNID is a virtual network identifier and VADDR is a virtual address
 within the virtual network indicated by the VNID. The VADDR can be an
 IPv4 unicast or multicast address, and may often be in a private
 address space (i.e. [RFC1918]) used in the virtual network.

 Translating a virtual IPv4 address into an ILA or SIR address and the
 reverse translation are straight forward. Note that the low order 16
 bits of the IPv6 address may be modified as the checksum-neutral
 adjustment and that this translation implies protocol translation
 when sending IPv4 packets over an ILA IPv6 network.

 +----------------+
 | IPv4 address |
 +----------------+
 ^
 |
 V
 +----------------------------+------+-----------+----------------+
 | Locator or SIR prefix | 0x2 |C| VNID | IPv4 address |
 +--+

3.3.2.4 Virtual networking identifiers for IPv6 unicast

 In this format, a virtual network identifier and virtual IPv6 unicast
 address are encoded within an identifier. To facilitate encoding of
 virtual addresses, there is a unique mapping between a VNID and a
 ninety-six bit prefix of the virtual address. The format an IPv6
 unicast encoding with VNID in an ILA address is:

 | 64 bits |3 bits|1| 28 bits | 32 bits |
 +------------------------------+------+--------------+-----------+
 | Locator | 0x3 |C| VNID | VADDR6L |
 +--+

 VADDR6L contains the low order 32 bits of the IPv6 virtual address.
 The upper 96 bits of the virtual address are inferred from the VNID
 to prefix mapping. Note that for ILA translations the low order
 sixteen of the VADDR6L may be modified for checksum-neutral
 adjustment.

 The figure below illustrates encoding a tenant IPv6 virtual unicast
 address into a ILA or SIR address.

Herbert Expires September 14, 2017 [Page 12]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 +--+-----------------+
 | Tenant prefix | VADDR6L |
 +-----------------------+-------------------------------+--------+
 | |
 +-prefix to VNID-+ |
 | |
 v v
 +---------------------------+------+-----------+-----------------+
 | Locator or SIR prefix | 0x3 |C| VNID | VADDR6L |
 +--+

 This encoding is reversible, given an ILA address, the virtual
 address visible to the tenant can be deduced:

 +---------------------------+------+-----------+-----------------+
 | Locator or SIR prefix | 0x3 |C| VNID | VADDR6L |
 +--+-----------------------+
 | |
 +-VNID to prefix-+ |
 | |
 v v
 +--+-----------------+
 | Tenant prefix | VADDR6L |
 +--+

3.3.2.5 Virtual networking identifiers for IPv6 multicast

 In this format, a virtual network identifier and virtual IPv6
 multicast address are encoded within an identifier.

 /* IPv6 multicast address with VNID encoding in an ILA address */
 | 64 bits |3 bits|1|28 bits |4 bits| 28 bits |
 +--------------------------+------+------------------------------+
 | Locator | 0x4 |C| VNID |Scope | MADDR6L |
 +--+

 This format encodes an IPv6 multicast address in an identifier. The
 scope indicates multicast address scope as defined in [RFC7346].
 MADDR6L is the low order 28 bits of the multicast address. The full
 multicast address is thus:

 ff0<Scope>::<MADDRL6 high 12 bits>:<MADDRL6 low 16 bits>

 And so can encode multicast addresses of the form:

 ff0X::0 to ff0X::0fff:ffff

 The figure below illustrates encoding a tenant IPv6 virtual multicast

Herbert Expires September 14, 2017 [Page 13]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 address in an ILA or SIR address. Note that low order sixteen bits
 of MADDR6L may be modified to be the checksum-neutral adjustment.

 | 12 bits | 4 bits| 84 bits | 28 bits |
 +---------+-------+-----------------------------------+----------+
 | 0xfff | Scope | 0’s | MADDR6L |
 +-------------+---+----+
 | |
 +------------------------------------+ |
 | |
 v v
 +--------------------------+------+------------------------------+
 | Locator or SIR prefix | 0x4 |C| VNID |Scope | MADDR6L |
 +--+

 This translation is reversible:

 +--------------------------+------+------------------------------+
 | Locator or SIR prefix | 0x4 |C| VNID |Scope | MADDR6L |
 +--+
 | |
 +------------------------------------+ |
 | |
 V V
 +---------+-------+-----------------------------------+----------+
 | 0xfff | Scope | 0’s | MADDR6L |
 +-------------+---+----+

3.4 Standard identifier representation addresses

 An identifier identifies objects or nodes in a network. For instance,
 an identifier may refer to a specific host, virtual machine, or
 tenant system. When a host initiates a connection or sends a packet,
 it uses the identifier to indicate the peer endpoint of the
 communication. The endpoints of an established connection context
 also referenced by identifiers. It is only when the packet is
 actually being sent over a network that the locator for the
 identifier needs to be resolved.

 In order to maintain compatibility with existing networking stacks
 and applications, identifiers are encoded in IPv6 addresses using a
 standard identifier representation (SIR) address. A SIR address is a
 combination of a prefix which occupies what would be the locator
 portion of an ILA address, and the identifier in its usual location.
 The format of a SIR address is:

Herbert Expires September 14, 2017 [Page 14]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 | 64 bits |3 bits|1| 60 bits |
 +--------------------------------+-------------------------------+
 | SIR prefix | Type |0| Identifier |
 +--+

 The C-bit (checksum-neutral mapping) MUST be zero for a SIR address.
 Type may be any identifier type except zero (interface identifiers)

 A SIR prefix may be site-local, or globally routable. A globally
 routable SIR prefix facilitates connectivity between hosts on the
 Internet and ILA nodes. A gateway between a site’s network and the
 Internet can translate between SIR prefix and locator for an
 identifier. A network may have multiple SIR prefixes where each
 prefix defines a unique identifier space.

 Locators MUST only be associated with one SIR prefix. This ensures
 that if a translation from a SIR address to an ILA address is
 performed when sending a packet, the reverse translation at the
 receiver yields the same SIR address that was seen at the
 transmitter. This also ensures that a reverse checksum-neutral
 mapping can be performed at a receiver to restore the addresses that
 were included in a pseudo header for setting a transport checksum.

 A standard identifier representation address can be used as the
 externally visible address for a node. This can used throughout the
 network, returned in DNS AAAA records [RFC3363], used in logging,
 etc. An application can use a SIR address without knowledge that it
 encodes an identifier.

3.4.1 SIR for locally unique identifiers

 The SIR address for a locally unique identifier has format:

 | 64 bits |3 bits|1| 60 bits |
 +--------------------------------+-------------------------------+
 | SIR prefix | 0x1 |0|Locally unique ident. |
 +--+

3.4.2 SIR for virtual addresses

 A virtual address can be encoded using the standard identifier
 representation. For example, the SIR address for an IPv6 virtual
 address may be:

 | 64 bits |3 bits|1| 28 bits | 32 bits |
 +--------------------------------+------+------------+-----------+
 | SIR prefix | 0x3 |0| VNID | VADDRL6 |
 +--+

Herbert Expires September 14, 2017 [Page 15]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 Note that this allows three representations of the same address in he
 network: as a virtual address, a SIR address, and an ILA address.

3.4.3 SIR domains

 Each SIR prefix defines a SIR domain. A SIR domain is a unique name
 space for identifiers within a domain. The full identity of a node is
 thus determined by an identifier and SIR domain (SIR prefix).
 Locators MUST map to only one SIR domain in order to ensure that
 translation from a locator to SIR prefix is unambiguous.

4 Operation

 This section describes operation methods for using identifier-locator
 addressing.

4.1 Identifier to locator mapping

 An application initiates a communication or flow using a SIR address
 or virtual address for a destination. In order to send a packet on
 the network, the destination address is translated by an ILA router
 or an ILA host in the path. An ILA node maintains a list of mappings
 from identifier to locator to perform this translation.

 The mechanisms of propagating and maintaining identifier to locator
 mappings are outside the scope of this document.

4.2 Address translations

 With ILA, address translation is performed to convert SIR addresses
 to ILA addresses, and ILA addresses to SIR addresses. Translation is
 usually done on a destination address as a form of source routing,
 however translation on source virtual addresses to SIR addresses can
 also be done to support some network virtualization scenarios (see
 appendix A.7 for example).

4.2.1 SIR to ILA address translation

 When translating a SIR address to an ILA address the SIR prefix in
 the address is overridden with a locator, and checksum neutral
 mapping may be performed. Since this operation is potentially done
 for every packet the process should be very efficient (particularly
 the lookup and checksum processing operations).

 The typical steps to transmit a packet using ILA are:

 1) Host stack creates a packet with source address set to a local
 address (possibly a SIR address) for the local identity, and

Herbert Expires September 14, 2017 [Page 16]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 the destination address is set to the SIR address or virtual
 address for the peer. The peer address may have been discovered
 through DNS or other means.

 2) An ILA router or host translates the packet to use the locator.
 If the original destination address is a SIR address then the
 SIR prefix is overwritten with the locator. If the original
 packet is a virtually addressed tenant packet then the virtual
 address is translated per section 3.3.2. The locator is
 discovered by a lookup in the locator to identifier mappings.

 3) The ILA node performs checksum-neutral mapping if configured
 for that (section 4.4.1).

 4) Packet is forwarded on the wire. The network routes the packet
 to the host indicated by the locator.

4.2.2 ILA to SIR address translation

 When a destination node (ILA router or end host) receives an ILA
 addressed packet, the ILA address MUST be translated back to a SIR
 address (or tenant address) before upper layer processing.

 The steps of receive processing are:

 1) Packet is received. The destination locator is verified to
 match a locator assigned to the host.

 2) A lookup is performed on the destination identifier to find if
 it addresses a local identifier. If match is found, either the
 locator is overwritten with SIR prefix (for locally unique
 identifier type) or the address is translated back to a tenant
 virtual address as shown in appendix A.7.

 3) Perform reverse checksum-neutral mapping if C-bit is set
 (section 4.4.1).

 4) Perform any optional policy checks; for instance that the
 source may send a packet to the destination address, that
 packet is not illegitimately crossing virtual networks, etc.

 5) Forward packet to application processing.

4.3 Virtual networking operation

 When using ILA with virtual networking identifiers, address
 translation is performed to convert tenant virtual network and
 virtual addresses to ILA addresses, and ILA addresses back to a

Herbert Expires September 14, 2017 [Page 17]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 virtual network and tenant’s virtual addresses. Translation may occur
 on either source address, destination address, or both (see scenarios
 for virtual networking in Appendix A). Address translation is
 performed similar to the SIR translation cases described above.

4.3.1 Crossing virtual networks

 With explicit configuration, virtual network hosts may communicate
 directly with virtual hosts in another virtual network by using SIR
 addresses for virtualization in both the source and destination
 addresses. This might be done to allow services in one virtual
 network to be accessed from another (by prior agreement between
 tenants). See appendix A.13 for example of ILA addressing for such a
 scenario.

4.3.2 IPv4/IPv6 protocol translation

 An IPv4 tenant may send a packet that is converted to an IPv6 packet
 with ILA addresses. Similarly, an IPv6 packet with ILA addresses may
 be converted to an IPv4 packet to be received by an IPv4-only tenant.
 These are IPv4/IPv6 stateless protocol translations as described in
 [RFC6144] and [RFC6145]. See appendix A.12 for a description of these
 scenarios.

4.4 Transport layer checksums

 Packets undergoing ILA translation may encapsulate transport layer
 checksums (e.g. TCP or UDP) that include a pseudo header that is
 affected by the translation.

 ILA provides two alternatives do deal with this:

 o Perform a checksum-neutral mapping to ensure that an
 encapsulated transport layer checksum is kept correct on the
 wire.

 o Send the checksum as-is, that is send the checksum value based
 on the pseudo header before translation.

 Some intermediate devices that are not the actual end point of a
 transport protocol may attempt to validate transport layer checksums.
 In particular, many Network Interface Cards (NICs) have offload
 capabilities to validate transport layer checksums (including any
 pseudo header) and return a result of validation to the host.
 Typically, these devices will not drop packets with bad checksums,
 they just pass a result to the host. Checksum offload is a
 performance benefit, so if packets have incorrect checksums on the
 wire this benefit is lost. With this incentive, applying a checksum-

Herbert Expires September 14, 2017 [Page 18]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 neutral mapping is the recommended alternative. If it is known that
 the addresses of a packet are not included in a transport checksum,
 for instance a GRE packet is being encapsulated, then a source may
 choose not to perform checksum-neutral mapping.

4.4.1 Checksum-neutral mapping

 When a change is made to one of the IP header fields in the IPv6
 pseudo-header checksum (such as one of the IP addresses), the
 checksum field in the transport layer header may become invalid.
 Fortunately, an incremental change in the area covered by the
 Internet standard checksum [RFC1071] will result in a well-defined
 change to the checksum value [RFC1624]. So, a checksum change caused
 by modifying part of the area covered by the checksum can be
 corrected by making a complementary change to a different 16-bit
 field covered by the same checksum.

 ILA can perform a checksum-neutral mapping when a SIR prefix or
 virtual address is translated to a locator in an IPv6 address, and
 performs the reverse mapping when translating a locator back to a SIR
 prefix or virtual address. The low order sixteen bits of the
 identifier contain the checksum adjustment value for ILA.

 On transmission, the translation process is:

 1) Compute the one’s complement difference between the SIR prefix
 and the locator. Fold this value to 16 bits (add-with-carry
 four 16-bit words of the difference).

 2) Add-with-carry the bit-wise not of the 0x1000 (i.e. 0xefff) to
 the value from #1. This compensates the checksum for setting
 the C-bit.

 3) Add-with-carry the value from #2 to the low order sixteen bits
 of the identifier.

 4) Set the resultant value from #3 in the low order sixteen bits
 of the identifier and set the C-bit.

 Note that the "adjustment" (the 16-bit value set in the identifier in
 set #3) is fixed for a given SIR to locator mapping, so the
 adjustment value can be saved in an associated data structure for a
 mapping to avoid computing it for each translation.

 On reception of an ILA addressed packet, if the C-bit is set in an
 ILA address:

 1) Compute the one’s complement difference between the locator in

Herbert Expires September 14, 2017 [Page 19]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 the address and the SIR prefix that the locator is being
 translated to. Fold this value to 16 bits (add-with-carry four
 16-bit words of the difference).

 2) Add-with-carry 0x1000 to the value from #1. This compensates
 the checksum for clearing the C-bit.

 3) Add-with-carry the value from #2 to the low order sixteen bits
 of the identifier.

 4) Set the resultant value from #3 in the low order sixteen bits
 of the identifier and clear the C-bit. This restores the
 original identifier sent in the packet.

4.4.2 Sending an unmodified checksum

 When sending an unmodified checksum, the checksum is incorrect as
 viewed in the packet on the wire. At the receiver, ILA translation of
 the destination ILA address back to the SIR address occurs before
 transport layer processing. This ensures that the checksum can be
 verified when processing the transport layer header containing the
 checksum. Intermediate devices are not expected to drop packets due
 to a bad transport layer checksum.

4.5 Address selection

 There may be multiple possibilities for creating either a source or
 destination address. A node may be associated with more than one
 identifier, and there may be multiple locators for a particular
 identifier. The choice of locator or identifier is implementation or
 configuration specific. The selection of an identifier occurs at flow
 creation and must be invariant for the duration of the flow. Locator
 selection must be done at least once per flow, and the locator
 associated with the destination of a flow may change during the
 lifetime of the flow (for instance in the case of a migrating
 connection it will change). ILA address selection should follow
 specifications in Default Address Selection for Internet Protocol
 Version 6 (IPv6) [RFC6724].

4.6 Duplicate identifier detection

 As part of implementing the locator to identifier mapping, duplicate
 identifier detection should be implemented in a centralized control
 plane. A registry of identifiers could be maintained (possibly in
 association the identifier to locator mapping database). When a node
 creates an identifier it registers the identifier, and when the
 identifier is no longer in use (e.g. task completes) the identifier
 is unregistered. The control plane should able to detect a

Herbert Expires September 14, 2017 [Page 20]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 registration attempt for an existing identifier and deny the request.

4.7 ICMP error handling

 A packet that contains an ILA address may cause ICMP errors within
 the network. In this case the ICMP data contains an IP header with an
 ILA address. ICMP messages are sent back to the source address in the
 packet. Upon receiving an ICMP error the host will process it
 differently depending on whether it is ILA capable.

4.7.1 Handling ICMP errors by ILA capable hosts

 If a host is ILA capable it can attempt to reverse translate the ILA
 address in the destination of a header in the ICMP data back to a SIR
 address that was originally used to transmit the packet. The steps
 are:

 1) Assume that the upper sixty-four bits of the destination
 address in the ICMP data is a locator. Try match these bits
 back to a SIR address. If the host is only in one SIR domain,
 then the mapping to SIR address is implicit. If the host is in
 multiple domains then a locator to SIR addresses table can be
 maintained for this lookup.

 2) If the identifier is marked with checksum-neutral mapping, undo
 the checksum-neutral using the SIR address found in #1. The
 resulting identifier address is potentially the original
 address used to send the packet.

 3) Lookup the identifier in the identifier to locator mapping
 table. If an entry is found compare the locator in the entry to
 the locator (upper sixty-four bits) of the destination address
 in the IP header of the ICMP data. If these match then proceed
 to next step.

 4) Overwrite the upper sixty-four bits of the destination address
 in the ICMP data with the found SIR address and overwrite the
 low order sixty-four bits with the found identifier (the result
 of undoing checksum-neutral mapping). The resulting address
 should be the original SIR address used in sending. The ICMP
 error packet can then be received by the stack for further
 processing.

4.7.2 Handling ICMP errors by non-ILA capable hosts

 A non-ILA capable host may receive an ICMP error generated by the
 network that contains an ILA address in an IP header contained in the
 ICMP data. This would happen in the case that an ILA router performed

Herbert Expires September 14, 2017 [Page 21]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 translation on a packet the host sent and that packet subsequently
 generated an ICMP error. In this case the host receiving the error
 message will attempt to find the connection state corresponding to
 the packet in headers the ICMP data. Since the host is unaware of ILA
 the lookup for connection state should fail. Because the host cannot
 recover the original addresses it used to send the packet, it won’t
 be able any to derive any useful information about the original
 destination of the packet that it sent.

 If packets for a flow are always routed through an ILA router in both
 directions, for example ILA routers are coincident with edge routes
 in a network, then ICMP errors could be intercepted by an
 intermediate node which could translate the destination addresses in
 ICMP data back to the original SIR addresses. A receiving host would
 then see the destination address in the packet of the ICMP data to be
 that it used to transmit the original packet.

4.8 Multicast

 ILA is generally not intended for use with multicast. In the case of
 multicast, routing of packets is based on the source address. Neither
 the SIR address nor an ILA address is suitable for use as a source
 address in a multicast packet. A SIR address is unroutable and hence
 would make a multicast packet unroutable if used as a source address.
 Using an ILA address as the source address makes the multicast packet
 routable, but this exposes ILA address to applications which is
 especially problematic on a multicast receiver that doesn’t support
 ILA.

 If all multicast receivers are known to support ILA, a local locator
 address may be used in the source address of the multicast packet. In
 this case, each receiver will translate the source address from an
 ILA address to a SIR address before delivering packets to an
 application.

5 Motivation for ILA

5.1 Use cases

5.1.1 Multi-tenant virtualization

 In multi-tenant virtualization overlay networks are established for
 tenants to provide virtual networks. Each tenant may have one or more
 virtual networks and a tenant’s nodes are assigned virtual addresses
 within virtual networks. Identifier-locator addressing may be used as
 an alternative to traditional network virtualization encapsulation
 protocols used to create overlay networks (e.g. VXLAN [RFC7348]).
 Section 5.2.4 describes the advantages of using ILA in lieu of

Herbert Expires September 14, 2017 [Page 22]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 encapsulation protocols.

 Tenant systems (e.g. VMs) run on physical hosts and may migrate to
 different hosts. A tenant system is identified by a virtual address
 and virtual networking identifier of a corresponding virtual network.
 ILA can encode the virtual address and a virtual networking
 identifier in an ILA identifier. Each identifier is mapped to a
 locator that indicates the current host where the tenant system
 resides. Nodes that send to the tenant system set the locator per the
 mapping. When a tenant system migrates its identifier to locator
 mapping is updated and communicating nodes will use the new mapping.

5.1.2 Datacenter virtualization

 Datacenter virtualization virtualizes networking resources. Various
 objects within a datacenter can be assigned addresses and serve as
 logical endpoints of communication. A large address space, for
 example that of IPv6, allows addressing to be used beyond the
 traditional concepts of host based addressing. Addressed objects can
 include tasks, virtual IP addresses (VIPs), pieces of content, disk
 blocks, etc. Each object has a location which is given by the host on
 which an object resides. Some objects may be migratable between hosts
 such that their location changes over time.

 Objects are identified by a unique identifier within a namespace for
 the datacenter (appendix B discusses methods to create unique
 identifiers for ILA). Each identifier is mapped to a locator that
 indicates the current host where the object resides. Nodes that send
 to an object set the locator per the mapping. When an object migrates
 its identifier to locator mapping is updated and communicating nodes
 will use the new mapping.

 A datacenter object of particular interest is tasks, units of
 execution for for applications. The goal of virtualzing tasks is to
 maximize resource efficiency and job scheduling. Tasks share many
 properties of tenant systems, however they are finer grained objects,
 may have a shorter lifetimes, and are likely created in greater
 numbers. Appendix C provides more detail and motivation for
 virtualizing tasks using ILA.

5.1.3 Device mobility

 ILA may be applied as a solution for mobile devices. These are
 devices, smart phones for instance, that physically move between
 different networks. The goal of mobility is to provide a seamless
 transition when a device moves from one network to another.

 Each mobile device is identified by unique identifier within some

Herbert Expires September 14, 2017 [Page 23]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 provider domain. ILA encodes the identifier for the device in an ILA
 identifier. Each identifier is mapped to a locator that indicates the
 current network or point of attachment for the device. Nodes that
 send to the device set the locator per the mapping. When a mobile
 device moves between networks its identifier to locator mapping is
 updated and communicating nodes will use the new mapping.

5.2 Alternative methods

 This section discusses the merits of alternative solution that have
 been proposed to provide network virtualization or mobility in IPv6.

5.2.1 ILNP

 ILNP splits an address into a locator and identifier in the same
 manner as ILA. ILNP has characteristics, not present in ILA, that
 prevent it from being a practical solution:

 o ILNP requires that transport layer protocol implementations must
 be modified to work over ILNP.

 o ILNP can only be implemented in end hosts, not within the
 network. This essentially requires that all end hosts need to be
 modified to participate in mobility.

 o ILNP employs IPv6 extension headers which are mostly considered
 non-deployable. ILA does not use these.

 o Core support for ILA is in upstream Linux, to date there is no
 publicly available source code for ILNP.

 o ILNP involves DNS to distribute mapping information, ILA assumes
 mapping information is not part of naming.

5.2.2 Flow label as virtual network identifier

 The IPv6 flow label could conceptually be used as a 20-bit virtual
 network identifier in order to indicate a packet is sent on an
 overlay network. In this model the addresses may be virtual addresses
 within the specified virtual network. Presumably, the tuple of flow-
 label and addresses could be used by switches to forward virtually
 addressed packets.

 This approach has some issues:

 o Forwarding virtual packets to their physical location would
 require specialized switch support.

Herbert Expires September 14, 2017 [Page 24]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 o The flow label is only twenty bits, this is too small to be a
 discriminator in forwarding a virtual packet to a specific
 destination. Conceptually, the flow label might be used in a
 type of label switching to solve that.

 o The flow label is not considered immutable in transit,
 intermediate devices may change it.

 o The flow label is not part of the pseudo header for transport
 checksum calculation, so it is not covered by any transport (or
 other) checksums.

5.2.3 Extension headers

 To accomplish network virtualization an extension header, as a
 destination or routing option, could be used that contains the
 virtual destination address of a packet. The destination address in
 the IPv6 header would be the topological address for the location of
 the virtual node. Conceivably, segment routing could be used to
 implement network virtualization in this manner.

 This technique has some issues:

 o Intermediate devices must not insert extension headers
 [RFC2460bis].

 o Extension headers introduce additional packet overhead which may
 impact performance.

 o Extension headers are not covered by transport checksums (as the
 addresses would be) nor any other checksum.

 o Extension headers are not widely supported in network hardware
 or devices. For instance, several NIC offloads don’t work in the
 presence of extension headers.

5.2.4 Encapsulation techniques

 Various encapsulation techniques have been proposed for implementing
 network virtualization and mobility. LISP is an example of an
 encapsulation that is based on locator identifier separation similar
 to ILA. The primary drawback of encapsulation is complexity and per
 packet overhead. For, instance when LISP is used with IPv6 the
 encapsulation overhead is fifty-six bytes and two IP headers are
 present in every packet. This adds considerable processing costs,
 requires considerations to handle path MTU correctly, and certain
 network accelerations may be lost.

Herbert Expires September 14, 2017 [Page 25]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

6 IANA Considerations

 There are no IANA considerations in this specification.

Herbert Expires September 14, 2017 [Page 26]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

7 References

7.1 Normative References

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2460bis] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", draft-ietf-6man-rfc2460bis-03,
 January 2016.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC6296] Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix
 Translation", RFC 6296, June 2011.

 [RFC1071] Braden, R., Borman, D., Partridge, C., and W. Plummer,
 "Computing the Internet checksum", RFC 1071, September
 1988.

 [RFC1624] Rijsinghani, A., "Computation of the Internet Checksum
 via Incremental Update", RFC 1624, May 1994.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version
 6 (IPv6)", RFC 6724, September 2012.

7.2 Informative References

 [RFC6740] RJ Atkinson and SN Bhatti, "Identifier-Locator Network
 Protocol (ILNP) Architectural Description", RFC 6740,
 November 2012.

 [RFC6741] RJ Atkinson and SN Bhatti, "Identifier-Locator Network
 Protocol (ILNP) Engineering Considerations", RFC 6741,
 November 2012.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, February 1996.

 [RFC3363] Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T.
 Hain, "Representing Internet Protocol version 6 (IPv6)
 Addresses in the Domain Name System (DNS)", RFC 3363,
 August 2002.

 [RFC3587] Hinden, R., Deering, S., and E. Nordmark, "IPv6 Global

Herbert Expires September 14, 2017 [Page 27]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 Unicast Address Format", RFC 3587, August 2003.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, October 2005.

 [RFC6144] Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
 IPv4/IPv6 Translation", RFC 6144, April 2011.

 [NVO3ARCH] Black, D., Hudson, J., Kreeger, L., Lasserre, M., and
 Narten, T., "An Architecture for Overlay Networks
 (NVO3)", draft-ietf-nvo3-arch-03

 [GUE] Herbert, T., and Yong, L., "Generic UDP Encapsulation",
 draft-herbert-gue-02, work in progress.

 [GUESEC] Yong, L., and Herbert, T. "Generic UDP Encapsulation (GUE)
 for Secure Transport", draft-hy-gue-4-secure-transport-
 00, work in progress

8 Acknowledgments

 The author would like to thank Mark Smith, Lucy Yong, Erik Kline,
 Saleem Bhatti, Petr Lapukhov, Blake Matheny, Doug Porter, Pierre
 Pfister, and Fred Baker for their insightful comments for this draft;
 Roy Bryant, Lorenzo Colitti, Mahesh Bandewar, and Erik Kline for
 their work on defining and applying ILA.

Herbert Expires September 14, 2017 [Page 28]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

Appendix A: Communication scenarios

 This section describes the use of identifier-locator addressing in
 several scenarios.

A.1 Terminology for scenario descriptions

 A formal notation for identifier-locator addressing with ILNP is
 described in [RFC6740]. We extend this to include for network
 virtualization cases.

 Basic terms are:

 A = IP Address
 I = Identifier
 L = Locator
 LUI = Locally unique identifier
 VNI = Virtual network identifier
 VA = An IPv4 or IPv6 virtual address
 VAX = An IPv6 networking identifier (IPv6 VA mapped to VAX)
 SIR = Prefix for standard identifier representation
 VNET = IPv6 prefix for a tenant (assumed to be globally routable)
 Iaddr = IPv6 address of an Internet host

 An ILA IPv6 address is denoted by

 L:I

 A SIR address with a locally unique identifier and SIR prefix is
 denoted by

 SIR:LUI

 A virtual identifier with a virtual network identifier and a virtual
 IPv4 address is denoted by

 VNI:VA

 An ILA IPv6 address with a virtual networking identifier for IPv4
 would then be denoted

 L:(VNI:VA)

 The local and remote address pair in a packet or endpoint is denoted

 A,A

 An address translation sequence from SIR addresses to ILA addresses

Herbert Expires September 14, 2017 [Page 29]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 for transmission on the network and back to SIR addresses at a
 receiver has notation:

 A,A -> L:I,A -> A,A

A.2 Identifier objects

 Identifier-locator addressing is broad enough in scope to address
 many different types of networking entities. For the purposes of this
 section we classify these as "objects" and "tenant systems".

 Objects encompass uses where nodes are address by local unique
 identifiers (LUI). In the scenarios below objects are denoted by OBJ.

 Tenant systems are those associated with network virtualization that
 have virtual addresses (that is they are addressed by VNI:VA). In the
 scenarios below tenant systems are denoted by TS.

A.3 Reference network for scenarios

 The figure below provides an example network topology with ILA
 addressing in use. In this example, there are four hosts in the
 network with locators L1, L2, L3, and L4. There three objects with
 identifiers O1, O2, and O3, as well as a common networking service
 with identifier S1. There are two virtual networks VNI1 and VNI2, and
 four tenant systems addressed as: VA1 and VA2 in VNI1, VA3 and VA4 in
 VNI2. The network is connected to the Internet via a gateway.
 ‘
 . .
 +-----------------+ . Internet . +-----------------+
Host L1	. .	Host L2					
+-------------+	+-------------+					
	TS VNI1:VA1					TS VNI1:VA2	
+-------------+ +---+ +-----+-----+ +---+ +-------------+							
+-------------+			Gateway			+-------------+	
	OBJ O1			+-----+-----+			TS VNI2:VA3
+-------------+					+-------------+		
 +-----------------+ | | +-----------------+
 +-----. .-----+
 +-----------------+ . Underlay . +-----------------+
Host L3	+-----. Network .---+	Host L4						
+-------------+			+-------------+				
	OBJ O2						VM VNI2:VA4	
+-------------+ +---+ +-----	+-------------+							
+-------------+		+-------------+						
	OBJ O3				Serv. S1			
+-------------+		+-------------+						
 +-----------------+ +-----------------+

Herbert Expires September 14, 2017 [Page 30]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 Several communication scenarios can be considered:

 1) Object to object
 2) Object to Internet
 3) Internet to object
 4) Tenant system to local service
 5) Object to tenant system
 6) Tenant system to Internet
 7) Internet to tenant system
 8) IPv4 tenant system to service
 9) Tenant system to tenant system same virtual network using IPv6
 10) Tenant system to tenant system in same virtual network using
 IPv4
 11) Tenant system to tenant system in different virtual network
 using IPv6
 12) Tenant system to tenant system in different virtual network
 using IPv4
 13) IPv4 tenant system to IPv6 tenant system in different virtual
 networks

A.4 Scenario 1: Object to task

 The transport endpoints for object to object communication are the
 SIR addresses for the objects. When a packet is sent on the wire, the
 locator is set in the destination address of the packet. On reception
 the destination addresses is converted back to SIR representation for
 processing at the transport layer.

 If object O1 is communicating with object O2, the ILA translation
 sequence would be:

 SIR:O1,SIR:O2 -> // Transport endpoints on O1
 SIR:O1,L3:O2 -> // ILA used on the wire
 SIR:O1,SIR:O2 // Received at O2

A.5 Scenario 2: Object to Internet

 Communication from an object to the Internet is accomplished through
 use of a SIR address (globally routable) in the source address of
 packets. No ILA translation is needed in this path.

 If object O1 is sending to an address Iaddr on the Internet, the
 packet addresses would be:

 SIR:O1,Iaddr

A.6 Scenario 3: Internet to object

Herbert Expires September 14, 2017 [Page 31]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 An Internet host transmits a packet to a task using an externally
 routable SIR address. The SIR prefix routes the packet to a gateway
 for the datacenter. The gateway translates the destination to an ILA
 address.

 If a host on the Internet with address Iaddr sends a packet to object
 O3, the ILA translation sequence would be:

 Iaddr,SIR:O3 -> // Transport endpoint at Iaddr
 Iaddr,L1:O3 -> // On the wire in datacenter
 Iaddr,SIR:O3 // Received at O3

A.7 Scenario 4: Tenant system to service

 A tenant can communicate with a datacenter service using the SIR
 address of the service.

 If TS VA1 is communicating with service S1, the ILA translation
 sequence would be:

 VNET:VA1,Saddr-> // Transport endpoints in TS
 SIR:(VNET:VA1):Saddr-> // On the wire
 SIR:(VNET:VA1):Saddr // Received at S1

 Where VNET is the address prefix for the tenant and Saddr is the IPv6
 address of the service.

 The ILA translation sequence in the reverse path, service to tenant
 system, would be:

 Saddr,SIR:(VNET:VA1) // Transport endpoints in S1
 Saddr,L1:(VNET:VA1) // On the wire
 Saddr,VNET:VA1 // Received at the TS

 Note that from the point of view of the service task there is no
 material difference between a peer that is a tenant system versus one
 which is another task.

A.8 Scenario 5: Object to tenant system

 An object can communicate with a tenant system through it’s
 externally visible address.

 If object O2 is communicating with TS VA4, the ILA translation
 sequence would be:

 SIR:O2,VNET:VA4 -> // Transport endpoints at T2
 SIR:O2,L4:(VNI2:VAX4) -> // On the wire

Herbert Expires September 14, 2017 [Page 32]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 SIR:O2,VNET:VA4 // Received at TS

A.9 Scenario 6: Tenant system to Internet

 Communication from a TS to the Internet assumes that the VNET for the
 TS is globally routable, hence no ILA translation would be needed.

 If TS VA4 sends a packet to the Internet, the addresses would be:

 VNET:VA4,Iaddr

A.10 Scenario 7: Internet to tenant system

 An Internet host transmits a packet to a tenant system using an
 externally routable tenant prefix and address. The prefix routes the
 packet to a gateway for the datacenter. The gateway translates the
 destination to an ILA address.

 If a host on the Internet with address Iaddr is sending to TS VA4,
 the ILA translation sequence would be:

 Iaddr,VNET:VA4 -> // Endpoint at Iaddr
 Iaddr,L4:(VNI2:VAX4) -> // On the wire in datacenter
 Iaddr,VNET:VA4 // Received at TS

A.11 Scenario 8: IPv4 tenant system to object

 A TS that is IPv4-only may communicate with an object using protocol
 translation. The object would be represented as an IPv4 address in
 the tenant’s address space, and stateless NAT64 should be usable as
 described in [RFC6145].

 If TS VA2 communicates with object O3, the ILA translation sequence
 would be:

 VA2,ADDR3 -> // IPv4 endpoints at TS
 SIR:(VNI1:VA2),L3:O3 -> // On the wire in datacenter
 SIR:(VNI1:VA2),SIR:O3 // Received at task

 VA2 is the IPv4 address in the tenant’s virtual network, ADDR4 is an
 address in the tenant’s address space that maps to the network
 service.

 The reverse path, task sending to a TS with an IPv4 address, requires
 a similar protocol translation.

 For object O3 communicate with TS VA2, the ILA translation sequence
 would be:

Herbert Expires September 14, 2017 [Page 33]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 SIR:O3,SIR:(VNI1:VA2) -> // Endpoints at T4
 SIR:O3,L2:(VNI1:VA2) -> // On the wire in datacenter
 ADDR4,VA2 // IPv4 endpoint at TS

A.12 Tenant to tenant system in the same virtual network

 ILA may be used to allow tenants within a virtual network to
 communicate without the need for explicit encapsulation headers.

A.12.1 Scenario 9: TS to TS in the same VN using IPV6

 If TS VA1 sends a packet to TS VA2, the ILA translation sequence
 would be:

 VNET:VA1,VNET:VA2 -> // Endpoints at VA1
 VNET:VA1,L2:(VNI1,VAX2) -> // On the wire
 VNET:VA1,VNET:VA2 -> // Received at VA2

A.12.2 Scenario 10: TS to TS in same VN using IPv4

 For two tenant systems to communicate using IPv4 and ILA, IPv4/IPv6
 protocol translation is done both on the transmit and receive.

 If TS VA1 sends an IPv4 packet to TS VA2, the ILA translation
 sequence would be:

 VA1,VA2 -> // Endpoints at VA1
 SIR:(VNI1:VA1),L2:(VNI1,VA2) -> // On the wire
 VA1,VA2 // Received at VA2

 Note that the SIR is chosen by an ILA node as an appropriate SIR
 prefix in the underlay network. Tenant systems do not use SIR address
 for this communication, they only use virtual addresses.

A.13 Tenant system to tenant system in different virtual networks

 A tenant system may be allowed to communicate with another tenant
 system in a different virtual network. This should only be allowed
 with explicit policy configuration.

A.13.1 Scenario 11: TS to TS in different VNs using IPV6

 For TS VA4 to communicate with TS VA1 using IPv6 the translation
 sequence would be:

 VNET2:VA4,VNET1:VA1-> // Endpoint at VA4
 VNET2:VA4,L1:(VNI1,VAX1)-> // On the wire
 VNET2:VA4,VNET1:VA1 // Received at VA1

Herbert Expires September 14, 2017 [Page 34]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 Note that this assumes that VNET1 and VNET2 are globally routable
 between the two virtual networks.

A.13.2 Scenario 12: TS to TS in different VNs using IPv4

 To allow IPv4 tenant systems in different virtual networks to
 communicate with each other, an address representing the peer would
 be mapped into each tenant’s address space. IPv4/IPv6 protocol
 translation is done on transmit and receive.

 For TS VA4 to communicate with TS VA1 using IPv4 the translation
 sequence may be:

 VA4,SADDR1 -> // IPv4 endpoint at VA4
 SIR:(VNI2:VA4),L1:(VNI1,VA1)-> // On the wire
 SADDR4,VA1 // Received at VA1

 SADDR1 is the mapped address for VA1 in VA4’s address space, and
 SADDR4 is the mapped address for VA4 in VA1’s address space.

A.13.3 Scenario 13: IPv4 TS to IPv6 TS in different VNs

 Communication may also be mixed so that an IPv4 tenant system can
 communicate with an IPv6 tenant system in another virtual network.
 IPv4/IPv6 protocol translation is done on transmit.

 For TS VA4 using IPv4 to communicate with TS VA1 using IPv6 the
 translation sequence may be:

 VA4,SADDR1 -> // IPv4 endpoint at VA4
 SIR:(VNI2:VA4),L1:(VNI1,VAX1)-> // On the wire
 SIR:(VNI2:VA4),VNET1:VA1 // Received at VA1

 SADDR1 is the mapped IPv4 address for VA1 in VA4’s address space.

 In the reverse direction, TS VA1 using IPv6 would communicate with TS
 VA4 with the translation sequence:

 VNET1:VA1,SIR:(VNI2:VA4) // Endpoint at VA1
 VNET1:VA1,L4:(VNI2:VA4) // On the wire
 SADDR1,VA4 // Received at VA4

Herbert Expires September 14, 2017 [Page 35]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

Appendix B: unique identifier generation

 The unique identifier type of ILA identifiers can address 2**60
 objects. This appendix describes some method to perform allocation of
 identifiers for objects to avoid duplicated identifiers being
 allocated.

B.1 Globally unique identifiers method

 For small to moderate sized deployments the technique for creating
 locally assigned global identifiers described in [RFC4193] could be
 used. In this technique a SHA-1 digest of the time of day in NTP
 format and an EUI-64 identifier of the local host is performed. N
 bits of the result are used as the globally unique identifier.

 The probability that two or more of these IDs will collide can be
 approximated using the formula:

 P = 1 - exp(-N**2 / 2**(L+1))

 where P is the probability of collision, N is the number of
 identifiers, and L is the length of an identifier.

 The following table shows the probability of a collision for a range
 of identifiers using a 60-bit length.

 Identifiers Probability of Collision
 1000 4.3368*10^-13
 10000 4.3368*10^-11
 100000 4.3368*10^-09
 1000000 4.3368*10^-07

 Note that locally unique identifiers may be ephemeral, for instance a
 task may only exist for a few seconds. This should be considered when
 determining the probability of identifier collision.

B.2 Universally Unique Identifiers method

 For larger deployments, hierarchical allocation may be desired. The
 techniques in Universally Unique Identifier (UUID) URN ([RFC4122])
 can be adapted for allocating unique object identifiers in sixty
 bits. An identifier is split into two components: a registrar prefix
 and sub-identifier. The registrar prefix defines an identifier block
 which is managed by an agent, the sub-identifier is a unique value
 within the registrar block.

 For instance, each host in a network could be an agent so that unique
 identifiers for objects could be created autonomously be the host.

Herbert Expires September 14, 2017 [Page 36]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 The identifier might be composed of a twenty-four bit host identifier
 followed by a thirty-six bit timestamp. Assuming that a host can
 allocate up to 100 identifiers per second, this allows about 21.8
 years before wrap around.

 /* LUI identifier with host registrar and timestamp */
 |3 bits|1| 24 bits | 36 bits |
 +------+-------------------+-------------------------------------+
 | 0x1 |C| Host identifier | Timestamp Identifier |
 +--+

Appendix C: Datacenter task virtualization

 This section describes some details to apply ILA to virtualizing
 tasks in a datacenter.

C.1 Address per task

 Managing the port number space for services within a datacenter is a
 nontrivial problem. When a service task is created, it may run on
 arbitrary hosts. The typical scenario is that the task will be
 started on some machine and will be assigned a port number for its
 service. The port number must be chosen dynamically to not conflict
 with any other port numbers already assigned to tasks on the same
 machine (possibly even other instances of the same service). A
 canonical name for the service is entered into a database with the
 host address and assigned port. When a client wishes to connect to
 the service, it queries the database with the service name to get
 both the address of an instance as well as its port number. Note that
 DNS is not adequate for the service lookup since it does not provide
 port numbers.

 With ILA, each service task can be assigned its own IPv6 address and
 therefore will logically be assigned the full port space for that
 address. This a dramatic simplification since each service can now
 use a publicly known port number that does not need to unique between
 services or instances. A client can perform a lookup on the service
 name to get an IP address of an instance and then connect to that
 address using a well known port number. In this case, DNS is
 sufficient for directing clients to instances of a service.

C.2 Job scheduling

 In the usual datacenter model, jobs are scheduled to run as tasks on
 some number of machines. A distributed job scheduler provides the
 scheduling which may entail considerable complexity since jobs will
 often have a variety of resource constraints. The scheduler takes
 these constraints into account while trying to maximize utility of

Herbert Expires September 14, 2017 [Page 37]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 the datacenter in terms utilization, cost, latency, etc. Datacenter
 jobs do not typically run in virtual machines (VMs), but may run
 within containers. Containers are mechanisms that provide resource
 isolation between tasks running on the same host OS. These resources
 can include CPU, disk, memory, and networking.

 A fundamental problem arises in that once a task for a job is
 scheduled on a machine, it often needs to run to completion. If the
 scheduler needs to schedule a higher priority job or change resource
 allocations, there may be little recourse but to kill tasks and
 restart them on a different machine. In killing a task, progress is
 lost which results in increased latency and wasted CPU cycles. Some
 tasks may checkpoint progress to minimize the amount of progress
 lost, but this is not a very transparent or general solution.

 An alternative approach is to allow transparent job migration. The
 scheduler may migrate running jobs from one machine to another.

C.3 Task migration

 Under the orchestration of the job scheduler, the steps to migrate a
 job may be:

 1) Stop running tasks for the job.
 2) Package the runtime state of the job. The runtime state is
 derived from the containers for the jobs.
 3) Send the runtime state of the job to the new machine where the
 job is to run.
 4) Instantiate the job’s state on the new machine.
 5) Start the tasks for the job continuing from the point at which
 it was stopped.

 This model similar to virtual machine (VM) migration except that the
 runtime state is typically much less data-- just task state as
 opposed to a full OS image. Task state may be compressed to reduce
 latency in migration.

C.3.1 Address migration

 ILA facilitates address (specifically SIR address) migration between
 hosts as part of task migration or for other purposes. The steps in
 migrating an address might be:

 1) Configure address on the target host.

 2) Suspend use of the address on the old host. This includes
 handling established connections (see next section). A state
 may be established to drop packets or send ICMP destination

Herbert Expires September 14, 2017 [Page 38]

INTERNET DRAFT draft-herbert-nvo3-ila-04 March 13, 2017

 unreachable when packets to the migrated address are received.

 3) Update the identifier to locator mapping database. Depending on
 the control plane implementation this may include pushing the
 new mapping to hosts.

 4) Communicating hosts will learn of the new mapping via a control
 plane either by participation in a protocol for mapping
 propagation or by the ILA resolution protocol.

C.3.2 Connection migration

 When a task and its addresses are migrated between machines, the
 disposition of existing TCP connections needs to be considered.

 The simplest course of action is to drop TCP connections across a
 migration. Since migrations should be relatively rare events, it is
 conceivable that TCP connections could be automatically closed in the
 network stack during a migration event. If the applications running
 are known to handle this gracefully (i.e. reopen dropped connections)
 then this may be viable.

 For seamless migration, open connections may be migrated between
 hosts. Migration of these entails pausing the connection, packaging
 connection state and sending to target, instantiating connection
 state in the peer stack, and restarting the connection. From the time
 the connection is paused to the time it is running again in the new
 stack, packets received for the connection should be silently
 dropped. For some period of time, the old stack will need to keep a
 record of the migrated connection. If it receives a packet, it should
 either silently drop the packet or forward it to the new location.

 Author’s Address

 Tom Herbert
 Quantonium
 4701 Patrick Henry
 Santa Clara, CA
 EMail: tom@herbertland.com

 Petr Lapukhov
 1 Hacker Way
 Menlo Parck, CA
 EMail: petr@fb.com

Herbert Expires September 14, 2017 [Page 39]

Internet Area WG T. Herbert
Internet-Draft Quantonium
Intended status: Standard track L. Yong
Expires September 14, 2017 Huawei USA
 O. Zia
 Microsoft
 March 13, 2017

 Generic UDP Encapsulation
 draft-ietf-intarea-gue-01

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on September 14, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Herbert, Yong, Zia Expires September, 2017 [Page 1]

Internet Draft Generic UDP Encapsulation March 13, 2017

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Herbert, Yong, Zia Expires September, 2017 [Page 2]

Internet Draft Generic UDP Encapsulation March 13, 2017

Abstract

 This specification describes Generic UDP Encapsulation (GUE), which
 is a scheme for using UDP to encapsulate packets of different IP
 protocols for transport across layer 3 networks. By encapsulating
 packets in UDP, specialized capabilities in networking hardware for
 efficient handling of UDP packets can be leveraged. GUE specifies
 basic encapsulation methods upon which higher level constructs, such
 as tunnels and overlay networks for network virtualization, can be
 constructed. GUE is extensible by allowing optional data fields as
 part of the encapsulation, and is generic in that it can encapsulate
 packets of various IP protocols.

Table of Contents

 1. Introduction . 5
 1.1. Terminology and acronyms 5
 1.2. Requirements Language 6
 2. Base packet format . 7
 2.1. GUE version . 7
 3. Version 0 . 7
 3.1. Header format . 8
 3.2. Proto/ctype field . 9
 3.2.1 Proto field . 9
 3.2.2 Ctype field . 10
 3.3. Flags and extension fields 10
 3.3.1. Requirements . 10
 3.3.2. Example GUE header with extension fields 11
 3.4. Private data . 12
 3.5. Message types . 12
 3.5.1. Control messages 12
 3.5.2. Data messages . 13
 3.6. Hiding the transport layer protocol number 13
 4. Version 1 . 14
 4.1. Direct encapsulation of IPv4 14
 4.2. Direct encapsulation of IPv6 15
 5. Operation . 15
 5.1. Network tunnel encapsulation 16
 5.2. Transport layer encapsulation 16
 5.3. Encapsulator operation 16
 5.4. Decapsulator operation 17
 5.4.1. Processing a received data message 17
 5.4.2. Processing a received control message 18
 5.5. Router and switch operation 18
 5.6. Middlebox interactions 18
 5.6.1. Inferring connection semantics 19
 5.6.2. NAT . 19
 5.7. Checksum Handling . 19

Herbert, Yong, Zia Expires September, 2017 [Page 3]

Internet Draft Generic UDP Encapsulation March 13, 2017

 5.7.1. Requirements . 19
 5.7.2. UDP Checksum with IPv4 20
 5.7.3. UDP Checksum with IPv6 20
 5.8. MTU and fragmentation 21
 5.9. Congestion control . 21
 5.10. Multicast . 21
 5.11. Flow entropy for ECMP 22
 5.11.1. Flow classification 22
 5.11.2. Flow entropy properties 23
 5.12 Negotiation of acceptable flags and extension fields . . . 24
 6. Motivation for GUE . 24
 6.1. Benefits of GUE . 24
 6.2 Comparison of GUE to other encapsulations 25
 7. Security Considerations . 26
 8. IANA Considerations . 26
 8.1. UDP source port . 26
 8.2. GUE version number . 28
 8.3. Control types . 28
 8.4. Flag-fields . 28
 9. Acknowledgements . 29
 10. References . 29
 10.1. Normative References 29
 10.2. Informative References 30
 Appendix A: NIC processing for GUE 33
 A.1. Receive multi-queue . 33
 A.2. Checksum offload . 33
 A.2.1. Transmit checksum offload 34
 A.2.2. Receive checksum offload 34
 A.3. Transmit Segmentation Offload 35
 A.4. Large Receive Offload 36
 Appendix B: Implementation considerations 36
 B.1. Priveleged ports . 36
 B.2. Setting flow entropy as a route selector 37
 B.3. Hardware protocol implementation considerations 37
 Authors’ Addresses . 37

Herbert, Yong, Zia Expires September, 2017 [Page 4]

Internet Draft Generic UDP Encapsulation March 13, 2017

1. Introduction

 This specification describes Generic UDP Encapsulation (GUE) which is
 a general method for encapsulating packets of arbitrary IP protocols
 within User Datagram Protocol (UDP) [RFC0768] packets. Encapsulating
 packets in UDP facilitates efficient transport across networks.
 Networking devices widely provide protocol specific processing and
 optimizations for UDP (as well as TCP) packets. Packets for atypical
 IP protocols (those not usually parsed by networking hardware) can be
 encapsulated in UDP packets to maximize deliverability and to
 leverage flow specific mechanisms for routing and packet steering.

 GUE provides an extensible header format for including optional data
 in the encapsulation header. This data potentially covers items such
 as the virtual networking identifier, security data for validating or
 authenticating the GUE header, congestion control data, etc. GUE also
 allows private optional data in the encapsulation header. This
 feature can be used by a site or implementation to define local
 custom optional data, and allows experimentation of options that may
 eventually become standard.

 This document does not define any specific GUE extensions.
 [GUEEXTENS] specifies a set of core extensions and [GUE4NVO3] defines
 an extension for using GUE with network virtualization.

 The motivation for the GUE protocol is described in section 6.

1.1. Terminology and acronyms

 GUE Generic UDP Encapsulation

 GUE Header A variable length protocol header that is composed
 of a primary four byte header and zero or more four
 byte words for optional header data

 GUE packet A UDP/IP packet that contains a GUE header and GUE
 payload within the UDP payload

 Encapsulator A network node that encapsulates a packet in GUE

 Decapsulator A network node that decapsulates and processes
 packets encapsulated in GUE

 Data message An encapsulated packet in the GUE payload that is
 addressed to the protocol stack for an associated
 protocol

 Control message A formatted message in the GUE payload that is

Herbert, Yong, Zia Expires September, 2017 [Page 5]

Internet Draft Generic UDP Encapsulation March 13, 2017

 implicitly addressed to the decapsulator to monitor
 or control the state or behavior of a tunnel

 Flags A set of bit flags in the primary GUE header

 Extension field
 An optional field in a GUE header whose presence is
 indicated by corresponding flag(s)

 C-bit A single bit flag in the primary GUE header that
 indicates whether the GUE packet contains a control
 message or data message

 Hlen A field in the primary GUE header that gives the
 length of the GUE header

 Proto/ctype A field in the GUE header that holds either the IP
 protocol number for a data message or a type for a
 control message

 Private data Optional data in the GUE header that can be used for
 private purposes

 Outer IP header Refers to the outer most IP header or packet when
 encapsulating a packet over IP

 Inner IP header Refers to an encapsulated IP header when an IP
 packet is encapsulated

 Outer packet Refers to an encapsulating packet

 Inner packet Refers to a packet that is encapsulated

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Herbert, Yong, Zia Expires September, 2017 [Page 6]

Internet Draft Generic UDP Encapsulation March 13, 2017

2. Base packet format

 A GUE packet is comprised of a UDP packet whose payload is a GUE
 header followed by a payload which is either an encapsulated packet
 of some IP protocol or a control message such as an OAM (Operations,
 Administration, and Management) message. A GUE packet has the general
 format:

 +-------------------------------+
 | |
 | UDP/IP header |
GUE Header

Encapsulated packet
or control message
 +-------------------------------+

 The GUE header is variable length as determined by the presence of
 optional extension fields.

2.1. GUE version

 The first two bits of the GUE header contain the GUE protocol version
 number. The rest of the fields after the GUE version number are
 defined based on the version number. Versions 0 and 1 are described
 in this specification; versions 2 and 3 are reserved.

3. Version 0

 Version 0 of GUE defines a generic extensible format to encapsulate
 packets by Internet protocol number.

Herbert, Yong, Zia Expires September, 2017 [Page 7]

Internet Draft Generic UDP Encapsulation March 13, 2017

3.1. Header format

 The header format for version 0 of GUE in UDP is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+\
 | Source port | Destination port | |
 +-+ UDP
 | Length | Checksum | |
 +-+/
 | 0 |C| Hlen | Proto/ctype | Flags |
 +-+
 | |
 ˜ Extensions Fields (optional) ˜
 | |
 +-+
 | |
 ˜ Private data (optional) ˜
 | |
 +-+

 The contents of the UDP header are:

 o Source port: If connection semantics (section 5.6.1) are applied
 to an encapsulation, this is set to the local source port for
 the connection. When connection semantics are not applied, this
 is set to a flow entropy value for use with ECMP (Equal-Cost
 Mulit-Path [RFC2992]). The properties of flow entropy are
 described in section 5.11.

 o Destination port: If connection semantics (section 5.6.1) are
 applied to an encapsulation, this is set to the destination port
 for the tuple. If connection semantics are not applied this is
 set to the GUE assigned port number, 6080.

 o Length: Canonical length of the UDP packet (length of UDP header
 and payload).

 o Checksum: Standard UDP checksum (handling is described in
 section 5.7).

 The GUE header consists of:

 o Ver: GUE protocol version (0).

 o C: C-bit: When set indicates a control message, not set
 indicates a data message.

Herbert, Yong, Zia Expires September, 2017 [Page 8]

Internet Draft Generic UDP Encapsulation March 13, 2017

 o Hlen: Length in 32-bit words of the GUE header, including
 optional extension fields but not the first four bytes of the
 header. Computed as (header_len - 4) / 4 where header_len is the
 total header length in bytes. All GUE headers are a multiple of
 four bytes in length. Maximum header length is 128 bytes.

 o Proto/ctype: When the C-bit is set, this field contains a
 control message type for the payload (section 3.2.2). When C-bit
 is not set, the field holds the Internet protocol number for the
 encapsulated packet in the payload (section 3.2.1). The control
 message or encapsulated packet begins at the offset provided by
 Hlen.

 o Flags: Header flags that may be allocated for various purposes
 and may indicate presence of extension fields. Undefined header
 flag bits MUST be set to zero on transmission.

 o Extension Fields: Optional fields whose presence is indicated by
 corresponding flags.

 o Private data: Optional private data block (see section 3.4). If
 the private block is present, it immediately follows that last
 extension field present in the header. The private block is
 considered to be part of the GUE header. The length of this data
 is determined by subtracting the starting offset from the header
 length.

3.2. Proto/ctype field

 The proto/ctype fields either contains an Internet protocol number
 (when the C-bit is not set) or GUE control message type (when the C-
 bit is set).

3.2.1 Proto field

 When the C-bit is not set, the proto/ctype field MUST contain an IANA
 Internet Protocol Number. The protocol number is interpreted relative
 to the IP protocol that encapsulates the UDP packet (i.e. protocol of
 the outer IP header). The protocol number serves as an indication of
 the type of the next protocol header which is contained in the GUE
 payload at the offset indicated in Hlen. Intermediate devices may
 parse the GUE payload per the number in the proto/ctype field, and
 header flags cannot affect the interpretation of the proto/ctype
 field.

 When the outer IP protocol is IPv4, the proto field MUST be set to a
 valid IP protocol number usable with IPv4; it MUST NOT be set to a
 number for IPv6 extension headers or ICMPv6 options (number 58). An

Herbert, Yong, Zia Expires September, 2017 [Page 9]

Internet Draft Generic UDP Encapsulation March 13, 2017

 exception is that the destination options extension header using the
 PadN option MAY be used with IPv4 as described in section 3.6. The
 "no next header" protocol number (59) also MAY be used with IPv4 as
 described below.

 When the outer IP protocol is IPv6, the proto field can be set to any
 defined protocol number except that it MUST NOT be set to Hop-by-hop
 options (number 0). If a received GUE packet in IPv6 contains a
 protocol number that is an extension header (e.g. Destination
 Options) then the extension header is processed after the GUE header
 is processed as though the GUE header is an extension header.

 IP protocol number 59 ("No next header") can be set to indicate that
 the GUE payload does not begin with the header of an IP protocol.
 This would be the case, for instance, if the GUE payload were a
 fragment when performing GUE level fragmentation. The interpretation
 of the payload is performed through other means (such as flags and
 extension fields), and intermediate devices MUST NOT parse packets
 based on the IP protocol number in this case.

3.2.2 Ctype field

 When the C-bit is set, the proto/ctype field MUST be set to a valid
 control message type. A value of zero indicates that the GUE payload
 requires further interpretation to deduce the control type. This
 might be the case when the payload is a fragment of a control
 message, where only the reassembled packet can be interpreted as a
 control message.

 Control messages will be defined in an IANA registry. Control message
 types 1 through 127 may be defined in by RFCs. Types 128 through 255
 are reserved to be user defined for experimentation or private
 control messages.

 This document does not specify any standard control message types
 other than type 0.

3.3. Flags and extension fields

 Flags and associated extension fields are the primary mechanism of
 extensibility in GUE. As mentioned in section 3.1, GUE header flags
 indicate the presence of optional extension fields in the GUE header.
 [GUEXTENS] defines a basic set of GUE extensions.

3.3.1. Requirements

 There are sixteen flag bits in the GUE header. Some flags indicate
 the presence of an extension fields. The size of an extension field

Herbert, Yong, Zia Expires September, 2017 [Page 10]

Internet Draft Generic UDP Encapsulation March 13, 2017

 indicated by a flag MUST be fixed.

 Flags can be paired together to allow different lengths for an
 extension field. For example, if two flag bits are paired, a field
 can possibly be three different lengths-- that is bit value of 00
 indicates no field present; 01, 10, and 11 indicate three possible
 lengths for the field. Regardless of how flag bits are paired, the
 lengths and offsets of optional fields corresponding to a set of
 flags MUST be well defined.

 Extension fields are placed in order of the flags. New flags are to
 be allocated from high to low order bit contiguously without holes.
 Flags allow random access, for instance to inspect the field
 corresponding to the Nth flag bit, an implementation only considers
 the previous N-1 flags to determine the offset. Flags after the Nth
 flag are not pertinent in calculating the offset of the Nth flag.
 Random access of flags and fields permits processing of optional
 extensions in an order that is independent of their position in the
 packet. The processing order of extensions defined in [GUEEXTENS]
 demonstrates this property.

 Flags (or paired flags) are idempotent such that new flags MUST NOT
 cause reinterpretation of old flags. Also, new flags MUST NOT alter
 interpretation of other elements in the GUE header nor how the
 message is parsed (for instance, in a data message the proto/ctype
 field always holds an IP protocol number as an invariant).

 The set of available flags can be extended in the future by defining
 a "flag extensions bit" that refers to a field containing an
 additional set of flags.

3.3.2. Example GUE header with extension fields

 An example GUE header for a data message encapsulating an IPv4 packet
 and containing the VNID and Security extension fields (both defined
 in [GUEXTENS]) is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0 |0| 3 | 94 |1|0 0 1| 0 |
 +-+
 | VNID |
 +-+
 | |
 + Security +
 | |
 +-+

Herbert, Yong, Zia Expires September, 2017 [Page 11]

Internet Draft Generic UDP Encapsulation March 13, 2017

 In the above example, the first flag bit is set which indicates that
 the VNID extension is present this is a 32 bit field. The second
 through fourth bits of the flags are paired flags that indicate the
 presence of a security field with eigth possible sizes. In this
 example 001 indicates a sixty-four bit security field.

3.4. Private data

 An implementation MAY use private data for its own use. The private
 data immediately follows the last field in the GUE header and is not
 a fixed length. This data is considered part of the GUE header and
 MUST be accounted for in header length (Hlen). The length of the
 private data MUST be a multiple of four and is determined by
 subtracting the offset of private data in the GUE header from the
 header length. Specifically:

 Private_length = (Hlen * 4) - Length(flags)

 where "Length(flags)" returns the sum of lengths of all the extension
 fields present in the GUE header. When there is no private data
 present, the length of the private data is zero.

 The semantics and interpretation of private data are implementation
 specific. The private data may be structured as necessary, for
 instance it might contain its own set of flags and extension fields.

 An encapsulator and decapsulator MUST agree on the meaning of private
 data before using it. The mechanism to achieve this agreement is
 outside the scope of this document but could include implementation-
 defined behavior, coordinated configuration, in-band communication
 using GUE control messages, or out-of-band messages.

 If a decapsulator receives a GUE packet with private data, it MUST
 validate the private data appropriately. If a decapsulator does not
 expect private data from an encapsulator, the packet MUST be dropped.
 If a decapsulator cannot validate the contents of private data per
 the provided semantics, the packet MUST also be dropped. An
 implementation MAY place security data in GUE private data which if
 present MUST be verified for packet acceptance.

3.5. Message types

3.5.1. Control messages

 Control messages carry formatted data that are implicitly addressed
 to the decapsulator to monitor or control the state or behavior of a
 tunnel (OAM). For instance, an echo request and corresponding echo

Herbert, Yong, Zia Expires September, 2017 [Page 12]

Internet Draft Generic UDP Encapsulation March 13, 2017

 reply message can be defined to test for liveness.

 Control messages are indicated in the GUE header when the C-bit is
 set. The payload is interpreted as a control message with type
 specified in the proto/ctype field. The format and contents of the
 control message are indicated by the type and can be variable length.

 Other than interpreting the proto/ctype field as a control message
 type, the meaning and semantics of the rest of the elements in the
 GUE header are the same as that of data messages. Forwarding and
 routing of control messages should be the same as that of a data
 message with the same outer IP and UDP header and GUE flags; this
 ensures that control messages can be created that follow the same
 path as data messages.

3.5.2. Data messages

 Data messages carry encapsulated packets that are addressed to the
 protocol stack for the associated protocol. Data messages are a
 primary means of encapsulation and can be used to create tunnels for
 overlay networks.

 Data messages are indicated in GUE header when the C-bit is not set.
 The payload of a data message is interpreted as an encapsulated
 packet of an Internet protocol indicated in the proto/ctype field.
 The encapsulated packet immediately follows the GUE header.

3.6. Hiding the transport layer protocol number

 The GUE header indicates the Internet protocol of an encapsulated
 packet. A protocol number is either contained in the Proto/ctype
 field of the primary GUE header or in the Payload Type field of a GUE
 Transform extension field (used to encrypt the payload with DTLS,
 [GUEEXTENS). If the transport protocol number needs to be hidden from
 the network, then a trivial destination options can be used.

 The PadN destination option [RFC2460] can be used to encode the
 transport protocol as a next header of an extension header (and
 maintain alignment of encapsulated transport headers). The
 Proto/ctype field or Payload Type field of the GUE Transform field is
 set to 60 to indicate that the first encapsulated header is a
 destination options extension header.

 The format of the extension header is below:

 +-+
 | Next Header | 2 | 1 | 0 |
 +-+

Herbert, Yong, Zia Expires September, 2017 [Page 13]

Internet Draft Generic UDP Encapsulation March 13, 2017

 For IPv4, it is permitted in GUE to used this precise destination
 option to contain the obfuscated protocol number. In this case next
 header MUST refer to a valid IP protocol for IPv4. No other extension
 headers or destination options are permitted with IPv4.

4. Version 1

 Version 1 of GUE allows direct encapsulation of IPv4 and IPv6 in UDP.
 In this version there is no GUE header; a UDP packet carries an IP
 packet. The first two bits of the UDP payload for GUE are the GUE
 version and coincide with the first two bits of the version number in
 the IP header. The first two version bits of IPv4 and IPv6 are 01, so
 we use GUE version 1 for direct IP encapsulation which makes two bits
 of GUE version to also be 01.

 This technique is effectively a means to compress out the GUE header
 when encapsulating IPv4 or IPv6 packets and there are no flags or
 extension fields present. This method is compatible to use on the
 same port number as packets with the GUE header (GUE version 0
 packets). This technique saves encapsulation overhead on costly links
 for the common use case of IP encapsulation, and also obviates the
 need to allocate a separate port number for IP-over-UDP
 encapsulation.

4.1. Direct encapsulation of IPv4

 The format for encapsulating IPv4 directly in UDP is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+\
 | Source port | Destination port | |
 +-+ UDP
 | Length | Checksum | |
 +-+/
 |0|1|0|0| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source IPv4 Address |
 +-+
 | Destination IPv4 Address |
 +-+

 Note that 0100 value IP version field express the GUE version as 1
 (bits 01) and IP version as 4 (bits 0100).

Herbert, Yong, Zia Expires September, 2017 [Page 14]

Internet Draft Generic UDP Encapsulation March 13, 2017

4.2. Direct encapsulation of IPv6

 The format for encapsulating IPv6 directly in UDP is demonstrated
 below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+\
 | Source port | Destination port | |
 +-+ UDP
 | Length | Checksum | |
 +-+/
 |0|1|1|0| Traffic Class | Flow Label |
 +-+
 | Payload Length | NextHdr | Hop Limit |
 +-+
 | |
 + +
 | |
 + Source IPv6 Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination IPv6 Address +
 | |
 + +
 | |
 +-+

 Note that 0110 value IP version field expresses the GUE version as 1
 (bits 01) and IP version as 6 (bits 0110).

5. Operation

 The figure below illustrates the use of GUE encapsulation between two
 hosts. Host 1 is sending packets to Host 2. An encapsulator performs
 encapsulation of packets from Host 1. These encapsulated packets
 traverse the network as UDP packets. At the decapsulator, packets are
 decapsulated and sent on to Host 2. Packet flow in the reverse
 direction need not be symmetric; GUE encapsulation is not required in
 the reverse path.

Herbert, Yong, Zia Expires September, 2017 [Page 15]

Internet Draft Generic UDP Encapsulation March 13, 2017

 +---------------+ +---------------+
Host 1		Host 2
 +---------------+ +---------------+
 | ^
 V |
 +---------------+ +---------------+ +---------------+
Encapsulator	-->	Layer 3	-->	Decapsulator
		Network		
 +---------------+ +---------------+ +---------------+

 The encapsulator and decapsulator may be co-resident with the
 corresponding hosts, or may be on separate nodes in the network.

5.1. Network tunnel encapsulation

 Network tunneling can be achieved by encapsulating layer 2 or layer 3
 packets. In this case the encapsulator and decapsulator nodes are the
 tunnel endpoints. These could be routers that provide network tunnels
 on behalf of communicating hosts.

5.2. Transport layer encapsulation

 When encapsulating layer 4 packets, the encapsulator and decapsulator
 should be co-resident with the hosts. In this case, the encapsulation
 headers are inserted between the IP header and the transport packet.
 The addresses in the IP header refer to both the endpoints of the
 encapsulation and the endpoints for terminating the transport
 protocol. Note that the transport layer ports in the encapsulated
 packet are independent of the UDP ports in the outer packet.

 Details about performing transport layer encapsulation are discussed
 in [TOU].

5.3. Encapsulator operation

 Encapsulators create GUE data messages, set the fields of the UDP
 header, set flags and optional extension fields in the GUE header,
 and forward packets to a decapsulator.

 An encapsulator can be an end host originating the packets of a flow,
 or can be a network device performing encapsulation on behalf of
 hosts (routers implementing tunnels for instance). In either case,
 the intended target (decapsulator) is indicated by the outer
 destination IP address and destination port in the UDP header.

Herbert, Yong, Zia Expires September, 2017 [Page 16]

Internet Draft Generic UDP Encapsulation March 13, 2017

 If an encapsulator is tunneling packets -- that is encapsulating
 packets of layer 2 or layer 3 protocols (e.g. EtherIP, IPIP, or ESP
 tunnel mode) -- it SHOULD follow standard conventions for tunneling
 of one protocol over another. For instance, if an IP packet is being
 encapsualated in GUE then diffserv interaction [RFC2983] and ECN
 propagation for tunnels [RFC6040] SHOULD be followed.

5.4. Decapsulator operation

 A decapsulator performs decapsulation of GUE packets. A decapsulator
 is addressed by the outer destination IP address of a GUE packet.
 The decapsulator validates packets, including fields of the GUE
 header.

 If a decapsulator receives a GUE packet with an unsupported version,
 unknown flag, bad header length (too small for included extension
 fields), unknown control message type, bad protocol number, an
 unsupported payload type, or an otherwise malformed header, it MUST
 drop the packet. Such events MAY be logged subject to configuration
 and rate limiting of logging messages. No error message is returned
 back to the encapsulator. Note that set flags in a GUE header that
 are unknown to a decapsulator MUST NOT be ignored. If a GUE packet is
 received by a decapsulator with unknown flags, the packet MUST be
 dropped.

5.4.1. Processing a received data message

 If a valid data message is received, the UDP and GUE headers are
 (logically) removed from the packet. The outer IP header remains
 intact and the next protocol in the IP header is set to the protocol
 from the proto field in the GUE header. The resulting packet is then
 resubmitted into the protocol stack to process that packet as though
 it was received with the protocol in the GUE header.

 As an example, consider that a data message is received where GUE
 encapsulates an IP packet. In this case proto field in the GUE header
 is set 94 for IPIP:

 +-------------------------------------+
IP header (next proto = 17,UDP)
UDP

GUE (proto = 94,IPIP)

IP header and packet
 +-------------------------------------+

Herbert, Yong, Zia Expires September, 2017 [Page 17]

Internet Draft Generic UDP Encapsulation March 13, 2017

 The receiver removes the UDP and GUE headers and sets the next
 protocol field in the IP packet to IPIP, which is derived from the
 GUE proto field. The resultant packet would have the format:

 +-------------------------------------+
IP header (next proto = 94,IPIP)
IP header and packet
 +-------------------------------------+

 This packet is then resubmitted into the protocol stack to be
 processed as an IPIP packet.

5.4.2. Processing a received control message

 If a valid control message is received, the packet MUST be processed
 as a control message. The specific processing to be performed depends
 on the ctype in the GUE header.

5.5. Router and switch operation

 Routers and switches SHOULD forward GUE packets as standard UDP/IP
 packets. The outer five-tuple should contain sufficient information
 to perform flow classification corresponding to the flow of the inner
 packet. A switch does not normally need to parse a GUE header, and
 none of the flags or extension fields in the GUE header are expected
 to affect routing.

 A router MUST NOT modify a GUE header when forwarding a packet. It
 MAY encapsulate a GUE packet in another GUE packet, for instance to
 implement a network tunnel (i.e. by encapsulating an IP packet with a
 GUE payload in another IP packet as a GUE payload). In this case, the
 router takes the role of an encapsulator, and the corresponding
 decapsulator is the logical endpoint of the tunnel. When
 encapsulating a GUE packet within another GUE packet, there are no
 specified provisions to automatically GUE copy flags or fields to the
 outer GUE header. Each layer of encapsulation is considered
 independent.

5.6. Middlebox interactions

 A middle box MAY interpret some flags and extension fields of the GUE
 header for classification purposes, but is not required to understand
 any of the flags or extension fields in GUE packets. A middle box
 MUST NOT drop a GUE packet merely because there are flags unknown to
 it. The header length in the GUE header allows a middlebox to inspect
 the payload packet without needing to parse the flags or extension
 fields.

Herbert, Yong, Zia Expires September, 2017 [Page 18]

Internet Draft Generic UDP Encapsulation March 13, 2017

5.6.1. Inferring connection semantics

 A middlebox might infer bidirectional connection semantics for a UDP
 flow. For instance, a stateful firewall might create a five-tuple
 rule to match flows on egress, and a corresponding five-tuple rule
 for matching ingress packets where the roles of source and
 destination are reversed for the IP addresses and UDP port numbers.
 To operate in this environment, a GUE tunnel SHOULD be configured to
 assume connected semantics defined by the UDP five tuple and the use
 of GUE encapsulation needs to be symmetric between both endpoints.
 The source port set in the UDP header MUST be the destination port
 the peer would set for replies. In this case the UDP source port for
 a tunnel would be a fixed value and not set to be flow entropy as
 described in section 5.11.

 The selection of whether to make the UDP source port fixed or set to
 a flow entropy value for each packet sent SHOULD be configurable for
 a tunnel.

5.6.2. NAT

 IP address and port translation can be performed on the UDP/IP
 headers adhering to the requirements for NAT with UDP [RFC4787]. In
 the case of stateful NAT, connection semantics MUST be applied to a
 GUE tunnel as described in section 5.6.1. GUE endpoints MAY also
 invoke STUN [RFC5389] or ICE [RFC5245] to manage NAT port mappings
 for encapsulations.

5.7. Checksum Handling

 The potential for mis-delivery of packets due to corruption of IP,
 UDP, or GUE headers needs to be considered. Historically, the UDP
 checksum would be considered sufficient as a check against corruption
 of either the UDP header and payload or the IP addresses.
 Encapsulation protocols, such as GUE, can be originated or terminated
 on devices incapable of computing the UDP checksum for packet. This
 section discusses the requirements around checksum and alternatives
 that might be used when an endpoint does not support UDP checksum.

5.7.1. Requirements

 One of the following requirements MUST be met:

 o UDP checksums are enabled (for IPv4 or IPv6).

 o The GUE header checksum is used (defined in [GUEEXTENS]).

 o Use zero UDP checksums. This is always permissible with IPv4; in

Herbert, Yong, Zia Expires September, 2017 [Page 19]

Internet Draft Generic UDP Encapsulation March 13, 2017

 IPv6, they can only be used in accordance with applicable
 requirements in [RFC8086], [RFC6935], and [RFC6936].

5.7.2. UDP Checksum with IPv4

 For UDP in IPv4, the UDP checksum MUST be processed as specified in
 [RFC768] and [RFC1122] for both transmit and receive. An
 encapsulator MAY set the UDP checksum to zero for performance or
 implementation considerations. The IPv4 header includes a checksum
 that protects against mis-delivery of the packet due to corruption
 of IP addresses. The UDP checksum potentially provides protection
 against corruption of the UDP header, GUE header, and GUE payload.
 Enabling or disabling the use of checksums is a deployment
 consideration that should take into account the risk and effects of
 packet corruption, and whether the packets in the network are
 already adequately protected by other, possibly stronger mechanisms
 such as the Ethernet CRC. If an encapsulator sets a zero UDP
 checksum for IPv4, it SHOULD use the GUE header checksum as
 described in [GUEEXTENS].

 When a decapsulator receives a packet, the UDP checksum field MUST
 be processed. If the UDP checksum is non-zero, the decapsulator MUST
 verify the checksum before accepting the packet. By default, a
 decapsulator SHOULD accept UDP packets with a zero checksum. A node
 MAY be configured to disallow zero checksums per [RFC1122].
 Configuration of zero checksums can be selective. For instance, zero
 checksums might be disallowed from certain hosts that are known to
 be sending over paths subject to packet corruption. If verification
 of a non-zero checksum fails, a decapsulator lacks the capability to
 verify a non-zero checksum, or a packet with a zero-checksum was
 received and the decapsulator is configured to disallow, the packet
 MUST be dropped.

5.7.3. UDP Checksum with IPv6

 In IPv6, there is no checksum in the IPv6 header that protects
 against mis-delivery due to address corruption. Therefore, when GUE
 is used over IPv6, either the UDP checksum or the GUE header
 checksum SHOULD be used. The UDP checksum and GUE header checksum
 SHOULD not be used at the same time since that would be mostly
 redundant.

 If neither the UDP checksum or the GUE header checksum is used, then
 the requirements for using zero IPv6 UDP checksums in [RFC6935] and
 [RFC6936] MUST be met.

 When a decapsulator receives a packet, the UDP checksum field MUST
 be processed. If the UDP checksum is non-zero, the decapsulator MUST

Herbert, Yong, Zia Expires September, 2017 [Page 20]

Internet Draft Generic UDP Encapsulation March 13, 2017

 verify the checksum before accepting the packet. By default a
 decapsulator MUST only accept UDP packets with a zero checksum if
 the GUE header checksum is used and is verified. If verification of
 a non-zero checksum fails, a decapsulator lacks the capability to
 verify a non-zero checksum, or a packet with a zero-checksum and no
 GUE header checksum was received, the packet MUST be dropped.

5.8. MTU and fragmentation

 Standard conventions for handling of MTU (Maximum Transmission Unit)
 and fragmentation in conjunction with networking tunnels
 (encapsulation of layer 2 or layer 3 packets) SHOULD be followed.
 Details are described in MTU and Fragmentation Issues with In-the-
 Network Tunneling [RFC4459].

 If a packet is fragmented before encapsulation in GUE, all the
 related fragments MUST be encapsulated using the same UDP source
 port. An operator SHOULD set MTU to account for encapsulation
 overhead and reduce the likelihood of fragmentation.

 Alternatively to IP fragmentation, the GUE fragmentation extension
 can be used. GUE fragmentation is described in [GUEEXTENS].

5.9. Congestion control

 Per requirements of [RFC5405], if the IP traffic encapsulated with
 GUE implements proper congestion control no additional mechanisms
 should be required.

 In the case that the encapsulated traffic does not implement any or
 sufficient control, or it is not known whether a transmitter will
 consistently implement proper congestion control, then congestion
 control at the encapsulation layer MUST be provided per [RFC5405].
 Note that this case applies to a significant use case in network
 virtualization in which guests run third party networking stacks
 that cannot be implicitly trusted to implement conformant congestion
 control.

 Out of band mechanisms such as rate limiting, Managed Circuit
 Breaker [CIRCBRK], or traffic isolation MAY be used to provide
 rudimentary congestion control. For finer-grained congestion control
 that allows alternate congestion control algorithms, reaction time
 within an RTT, and interaction with ECN, in-band mechanisms might be
 warranted.

5.10. Multicast

 GUE packets can be multicast to decapsulators using a multicast

Herbert, Yong, Zia Expires September, 2017 [Page 21]

Internet Draft Generic UDP Encapsulation March 13, 2017

 destination address in the encapsulating IP headers. Each receiving
 host will decapsulate the packet independently following normal
 decapsulator operations. The receiving decapsulators need to agree
 on the same set of GUE parameters and properties; how such an
 agreement is reached is outside the scope of this document.

 GUE allows encapsulation of unicast, broadcast, or multicast
 traffic. Flow entropy (the value in the UDP source port) can be
 generated from the header of encapsulated unicast or
 broadcast/multicast packets at an encapsulator. The mapping
 mechanism between the encapsulated multicast traffic and the
 multicast capability in the IP network is transparent and
 independent of the encapsulation and is otherwise outside the scope
 of this document.

5.11. Flow entropy for ECMP

5.11.1. Flow classification

 A major objective of using GUE is that a network device can perform
 flow classification corresponding to the flow of the inner
 encapsulated packet based on the contents in the outer headers.

 Hardware devices commonly perform hash computations on packet
 headers to classify packets into flows or flow buckets. Flow
 classification is done to support load balancing of flows across a
 set of networking resources. Examples of such load balancing
 techniques are Equal Cost Multipath routing (ECMP), port selection
 in Link Aggregation, and NIC device Receive Side Scaling (RSS).
 Hashes are usually either a three-tuple hash of IP protocol, source
 address, and destination address; or a five-tuple hash consisting of
 IP protocol, source address, destination address, source port, and
 destination port. Typically, networking hardware will compute five-
 tuple hashes for TCP and UDP, but only three-tuple hashes for other
 IP protocols. Since the five-tuple hash provides more granularity,
 load balancing can be finer-grained with better distribution. When a
 packet is encapsulated with GUE and connection semantics are not
 applied, the source port in the outer UDP packet is set to a flow
 entropy value that corresponds to the flow of the inner packet. When
 a device computes a five-tuple hash on the outer UDP/IP header of a
 GUE packet, the resultant value classifies the packet per its inner
 flow.

 Examples of deriving flow entropy for encapsulation are:

 o If the encapsulated packet is a layer 4 packet, TCP/IPv4 for
 instance, the flow entropy could be based on the canonical five-
 tuple hash of the inner packet.

Herbert, Yong, Zia Expires September, 2017 [Page 22]

Internet Draft Generic UDP Encapsulation March 13, 2017

 o If the encapsulated packet is an AH transport mode packet with
 TCP as next header, the flow entropy could be a hash over a
 three-tuple: TCP protocol and TCP ports of the encapsulated
 packet.

 o If a node is encrypting a packet using ESP tunnel mode and GUE
 encapsulation, the flow entropy could be based on the contents
 of the clear-text packet. For instance, a canonical five-tuple
 hash for a TCP/IP packet could be used.

 [RFC6438] discusses methods to compute and set flow entropy value for
 IPv6 flow labels. Such methods can also be used to create flow
 entropy values for GUE.

5.11.2. Flow entropy properties

 The flow entropy is the value set in the UDP source port of a GUE
 packet. Flow entropy in the UDP source port SHOULD adhere to the
 following properties:

 o The value set in the source port is within the ephemeral port
 range (49152 to 65535 [RFC6335]). Since the high order two bits
 of the port are set to one, this provides fourteen bits of
 entropy for the value.

 o The flow entropy has a uniform distribution across encapsulated
 flows.

 o An encapsulator MAY occasionally change the flow entropy used
 for an inner flow per its discretion (for security, route
 selection, etc). To avoid thrashing or flapping the value, the
 flow entropy used for a flow SHOULD NOT change more than once
 every thirty seconds (or a configurable value).

 o Decapsulators, or any networking devices, SHOULD NOT attempt to
 interpret flow entropy as anything more than an opaque value.
 Neither should they attempt to reproduce the hash calculation
 used by an encapasulator in creating a flow entropy value. They
 MAY use the value to match further receive packets for steering
 decisions, but MUST NOT assume that the hash uniquely or
 permanently identifies a flow.

 o Input to the flow entropy calculation is not restricted to ports
 and addresses; input could include flow label from an IPv6
 packet, SPI from an ESP packet, or other flow related state in
 the encapsulator that is not necessarily conveyed in the packet.

 o The assignment function for flow entropy SHOULD be randomly

Herbert, Yong, Zia Expires September, 2017 [Page 23]

Internet Draft Generic UDP Encapsulation March 13, 2017

 seeded to mitigate denial of service attacks. The seed may be
 changed periodically.

5.12 Negotiation of acceptable flags and extension fields

 An encapsulator and decapsulator need to achieve agreement about GUE
 parameters will be used in communications. Parameters include GUE
 version, flags and extension fields that can be used, security
 algorithms and keys, supported protocols and control messages, etc.
 This document proposes different general methods to accomplish this,
 however the details of implementing these are considered out of
 scope.

 Possible negotiation methods are:

 o Configuration. The parameters used for a tunnel are configured
 at each endpoint.

 o Negotiation. A tunnel negotiation can be performed. This could
 be accomplished in-band of GUE using control messages or private
 data.

 o Via a control plane. Parameters for communicating with a tunnel
 endpoint can be set in a control plane protocol (such as that
 needed for nvo3).

 o Via security negotiation. Use of security typically implies a
 key exchange between endpoints. Other GUE parameters may be
 conveyed as part of that process.

6. Motivation for GUE

 This section presents the motivation for GUE with respect to other
 encapsulation methods.

6.1. Benefits of GUE

 * GUE is a generic encapsulation protocol. GUE can encapsulate
 protocols that are represented by an IP protocol number. This
 includes layer 2, layer 3, and layer 4 protocols.

 * GUE is an extensible encapsulation protocol. Standard optional
 data such as security, virtual networking identifiers,
 fragmentation are being defined.

 * For extensilbity, GUE uses flag fields as opposed to TLVs as
 some other encapsulation protocols do. Flag fields are strictly
 ordered, allow random access, and an efficient use of header

Herbert, Yong, Zia Expires September, 2017 [Page 24]

Internet Draft Generic UDP Encapsulation March 13, 2017

 space.

 * GUE allows private data to be sent as part of the encapsulation.
 This permits experimentation or customization in deployment.

 * GUE allows sending of control messages such as OAM using the
 same GUE header format (for routing purposes) as normal data
 messages.

 * GUE maximizes deliverability of non-UDP and non-TCP protocols.

 * GUE provides a means for exposing per flow entropy for ECMP for
 atypical protocols such as SCTP, DCCP, ESP, etc.

6.2 Comparison of GUE to other encapsulations

 A number of different encapsulation techniques have been proposed for
 the encapsulation of one protocol over another. EtherIP [RFC3378]
 provides layer 2 tunneling of Ethernet frames over IP. GRE [RFC2784],
 MPLS [RFC4023], and L2TP [RFC2661] provide methods for tunneling
 layer 2 and layer 3 packets over IP. NVGRE [RFC7637] and VXLAN
 [RFC7348] are proposals for encapsulation of layer 2 packets for
 network virtualization. IPIP [RFC2003] and Generic packet tunneling
 in IPv6 [RFC2473] provide methods for tunneling IP packets over IP.

 Several proposals exist for encapsulating packets over UDP including
 ESP over UDP [RFC3948], TCP directly over UDP [TCPUDP], VXLAN
 [RFC7348], LISP [RFC6830] which encapsulates layer 3 packets,
 MPLS/UDP [RFC7510], and Generic UDP Encapsulation for IP Tunneling
 (GRE over UDP)[RFC8086]. Generic UDP tunneling [GUT] is a proposal
 similar to GUE in that it aims to tunnel packets of IP protocols over
 UDP.

 GUE has the following discriminating features:

 o UDP encapsulation leverages specialized network device
 processing for efficient transport. The semantics for using the
 UDP source port for flow entropy as input to ECMP are defined in
 section 5.11.

 o GUE permits encapsulation of arbitrary IP protocols, which
 includes layer 2 3, and 4 protocols.

 o Multiple protocols can be multiplexed over a single UDP port
 number. This is in contrast to techniques to encapsulate
 protocols over UDP using a protocol specific port number (such
 as ESP/UDP, GRE/UDP, SCTP/UDP). GUE provides a uniform and
 extensible mechanism for encapsulating all IP protocols in UDP

Herbert, Yong, Zia Expires September, 2017 [Page 25]

Internet Draft Generic UDP Encapsulation March 13, 2017

 with minimal overhead (four bytes of additional header).

 o GUE is extensible. New flags and extension fields can be
 defined.

 o The GUE header includes a header length field. This allows a
 network node to inspect an encapsulated packet without needing
 to parse the full encapsulation header.

 o Private data in the encapsulation header allows local
 customization and experimentation while being compatible with
 processing in network nodes (routers and middleboxes).

 o GUE includes both data messages (encapsulation of packets) and
 control messages (such as OAM).

 o The flags-field model facilitates efficient implementation of
 extensibility in hardware. For example, a TCAM can be use to
 parse a known set of N flags where the number of entries in the
 TCAM is 2^N. By contrast, the number of TCAM entries needed to
 parse a set of N arbitrarily ordered TLVS is approximately e*N!.

7. Security Considerations

 There are two important considerations of security with respect to
 GUE.

 o Authentication and integrity of the GUE header.

 o Authentication, integrity, and confidentiality of the GUE
 payload.

 GUE security is provided by extensions for security defined in
 [GUEEXTENS]. These extensions include methods to authenticate the GUE
 header and encrypt the GUE payload.

 The GUE header can be authenticated using a security extension for an
 HMAC. Securing the GUE payload can be accomplished use of the GUE
 Payload Transform that can provide DTLS [RFC6347] in the payload of a
 GUE packet to encrypt the payload.

 A hash function for computing flow entropy (section 5.11) SHOULD be
 randomly seeded to mitigate some possible denial service attacks.

8. IANA Considerations

8.1. UDP source port

Herbert, Yong, Zia Expires September, 2017 [Page 26]

Internet Draft Generic UDP Encapsulation March 13, 2017

 A user UDP port number assignment for GUE has been assigned:

 Service Name: gue
 Transport Protocol(s): UDP
 Assignee: Tom Herbert <therbert@google.com>
 Contact: Tom Herbert <therbert@google.com>
 Description: Generic UDP Encapsulation
 Reference: draft-herbert-gue
 Port Number: 6080
 Service Code: N/A
 Known Unauthorized Uses: N/A
 Assignment Notes: N/A

Herbert, Yong, Zia Expires September, 2017 [Page 27]

Internet Draft Generic UDP Encapsulation March 13, 2017

8.2. GUE version number

 IANA is requested to set up a registry for the GUE version number.
 The GUE version number is 2 bits containing four possible values.
 This document defines version 0 and 1. New values are assigned in
 accordance with RFC Required policy [RFC5226].

 +----------------+-------------+---------------+
 | Version number | Description | Reference |
 +----------------+-------------+---------------+
 | 0 | Version 0 | This document |
 | | | |
 | 1 | Version 1 | This document |
 | | | |
 | 2..3 | Unassigned | |
 +----------------+-------------+---------------+

8.3. Control types

 IANA is requested to set up a registry for the GUE control types.
 Control types are 8 bit values. New values for control types 1-127
 are assigned in accordance with RFC Required policy [RFC5226].

 +----------------+------------------+---------------+
 | Control type | Description | Reference |
 +----------------+------------------+---------------+
 | 0 | Need further | This document |
 | | interpretation | |
 | | | |
 | 1..127 | Unassigned | |
 | | | |
 | 128..255 | User defined | This document |
 +----------------+------------------+---------------+

8.4. Flag-fields

 IANA is requested to create a "GUE flag-fields" registry to allocate
 flags and extension fields used with GUE. This shall be a registry of
 bit assignments for flags, length of extension fields for
 corresponding flags, and descriptive strings. There are sixteen bits
 for primary GUE header flags (bit number 0-15). New values are
 assigned in accordance with RFC Required policy [RFC5226].

Herbert, Yong, Zia Expires September, 2017 [Page 28]

Internet Draft Generic UDP Encapsulation March 13, 2017

 +-------------+--------------+-------------+--------------------+
 | Flags bits | Field size | Description | Reference |
 +-------------+--------------+-------------+--------------------+
 | Bit 0 | 4 bytes | VNID | [GUE4NVO3] |
 | | | | |
 | Bit 1..3 | 001->8 bytes | Security | [GUEEXTENS] |
 | | 010->16 bytes| | |
 | | 011->32 bytes| | |
 | | | | |
 | Bit 4 | 8 bytes | Fragmen- | [GUEEXTENS] |
 | | | tation | |
 | | | | |
 | Bit 5 | 4 bytes | Payload | [GUEEXTENS] |
 | | | transform | |
 | | | | |
 | Bit 6 | 4 bytes | Remote | [GUEEXTENS] |
 | | | checksum | |
 | | | offload | |
 | | | | |
 | Bit 7 | 4 bytes | Checksum | [GUEEXTENS] |
 | | | | |
 | Bit 8..15 | | Unassigned | |
 +-------------+--------------+-------------+--------------------+

 New flags are to be allocated from high to low order bit contiguously
 without holes.

9. Acknowledgements

 The authors would like to thank David Liu, Erik Nordmark, Fred
 Templin, Adrian Farrel, Bob Briscoe, and Murray Kucherawy for
 valuable input on this draft.

10. References

10.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI
 10.17487/RFC0768, August 1980, <http://www.rfc-
 editor.org/info/rfc768>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI
 10.17487/RFC2119, March 1997, <http://www.rfc-
 editor.org/info/rfc2119>.

Herbert, Yong, Zia Expires September, 2017 [Page 29]

Internet Draft Generic UDP Encapsulation March 13, 2017

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <http://www.rfc-editor.org/info/rfc2460>.

 [RFC2983] Black, D., "Differentiated Services and Tunnels", RFC
 2983, DOI 10.17487/RFC2983, October 2000, <http://www.rfc-
 editor.org/info/rfc2983>.

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, DOI 10.17487/RFC6040, November
 2010, <http://www.rfc-editor.org/info/rfc6040>.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935, DOI
 10.17487/RFC6935, April 2013, <http://www.rfc-
 editor.org/info/rfc6935>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",
 RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <http://www.rfc-editor.org/info/rfc6936>.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, DOI 10.17487/RFC4459, April
 2006, <http://www.rfc-editor.org/info/rfc4459>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, DOI
 10.17487/RFC1122, October 1989, <http://www.rfc-
 editor.org/info/rfc1122>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165, RFC
 6335, DOI 10.17487/RFC6335, August 2011, <http://www.rfc-
 editor.org/info/rfc6335>.

10.2. Informative References

 [RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
 Algorithm", RFC 2992, DOI 10.17487/RFC2992, November 2000,
 <http://www.rfc-editor.org/info/rfc2992>.

 [RFC4787] Audet, F., Ed., and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <http://www.rfc-editor.org/info/rfc4787>.

Herbert, Yong, Zia Expires September, 2017 [Page 30]

Internet Draft Generic UDP Encapsulation March 13, 2017

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008, <http://www.rfc-
 editor.org/info/rfc5389>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, DOI
 10.17487/RFC5245, April 2010, <http://www.rfc-
 editor.org/info/rfc5245>.

 [RFC8086] Yong, L., Ed., Crabbe, E., Xu, X., and T. Herbert, "GRE-
 in-UDP Encapsulation", RFC 8086, DOI 10.17487/RFC8086,
 March 2017, <http://www.rfc-editor.org/info/rfc8086>.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405, DOI
 10.17487/RFC5405, November 2008, <http://www.rfc-
 editor.org/info/rfc5405>.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,
 <http://www.rfc-editor.org/info/rfc6438>.

 [RFC3378] Housley, R. and S. Hollenbeck, "EtherIP: Tunneling
 Ethernet Frames in IP Datagrams", RFC 3378, DOI
 10.17487/RFC3378, September 2002, <http://www.rfc-
 editor.org/info/rfc3378>.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 DOI 10.17487/RFC2784, March 2000, <http://www.rfc-
 editor.org/info/rfc2784>.

 [RFC4023] Worster, T., Rekhter, Y., and E. Rosen, Ed.,
 "Encapsulating MPLS in IP or Generic Routing Encapsulation
 (GRE)", RFC 4023, DOI 10.17487/RFC4023, March 2005,
 <http://www.rfc-editor.org/info/rfc4023>.

 [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",
 RFC 2661, DOI 10.17487/RFC2661, August 1999,
 <http://www.rfc-editor.org/info/rfc2661>.

 [RFC7637] Garg, P., Ed., and Y. Wang, Ed., "NVGRE: Network
 Virtualization Using Generic Routing Encapsulation", RFC
 7637, DOI 10.17487/RFC7637, September 2015,

Herbert, Yong, Zia Expires September, 2017 [Page 31]

Internet Draft Generic UDP Encapsulation March 13, 2017

 <http://www.rfc-editor.org/info/rfc7637>.

 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, August 2014, <http://www.rfc-
 editor.org/info/rfc7348>.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003, DOI
 10.17487/RFC2003, October 1996, <http://www.rfc-
 editor.org/info/rfc2003>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <http://www.rfc-editor.org/info/rfc2473>.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets", RFC
 3948, DOI 10.17487/RFC3948, January 2005, <http://www.rfc-
 editor.org/info/rfc3948>.

 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
 Locator/ID Separation Protocol (LISP)", RFC 6830, DOI
 10.17487/RFC6830, January 2013, <http://www.rfc-
 editor.org/info/rfc6830>.

 [RFC7510] Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
 "Encapsulating MPLS in UDP", RFC 7510, DOI
 10.17487/RFC7510, April 2015, <http://www.rfc-
 editor.org/info/rfc7510>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, DOI
 10.17487/RFC4340, March 2006, <http://www.rfc-
 editor.org/info/rfc4340>.

 [GUEEXTENS] Herbert, T., Yong, L., and Templin, F., "Extensions for
 Generic UDP Encapsulation" draft-herbert-gue-extensions-00

 [GUE4NVO3] Yong, L., Herbert, T., Zia, O., "Generic UDP
 Encapsulation (GUE) for Network Virtualization Overlay"
 draft-hy-nvo3-gue-4-nvo-03

 [TOU] Herbert, T., "Transport layer protocols over UDP" draft-
 herbert-transports-over-udp-00

 [CIRCBRK] Fairhurst, G., "Network Transport Circuit Breakers",

Herbert, Yong, Zia Expires September, 2017 [Page 32]

Internet Draft Generic UDP Encapsulation March 13, 2017

 draft-ietf-tsvwg-circuit-breaker-15

 [TCPUDP] Chesire, S., Graessley, J., and McGuire, R.,
 "Encapsulation of TCP and other Transport Protocols over
 UDP" draft-cheshire-tcp-over-udp-00

 [GUT] Manner, J., Varia, N., and Briscoe, B., "Generic UDP
 Tunnelling (GUT) draft-manner-tsvwg-gut-02.txt"

 [LCO] Cree, E., https://www.kernel.org/doc/Documentation/
 networking/checksum-offloads.txt

Appendix A: NIC processing for GUE

 This appendix provides some guidelines for Network Interface Cards
 (NICs) to implement common offloads and accelerations to support GUE.
 Note that most of this discussion is generally applicable to other
 methods of UDP based encapsulation.

A.1. Receive multi-queue

 Contemporary NICs support multiple receive descriptor queues (multi-
 queue). Multi-queue enables load balancing of network processing for
 a NIC across multiple CPUs. On packet reception, a NIC selects the
 appropriate queue for host processing. Receive Side Scaling is a
 common method which uses the flow hash for a packet to index an
 indirection table where each entry stores a queue number. Flow
 Director and Accelerated Receive Flow Steering (aRFS) allow a host to
 program the queue that is used for a given flow which is identified
 either by an explicit five-tuple or by the flow’s hash.

 GUE encapsulation is compatible with multi-queue NICs that support
 five-tuple hash calculation for UDP/IP packets as input to RSS. The
 flow entropy in the UDP source port ensures classification of the
 encapsulated flow even in the case that the outer source and
 destination addresses are the same for all flows (e.g. all flows are
 going over a single tunnel).

 By default, UDP RSS support is often disabled in NICs to avoid out-
 of-order reception that can occur when UDP packets are fragmented. As
 discussed above, fragmentation of GUE packets is mostly avoided by
 fragmenting packets before entering a tunnel, GUE fragmentation, path
 MTU discovery in higher layer protocols, or operator adjusting MTUs.
 Other UDP traffic might not implement such procedures to avoid
 fragmentation, so enabling UDP RSS support in the NIC might be a
 considered tradeoff during configuration.

A.2. Checksum offload

Herbert, Yong, Zia Expires September, 2017 [Page 33]

Internet Draft Generic UDP Encapsulation March 13, 2017

 Many NICs provide capabilities to calculate standard ones complement
 payload checksum for packets in transmit or receive. When using GUE
 encapsulation, there are at least two checksums that are of interest:
 the encapsulated packet’s transport checksum, and the UDP checksum in
 the outer header.

A.2.1. Transmit checksum offload

 NICs can provide a protocol agnostic method to offload transmit
 checksum (NETIF_F_HW_CSUM in Linux parlance) that can be used with
 GUE. In this method, the host provides checksum related parameters in
 a transmit descriptor for a packet. These parameters include the
 starting offset of data to checksum, the length of data to checksum,
 and the offset in the packet where the computed checksum is to be
 written. The host initializes the checksum field to pseudo header
 checksum.

 In the case of GUE, the checksum for an encapsulated transport layer
 packet, a TCP packet for instance, can be offloaded by setting the
 appropriate checksum parameters.

 NICs typically can offload only one transmit checksum per packet, so
 simultaneously offloading both an inner transport packet’s checksum
 and the outer UDP checksum is likely not possible.

 If an encapsulator is co-resident with a host, then checksum offload
 may be performed using remote checksum offload (described in
 [GUEEXTENS]). Remote checksum offload relies on NIC offload of the
 simple UDP/IP checksum which is commonly supported even in legacy
 devices. In remote checksum offload, the outer UDP checksum is set
 and the GUE header includes an option indicating the start and offset
 of the inner "offloaded" checksum. The inner checksum is initialized
 to the pseudo header checksum. When a decapsulator receives a GUE
 packet with the remote checksum offload option, it completes the
 offload operation by determining the packet checksum from the
 indicated start point to the end of the packet, and then adds this
 into the checksum field at the offset given in the option. Computing
 the checksum from the start to end of packet is efficient if
 checksum-complete is provided on the receiver.

 Another alternative when an encapsulator is co-resident with a host
 is to perform Local Checksum Offload [LCO]. In this method, the inner
 transport layer checksum is offloaded and the outer UDP checksum can
 be deduced based on the fact that the portion of the packet covered
 by the inner transport checksum will sum to zero (or at least the bit
 wise "not" of the inner pseudo header).

A.2.2. Receive checksum offload

Herbert, Yong, Zia Expires September, 2017 [Page 34]

Internet Draft Generic UDP Encapsulation March 13, 2017

 GUE is compatible with NICs that perform a protocol agnostic receive
 checksum (CHECKSUM_COMPLETE in Linux parlance). In this technique, a
 NIC computes a ones complement checksum over all (or some predefined
 portion) of a packet. The computed value is provided to the host
 stack in the packet’s receive descriptor. The host driver can use
 this checksum to "patch up" and validate any inner packet transport
 checksum, as well as the outer UDP checksum if it is non-zero.

 Many legacy NICs don’t provide checksum-complete but instead provide
 an indication that a checksum has been verified (CHECKSUM_UNNECESSARY
 in Linux). Usually, such validation is only done for simple TCP/IP or
 UDP/IP packets. If a NIC indicates that a UDP checksum is valid, the
 checksum-complete value for the UDP packet is the "not" of the pseudo
 header checksum. In this way, checksum-unnecessary can be converted
 to checksum-complete. So, if the NIC provides checksum-unnecessary
 for the outer UDP header in an encapsulation, checksum conversion can
 be done so that the checksum-complete value is derived and can be
 used by the stack to validate checksums in the encapsulated packet.

A.3. Transmit Segmentation Offload

 Transmit Segmentation Offload (TSO) is a NIC feature where a host
 provides a large (greater than MTU size) TCP packet to the NIC, which
 in turn splits the packet into separate segments and transmits each
 one. This is useful to reduce CPU load on the host.

 The process of TSO can be generalized as:

 - Split the TCP payload into segments which allow packets with
 size less than or equal to MTU.

 - For each created segment:

 1. Replicate the TCP header and all preceding headers of the
 original packet.

 2. Set payload length fields in any headers to reflect the
 length of the segment.

 3. Set TCP sequence number to correctly reflect the offset of
 the TCP data in the stream.

 4. Recompute and set any checksums that either cover the payload
 of the packet or cover header which was changed by setting a
 payload length.

 Following this general process, TSO can be extended to support TCP
 encapsulation in GUE. For each segment the Ethernet, outer IP, UDP

Herbert, Yong, Zia Expires September, 2017 [Page 35]

Internet Draft Generic UDP Encapsulation March 13, 2017

 header, GUE header, inner IP header (if tunneling), and TCP headers
 are replicated. Any packet length header fields need to be set
 properly (including the length in the outer UDP header), and
 checksums need to be set correctly (including the outer UDP checksum
 if being used).

 To facilitate TSO with GUE, it is recommended that extension fields
 do not contain values that need to be updated on a per segment basis.
 For example, extension fields should not include checksums, lengths,
 or sequence numbers that refer to the payload. If the GUE header does
 not contain such fields then the TSO engine only needs to copy the
 bits in the GUE header when creating each segment and does not need
 to parse the GUE header.

A.4. Large Receive Offload

 Large Receive Offload (LRO) is a NIC feature where packets of a TCP
 connection are reassembled, or coalesced, in the NIC and delivered to
 the host as one large packet. This feature can reduce CPU utilization
 in the host.

 LRO requires significant protocol awareness to be implemented
 correctly and is difficult to generalize. Packets in the same flow
 need to be unambiguously identified. In the presence of tunnels or
 network virtualization, this may require more than a five-tuple match
 (for instance packets for flows in two different virtual networks may
 have identical five-tuples). Additionally, a NIC needs to perform
 validation over packets that are being coalesced, and needs to
 fabricate a single meaningful header from all the coalesced packets.

 The conservative approach to supporting LRO for GUE would be to
 assign packets to the same flow only if they have identical five-
 tuple and were encapsulated the same way. That is the outer IP
 addresses, the outer UDP ports, GUE protocol, GUE flags and fields,
 and inner five tuple are all identical.

Appendix B: Implementation considerations

B.1. Priveleged ports

 Using the source port to contain a flow entropy value disallows the
 security method of a receiver enforcing that the source port be a
 privileged port. Privileged ports are defined by some operating
 systems to restrict source port binding. Unix, for instance,
 considered port number less than 1024 to be privileged.

 Enforcing that packets are sent from a privileged port is widely
 considered an inadequate security mechanism and has been mostly

Herbert, Yong, Zia Expires September, 2017 [Page 36]

Internet Draft Generic UDP Encapsulation March 13, 2017

 deprecated. To approximate this behavior, an implementation could
 restrict a user from sending a packet destined to the GUE port
 without proper credentials.

B.2. Setting flow entropy as a route selector

 An encapsulator generating flow entropy in the UDP source port could
 modulate the value to perform a type of multipath source routing.
 Assuming that networking switches perform ECMP based on the flow
 hash, a sender can affect the path by altering the flow entropy. For
 instance, a host can store a flow hash in its PCB for an inner flow,
 and might alter the value upon detecting that packets are traversing
 a lossy path. Changing the flow entropy for a flow SHOULD be subject
 to hysteresis (at most once every thirty seconds) to limit the number
 of out of order packets.

B.3. Hardware protocol implementation considerations

 Low level data path protocol, such is GUE, are often supported in
 high speed network device hardware. Variable length header (VLH)
 protocols like GUE are often considered difficult to efficiently
 implement in hardware. In order to retain the important
 characteristics of an extensible and robust protocol, hardware
 vendors may practice "constrained flexibility". In this model, only
 certain combinations or protocol header parameterizations are
 implemented in hardware fast path. Each such parameterization is
 fixed length so that the particular instance can be optimized as a
 fixed length protocol. In the case of GUE, this constitutes specific
 combinations of GUE flags, fields, and next protocol. The selected
 combinations would naturally be the most common cases which form the
 "fast path", and other combinations are assumed to take the "slow
 path".

 In time, needs and requirements of the protocol may change which may
 manifest themselves as new parameterizations to be supported in the
 fast path. To allow allow this extensibility, a device practicing
 constrained flexibility should allow the fast path parameterizations
 to be programmable.

Authors’ Addresses

 Tom Herbert
 Quantonium
 4701 Patrick Henry
 Santa Clara, CA 95054
 US

 Email: tom@herbertland.com

Herbert, Yong, Zia Expires September, 2017 [Page 37]

Internet Draft Generic UDP Encapsulation March 13, 2017

 Lucy Yong
 Huawei USA
 5340 Legacy Dr.
 Plano, TX 75024
 US

 Email: lucy.yong@huawei.com

 Osama Zia
 Microsoft
 1 Microsoft Way
 Redmond, WA 98029
 US

 Email: osamaz@microsoft.com

Herbert, Yong, Zia Expires September, 2017 [Page 38]

Internet Area WG J. Touch
Internet Draft USC/ISI
Intended status: Informational M. Townsley
Updates: 4459 Cisco
Expires: September 2017 March 13, 2017

 IP Tunnels in the Internet Architecture
 draft-ietf-intarea-tunnels-04.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on September 13, 2017.

Touch, Townsley Expires September 13, 2017 [Page 1]

Internet-Draft Tunnels in the Internet March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

 This document discusses the role of IP tunnels in the Internet
 architecture. An IP tunnel transits IP datagrams as payloads in non-
 link layer protocols. This document explains the relationship of IP
 tunnels to existing protocol layers and the challenges in supporting
 IP tunneling, based on the equivalence of tunnels to links. The
 implications of this document are used to derive recommendations that
 update MTU and fragment issues in RFC 4459.

Table of Contents

 1. Introduction...3
 2. Conventions used in this document..............................6
 2.1. Key Words...6
 2.2. Terminology...6
 3. The Tunnel Model..10
 3.1. What is a Tunnel?..11
 3.2. View from the Outside....................................13
 3.3. View from the Inside.....................................13
 3.4. Location of the Ingress and Egress.......................14
 3.5. Implications of This Model...............................14
 3.6. Fragmentation..15
 3.6.1. Outer Fragmentation.................................16
 3.6.2. Inner Fragmentation.................................17
 3.6.3. The Necessity of Outer Fragmentation................18
 4. IP Tunnel Requirements..19
 4.1. Encapsulation Header Issues..............................19
 4.1.1. General Principles of Header Fields Relationships...19
 4.1.2. Addressing Fields...................................20
 4.1.3. Hop Count Fields....................................20

Touch, Townsley Expires September 13, 2017 [Page 2]

Internet-Draft Tunnels in the Internet March 2017

 4.1.4. IP Fragment Identification Fields...................21
 4.1.5. Checksums...22
 4.2. MTU Issues...23
 4.2.1. Minimum MTU Considerations..........................23
 4.2.2. Fragmentation.......................................26
 4.2.3. Path MTU Discovery..................................29
 4.3. Coordination Issues......................................30
 4.3.1. Signaling...30
 4.3.2. Congestion..32
 4.3.3. Multipoint Tunnels and Multicast....................33
 4.3.4. Load Balancing......................................33
 4.3.5. Recursive Tunnels...................................34
 5. Observations..34
 5.1. Summary of Recommendations...............................34
 5.2. Impact on Existing Encapsulation Protocols...............35
 5.3. Tunnel Protocol Designers................................38
 5.3.1. For Future Standards................................38
 5.3.2. Diagnostics...38
 5.4. Tunnel Implementers......................................39
 5.5. Tunnel Operators...39
 6. Security Considerations.......................................40
 7. IANA Considerations...41
 8. References..41
 8.1. Normative References.....................................41
 8.2. Informative References...................................41
 9. Acknowledgments...46
 APPENDIX A: Fragmentation efficiency.............................48
 A.1. Selecting fragment sizes.................................48
 A.2. Packing..49

1. Introduction

 The Internet layering architecture is loosely based on the ISO seven
 layer stack, in which data units traverse the stack by being wrapped
 inside data units of the next layer down [Cl88][Zi80]. A tunnel is a
 mechanism for transmitting data units between endpoints by wrapping
 them as data units of the same or higher layers, e.g., IP in IP
 (Figure 1) or IP in UDP (Figure 2).

 +----+----+--------------+
 | IP’| IP | Data |
 +----+----+--------------+

 Figure 1 IP inside IP

Touch, Townsley Expires September 13, 2017 [Page 3]

Internet-Draft Tunnels in the Internet March 2017

 +----+-----+----+--------------+
 | IP’| UDP | IP | Data |
 +----+-----+----+--------------+

 Figure 2 IP in UDP in IP in Ethernet

 This document focuses on tunnels that transit IP packets, i.e., in
 which an IP packet is the payload of another protocol, other than a
 typical link layer. A tunnel is a virtual link that can help decouple
 the network topology seen by transiting packets from the underlying
 physical network [To98][RFC2473]. Tunnels were critical in the
 development of multicast because not all routers were capable of
 processing multicast packets [Er94]. Tunnels allowed multicast
 packets to transit efficiently between multicast-capable routers over
 paths that did not support native link-layer multicast. Similar
 techniques have been used to support incremental deployment of other
 protocols over legacy substrates, such as IPv6 [RFC2546].

 Use of tunnels is common in the Internet. The word "tunnel" occurs in
 nearly 1,500 RFCs (of nearly 8,000 current RFCs, close to 20%), and
 is supported within numerous protocols, including:

 o IP in IP / mobile IP - IPv4 in IPv4 tunnels
 [RFC2003][RFC2473][RFC5944]

 o IP in IPv6 - IPv6 or IPv4 in IPv6 [RFC2473]

 o IPsec - includes a tunnel mode to enable encryption or
 authentication of the an entire IP datagram inside another IP
 datagram [RFC4301]

 o Generic Router Encapsulation (GRE) - a shim layer for tunneling
 any network layer in any other network layer, as in IP in GRE in
 IP [RFC2784][RFC7588][RFC7676], or inside UDP in IP [RFC8086]

 o MPLS - a shim layer for tunneling IP over a circuit-like path over
 a link layer [RFC3031] or inside UDP in IP [RFC7510], in which
 identifiers are rewritten on each hop, often used for traffic
 provisioning

 o LISP - a mechanism that uses multipoint IP tunnels to reduce
 routing table load within an enclave of routers at the expense of
 more complex tunnel ingress encapsulation tables [RFC6830]

 o TRILL - a mechanism that uses multipoint L2 tunnels to enable use
 of L3 routing (typically IS-IS) in an enclave of Ethernet bridges
 [RFC5556][RFC6325]

Touch, Townsley Expires September 13, 2017 [Page 4]

Internet-Draft Tunnels in the Internet March 2017

 o Generic UDP Encapsulation (GUE) - IP in UDP in IP [He16]

 o Automatic Multicast Tunneling (AMT) - IP in UDP in IP for
 multicast [RFC7450]

 o L2TP - PPP over IP, to extend a subscriber’s DSL/FTTH connection
 from an access line provider to an ISP [RFC3931]

 o L2VPNs - provides a link topology different from that provided by
 physical links [RFC4664]; many of these are not classical tunnels,
 using only tags (Ethernet VLAN tags) rather than encapsulation

 o L3VPNs - provides a network topology different from that provided
 by ISPs [RFC4176]

 o NVO3 - data center network sharing (to be determined, which may
 include use of GUE or other tunnels) [RFC7364]

 o PWE3 - emulates wire-like services over packet-switched services
 [RFC3985]

 o SEAL/AERO -IP in IP tunneling with an additional shim header
 designed to overcome the limitations of RFC2003 [RFC5320][Te16]

 The variety of tunnel mechanisms raises the question of the role of
 tunnels in the Internet architecture and the potential need for these
 mechanisms to have similar and predictable behavior. In particular,
 the ways in which packet sizes (i.e., Maximum Transmission Unit or
 MTU) mismatch and error signals (e.g., ICMP) are handled may benefit
 from a coordinated approach.

 Regardless of the layer in which encapsulation occurs, tunnels
 emulate a link. The only difference is that a link operates over a
 physical communication channel, whereas a tunnel operates over other
 software protocol layers. Because tunnels are links, they are subject
 to the same issues as any link, e.g., MTU discovery, signaling, and
 the potential utility of native support for broadcast and multicast
 [RFC3819]. Tunnels have some advantages over native links, being
 potentially easier to reconfigure and control because they can
 generally rely on existing out-of-band communication between its
 endpoints.

 The first attempt to use large-scale tunnels was to transit multicast
 traffic across the Internet in 1988, and this resulted in ’tunnel
 collapse’. At the time, tunnels were not implemented as
 encapsulation-based virtual links, but rather as loose source routes
 on un-encapsulated IP datagrams [RFC1075]. Then, as now, routers did

Touch, Townsley Expires September 13, 2017 [Page 5]

Internet-Draft Tunnels in the Internet March 2017

 not support use of the loose source route IP option at line rate, and
 the multicast traffic caused overload of the so-called "slow path"
 processing of IP datagrams in software. Using encapsulation tunnels
 avoided that collapse by allowing the forwarding of encapsulated
 packets to use the "fast path" hardware processing [Er94].

 The remainder of this document describes the general principles of IP
 tunneling and discusses the key considerations in the design of any
 protocol that tunnels IP datagrams. It derives its conclusions from
 the equivalence of tunnels and links and from requirements of
 existing standards for supporting IPv4 and IPv6 as payloads.

2. Conventions used in this document

2.1. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

 In this document, these key words will appear with that
 interpretation only when in ALL CAPS. Lower case uses of these words
 are not to be interpreted as carrying RFC-2119 significance.

2.2. Terminology

 This document uses the following terminology. Optional words in the
 term are indicated in parentheses, e.g., "(link or network)
 interface" or "egress (interface)".

 Terms from existing RFCs:

 o Messages: variable length data labeled with globally-unique
 endpoint IDs, also known as a datagram for IP messages [RFC791].

 o Node: a physical or logical network device that participates as
 either a host [RFC1122][RFC6434] or router [RFC1812]. This term
 originally referred to gateways since some very early RFCs [RFC5],
 but is currently the common way to describe a point in a network
 at which messages are processed.

 o Host or endpoint: a node that sources or sinks messages labeled
 from/to its IDs, typically known as a host for both IP and higher-
 layer protocol messages [RFC1122].

 o Source or sender: the node that generates a message [RFC1122].

Touch, Townsley Expires September 13, 2017 [Page 6]

Internet-Draft Tunnels in the Internet March 2017

 o Destination or receiver: the node that consumes a message
 [RFC1122].

 o Router or gateway: a node that relays IP messages using
 destination IDs and local context [RFC1812]. Routers also act as
 hosts when they source or sink messages. Also known as a forwarder
 for IP messages. Note that the notion of router is relative to the
 layer at which message processing is considered [To16].

 o Link: a communications medium (or emulation thereof) that
 transfers IP messages between nodes without traversing a router
 (as would require decrementing the hop count) [RFC1122][RFC1812].

 o (Link or network) Interface: a location on a link co-located with
 a node where messages depart onto that link or arrive from that
 link. On physical links, this interface formats the message for
 transmission and interprets the received signals.

 o Path: a sequence of one or more links over which an IP message
 traverses between source and destination nodes (hosts or routers).

 o (Link) MTU: the largest message that can transit a link [RFC791],
 also often referred to simply as "MTU". It does not include the
 size of link-layer information, e.g., link layer headers or
 trailers, i.e., it refers to the message that the link can carry
 as a payload rather than the message as it appears on the link.
 This is thus the largest network layer packet (including network
 layer headers, e.g., IP datagram) that can transit a link. Note
 that this need not be the native size of messages on the link,
 i.e., the link may internally fragment and reassemble messages.
 For IPv4, the smallest MTU must be at least 68 bytes [RFC791], and
 for IPv6 the smallest MTU must be at least 1280 bytes [RFC2460].

 o EMTU_S (effective MTU for sending): the largest message that can
 transit a link, possibly also accounting for fragmentation that
 happens before the fragments are emitted onto the link [RFC1122].
 When source fragmentation is not possible, EMTU_S = (link) MTU.
 For IPv4, this is MUST be at least 68 bytes [RFC791] and for IPv6
 this MUST be at least 1280 bytes [RFC2460].

 o EMTU_R (effective MTU to receive): the largest payload message
 that a receiver must be able to accept. This thus also represents
 the largest message that can traverse a link, taking into account
 reassembly at the receiver that happens after the fragments are
 received [RFC1122]. For IPv4, this is MUST be at least 576 bytes
 [RFC791] and for IPv6 this MUST be at least 1500 bytes [RFC2460].

Touch, Townsley Expires September 13, 2017 [Page 7]

Internet-Draft Tunnels in the Internet March 2017

 o Path MTU (PMTU): the largest message that can transit a path of
 links [RFC1191][RFC1981]. Typically, this is the minimum of the
 link MTUs of the links of the path, and represents the largest
 network layer message (including network layer headers) that can
 transit a path without requiring fragmentation while in transit.
 Note that this is not the largest network packet that can be sent
 between a source and destination, because that network packet
 might have been fragmented at the network layer of the source and
 reassembled at the network layer of the destination (if
 supported).

 o Tunnel: a protocol mechanism that transits messages between an
 ingress interface and egress interface using encapsulation to
 allow an existing network path to appear as a single link
 [RFC1853]. Note that a protocol can be used to tunnel itself (IP
 over IP). There is essentially no difference between a tunnel and
 the conventional layering of the ISO stack (i.e., by this
 definition, Ethernet is can be considered tunnel for IP). A tunnel
 is also known as a virtual link.

 o Ingress (interface): the virtual link interface of a tunnel that
 receives messages within a node, encapsulates them according to
 the tunnel protocol, and transmits them into the tunnel [RFC2983].
 An ingress is the tunnel equivalent of the outgoing (departing)
 network interface of a link, and its encapsulation processing is
 the tunnel equivalent of encoding a message for transmission over
 a physical link. The ingress virtual link interface can be co-
 located with the traffic source.

 The term ’ingress’ in other RFCs also refers to ’network ingress’,
 which is the entry point of traffic to a transit network. Because
 this document focuses on tunnels, the term "ingress" used in the
 remainder of this document implies "tunnel ingress".

 o Egress (interface): a virtual link interface of a tunnel that
 receives messages that have finished transiting a tunnel and
 presents them to a node [RFC2983]. For reasons similar to ingress,
 the term ’egress’ will refer to ’tunnel egress’ throughout the
 remainder of this document. An egress is the tunnel equivalent of
 the incoming (arriving) network interface of a link and its
 decapsulation processing is the tunnel equivalent of interpreting
 a signal received from a physical link. The egress decapsulates
 messages for further transit to the destination. The egress
 virtual link interface can be co-located with the traffic
 destination.

Touch, Townsley Expires September 13, 2017 [Page 8]

Internet-Draft Tunnels in the Internet March 2017

 o Ingress node: network device on which an ingress is attached as a
 virtual link interface [RFC2983]. Note that a node can act as both
 an ingress node and an egress node at the same time, but typically
 only for different tunnels.

 o Egress node: device where an egress is attached as a virtual link
 interface [RFC2983]. Note that a device can act as both a ingress
 node and an egress node at the same time, but typically only for
 different tunnels.

 o Inner header: the header of the message as it arrives to the
 ingress [RFC2003].

 o Outer header(s): the headers added to the message by the ingress,
 as part of the encapsulation for tunnel transit [RFC2003].

 o Mid-tunnel fragmentation: Fragmentation of the message during the
 tunnel transit, as could occur for IPv4 datagrams with DF=0
 [RFC2983].

 o Atomic packet or datagram: an IP packet that has not been
 fragmented and which cannot be fragmented further [RFC6864]

 The following terms are introduced by this document:

 o (Tunnel) transit packet: the packet arriving at a node connected
 to a tunnel that enters the ingress interface and exits the egress
 interface, i.e., the packet carried over the tunnel. This is
 sometimes known as the ’tunneled packet’, i.e., the packet carried
 over the tunnel. This is the tunnel equivalent of a network layer
 packet as it would traverse a link. This document focuses on IPv4
 and IPv6 transit packets.

 o (Tunnel) link packet: packets that traverse from ingress interface
 to egress interface, in which resides all or part of a transit
 packet. This is the tunnel equivalent of a link layer packet as it
 would traverse a link, which is why we use the same terminology.

 o Tunnel MTU: the largest transit packet that can traverse a tunnel,
 i.e., the tunnel equivalent of a link MTU, which is why we use the
 same terminology. This is the largest transit packet which can be
 reassembled at the egress interface.

 o Tunnel atom: the largest transit packet that can traverse a tunnel
 as an atomic packet, i.e., without requiring tunnel link packet
 fragmentation either at the ingress or on-path between the ingress
 and egress.

Touch, Townsley Expires September 13, 2017 [Page 9]

Internet-Draft Tunnels in the Internet March 2017

 o Inner fragmentation: fragmentation of the transit packet that
 arrives at the ingress interface before any additional headers are
 added. This can only correctly occur for IPv4 DF=0 datagrams.

 o Outer fragmentation: source fragmentation of the tunnel link
 packet after encapsulation; this can involve fragmenting the
 outermost header or any of the other (if any) protocol layers
 involved in encapsulation.

 o Maximum frame size (MFS): the link-layer equivalent of the MTU,
 using the OSI term ’frame’. For Ethernet, the MTU (network packet
 size) is 1500 bytes but the MFS (link frame size) is 1518 bytes
 originally, and 1522 bytes assuming VLAN (802.1Q) tagging support.

 o EMFS_S: the link layer equivalent of EMTU_S.

 o EMFS_R: the link layer equivalent of EMTU_R.

 o Path MFS: the link layer equivalent of PMTU.

3. The Tunnel Model

 A network architecture is an abstract description of a distributed
 communications system, its components and their relationships, the
 requisite properties of those components and the emergent properties
 of the system that result [To03]. Such descriptions can help explain
 behavior, as when the OSI seven-layer model is used as a teaching
 example [Zi80]. Architectures describe capabilities - and, just as
 importantly, constraints.

 A network can be defined as a system of endpoints and relays
 interconnected by communication paths, abstracting away issues of
 naming in order to focus on message forwarding. To the extent that
 the Internet has a single, coherent interpretation, its architecture
 is defined by its core protocols (IP [RFC791], TCP [RFC793], UDP
 [RFC768]) whose messages are handled by hosts, routers, and links
 [Cl88][To03], as shown in Figure 3:

 +------+ ------ ------ +------+
 | | / \ / \ | |
 | HOST |--+ ROUTER +--+ ROUTER +--| HOST |
 | | \ / \ / | |
 +------+ ------ ------ +------+

 Figure 3 Basic Internet architecture

Touch, Townsley Expires September 13, 2017 [Page 10]

Internet-Draft Tunnels in the Internet March 2017

 As a network architecture, the Internet is a system of hosts
 (endpoints) and routers (relays) interconnected by links that
 exchange messages when possible. "When possible" defines the
 Internet’s "best effort" principle. The limited role of routers and
 links represents the End-to-End Principle [Sa84] and longest-prefix
 match enables hierarchical forwarding using compact tables.

 Although the definitions of host, router, and link seem absolute,
 they are often relative as viewed within the context of one protocol
 layer, each of which can be considered a distinct network
 architecture. An Internet gateway is an OSI Layer 3 router when it
 transits IP datagrams but it acts as an OSI Layer 2 host as it
 sources or sinks Layer 2 messages on attached links to accomplish
 this transit capability. In this way, one device (Internet gateway)
 behaves as different components (router, host) at different layers.

 Even though a single device may have multiple roles - even
 concurrently - at a given layer, each role is typically static and
 determined by context. An Internet gateway always acts as a Layer 2
 host and that behavior does not depend on where the gateway is viewed
 from within Layer 2. In the context of a single layer, a device’s
 behavior is typically modeled as a single component from all
 viewpoints in that layer (with some notable exceptions, e.g., Network
 Address Translators, which appear as hosts and routers, depending on
 the direction of the viewpoint [To16]).

3.1. What is a Tunnel?

 A tunnel can be modeled as a link in another network
 [To98][To01][To03]. In Figure 4, a source host (Hsrc) and destination
 host (Hdst) communicating over a network M in which two routers (Ra
 and Rd) are connected by a tunnel. Keep in mind that it is possible
 that both network N and network M can both be components of the
 Internet, i.e., there may be regular traffic as well as tunneled
 traffic over any of the routers shown.

 --_ --
 +------+ / \ / \ +------+
 | Hsrc |--+ Ra + -- -- + Rd +--| Hdst |
 +------+ \ //\ / \ / \ /\\ / +------+
 --/I \--+ Rb +--+ Rc +--/E \--
 \ / \ / \ / \ /
 \/ -- -- \/
 <------ Network N ------->
 <-------------------- Network M --------------------->

 Figure 4 The big picture

Touch, Townsley Expires September 13, 2017 [Page 11]

Internet-Draft Tunnels in the Internet March 2017

 The tunnel consists of two interfaces - an ingress (I) and an egress
 (E) that lie along a path connected by network N. Regardless of how
 the ingress and egress interfaces are connected, the tunnel serves as
 a link between the nodes it connects (here, Ra and Rd).

 IP packets arriving at the ingress interface are encapsulated to
 traverse network N. We call these packets ’tunnel transit packets’
 (or just ’transit packets’) because they will transit the tunnel
 inside one or more of what we call ’tunnel link packets’. Transit
 packets correspond to network (IP) packets traversing a conventional
 link and tunnel link packets correspond to the packets of a
 conventional link layer (which can be called just ’link packets’).

 Link packets use the source address of the ingress interface and the
 destination address of the egress interface - using whatever address
 is appropriate to the Layer at which the ingress and egress
 interfaces operate (Layer 2, Layer 3, Layer 4, etc.). The egress
 interface decapsulates those messages, which then continue on network
 M as if emerging from a link. To transit packets and to the routers
 the tunnel connects (Ra and Rd), the tunnel acts as a link and the
 ingress and egress interfaces act as network interfaces to that link.

 The model of each component (ingress and egress interfaces) and the
 entire system (tunnel) depends on the layer from which they are
 viewed. From the perspective of the outermost hosts (Hsrc and Hdst),
 the tunnel appears as a link between two routers (Ra and Rd). For
 routers along the tunnel (e.g., Rb and Rc), the ingress and egress
 interfaces appear as the endpoint hosts on network N.

 When the tunnel network (N) is implemented using the same protocol as
 the endpoint network (M), the picture looks flatter (Figure 5), as if
 it were running over a single network. However, this appearance is
 incorrect - nothing has changed from the previous case. From the
 perspective of the endpoints, Rb and Rc and network N don’t exist and
 aren’t visible, and from the perspective of the tunnel, network M
 doesn’t exist. The fact that network N and M use the same protocol,
 and may traverse the same links is irrelevant.

 --_ -- -- --
 +------+ / \ /\ / \ / \ /\ / \ +------+
 | Hsrc |--+ Ra +/I \--+ Rb +--+ Rc +--/E \+ Rd +--| Hdst |
 +------+ \ / \ / \ / \ / \ / \ / +------+
 -- \/ -- -- \/ --
 <---- Network N ----->
 <------------------ Network M ------------------->

 Figure 5 IP in IP network picture

Touch, Townsley Expires September 13, 2017 [Page 12]

Internet-Draft Tunnels in the Internet March 2017

3.2. View from the Outside

 As already observed, from outside the tunnel, to network M, the
 entire tunnel acts as a link (Figure 6). Consequently all
 requirements for links supporting IP also apply to tunnels [RFC3819].

 --_ --
 +------+ / \ / \ +------+
 | Hsrc |--+ Ra +--------------------------+ Rd +--| Hdst |
 +------+ \ / \ / +------+
 -- --
 <------------------ Network M ------------------->

 Figure 6 Tunnels as viewed from the outside

 For example, the IP datagram hop counts (IPv4 Time-to-Live [RFC791]
 and IPv6 Hop Limit [RFC2460]) are decremented when traversing a
 router, but not when traversing a link - or thus a tunnel. Similarly,
 because the ingress and egress are interfaces on this outer network,
 they should never issue ICMP messages. A router or host would issue
 the appropriate ICMP, e.g., "packet too big" (IPv4 fragmentation
 needed and DF set [RFC792] or IPv6 packet too big [RFC4443]), when
 trying to send a packet to the egress, as it would for any interface.

 Tunnels have a tunnel MTU - the largest message that can transit that
 tunnel, just as links have a link MTU. Tis MTU may not reflect the
 native message size of hops within a multihop link (or tunnel) and
 the same is true for a tunnel. In both cases, the MTU is defined by
 the link’s (or tunnel’s) effective MTU to receive (EMTU_R).

3.3. View from the Inside

 Within network N, i.e., from inside the tunnel itself, the ingress
 interface is a source of tunnel link packets and the egress interface
 is a sink - so both are viewed as hosts on network N (Figure 7).
 Consequently [RFC1122] Internet host requirements apply to ingress
 and egress interfaces when Network N uses IP (and thus the
 ingress/egress interfaces use IP encapsulation).

 _ -- --
 /\ / \ / \ /\
 /I \--+ Rb +--+ Rc +--/E \
 \ / \ / \ / \ /
 \/ -- -- \/
 <---- Network N ----->

 Figure 7 Tunnels, as viewed from within the tunnel

Touch, Townsley Expires September 13, 2017 [Page 13]

Internet-Draft Tunnels in the Internet March 2017

 Viewed from within the tunnel, the outer network (M) doesn’t exist.
 Tunnel link packets can be fragmented by the source (ingress
 interface) and reassembled at the destination (egress interface),
 just as at conventional hosts. The path between ingress and egress
 interfaces has a path MTU, but the endpoints can exchange messages as
 large as can be reassembled at the destination (egress interface),
 i.e., the EMTU_R of the egress interface. However, in both cases,
 these MTUs refer to the size of the message that can transit the
 links and between the hosts of network N, which represents a link
 layer to network M. I.e., the MTUs of network N represent the maximum
 frame sizes (MFSs) of the tunnel as a link in network M.

 Information about the network - i.e., regarding network N MTU sizes,
 network reachability, etc. - are relayed from the destination (egress
 interface) and intermediate routers back to the source (ingress
 interface), without regard for the external network (M). When such
 messages arrive at the ingress interface, they may affect the
 properties of that interface (e.g., its reported MTU to network M),
 but they should never directly cause new ICMPs in the outer network
 M. Again, events at interfaces don’t generate ICMP messages; it would
 be the host or router at which that interface is attached that would
 generate ICMPs, e.g., upon attempting to use that interface.

3.4. Location of the Ingress and Egress

 The ingress and egress interfaces are endpoints of the tunnel. Tunnel
 interfaces may be physical or virtual. The interface may be
 implemented inside the node where the tunnel attaches, e.g., inside a
 host or router. The interface may also be implemented as a "bump in
 the wire" (BITW), somewhere along a link between the two nodes the
 link interconnects. IP in IP tunnels are often implemented as
 interfaces on nodes, whereas IPsec tunnels are sometimes implemented
 as BITW. These implementation variations determine only whether
 information available at the link endpoints (ingress/egress
 interfaces) can be easily shared with the connected network nodes.

3.5. Implications of This Model

 This approach highlights a few key features of a tunnel as a network
 architecture construct:

 o To the transit packets, tunnels turn a network (Layer 3) path into
 a (Layer 2) link

 o To nodes the tunnel traverses, the tunnel ingress and egress
 interfaces act as hosts that source and sink tunnel link packets

Touch, Townsley Expires September 13, 2017 [Page 14]

Internet-Draft Tunnels in the Internet March 2017

 The consequences of these features are as follow:

 o Like a link MTU, a tunnel MTU is defined by the effective MTU of
 the receiver (i.e., EMTU_R of the egress).

 o The messages inside the tunnel are treated like any other link
 layer, i.e., the MTU is determined by the largest (transit)
 payload that traverses the link.

 o The tunnel path MFS is not relevant to the transited traffic.
 There is no mechanism or protocol by which it can be determined.

 o Because routers, not links, alter hop counts [RFC1812], hopcounts
 are not decremented solely by the transit of a tunnel. A packet
 with a hop count of zero should successfully transit a link (and
 thus a tunnel) that connects two hosts.

 o The addresses of a tunnel ingress and egress interface correspond
 to link layer addresses to the transit packet. Like links, some
 tunnels may not have their own addresses. Like network interfaces,
 ingress and egress interfaces typically require network layer
 addresses.

 o Like network interfaces, the ingress and egress interfaces are
 never a direct source of ICMP messages but may provide information
 to their attached host or router to generate those ICMP messages
 during the processing of transit packets.

 o Like network interfaces and links, two nodes may be connected by
 any combination of tunnels and links, including multiple tunnels.
 As with multiple links, existing network layer forwarding
 determines which IP traffic uses each link or tunnel.

 These observations make it much easier to determine what a tunnel
 must do to transit IP packets, notably it must satisfy all
 requirements expected of a link [RFC1122][RFC3819]. The remainder of
 this document explores these implications in greater detail.

3.6. Fragmentation

 There are two places where fragmentation can occur in a tunnel,
 called ’outer fragmentation’ and ’inner fragmentation’. This document
 assumes that only outer fragmentation is viable because it is the
 only approach that works for both IPv4 datagrams with DF=1 and IPv6.

Touch, Townsley Expires September 13, 2017 [Page 15]

Internet-Draft Tunnels in the Internet March 2017

3.6.1. Outer Fragmentation

 Outer fragmentation is shown in Figure 8. The bottom of the figure
 shows the network topology, where transit packets originate at the
 source, enter the tunnel at the ingress interface for encapsulation,
 exit the tunnel at the egress interface where they are decapsulated,
 and arrive at the destination. The packet traffic is shown above the
 topology, where the transit packets are shown at the top. In this
 diagram, the ingress interface is located on router ’Ra’ and the
 egress interface is located on router ’Rd’.

 When the link packet - which is the encapsulated transit packet -
 would exceed the tunnel MTU, the packet needs to be fragmented. In
 this case the packet is fragmented at the outer (link) header, with
 the fragments shown as (b1) and (b2). The outer header indicates
 fragmentation (as ’ and "), the inner (transit) header occurs only in
 the first fragment, and the inner (transit) data is broken across the
 two packets. These fragments are reassembled at the egress interface
 during decapsulation in step (c), where the resulting link packet is
 reassembled and decapsulated so that the transit packet can continue
 on its way to the destination.

 Transit packet
 +----+----+ +----+----+
 | iH | iD |------+ - - - - - - - - - - +------>| iH | iD |
 +----+----+ | | +----+----+
 v Link packet |
 +----+----+----+ +----+----+----+
 (a) | oH | iH | iD | | oH | iH | iD | (d)
 +----+----+----+ +----+----+----+
 | ^
 | Link packet fragment #1 |
 | +----+----+-----+ |
 (b1) +----- >| oH’| iH | iD1 |-------+ (c)
 | +----+----+-----+ |
 | |
 | Link packet fragment #2 |
 | +----+-----+ |
 (b2) +----- >| oH"| iD2 |------------+
 +----+-----+
 +-----+ +--+ +---+ +---+ +--+ +-----+
			/ \ / \|					
Src	----	Ra	Ingress	=======================	Egress	Rd	----	Dst
			\ / \ /					
 +-----+ +--+ +---+ +---+ +--+ +-----+

 Figure 8 Fragmentation of the (outer) link packet

Touch, Townsley Expires September 13, 2017 [Page 16]

Internet-Draft Tunnels in the Internet March 2017

 Outer fragmentation isolates the tunnel encapsulation duties to the
 ingress and egress interfaces. This can be considered a benefit in
 clean, layered network design, but also may require complex egress
 interface decapsulation, especially where tunnels aggregate large
 amounts of traffic, such as may result in IP ID overload (see Sec.
 4.1.4). Outer fragmentation is valid for any tunnel link protocol
 that supports fragmentation (e.g., IPv4 or IPv6), in which the tunnel
 endpoints act as the host endpoints of that protocol.

 Along the tunnel, the inner (transit) header is contained only in the
 first fragment, which can interfere with mechanisms that ’peek’ into
 lower layer headers, e.g., as for relayed ICMP (see Sec. 4.3).

3.6.2. Inner Fragmentation

 Inner fragmentation distributes the impact of tunnel fragmentation
 across both egress interface decapsulation and transit packet
 destination, as shown in Figure 9; this can be especially important
 when the tunnel would otherwise need to source (outer) fragment large
 amounts of traffic. However, this mechanism is valid only when the
 transit packets can be fragmented on-path, e.g., as when the transit
 packets are IPv4 datagrams with DF=0.

 Again, the network topology is shown at the bottom of the figure, and
 the original packets show at the top. Packets arrive at the ingress
 node (router Ra) and are fragmented there based into transit packet
 fragments #1 (a1) and #2 (a2). These fragments are encapsulated at
 the ingress interface in steps (b1) and (b2) and each resulting link
 packet traverses the tunnel. When these link packets arrive at the
 egress interface they are decapsulated in steps (c1) and (c2) and the
 egress node (router) forwards the transit packet fragments to their
 destination. This destination is then responsible for reassembling
 the transit packet fragments into the original transit packet (d).

 Along the tunnel, the inner headers are copied into each fragment,
 and so can be ’peeked at’ inside the tunnel (see Sec. 4.3).
 Fragmentation shifts from the ingress interface to the ingress router
 and reassembly shifts from the egress interface to the destination.

Touch, Townsley Expires September 13, 2017 [Page 17]

Internet-Draft Tunnels in the Internet March 2017

 Transit packet
 +----+----+ +----+----+
 | iH | iD |-+ - - - - - - - - - - - - - - - - >| iH | iD |
 +----+----+ | +----+----+
 v Transit packet fragment #1 ^
 +----+-----+ +----+-----+ |
 (a1) | iH’| iD1 | | iH’| iD1 |-----+(d)
 +----+-----+ +----+-----+ ^
 | | Link packet #1 ^ | | | |
 | | +----+----+----- | |
 | (b1)+----- >| oH | iH’| iD1 |-------+(c1) |
 | +----+----+-----+ |
 | |
 v Transit packet fragment #2 |
 +----+-----+ +----+-----+ |
 (a2) | iH"| iD2 | | iH"| iD2 |-----+
 +----+-----+ +----+-----+
 | Link packet #2 |
 | +----+----+-----+ |
 (b2)+----- >| oH | iH"| iD2 |-------+(c2)
 +----+----+-----+
 +-----+ +--+ +---+ +---+ +--+ +-----+
			/ \ / \|					
Src	----	Ra	Ingress	=======================	Egress	Rd	----	Dst
			\ / \ /					
 +-----+ +--+ +---+ +---+ +--+ +-----+

 Figure 9 Fragmentation of the inner (transit) packet

3.6.3. The Necessity of Outer Fragmentation

 Fragmentation is critical for tunnels that support transit packets
 for protocols with minimum MTU requirements, while operating over
 tunnel paths using protocols that have their own MTU requirements.
 Depending on the amount of space used by encapsulation, these two
 minimums will ultimately interfere (especially when a protocol
 transits itself either directly, as with IP-in-IP, or indirectly, as
 in IP-in-GRE-in-IP), and the transit packet will need to be
 fragmented to both support a tunnel MTU while traversing tunnels with
 their own tunnel path MTUs.

 Outer fragmentation is the only solution that supports all IPv4 and
 IPv6 traffic, because inner fragmentation is allowed only for IPv4
 datagrams with DF=0.

Touch, Townsley Expires September 13, 2017 [Page 18]

Internet-Draft Tunnels in the Internet March 2017

4. IP Tunnel Requirements

 The requirements of an IP tunnel are defined by the requirements of
 an IP link because both transit IP packets. A tunnel thus must
 transit the IP minimum MTU, i.e., 68 bytes for IPv4 [RFC793] and 1280
 bytes for IPv6 [RFC2460] and a tunnel must support address resolution
 when there is more than one egress interface for that tunnel.

 The requirements of the tunnel ingress and egress interfaces are
 defined by the network over which they exchange messages (link
 packets). For IP-over-IP, this means that the ingress interface MUST
 NOT exceed the IP fragment identification field uniqueness
 requirements [RFC6864]. Uniqueness is more difficult to maintain at
 high packet rates for IPv4, whose fragment ID field is only 16 bits.

 These requirements remain even though tunnels have some unique
 issues, including the need for additional space for encapsulation
 headers and the potential for tunnel MTU variation.

4.1. Encapsulation Header Issues

 Tunneling uses encapsulation uses a non-link protocol as a link
 layer. The encapsulation layer thus has the same requirements and
 expectations as any other IP link layer when used to transit IP
 packets. These relationships are addressed in the following
 subsections.

4.1.1. General Principles of Header Fields Relationships

 Some tunnel specifications attempt to relate the header fields of the
 transit packet and tunnel link packet. In some cases, this
 relationship is warranted, whereas in other cases the two protocol
 layers need to be isolated from each other. For example, the tunnel
 link header source and destination addresses are network endpoints in
 the tunnel network N, but have no meaning in the outer network M. The
 two sets of addresses are effectively independent, just as are other
 network and link addresses.

 Because the tunneled packet uses source and destination addresses
 with a separate meaning, it is inappropriate to copy or reuse the
 IPv4 Identification (ID) or IPv6 Fragment ID fields of the tunnel
 transit packet (see Section 4.1.4). Similarly, the DF field of the
 transit packet is not related to that field in the tunnel link packet
 header (presuming both are IPv4) (see Section 4.2). Most other fields
 are similarly independent between the transit packet and tunnel link
 packet. When a field value is generated in the encapsulation header,
 its meaning should be derived from what is desired in the context of

Touch, Townsley Expires September 13, 2017 [Page 19]

Internet-Draft Tunnels in the Internet March 2017

 the tunnel as a link. When feedback is received from these fields,
 they should be presented to the tunnel ingress and egress as if they
 were network interfaces. The behavior of the node where these
 interfaces attach should be identical to that of a conventional link.

 There are exceptions to this rule that are explicitly intended to
 relay signals from inside the tunnel to the network outside the
 tunnel, typically relevant only when the tunnel network N and the
 outer network M use the same network. These apply only when that
 coordination is defined, as with explicit congestion notification
 (ECN) [RFC6040] (see Section 4.3.2), and differentiated services code
 points (DSCPs) [RFC2983]. Equal-cost multipath routing may also
 affect how some encapsulation fields are set, including IPv6 flow
 labels [RFC6438] and source ports for transport protocols when used
 for tunnel encapsulation [RFC8085] (see Section 4.3.4).

4.1.2. Addressing Fields

 Tunnel ingresses and egresses have addresses associated with the
 encapsulation protocol. These addresses are the source and
 destination (respectively) of the encapsulated packet while
 traversing the tunnel network.

 Tunnels may or may not have addresses in the network whose traffic
 they transit (e.g., network M in Figure 4). In some cases, the tunnel
 is an unnumbered interface to a point-to-point virtual link. When the
 tunnel has multiple egresses, tunnel interfaces require separate
 addresses in network M.

 To see the effect of tunnel interface addresses, consider traffic
 sourced at router Ra in Figure 4. Even before being encapsulated by
 the ingress, traffic needs a source IP network address that belongs
 to the router. One option is to use an address associated with one of
 the other interfaces of the router [RFC1122]. Another option is to
 assign a number to the tunnel interface itself. Regardless of which
 address is used, the resulting IP packet is then encapsulated by the
 tunnel ingress using the ingress address as a separate operation.

4.1.3. Hop Count Fields

 The Internet hop count field is used to detect and avoid forwarding
 loops that cannot be corrected without a synchronized reboot. The
 IPv4 Time-to-Live (TTL) and IPv6 Hop Limit field each serve this
 purpose [RFC791][RFC2460]. The IPv4 TTL field was originally intended
 to indicate packet expiration time, measured in seconds. A router is
 required to decrement the TTL by at least one or the number of
 seconds the packet is delayed, whichever is larger [RFC1812]. Packets

Touch, Townsley Expires September 13, 2017 [Page 20]

Internet-Draft Tunnels in the Internet March 2017

 are rarely held that long, and so the field has come to represent the
 count of the number of routers traversed. IPv6 makes this meaning
 more explicit.

 These hop count fields represent the number of network forwarding
 elements (routers) traversed by an IP datagram. An IP datagram with a
 hop count of zero can traverse a link between two hosts because it
 never visits a router (where it would need to be decremented and
 would have been dropped).

 An IP datagram traversing a tunnel thus need not have its hop count
 modified, i.e., the tunnel transit header need not be affected. A
 zero hop count datagram should be able to traverse a tunnel as easily
 as it traverses a link. A router MAY be configured to decrement
 packets traversing a particular link (and thus a tunnel), which may
 be useful in emulating a tunnel path as if it were a network path
 that traversed one or more routers, but this is strictly optional.
 The ability of the outer network M and tunnel network N to avoid
 indefinitely looping packets does not rely on the hop counts of the
 transit packet and tunnel link packet being related.

 The hop count field is also used by several protocols to determine
 whether endpoints are ’local’, i.e., connected to the same subnet
 (link-local discovery and related protocols [RFC4861]). A tunnel is a
 way to make a remote network address appear directly-connected, so it
 makes sense that the other ends of the tunnel appear local and that
 such link-local protocols operate over tunnels unless configured
 explicitly otherwise. When the interfaces of a tunnel are numbered,
 these can be interpreted the same way as if they were on the same
 link subnet.

4.1.4. IP Fragment Identification Fields

 Both IPv4 and IPv6 include an IP Identification (ID) field to support
 IP datagram fragmentation and reassembly [RFC791][RFC1122][RFC2460].
 When used, the ID field is intended to be unique for every packet for
 a given source address, destination address, and protocol, such that
 it does not repeat within the Maximum Segment Lifetime (MSL).

 For IPv4, this field is in the default header and is meaningful only
 when either source fragmented or DF=0 ("non-atomic packets")
 [RFC6864]. For IPv6, this field is contained in the optional Fragment
 Header [RFC2460]. Although IPv6 supports only source fragmentation,
 the field may occur in atomic fragments [RFC6946].

 Although the ID field was originally intended for fragmentation and
 reassembly, it can also be used to detect and discard duplicate

Touch, Townsley Expires September 13, 2017 [Page 21]

Internet-Draft Tunnels in the Internet March 2017

 packets, e.g., at congested routers (see Sec. 3.2.1.5 of [RFC1122]).
 For this reason, and because IPv4 packets can be fragmented anywhere
 along a path, all non-atomic IPv4 packets and all IPv6 packets
 between a source and destination of a given protocol must have unique
 ID values over the potential fragment reordering period
 [RFC2460][RFC6864].

 The uniqueness of the IP ID is a known problem for high speed nodes,
 because it limits the speed of a single protocol between two
 endpoints [RFC4963]. Although this RFC suggests that the uniqueness
 of the IP ID is moot, tunnels exacerbate this condition. A tunnel
 often aggregates traffic from a number of different source and
 destination addresses, of different protocols, and encapsulates them
 in a header with the same ingress and egress addresses, all using a
 single encapsulation protocol. If the ingress enforces IP ID
 uniqueness, this can either severely limit tunnel throughput or can
 require substantial resources; the alternative is to ignore IP ID
 uniqueness and risk reassembly errors. Although fragmentation is
 somewhat rare in the current Internet at large, but it can be common
 along a tunnel. Reassembly errors are not always detected by other
 protocol layers (see Sec. 4.3.3) , and even when detected they can
 result in excessive overall packet loss and can waste bandwidth
 between the egress and ultimate packet destination.

 The 32-bit IPv6 ID field in the Fragment Header is typically used
 only during source fragmentation. The size of the ID field is
 typically sufficient that a single counter can be used at the tunnel
 ingress, regardless of the endpoint addresses or next-header
 protocol, allowing efficient support for very high throughput
 tunnels.

 The smaller 16-bit IPv4 ID is more difficult to correctly support. A
 recent update to IPv4 allows the ID to be repeated for atomic
 packets. When either source fragmentation or on-path fragmentation is
 supported, the tunnel ingress may need to keep independent ID
 counters for each tunnel source/destination/protocol tuple.

4.1.5. Checksums

 IP traffic transiting a tunnel needs to expect a similar level of
 error detection and correction as it would expect from any other
 link. In the case of IPv4, there are no such expectations, which is
 partly why it includes a header checksum [RFC791].

 IPv6 omitted the header checksum because it already expects most link
 errors to be detected and dropped by the link layer and because it
 also assumes transport protection [RFC2460]. When transiting IPv6

Touch, Townsley Expires September 13, 2017 [Page 22]

Internet-Draft Tunnels in the Internet March 2017

 over IPv6, the tunnel fails to provide the expected error detection.
 This is why IPv6 is often tunneled over layers that include separate
 protection, such as GRE [RFC2784].

 The fragmentation created by the tunnel ingress can increase the need
 for stronger error detection and correction, especially at the tunnel
 egress to avoid reassembly errors. The Internet checksum is known to
 be susceptible to reassembly errors that could be common [RFC4963],
 and should not be relied upon for this purpose. This is why some
 tunnel protocols, e.g., SEAL and AERO [RFC5320][Te16], include a
 separate checksum. This requirement can be undermined when using UDP
 as a tunnel with no UDP checksum (as per [RFC6935][RFC6936]) when
 fragmentation occurs because the egress has no checksum with which to
 validate reassembly. For this reason, it is safe to use UDP with a
 zero checksum for atomic tunnel link packets only; when used on
 fragments, whether generated at the ingress or en-route inside the
 tunnel, omission of such a checksum can result in reassembly errors
 that can cause additional work (capacity, forwarding processing,
 receiver processing) downstream of the egress.

4.2. MTU Issues

 Link MTUs, IP datagram limits, and transport protocol segment sizes
 are already related by several requirements
 [RFC768][RFC791][RFC1122][RFC1812][RFC2460] and by a variety of
 protocol mechanisms that attempt to establish relationships between
 them, including path MTU discovery (PMTUD) [RFC1191][RFC1981],
 packetization layer path MTU discovery (PLMTUD) [RFC4821], as well as
 mechanisms inside transport protocols [RFC793][RFC4340][RFC4960]. The
 following subsections summarize the interactions between tunnels and
 MTU issues, including minimum tunnel MTUs, tunnel fragmentation and
 reassembly, and MTU discovery.

4.2.1. Minimum MTU Considerations

 There are a variety of values of minimum MTU values to consider, both
 in a conventional network and in a tunnel as a link in that network.
 These are indicated in Figure 10, an annotated variant of Figure 4.
 Note that a (link) MTU (a) corresponds to a tunnel MTU (d) and that a
 path MTU (b) corresponds to a tunnel path MTU (e). The tunnel MTU is
 the EMTU_R of the egress interface, because that defines the largest
 transit packet message that can traverse the tunnel as a link in
 network M. The ability to traverse the hops of the tunnel - in
 network N - is not related, and only the ingress need be concerned
 with that value.

Touch, Townsley Expires September 13, 2017 [Page 23]

Internet-Draft Tunnels in the Internet March 2017

 --_ --
 +------+ / \ / \ +------+
 | Hsrc |--+ Ra + -- -- + Rd +--| Hdst |
 +------+ \ //\ / \ / \ /\\ / +------+
 --/I \---+ Rb +---+ Rc +---/E \--
 \ / \ / \ / \ /
 \/ -- -- \/
 <----- Network N ------->
 <-------------------- Network M --------------------->

 Communication in network M viewed at that layer:
 (a) <-> Link MTU
 (b) <---- Tunnel MTU --------->
 (c) <----------- Path MTU ----------------->
 (d) <------------------- EMTU_R --------------------------->

 Communication in network N viewed at that layer:
 (e) <--> Link MTU
 (f) <--- Path MTU ------>
 (g) <----- EMTU_R --------->

 Communication in network N viewed from network M:
 (h) <--> MFS
 (i) <--- Path MFS ------>
 (j) <----- EMFS_R --------->

 Figure 10 The variety of MTU values

 Consider the following example values. For IPv6 transit packets, the
 minimum (link) MTU (a) is 1280 bytes, which similarly applies to
 tunnels as the tunnel MTU (b). The path MTU (c) is the minimum of the
 links (including tunnels as links) along a path, and indicates the
 smallest IP message (packet or fragment) that can traverse a path
 between a source and destination without on-path fragmentation (e.g.,
 supported in IPv4 with DF=0). Path MTU discovery, either at the
 network layer (PMTUD [RFC1191][RFC1981]) or packetization layer
 (PLPMTUD [RFC4821]) attempts to tune the source IP packets and
 fragments (i.e., EMTU_S) to fit within this path MTU size to avoid
 fragmentation and reassembly [Ke95]. The minimum EMTU_R (c) is 1500
 bytes, i.e., the minimum MTU for endpoint-to-endpoint communication.

 The tunnel is a source-destination communication in network N.
 Messages between the tunnel source (the ingress interface) and tunnel
 destination (egress interface) similarly experience a variety of
 network N MTU values, including a link MTU (e), a path MTU (f), and
 an EMTU_R (g). The network N EMTU_S is limited by the path MTU, and
 the source-destination message maximum is limited by EMTU_R, just as

Touch, Townsley Expires September 13, 2017 [Page 24]

Internet-Draft Tunnels in the Internet March 2017

 it was in for those types of MTUs in network M. For an IPv6 network
 N, its link and path MTUs must be at least 1280 and its EMTU_R must
 be at least 1500.

 However, viewed from the context of network M, these network N MTUs
 are link layer properties, i.e., maximum frame sizes (MFS). The
 network N EMTU_R determines the largest message that can transit
 between the source (ingress) and destination (egress), but viewed
 from network M this is a link layer, i.e., EMFS_R. The tunnel EMTU_R
 is EMFS_R minus the link (encapsulation) headers includes the
 encapsulation headers of the link layer. Just as the path MTU has no
 bearing on EMTU_R, the path MFS in network N has no bearing on the
 MTU of the tunnel.

 For IPv6 networks M and N, these relationships are summarized as
 follows:

 o Network M MTU = 1280, the largest transit packet (i.e., payload)
 over a single IPv6 link in the base network without source
 fragmentation

 o Network M path MTU = 1280, the transit packet (i.e., payload) that
 can traverse a path of links in the base network without source
 fragmentation

 o Network M EMTU_R = 1500, the largest transit packet (i.e.,
 payload) that can traverse a path in the base network with source
 fragmentation

 o Network N MTU = 1280 (for the same reasons as for network M)

 o Network N path MTU = 1280 (for the same reasons as for network M)

 o Network N EMTU_R = 1500 (for the same reasons as for network M)

 o Tunnel MTU = 1500-encapsulation (typically 1460), the network N
 EMTU_R payload

 o Tunnel atom = largest network M message that transits a tunnel
 using network N as a link layer without fragmentation: 1280-
 encapsulation, i.e., the network N EMTU_S payload, treating EMTU_S
 as a network M EMFS_S.

Touch, Townsley Expires September 13, 2017 [Page 25]

Internet-Draft Tunnels in the Internet March 2017

 The difference between the network N MTU and its treatment as a link
 layer in network M is the reason why the tunnel ingress interfaces
 need to support fragmentation and tunnel egress interfaces need to
 support reassembly in the encapsulation layer(s). The high cost of
 fragmentation and reassembly is why it is useful for applications to
 avoid sending messages too close to the size of the tunnel path MTU
 [Ke95], although there is no signaling mechanism that can achieve
 this (see Section 4.2.3).

4.2.2. Fragmentation

 A tunnel interacts with fragmentation in two different ways. As a
 link in network M, transit packets might be fragmented before they
 reach the tunnel - i.e., in network M either during source
 fragmentation (if generated at the same node as the ingress
 interface) or forwarding fragmentation (for IPv4 DF=0 datagrams). In
 addition, link packets traversing inside the tunnel may require
 fragmentation by the ingress interface - i.e., source fragmentation
 by the ingress as a host in network N. These two fragmentation
 operations are no more related than are conventional IP fragmentation
 and ATM segmentation and reassembly; one occurs at the (transit)
 network layer, the other at the (virtual) link layer.

 Although many of these issues with tunnel fragmentation and MTU
 handling were discussed in [RFC4459], that document described a
 variety of alternatives as if they were independent. This document
 explains the combined approach that is necessary.

 Like any other link, an IPv4 tunnel must transit 68 byte packets
 without requiring source fragmentation [RFC791][RFC1122] and an IPv6
 tunnel must transit 1280 byte packets without requiring source
 fragmentation [RFC2460]. The tunnel MTU interacts with routers or
 hosts it connects the same way as would any other link MTU. The
 pseudocode examples in this section use the following values:

 o TP: transit packet

 o TPsize: size of the transit packet (including its headers)

 o encaps: ingress encapsulation overhead (tunnel link headers)

 o tunMTU: tunnel MTU, i.e., network N egress EMTU_R - encaps.

 o tunAtom: tunnel atom size, equal to the egress host-level EMTU_S -
 encaps.

Touch, Townsley Expires September 13, 2017 [Page 26]

Internet-Draft Tunnels in the Internet March 2017

 These rules apply at the host/router where the tunnel is attached,
 i.e., at the network layer of the transit packet (we assume that all
 tunnels, including multipoint tunnels, have a single, uniform MTU).
 These are basic source fragmentation rules (or transit
 refragmentation for IPv4 DF=0 datagrams), and have no relation to the
 tunnel itself other than to consider the tunnel MTU as the effective
 link MTU of the next hop.

 Inside the source during transit packet generation or a router during
 transit packet forwarding, the tunnel is treated as if it were any
 other link (i.e., this is not tunnel processing, but rather typical
 source or router processing), as indicated in the pseudocode in
 Figure 11.

 if (TPsize > tunMTU) then
 if (TP can be on-path fragmented, e.g., IPv4 DF=0) then
 split TP into fragments of tunMTU size
 and send each fragment to the tunnel ingress interface
 else
 drop the TP and send ICMP "too big" to TP source
 endif
 else
 send TP to the tunnel ingress
 endif

 Figure 11 Router / host packet size processing algorithm

 The tunnel ingress acts as host on the tunnel path, i.e., as source
 fragmentation of tunnel link packets (we assume that all tunnels,
 even multipoint tunnels, have a single, uniform tunnel MTU), using
 the pseudocode shown in Figure 12. Note that ingress source
 fragmentation occurs in the encapsulation process, which may involve
 more than one protocol layer. In those cases, fragmentation can occur
 at any of the layers of encapsulation in which it is supported, based
 on the configuration of the ingress.

 if (TPsize <= tunAtom) then
 encapsulate the TP and emit
 else
 if (tunAtom < TPsize) then
 fragment TP into tunAtom chunks
 encapslate each chunk and emit
 endif
 endif

 Figure 12 Ingress processing algorithm

Touch, Townsley Expires September 13, 2017 [Page 27]

Internet-Draft Tunnels in the Internet March 2017

 Just as a network interface should never receive a message larger
 than its MTU, a tunnel should never receive a message larger than its
 tunnel MTU limit (see the host/router processing above). A router
 attempting to process such a message would already have generated an
 ICMP "packet too big" and the transit packet would have been dropped
 before entering into this algorithm. Similarly, a host would have
 generated an error internally and aborted the attempted transmission.

 As an example, consider IPv4 over IPv6 or IPv6 over IPv6 tunneling,
 where IPv6 encapsulation adds a 40 byte fixed header plus IPv6
 options (i.e., IPv6 header extensions) of total size ’EHsize’. The
 tunnel MTU will be at least 1500 - (40 + EHsize) bytes. The tunnel
 path MTU will be at least 1280 - (40 + EHsize) bytes. Transit packets
 larger than 1460-EHsize will be dropped by a node before ingress
 processing. Considering these minimum values, the previous algorithm
 uses actual values shown in the pseudocode in Figure 13.

 if (TPsize <= (1240 - EHsize)) then
 encapsulate TP and emit
 else
 if ((1240 - EHsize) < TPsize) then
 fragment TP into (1240 - EHsize) chunks
 encapsulate each chunk and emit
 endif
 endif

 Figure 13 Ingress processing for an tunnel over IPv6

 An IPv6 tunnel supports IPv6 transit only if EHsize is 180 bytes or
 less; otherwise the incoming transit packet would have been dropped
 as being too large by the host/router. Similarly, an IPv6 tunnel
 supports IPv4 transit only if EHsize is 884 bytes or less. In this
 example, transit packets of up to (1240 - Ehsize) can traverse the
 tunnel without ingress source fragmentation and egress reassembly.

 When using IP directly over IP, the minimum transit packet EMTU_R for
 IPv4 is 576 bytes and for IPv6 is 1500 bytes. This means that tunnels
 of IPv4-over-IPv4, IPv4-over-IPv6, and IPv6-over-IPv6 are possible
 without additional requirements, but this may involve ingress
 fragmentation and egress reassembly. IPv6 cannot be tunneled directly
 over IPv4 without additional requirements, notably that the egress
 EMTU_R is at least 1280 bytes.

 When ongoing ingress fragmentation and egress reassembly would be
 prohibitive or costly, larger MTUs can be supported by design and
 confirmed either out-of-band (by design) or in-band (e.g., using
 PLPMTUD [RFC4821], as done in SEAL [RFC5320] and AERO [Te16]).

Touch, Townsley Expires September 13, 2017 [Page 28]

Internet-Draft Tunnels in the Internet March 2017

4.2.3. Path MTU Discovery

 Path MTU discovery (PMTUD) enables a network path to support a larger
 PMTU than it can assume from the minimum requirements of protocol
 over which it operates. Note, however, that PMTUD never discovers
 EMTU_R that is larger than the required minimum; that information is
 available to some upper layer protocols, such as TCP [RFC1122], but
 cannot be determined at the IP layer.

 There is temptation to optimize tunnel traversal so that packets are
 not fragmented between ingress and egress, i.e., to attempt tune the
 network M PMTU to the tunnel atom size (i.e., the ingress EMTU_S
 minus encapsulation overhead) rather than the tunnel MTU, to avoid
 ingress fragmentation.

 This is often impossible because the ICMP "packet too big" message
 (IPv4 fragmentation needed [RFC792] or IPv6 packet too big [RFC4443])
 indicates the complete failure of a link to transit a packet, not a
 preference for a size that matches that internal the mechanism of the
 link. ICMP messages are intended to indicate whether a tunnel MTU is
 insufficient; there is no ICMP message that can indicate when a
 transit packet is "too bit to for the tunnel path MTU, but not larger
 than the tunnel MTU". If there were, endpoints might receive that
 message for IP packets larger than 40 bytes (the payload of a single
 ATM cell, allowing for the 8-byte AAL5 trailer), but smaller than 9K
 (the ATM EMTU_R payload).

 In addition, attempting to try to tune the network transit size to
 natively match that of the link internal transit can be hazardous for
 many reasons:

 o The tunnel is capable of transiting packets as large as the
 network N EMTU_R - encapsulation, which is always at least as
 large as the tunnel MTU and typically is larger.

 o ICMP has only one type of error message regarding large packets -
 "too big", i.e., too large to transit. There is no optimization
 message of "bigger than I’d like, but I can deal with if needed".

 o IP tunnels often involve some level of recursion, i.e.,
 encapsulation over itself [RFC4459].

 Tunnels that use IPv4 as the encapsulation layer SHOULD set DF=0, but
 this requires generating unique fragmentation ID values, which may
 limit throughput [RFC6864]. These tunnels might have difficulty
 assuming ingress EMTU_S values over 64 bytes, so it may not be
 feasible to assume that larger packets with DF=1 are safe.

Touch, Townsley Expires September 13, 2017 [Page 29]

Internet-Draft Tunnels in the Internet March 2017

 Recursive tunneling occurs whenever a protocol ends up encapsulated
 in itself. This happens directly, as when IPv4 is encapsulated in
 IPv4, or indirectly, as when IP is encapsulated in UDP which then is
 a payload inside IP. It can involve many layers of encapsulation
 because a tunnel provider isn’t always aware of whether the packets
 it transits are already tunneled.

 Recursion is impossible when the tunnel transit packets are limited
 to that of the native size of the ingress payload. Arriving tunnel
 transit packets have a minimum supported size (1280 for IPv6) and the
 tunnel PMFS has the same requirement; there would be no room for the
 tunnel’s "link layer" headers, i.e., the encapsulation layer. The
 result would be an IPv6 tunnel that cannot satisfy IPv6 transit
 requirements.

 It is more appropriate to require the tunnel to satisfy IP transit
 requirements and enforce that requirement at design time or during
 operation (the latter using PLPMTUD [RFC4821]). Conventional path MTU
 discovery (PMTUD) relies on existing endpoint ICMP processing of
 explicit negative feedback from routers along the path via "message
 to big" ICMP packets in the reverse direction of the tunnel
 [RFC1191][RFC1981]. This technique is susceptible to the "black hole"
 phenomenon, in which the ICMP messages never return to the source due
 to policy-based filtering [RFC2923]. PLPMTUD requires a separate,
 direct control channel from the egress to the ingress that provides
 positive feedback; the direct channel is not blocked by policy
 filters and the positive feedback ensures fail-safe operation if
 feedback messages are lost [RFC4821].

4.3. Coordination Issues

 IP tunnels interact with link layer signals and capabilities in a
 variety of ways. The following subsections address some key issues of
 these interactions. In general, they are again informed by treating a
 tunnel as any other link layer and considering the interactions
 between the IP layer and link layers [RFC3819].

4.3.1. Signaling

 In the current Internet architecture, signaling goes upstream, either
 from routers along a path or from the destination, back toward the
 source. Such signals are typically contained in ICMP messages, but
 can involve other protocols such as RSVP, transport protocol signals
 (e.g., TCP RSTs), or multicast control or transport protocols.

 A tunnel behaves like a link and acts like a link interface at the
 nodes where it is attached. As such, it can provide information that

Touch, Townsley Expires September 13, 2017 [Page 30]

Internet-Draft Tunnels in the Internet March 2017

 enhances IP signaling (e.g., ICMP), but itself does not directly
 generate ICMP messages.

 For tunnels, this means that there are two separate signaling paths.
 The outer network M nodes can each signal the source of the tunnel
 transit packets, Hsrc (Figure 14). Inside the tunnel, the inner
 network N nodes can signal the source of the tunnel link packets, the
 ingress I (Figure 15).

 +--------+---------------------------+--------+
 | | | |
 v --_ -- v
 +------+ / \ / \ +------+
 | Hsrc |--+ Ra + -- -- + Rd +--| Hdst |
 +------+ \ //\ / \ / \ /\\ / +------+
 --/I \--+ Rb +--+ Rc +--/E \--
 \ / \ / \ / \ /
 \/ -- -- \/
 <---- Network N ----->
 <-------------------- Network M --------------------->

 Figure 14 Signals outside the tunnel

 +-----+-------+------+
 --_ | | | | --
 +------+ / \ v | | | / \ +------+
 | Hsrc |--+ Ra + -- -- + Rd +--| Hdst |
 +------+ \ //\ / \ / \ /\\ / +------+
 --/I \--+ Rb +--+ Rc +--/E \--
 \ / \ / \ / \ /
 \/ -- -- \/
 <----- Network N ---->
 <--------------------- Network M -------------------->

 Figure 15 Signals inside the tunnel

 These two signal paths are inherently distinct except where
 information is exchanged between the network interface of the tunnel
 (the ingress) and its attached node (Ra, in both figures).

 It is always possible for a network interface to provide hints to its
 attached node (host or router), which can be used for optimization.
 In this case, when signals inside the tunnel indicate a change to the
 tunnel, the ingress (i.e., the tunnel network interface) can provide
 information to the router (Ra, in both figures), so that Ra can
 generate the appropriate signal in return to Hsrc. This relaying may

Touch, Townsley Expires September 13, 2017 [Page 31]

Internet-Draft Tunnels in the Internet March 2017

 be difficult, because signals inside the tunnel may not return enough
 information to the ingress to support direct relaying to Hsrc.

 In all cases, the tunnel ingress needs to determine how to relay the
 signals from inside the tunnel into signals back to the source. For
 some protocols this is either simple or impossible (such as for
 ICMP), for others, it can even be undefined (e.g., multicast). In
 some cases, the individual signals relayed from inside the tunnel may
 result in corresponding signals in the outside network, and in other
 cases they may just change state of the tunnel interface. In the
 latter case, the result may cause the router Ra to generate new ICMP
 errors when later messages arrive from Hsrc or other sources in the
 outer network.

 The meaning of the relayed information must be carefully translated.
 An ICMP error within a tunnel indicates a failure of the path inside
 the tunnel to support an egress EMTU_S. It can be very difficult to
 convert that ICMP error into a corresponding ICMP message from the
 ingress node back to the transit packet source. The ICMP message may
 not contain enough of a packet prefix to extract the transit packet
 header sufficient to generate the appropriate ICMP message. The
 relationship between the egress EMTU_S and the transit packet may be
 indirect, e.g., the ingress node may be performing source
 fragmentation that should be adjusted instead of propagating the ICMP
 upstream.

 Some messages have detailed specifications for relaying between the
 tunnel link packet and transit packet, including Explicit Congestion
 Notification (ECN [RFC6040]) and multicast (IGMP, e.g.).

4.3.2. Congestion

 Tunnels carrying IP traffic (i.e., the focus of this document) need
 not react directly to congestion any more than would any other link
 layer [RFC8085]. IP transit packet traffic is already expected to be
 congestion controlled.

 It is useful to relay network congestion notification between the
 tunnel link and the tunnel transit packets. Explicit congestion
 notification requires that ECN bits are copied from the tunnel
 transit packet to the tunnel link packet on encapsulation, as well as
 copied back at the egress based on a combination of the bits of the
 two headers [RFC6040]. This allows congestion notification within the
 tunnel to be interpreted as if it were on the direct path.

Touch, Townsley Expires September 13, 2017 [Page 32]

Internet-Draft Tunnels in the Internet March 2017

4.3.3. Multipoint Tunnels and Multicast

 Multipoint tunnels are tunnels with more than two ingress/egress
 endpoints. Just as tunnels emulate links, multipoint tunnels emulate
 multipoint links, and can support multicast as a tunnel capability.
 Multipoint tunnels can be useful on their own, or may be used as part
 of more complex systems, e.g., LISP and TRILL configurations
 [RFC6830][RFC6325].

 Multipoint tunnels require a support for egress determination, just
 as multipoint links do. This function is typically supported by ARP
 [RFC826] or ARP emulation (e.g., LAN Emulation, known as LANE
 [RFC2225]) for multipoint links. For multipoint tunnels, a similar
 mechanism is required for the same purpose - to determine the egress
 address for proper ingress encapsulation (e.g., LISP Map-Service
 [RFC6833]).

 All multipoint systems - tunnels and links - might support different
 MTUs between each ingress/egress (or link entrance/exit) pair. In
 most cases, it is simpler to assume a uniform MTU throughout the
 multipoint system, e.g., the minimum MTU supported across all
 ingress/egress pairs. This applies to both the ingress EMTU_S and
 ingress EMTU_S (the latter determining the tunnel MTU).

 A multipoint tunnel MUST have support for broadcast and multicast, in
 exactly the same way as this is already required for multipoint links
 [RFC3819]. Both modes can be supported either by a native mechanism
 inside the tunnel or by emulation using serial replication at the
 tunnel ingress (e.g., AMT [RFC7450]), in the same way that links may
 provide the same support either natively (e.g., via promiscuous or
 automatic replication in the link itself) or network interface
 emulation (e.g., as for non-broadcast multiaccess networks, i.e.,
 NBMAs).

 IGMP snooping enables IP multicast to be coupled with native link
 layer multicast support [RFC4541]. A similar technique may be
 relevant to couple transit packet multicast to tunnel link packet
 multicast, but the coupling of the protocols may be more complex
 because many tunnel link protocols rely on their own network N
 multicast control protocol, e.g., via PIM-SM [RFC6807][RFC7761].

4.3.4. Load Balancing

 Load balancing can impact the way in which a tunnel operates. In
 particular, multipath routing inside the tunnel can impact some of
 the tunnel parameters to vary, both over time and for different
 transit packets. The use of multiple paths can be the result of MPLS

Touch, Townsley Expires September 13, 2017 [Page 33]

Internet-Draft Tunnels in the Internet March 2017

 link aggregation groups (LAGs), equal-cost multipath routing (ECMP
 [RFC2991]), or other load balancing mechanisms. In some cases, the
 tunnel exists as the mechanism to support ECMP, as for GRE in UDP
 [RFC8086].

 A tunnel may have multiple paths between the ingress and egress with
 different path MTU values, causing the ingress EMTU_S to vary
 [RFC7690]. Rather than track individual values, the EMTU_S can be set
 to the minimum of these different path MTU values.

 IPv6 packets include a flow label to enable multipath routing to keep
 packets of a single flow following the same path. It is helpful to
 preserve the semantics of that flow label as an aggregate identifier
 inside the encapsulated link packets of a tunnel. This is achieved by
 hashing the transit IP addresses and flow label to generate a new
 flow label for use between the ingress and egress addresses
 [RFC6438]. It is not useful to simply copy the flow label from the
 transit packet into the link packet because of collisions that might
 arise if a label is used for flows between different transit packet
 addresses that traverse the same tunnel.

4.3.5. Recursive Tunnels

 The rules described in this document already support tunnels over
 tunnels, sometimes known as "recursive" tunnels, in which IP is
 transited over IP either directly or via intermediate encapsulation
 (IP-UDP-IP, as in GUE [He16]).

 There are known hazards to recursive tunneling, notably that the
 independence of the tunnel transit header and tunnel link header hop
 counts can result in a tunneling loop. Such looping can be avoided
 when using direct encapsulation (IP in IP) by use of a header option
 to track the encapsulation count and to limit that count [RFC2473].
 This looping cannot be avoided when other protocols are used for
 tunneling, e.g., IP in UDP in IP, because the encapsulation count may
 not be visible where the recursion occurs.

5. Observations

 The following subsections summarize the observations of this document
 and a summary of issues with existing tunnel protocol specifications.
 It also includes advice for tunnel protocol designers, implementers,
 and operators. It also includes

5.1. Summary of Recommendations

 o Tunnel endpoints are network interfaces, tunnel are virtual links

Touch, Townsley Expires September 13, 2017 [Page 34]

Internet-Draft Tunnels in the Internet March 2017

 o ICMP messages MUST NOT be generated by the tunnel (as a link)

 o ICMP messages received by the ingress inside link change the
 link properties (they not generate transit-layer ICMP
 messages)

 o Link headers (hop, ID, options) are largely independent of
 arriving ID (with few exceptions based on translation, not
 direct copying, e.g., ECN and IPv6 flow IDs)

 o MTU values should treat the tunnel as any other link

 o Require source ingress source fragmentation and egress
 reassembly at the tunnel link packet layer

 o The tunnel MTU is the tunnel egress EMTU_S less headers, and
 not related at all to the ingress-egress MFS

 o Tunnels must obey core IP requirements

 o Obey IPv4 DF=0 on arrival at a node (nodes MUST NOT fragment
 IPv4 packets where DF=0)

 o Shut down an IP tunnel if the tunnel MTU falls below the
 required minimum

5.2. Impact on Existing Encapsulation Protocols

 Many existing and proposed encapsulation protocols are inconsistent
 with the guidelines of this document. The following list summarizes
 only those inconsistencies, but omits places where a protocol is
 inconsistent solely by reference to another protocol.

 [should this be inverted as a table of issues and a list of which
 RFCs have problems?]

 o IP in IP / mobile IP [RFC2003][RFC4459] - IPv4 in IPv4

 o Sets link DF when transit DF=1 (fails without PLPMTUD)

 o Drops at egress if hopcount = 0 (host-host tunnels fail)

 o Drops based on transit source (same as router IP, matches
 egress), i.e., performs routing functions it should not

Touch, Townsley Expires September 13, 2017 [Page 35]

Internet-Draft Tunnels in the Internet March 2017

 o Ingress generates ICMP messages (based on relayed context),
 rather than using inner ICMP messages to set interface
 properties only

 o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

 o IPv6 tunnels [RFC2473] -- IPv6 or IPv4 in IPv6

 o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

 o Decrements transiting packet hopcount (by 1)

 o Copies traffic class from tunnel link to tunnel transit header

 o Ignores IPv4 DF=0 and fragments at that layer upon arrival

 o Fails to retain soft ingress state based on inner ICMP messages
 affecting tunnel MTU

 o Tunnel ingress issues ICMPs

 o Fragments IPv4 over IPv6 fragments only if IPv4 DF=0
 (misinterpreting the "can fragment the IPv4 packet" as
 permission to fragment at the IPv6 link header)

 o IPsec tunnel mode (IP in IPsec in IP) [RFC4301] -- IP in IPsec

 o Uses security policy to set, clear, or copy DF (rather than
 generating it independently, which would also be more secure)

 o Intertwines tunnel selection with security selection, rather
 than presenting tunnel as an interface and using existing
 forwarding (as with transport mode over IP-in-IP [RFC3884])

 o GRE (IP in GRE in IP or IP in GRE in UDP in IP)
 [RFC2784][RFC7588][RFC7676][RFC8086]

 o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

 o Requires ingress to generate ICMP errors

 o Copies IPv4 DF to outer IPv4 DF

 o Violates IPv6 MTU requirements when using IPv6 encapsulation

 o LISP [RFC6830]

Touch, Townsley Expires September 13, 2017 [Page 36]

Internet-Draft Tunnels in the Internet March 2017

 o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

 o Requires ingress to generate ICMP errors

 o Copies inner hop limit to outer

 o L2TP [RFC3931]

 o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

 o Requires ingress to generate ICMP errors

 o PWE [RFC3985]

 o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

 o Requires ingress to generate ICMP errors

 o GUE (Generic UDP encapsulation) [He16] - IP (et. al) in UDP in IP

 o Allows inner encapsulation fragmentation

 o Geneve [RFC7364][Gr16] - IP (et al.) in Geneve in UDP in IP

 o Treats tunnel MTU as tunnel path MTU, not tunnel egress MTU

 o SEAL/AERO [RFC5320][Te16] - IP in SEAL/AERO in IP

 o Some issues with SEAL (MTU, ICMP), corrected in AERO

 o RTG DT encapsulations [No16]

 o Assumes fragmentation can be avoided completely

 o Allows encapsulation protocols that lack fragmentation

 o Relies on ICMP PTB to correct for tunnel path MTU

 o No known issues

 o L2VPN (framework for L2 virtualization) [RFC4664]

 o L3VPN (framework for L3 virtualization) [RFC4176]

 o MPLS (IP in MPLS) [RFC3031]

 o TRILL (Ethernet in Ethernet) [RFC5556][RFC6325]

Touch, Townsley Expires September 13, 2017 [Page 37]

Internet-Draft Tunnels in the Internet March 2017

5.3. Tunnel Protocol Designers

 [To be completed]

 Recursive tunneling + minimum MTU = frag/reassembly is inevitable, at
 least to be able to split/join two fragments

 Account for egress MTU/path MTU differences.

 Include a stronger checksum.

 Ensure the egress MTU is always larger than the path MTU.

 Ensure that the egress reassembly can keep up with line rate OR
 design PLPMTUD into the tunneling protocol.

5.3.1. For Future Standards

 [To be completed]

 Larger IPv4 MTU (2K? or just 2x path MTU?) for reassembly

 Always include frag support for at least two frags; do NOT try to
 deprecate fragmentation.

 Limit encapsulation option use/space.

 Augment ICMP to have two separate messages: PTB vs P-bigger-than-
 optimal

 Include MTU as part of BGP as a hint - SB

 Hazards of multi-MTU draft-van-beijnum-multi-mtu-04

5.3.2. Diagnostics

 [To be completed]

 Some current implementations include diagnostics to support
 monitoring the impact of tunneling, especially the impact on
 fragmentation and reassembly resources, the status of path MTU
 discovery, etc.

 >> Because a tunnel ingress/egress is a network interface, it SHOULD
 have similar resources as any other network interface. This includes
 resources for packet processing as well as monitoring.

Touch, Townsley Expires September 13, 2017 [Page 38]

Internet-Draft Tunnels in the Internet March 2017

5.4. Tunnel Implementers

 [To be completed]

 Detect when the egress MTU is exceeded.

 Detect when the egress MTU drops below the required minimum and shut
 down the tunnel if that happens - configuring the tunnel down and
 issuing a hard error may be the only way to detect this anomaly, and
 it’s sufficiently important that the tunnel SHOULD be disabled. This
 is always better than blindly assuming the tunnel has been deployed
 correctly, i.e., that the solution has been engineered.

 Do NOT decrement the TTL as part of being a tunnel. It’s always
 already OK for a router to decrement the TTL based on different next-
 hop routers, but TTL is a property of a router not a link.

5.5. Tunnel Operators

 [To be completed]

 Keep the difference between "enforced by operators" vs. "enforced by
 active protocol mechanism" in mind. It’s fine to assume something the
 tunnel cannot or does not test, as long as you KNOW you can assume
 it. When the assumption is wrong, it will NOT be signaled by the
 tunnel. Do NOT decrement the TTL as part of being a tunnel. It’s
 always already OK for a router to decrement the TTL based on
 different next-hop routers, but TTL is a property of a router not a
 link.

 Consider the circuit breakers doc to provide diagnostics and last-
 resort control to avoid overload for non-reactive traffic (see
 Gorry’s RFC-to-be)

 Do NOT decrement the TTL as part of being a tunnel. It’s always
 already OK for a router to decrement the TTL based on different next-
 hop routers, but TTL is a property of a router not a link.

 >>>> PLPMTUD can give multiple conflicting PMTU values during ECMP or
 LAG if PMTU is cached per endpoint pair rather than per flow -- but
 so can PMTUD! This is another reason why ICMP should never drive up
 the effective MTU (if aggregate, treat as the minimum of received
 messages over an interval).

Touch, Townsley Expires September 13, 2017 [Page 39]

Internet-Draft Tunnels in the Internet March 2017

6. Security Considerations

 Tunnels may introduce vulnerabilities or add to the potential for
 receiver overload and thus DOS attacks. These issues are primarily
 related to the fact that a tunnel is a link that traverses a network
 path and to fragmentation and reassembly. ICMP signal translation
 introduces a new security issue and must be done with care. ICMP
 generation at the router or host attached to a tunnel is already
 covered by existing requirements (e.g., should be throttled).

 Tunnels traverse multiple hops of a network path from ingress to
 egress. Traffic along such tunnels may be susceptible to on-path and
 off-path attacks, including fragment injection, reassembly buffer
 overload, and ICMP attacks. Some of these attacks may not be as
 visible to the endpoints of the architecture into which tunnels are
 deployed and these attacks may thus be more difficult to detect.

 Fragmentation at routers or hosts attached to tunnels may place an
 undue burden on receivers where traffic is not sufficiently diffuse,
 because tunnels may induce source fragmentation at hosts and path
 fragmentation (for IPv4 DF=0) more for tunnels than for other links.
 Care should be taken to avoid this situation, notably by ensuring
 that tunnel MTUs are not significantly different from other link
 MTUs.

 Tunnel ingresses emitting IP datagrams MUST obey all existing IP
 requirements, such as the uniqueness of the IP ID field. Failure to
 either limit encapsulation traffic, or use additional ingress/egress
 IP addresses, can result in high speed traffic fragments being
 incorrectly reassembled.

 Tunnels are susceptible to attacks at both the inner and outer
 network layers. The tunnel ingress/egress endpoints appear as network
 interfaces in the outer network, and are as susceptible as any other
 network interface. This includes vulnerability to fragmentation
 reassembly overload, traffic overload, and spoofed ICMP messages that
 misreport the state of those interfaces. Similarly, the
 ingress/egress appear as hosts to the path traversed by the tunnel,
 and thus are as susceptible as any other host to attacks as well.

 [management?]

 [Access control?]

 describe relationship to [RFC6169] - JT (as per INTAREA meeting
 notes, don’t cover Teredo-specific issues in RFC6169, but include
 generic issues here)

Touch, Townsley Expires September 13, 2017 [Page 40]

Internet-Draft Tunnels in the Internet March 2017

7. IANA Considerations

 This document has no IANA considerations.

 The RFC Editor should remove this section prior to publication.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [are there others? 3819? ECN? Flow label issues?]

8.2. Informative References

 [Cl88] Clark, D., "The design philosophy of the DARPA internet
 protocols," Proc. Sigcomm 1988, p.106-114, 1988.

 [Er94] Eriksson, H., "MBone: The Multicast Backbone,"
 Communications of the ACM, Aug. 1994, pp.54-60.

 [Gr16] Gross, J. (Ed.), I. Ganga (Ed.), T. Sridhar (Ed.), "Geneve:
 Generic Network Virtualization Encapsulation," draft-ietf-
 nvo3-geneve-03, Sep. 2016.

 [He16] Herbert, T., L. Yong, O. Zia, "Generic UDP Encapsulation,"
 draft-ietf-nvo3-gue-05, Oct. 2016.

 [Ke95] Kent, S., J. Mogul, "Fragmentation considered harmful," ACM
 Sigcomm Computer Communication Review (CCR), V25 N1, Jan.
 1995, pp. 75-87.

 [No16] Nordmark, E. (Ed.), A. Tian, J. Gross, J. Hudson, L.
 Kreeger, P. Garg, P. Thaler, T. Herbert, "Encapsulation
 Considerations," draft-ietf-rtgwg-dt-encap-02, Oct. 2016.

 [RFC5] Rulifson, J, "Decode Encode Language (DEL)," RFC 5, June
 1969.

 [RFC768] Postel, J, "User Datagram Protocol," RFC 768, Aug. 1980

 [RFC791] Postel, J., "Internet Protocol," RFC 791 / STD 5, September
 1981.

Touch, Townsley Expires September 13, 2017 [Page 41]

Internet-Draft Tunnels in the Internet March 2017

 [RFC792] Postel, J., "Internet Control Message Protocol," RFC 792,
 Sep. 981.

 [RFC793] Postel, J, "Transmission Control Protocol," RFC 793, Sept.
 1981.

 [RFC826] Plummer, D., "An Ethernet Address Resolution Protocol -- or
 -- Converting Network Protocol Addresses to 48.bit Ethernet
 Address for Transmission on Ethernet Hardware," RFC 826,
 Nov. 1982.

 [RFC1075] Waitzman, D., C. Partridge, S. Deering, "Distance Vector
 Multicast Routing Protocol," RFC 1075, Nov. 1988.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers," RFC 1122 / STD 3, October 1989.

 [RFC1191] Mogul, J., S. Deering, "Path MTU discovery," RFC 1191,
 November 1990.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers," RFC
 1812, June 1995.

 [RFC1853] Simpson, W., "IP in IP Tunneling," RFC 1853, Oct. 1995.

 [RFC1981] McCann, J., S. Deering, J. Mogul, "Path MTU Discovery for
 IP version 6," RFC 1981, Aug. 1996.

 [RFC2003] Perkins, C., "IP Encapsulation within IP," RFC 2003, Oct.
 1996.

 [RFC2225] Laubach, M., J. Halpern, "Classical IP and ARP over ATM,"
 RFC 2225, Apr. 1998.

 [RFC2460] Deering, S., R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification," RFC 2460, Dec. 1998.

 [RFC2473] Conta, A., "Generic Packet Tunneling in IPv6
 Specification," RFC 2473, Dec. 1998.

 [RFC2784] Farinacci, D., T. Li, S. Hanks, D. Meyer, P. Traina,
 "Generic Routing Encapsulation (GRE)", RFC 2784, March
 2000.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery," RFC
 2923, September 2000.

Touch, Townsley Expires September 13, 2017 [Page 42]

Internet-Draft Tunnels in the Internet March 2017

 [RFC2983] Black, D., "Differentiated Services and Tunnels," RFC 2983,
 Oct. 2000.

 [RFC2991] Thaler, D., C. Hopps, "Multipath Issues in Unicast and
 Multicast Next-Hop Selection," RFC 2991, Nov. 2000.

 [RFC2473] Conta, A., S. Deering, "Generic Packet Tunneling in IPv6
 Specification," RFC 2473, Dec. 1998.

 [RFC2546] Durand, A., B. Buclin, "6bone Routing Practice," RFC 2540,
 Mar. 1999.

 [RFC3031] Rosen, E., A. Viswanathan, R. Callon, "Multiprotocol Label
 Switching Architecture", RFC 3031, January 2001.

 [RFC3819] Karn, P., Ed., C. Bormann, G. Fairhurst, D. Grossman, R.
 Ludwig, J. Mahdavi, G. Montenegro, J. Touch, L. Wood,
 "Advice for Internet Subnetwork Designers," RFC 3819 / BCP
 89, July 2004.

 [RFC3884] Touch, J., L. Eggert, Y. Wang, "Use of IPsec Transport Mode
 for Dynamic Routing," RFC 3884, September 2004.

 [RFC3931] Lau, J., Ed., M. Townsley, Ed., I. Goyret, Ed., "Layer Two
 Tunneling Protocol - Version 3 (L2TPv3)," RFC 3931, March
 2005.

 [RFC3985] Bryant, S., P. Pate (Eds.), "Pseudo Wire Emulation Edge-to-
 Edge (PWE3) Architecture", RFC 3985, March 2005.

 [RFC4176] El Mghazli, Y., Ed., T. Nadeau, M. Boucadair, K. Chan, A.
 Gonguet, "Framework for Layer 3 Virtual Private Networks
 (L3VPN) Operations and Management," RFC 4176, October 2005.

 [RFC4301] Kent, S., and K. Seo, "Security Architecture for the
 Internet Protocol," RFC 4301, December 2005.

 [RFC4340] Kohler, E., M. Handley, S. Floyd, "Datagram Congestion
 Control Protocol (DCCP)," RFC 4340, Mar. 2006.

 [RFC4443] Conta, A., S. Deering, M. Gupta (Ed.), "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol Version
 6 (IPv6) Specification," RFC 4443, Mar. 2006.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling," RFC 4459, April 2006.

Touch, Townsley Expires September 13, 2017 [Page 43]

Internet-Draft Tunnels in the Internet March 2017

 [RFC4541] Christensen, M., K. Kimball, F. Solensky, "Considerations
 for Internet Group Management Protocol (IGMP) and Multicast
 Listener Discovery (MLD) Snooping Switches," RFC 4541, May
 2006.

 [RFC4664] Andersson, L., Ed., E. Rosen, Ed., "Framework for Layer 2
 Virtual Private Networks (L2VPNs)," RFC 4664, September
 2006.

 [RFC4821] Mathis, M., J. Heffner, "Packetization Layer Path MTU
 Discovery," RFC 4821, March 2007.

 [RFC4861] Narten, T., E. Nordmark, W. Simpson, H. Soliman, "Neighbor
 Discovery for IP version 6 (IPv6)," RFC 4861, Sept. 2007.

 [RFC4960] Stewart, R. (Ed.), "Stream Control Transmission Protocol,"
 RFC 4960, Sep. 2007.

 [RFC4963] Heffner, J., M. Mathis, B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates," RFC 4963, July 2007.

 [RFC5320] Templin, F., Ed., "The Subnetwork Encapsulation and
 Adaptation Layer (SEAL)," RFC 5320, Feb. 2010.

 [RFC5556] Touch, J., R. Perlman, "Transparently Interconnecting Lots
 of Links (TRILL): Problem and Applicability Statement," RFC
 5556, May 2009.

 [RFC5944] Perkins, C., Ed., "IP Mobility Support for IPv4, Revised"
 RFC 5944, Nov. 2010.

 [RFC6040] Briscoe, B., "Tunneling of Explicit Congestion
 Notification," RFC 6040, Nov. 2010.

 [RFC6169] Krishnan, S., D. Thaler, J. Hoagland, "Security Concerns
 With IP Tunneling," RFC 6169, Apr. 2011.

 [RFC6325] Perlman, R., D. Eastlake, D. Dutt, S. Gai, A. Ghanwani,
 "Routing Bridges (RBridges): Base Protocol Specification,"
 RFC 6325, July 2011.

 [RFC6434] Jankiewicz, E., J. Loughney, T. Narten, "IPv6 Node
 Requirements," RFC 6434, Dec. 2011.

 [RFC6438] Carpenter, B., S. Amante, "Using the IPv6 Flow Label for
 Equal Cost Multipath Routing and Link Aggregation in
 Tunnels," RFC 6438, Nov. 2011.

Touch, Townsley Expires September 13, 2017 [Page 44]

Internet-Draft Tunnels in the Internet March 2017

 [RFC6807] Farinacci, D., G. Shepherd, S. Venaas, Y. Cai, "Population
 Count Extensions to Protocol Independent Multicast (PIM),"
 RFC 6807, Dec. 2012.

 [RFC6830] Farinacci, D., V. Fuller, D. Meyer, D. Lewis, "The
 Locator/ID Separation Protocol," RFC 6830, Jan. 2013.

 [RFC6833] Fuller, V., D. Farinacci, "Locator/ID Separation Protocol
 (LISP) Map-Server Interface," RFC 6833, Jan. 2013.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field,"
 Proposed Standard, RFC 6864, Feb. 2013.

 [RFC6935] Eubanks, M., P. Chimento, M. Westerlund, "IPv6 and UDP
 Checksums for Tunneled Packets," RFC 6935, Apr. 2013.

 [RFC6936] Fairhurst, G., M. Westerlund, "Applicability Statement for
 the Use of IPv6 UDP Datagrams with Zero Checksums," RFC
 6936, Apr. 2013.

 [RFC6946] Gont, F., "Processing of IPv6 "Atomic" Fragments," RFC
 6946, May 2013.

 [RFC7364] Narten, T., Gray, E., Black, D., Fang, L., Kreeger, L., M.
 Napierala, "Problem Statement: Overlays for Network
 Virtualization", RFC 7364, Oct. 2014.

 [RFC7450] Bumgardner, G., "Automatic Multicast Tunneling," RFC 7450,
 Feb. 2015.

 [RFC7510] Xu, X., N. Sheth, L. Yong, R. Callon, D. Black,
 "Encapsulating MPLS in UDP," RFC 7510, April 2015.

 [RFC7588] Bonica, R., C. Pignataro, J. Touch, "A Widely-Deployed
 Solution to the Generic Routing Encapsulation Fragmentation
 Problem," RFC 7588, July 2015.

 [RFC7676] Pignataro, C., R. Bonica, S. Krishnan, "IPv6 Support for
 Generic Routing Encapsulation (GRE)," RFC 7676, Oct 2015.

 [RFC7690] Byerly, M., M. Hite, J. Jaeggli, "Close Encounters of the
 ICMP Type 2 Kind (Near Misses with ICMPv6 Packet Too Big
 (PTB))," RFC 7690, Jan. 2016.

Touch, Townsley Expires September 13, 2017 [Page 45]

Internet-Draft Tunnels in the Internet March 2017

 [RFC7761] Fenner, B., M. Handley, H. Holbrook, I. Kouvelas, R.
 Parekh, Z. Zhang, L. Zheng, "Protocol Independent Multicast
 - Sparse Mode (PIM-SM): Protocol Specification (Revised),"
 RFC 7761, Mar. 2016.

 [RFC8085] Eggert, L., G. Fairhurst, G. Shepherd, "Unicast UDP Usage
 Guidelines," RFC 8085, Oct. 2015.

 [RFC8086] Yong, L. (Ed.), E. Crabbe, X. Xu, T. Herbert, "GRE-in-UDP
 Encapsulation," RFC 8086, Feb. 2017.

 [Sa84] Saltzer, J., D. Reed, D. Clark, "End-to-end arguments in
 system design," ACM Trans. on Computing Systems, Nov. 1984.

 [Te16] Templin, F., "Asymmetric Extended Route Optimization,"
 draft-templin-aerolink-74, Nov. 2016.

 [To01] Touch, J., "Dynamic Internet Overlay Deployment and
 Management Using the X-Bone," Computer Networks, July 2001,
 pp. 117-135.

 [To03] Touch, J., Y. Wang, L. Eggert, G. Finn, "Virtual Internet
 Architecture," USC/ISI Tech. Report ISI-TR-570, Aug. 2003.

 [To16] Touch, J., "Middleboxes Models Compatible with the
 Internet," USC/ISI Tech. Report ISI-TR-711, Oct. 2016.

 [To98] Touch, J., S. Hotz, "The X-Bone," Proc. Globecom Third
 Global Internet Mini-Conference, Nov. 1998.

 [Zi80] Zimmermann, H., "OSI Reference Model - The ISO Model of
 Architecture for Open Systems Interconnection," IEEE Trans.
 on Comm., Apr. 1980.

9. Acknowledgments

 This document originated as the result of numerous discussions among
 the authors, Jari Arkko, Stuart Bryant, Lars Eggert, Ted Faber, Gorry
 Fairhurst, Dino Farinacci, Matt Mathis, and Fred Templin. It
 benefitted substantially from detailed feedback from Toerless Eckert,
 Vincent Roca, and Lucy Yong, as well as other members of the Internet
 Area Working Group.

 This work is partly supported by USC/ISI’s Postel Center.

 This document was prepared using 2-Word-v2.0.template.dot.

Touch, Townsley Expires September 13, 2017 [Page 46]

Internet-Draft Tunnels in the Internet March 2017

Authors’ Addresses

 Joe Touch
 USC/ISI
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695
 U.S.A.

 Phone: +1 (310) 448-9151
 Email: touch@isi.edu

 W. Mark Townsley
 Cisco
 L’Atlantis, 11, Rue Camille Desmoulins
 Issy Les Moulineaux, ILE DE FRANCE 92782

 Email: townsley@cisco.com

Touch, Townsley Expires September 13, 2017 [Page 47]

Internet-Draft Tunnels in the Internet March 2017

APPENDIX A: Fragmentation efficiency

A.1. Selecting fragment sizes

 There are different ways to fragment a packet. Consider a network
 with a PMTU as shown in Figure 16, where packets are encapsulated
 over the same network layer as they arrive on (e.g., IP in IP). If a
 packet as large as the PMTU arrives, it must be fragmented to
 accommodate the additional header.

 X===========================X (transit PMTU)
 +----+----------------------+
 | iH | DDDDDDDDDDDDDDDDDDDD |
 +----+----------------------+
 |
 | X===========================X (tunnel 1 MTU)
 | +---+----+------------------+
 (a) +->| H’| iH | DDDDDDDDDDDDDDDD |
 | +---+----+------------------+
 | |
 | | X===========================X (tunnel 2 MTU)
 | | +----+---+----+-------------+
 | (a1) +->| nH’| H | iH | DDDDDDDDDDD |
 | | +----+---+----+-------------+
 | |
 | | +----+-------+
 | (a2) +->| nH"| DDDDD |
 | +----+-------+
 |
 | +---+------+
 (b) +->| H"| DDDD |
 +---+------+
 |
 | +----+---+------+
 (b1) +->| nH’| H"| DDDD |
 +----+---+------+

 Figure 16 Fragmenting via maximum fit

 Figure 16 shows this process using "maximum fit", assuming outer
 fragmentation as an example (the situation is the same for inner
 fragmentation, but the headers that are affected differ). In maximum
 fit, the arriving packet is split into (a) and (b), where (a) is the
 size of the first tunnel, i.e., the tunnel 1 MTU (the maximum that
 fits over the first tunnel). However, this tunnel then traverses over
 another tunnel (number 2), whose impact the first tunnel ingress has
 not accommodated. The packet (a) arrives at the second tunnel

Touch, Townsley Expires September 13, 2017 [Page 48]

Internet-Draft Tunnels in the Internet March 2017

 ingress, and needs to be encapsulated again, but it needs to be
 fragmented as well to fit into the tunnel 2 MTU, into (a1) and (a2).
 In this case, packet (b) arrives at the second tunnel ingress and is
 encapsulated into (b1) without fragmentation, because it is already
 below the tunnel 2 MTU size.

 In Figure 17, the fragmentation is done using "even split", i.e., by
 splitting the original packet into two roughly equal-sized
 components, (c) and (d). Note that (d) contains more packet data,
 because (c) includes the original packet header because this is an
 example of outer fragmentation. The packets (c) and (d) arrive at the
 second tunnel encapsulator, and are encapsulated again; this time,
 neither packet exceeds the tunnel 2 MTU, and neither requires further
 fragmentation.

 X===========================X (transit PMTU)
 +----+----------------------+
 | iH | DDDDDDDDDDDDDDDDDDDD |
 +----+----------------------+
 |
 | X===========================X (tunnel 1 MTU)
 | +---+----+----------+
 (c) +->| H’| iH | DDDDDDDD |
 | +---+----+----------+
 | |
 | | X===========================X (tunnel 2 MTU)
 | | +----+---+----+----------+
 | (c1) +->| nH | H’| iH | DDDDDDDD |
 | +----+---+----+----------+
 |
 | +---+--------------+
 (d) +->| H"| DDDDDDDDDDDD |
 +---+--------------+
 |
 | +----+---+--------------+
 (d1) +->| nH | H"| DDDDDDDDDDDD |
 +----+---+--------------+

 Figure 17 Fragmenting via "even split"

A.2. Packing

 Encapsulating individual packets to traverse a tunnel can be
 inefficient, especially where headers are large relative to the
 packets being carried. In that case, it can be more efficient to
 encapsulate many small packets in a single, larger tunnel payload.

Touch, Townsley Expires September 13, 2017 [Page 49]

Internet-Draft Tunnels in the Internet March 2017

 This technique, similar to the effect of packet bursting in Gigabit
 Ethernet (regardless of whether they’re encoded using L2 symbols as
 delineators), reduces the overhead of the encapsulation headers
 (Figure 18). It reduces the work of header addition and removal at
 the tunnel endpoints, but increases other work involving the packing
 and unpacking of the component packets carried.

 +-----+-----+
 | iHa | iDa |
 +-----+-----+
 |
 | +-----+-----+
 | | iHb | iDb |
 | +-----+-----+
 | |
 | | +-----+-----+
 | | | iHc | iDc |
 | | +-----+-----+
 | | |
 v v v
 +----+-----+-----+-----+-----+-----+-----+
 | oH | iHa | iHa | iHb | iDb | iHc | iDc |
 +----+-----+-----+-----+-----+-----+-----+

 Figure 18 Packing packets into a tunnel

Touch, Townsley Expires September 13, 2017 [Page 50]

intarea Working Group L. Li
Internet-Draft Y. Cui
Intended status: Standards Track C. Liu
Expires: September 7, 2017 J. Wu
 Tsinghua University
 F. Baker

 J. Palet Martinez
 Consulintel, S.L.
 March 6, 2017

 DHCPv6 Options for Discovery NAT64 Prefixes
 draft-li-intarea-nat64-prefix-dhcp-option-00

Abstract

 Several IPv6 transition mechanisms require the usage of stateless or
 stateful translators (commonly named as NAT64) able to allow IP/ICMP
 communication between IPv4 and IPv6 networks.

 Those translators are using either a default well-known prefix, and/
 or one or several additional network specific prefixes, which need to
 be configured into the nodes willing to use the translator.
 Different translators will likely have different IPv6 prefixes, to
 attract traffic to the correct translator. Thus, an automatic
 translator prefix discovery method is necessary.

 This document defines a DHCPv6-based method to inform DHCPv6 clients
 the set of IPv6 and IPv4 prefixes it serves. This DHCPv6 option can
 be used by several transition mechanisms such as SIIT, 464XLAT, EAM.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 7, 2017.

Li, et al. Expires September 7, 2017 [Page 1]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements Language . 3
 3. New DHCPv6 Option . 3
 3.1. NAT64 Prefix List Option Format 3
 3.2. NAT64 Prefix Option Format 4
 4. Client Behavior . 5
 5. Message Flow Illustration 6
 6. Security Considerations 7
 7. IANA Considerations . 8
 8. Acknowledgements . 8
 9. References . 8
 9.1. Normative References 8
 9.2. Informative References 9
 Authors’ Addresses . 9

1. Introduction

 Stateless IP/ICMP Translation (SIIT) [RFC7915] describes the basic
 translation mechanism (NAT64), which is actually used as the base for
 most of the related translation protocols.

 Stateful NAT64 [RFC6146] describes how to allow IPv6-only clients to
 contact IPv4 servers using unicast UDP, TCP or ICMP.

 464XLAT [RFC6877] describes an IPv4-over-IPv6 solution as one
 technique for IPv4 service extension and encouragement of IPv6
 deployment. The 464XLAT architecture uses IPv4/IPv6 translation,
 described in [RFC6144], and standardized in [RFC6052], [RFC7915], and
 [RFC6146]. It encourages the IPv6 transition by making IPv4 service
 reachable across IPv6-only networks and providing IPv6 and IPv4
 connectivity to single-stack IPv4 or IPv6 servers and peers. In the

Li, et al. Expires September 7, 2017 [Page 2]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

 464XLAT architecture, the CLAT (customer-side NAT46 translator) must
 determine which of potentially several PLAT (provider-side NAT64
 translator) IPv6 prefix to use in order to send a packet to the PLAT
 with connectivity to its destination.

 [RFC7050] describes a mechanism to learn the PLAT-side IPv6 prefix
 for protocol translation by DNS64 [RFC6147]. Although it supports
 multiple PLAT-side prefix by responding with multiple AAAA records to
 a DNS64 query, it does not support mapping IPv4 prefixes to IPv6
 prefix, which would be required, for example, if one PLAT has
 connectivity to the general Internet following a default route,
 another has connectivity to a BGP peer, and a third has connectivity
 to a network using private addressing [RFC1918]. Therefore, in the
 scenario with multiple PLATs, [RFC7050] does not directly support
 destination-based IPv4 routing among PLATs; instead, the DNS64
 database must contain equivalent information. It also requires the
 additional deployment of DNS64 service in customer-side networks,
 which is not required in 464XLAT deployment.

 464XLAT is in fact, a usage case of Stateful NAT64.

 Explicit Address Mappings for Stateless IP/ICMP Translation [RFC7757]
 extends SIIT with an Explicit Address Mapping (EAM) algorithm to
 facilitate stateless IP/ICMP translation between arbitrary (non-
 IPv4-translatable) IPv6 endpoints and IPv4.

 This document proposes a method for the translator (NAT64) IPv6
 prefix discovery based on DHCPv6, which is widely deployed and
 supported in customer networks. It defines two new DHCPv6 options
 for use by a DHCPv6 client to discover the translator IPv6
 prefix(es). Also, the proposed mechanism can deal with the scenario
 with multiple independent DNS64 databases supporting separate
 translators.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. New DHCPv6 Option

3.1. NAT64 Prefix List Option Format

 The NAT Prefix List Option is a container for NAT64 Prefix Option(s).
 A NAT64 Prefix List Option MAY contain multiple NAT64 Prefix Options.

 The format of the NAT64 Prefix List Option is:

Li, et al. Expires September 7, 2017 [Page 3]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_NAT64_PREFIX_LIST | option-length |
 +-+
 | |
 + NAT64_PREFIX-options +
 | |
 +-+

 o option-code: OPTION_NAT64_PREFIX_LIST (TBA1)

 o option-length: length of NAT64_PREFIX-options, specified in
 octets.

 o NAT64_PREFIX-options: one or more OPTION_NAT64_PREFIX options.

3.2. NAT64 Prefix Option Format

 The NAT64 Prefix Option is encapsulated in the NAT64 Prefix List
 Option. This option allows the mapping of destination IPv4 address
 ranges (contained in the IPv4 Prefix List) to a NAT64 IPv6 prefix.
 If there is more than one such prefix, each prefix comes in its own
 option, with its associated IPv4 prefix list. In this way, the
 DHCPv6 client can select the NAT64 with the corresponding destination
 IPv4 address.

 The format of the NAT64 Prefix Option is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_NAT64_PREFIX | option-length |
 +-+
 | NAT64-Type | NAT64-prelen |
 +-+
 | NAT64-prefix |
 | (variable length) |
 +-+
 . (optional) .
 . IPv4 Prefix List (variable length) .
 . (see Figure 3) .
 +-+

Li, et al. Expires September 7, 2017 [Page 4]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | IPv4-prelen | IPv4 Prefix (32 bits) |
 +-+
 | (cont.) | IPv4-prelen | IPv4 Prefix (32 bits) |
 +-+
 | IPv4 Prefix (cont) | ... |
 +-+
 | ... |
 +-+

 o option-code: OPTION_NAT64_PREFIX (TBA2)

 o type-field: NAT64-Type (TBA3)

 o option-length: 1 + length of NAT64-prefix + length of IPv4 Prefix
 List, specified in octets.

 o NAT64-prelen: length of NAT64-prefix.

 o NAT64-prefix: The NAT64 IPv6 prefix that the DHCPv6 client use for
 IPv6 address synthesis.

 o IPv4 Prefix List: This is an optional field. The format of the
 IPv4 Prefix List is shown in Figure 3. It is a list of zero or
 more IPv4 Prefixes. Each entry is formed by IPv4-prelen and IPv4
 Prefix. The total length of the field is 5*number of IPv4
 prefixes.

 o IPv4-prelen: the length of the IPv4 Prefix.

 o IPv4 Prefix: the destination-based IPv4 Prefix. The length is 4
 octets.

4. Client Behavior

 The client requests the OPTION_NAT64_PREFIX_LIST option using the
 Option Request option (ORO) in every Solicit, Request, Renew, Rebind,
 and Information-request message. The NAT64-Type field defines the
 mechanism being used. If the DHCPv6 server includes the
 OPTION_NAT64_PREFIX_LIST option in its response, the DHCPv6 client
 may use the contained NAT64-prefix to translate the destination IPv4
 address into the destination IPv6 address.

 When receiving the OPTION_NAT64_PREFIX option with IPv4 Prefix List,
 the DHCPv6 client MUST record the received IPv6 prefix and the
 corresponding IPv4 prefixes in IPv4 Prefix List. When receiving the

Li, et al. Expires September 7, 2017 [Page 5]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

 OPTION_NAT64_PREFIX option without IPv4 Prefix List, the DHCPv6
 client MUST treat the IPv6 prefix and the default IPv4 prefix
 0.0.0.0/0 as one of the records.

 If the DHCPv6 client loses contact with the DHCPv6 server, the DHCPv6
 client SHOULD clear the prefix(es) it learned from the DHCPv6 server.

 When translating the destination IPv4 address into the destination
 IPv6 address, DHCPv6 client MUST search an IPv4 routing database
 using the longest-match-first rule and select the IPv6 prefix
 offering that IPv4 prefix.

5. Message Flow Illustration

 The figure below shows an example of message flow for a Client
 learning IPv6 prefixes using DHCPv6.

 In this example, two IPv6 prefixes are provided by the DHCPv6 server.
 The first IPv6 prefix is 2001:db8:122:300::/56, the corresponding
 IPv4 prefixes are 192.0.2.0/24 and 198.51.100.0/24. The second IPv6
 prefix is 2001:db8:122::/48, the corresponding IPv4 prefix is
 192.0.2.128/25.

 When the DHCPv6 client receives the packet with destination IPv4
 address 192.0.2.1, according to the rule of longest prefix match, the
 NAT64 with IPv6 prefix 2001:db8:122::/48 is chosen. In the same way,
 the NAT64 with IPv6 prefix 2001:db8:122::/48 is chosen.

Li, et al. Expires September 7, 2017 [Page 6]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

 +---------------+ +-----------------+
 | DHCPv6 Client | | DHCPv6 server |
 +---------------+ +-----------------+
 | DHCPv6 query for IPv6 prefix |
 |--->|
 | ORO with OPTION_NAT64_PREFIX_LIST |
 | |
 | DHCPv6 response with: |
 | NAT64PREFIX{ |
 | NAT64-v6-pre = 2001:db8:122:300::/56 |
 | NAT64-v4-pre = 192.0.2.0/24 |
 | NAT64-v4-pre = 198.51.100.0/24} |
 | NAT64PREFIX{ |
 | NAT64-v6-pre = 2001:db8:122::/48 |
 | NAT64-v4-pre = 192.0.2.128/25} |
 |<---|
 | |
 |
 | +-----------------+ +-----------------+
 | | NAT64 1 | | NAT64 2 |
 | +-----------------+ +-----------------+
 | NAT64-v6-pre = NAT64-v6-pre =
 | 2001:db8:122:300::/56 2001:db8:122::/48
 | NAT64-v4-pre = NAT64-v4-pre =
 | 192.0.2.0/24 192.0.2.128/25
 | 198.51.100.0/24 |
 | | |
 | Dest IPv4 addr: | |
 | 192.0.2.1 | |
 | Dest IPv6 addr: | |
 | 2001:db8:122:300::c000:201 | |
 |----------------------------->| |
 | | |
 | |
 | Dest IPv4 addr: 192.0.2.193 |
 | Dest IPv6 addr: 2001:db8:122::c000:2c1 |
 |--->|

6. Security Considerations

 Considerations for security in this type of environment are primarily
 around the operation of the DHCPv6 protocol and the databases it
 uses.

 In the DHCPv6 server, should the database be compromised, it will
 deliver incorrect data to its DHCPv6 clients. In the DHCPv6 client,
 should its database be compromised by attack or polluted by an
 incorrect DHCPv6 server database, it will route data incorrectly. In

Li, et al. Expires September 7, 2017 [Page 7]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

 both cases, the security of the systems and their databases in an
 operational matter, not managed by protocol.

 However, the operation of the DHCPv6 protocol itself is also required
 to be correct - the server and its clients must recognize valid
 requests and reject invalid ones. Therefore, DHCPv6 exchanges MUST
 be secured as described in [RFC3315].

7. IANA Considerations

 We request that IANA allocate two DHCPv6 option codes for use by
 OPTION_V6_PLATPREFIX_LIST and OPTION_V6_PLATPREFIX from the "Option
 Codes" table. Similarly, a request to IANA for assigning the
 NAT64-Type field codes. The following initial values are assigned in
 this document (values are 16-bit unsigned intergers).

 Name | Value | RFC
 -----------------+---------+---------
 Unspecified | 0x00 | RFC6052
 SIIT | 0x01 | RFC7915
 Stateful NAT64 | 0x02 | RFC6146
 EAM-SIIT | 0x03 | RFC7757

8. Acknowledgements

 The authors will like to recognize the inputs from Tore Anderson in a
 previous version of this work.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <http://www.rfc-editor.org/info/rfc3315>.

 [RFC6877] Mawatari, M., Kawashima, M., and C. Byrne, "464XLAT:
 Combination of Stateful and Stateless Translation",
 RFC 6877, DOI 10.17487/RFC6877, April 2013,
 <http://www.rfc-editor.org/info/rfc6877>.

Li, et al. Expires September 7, 2017 [Page 8]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

9.2. Informative References

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <http://www.rfc-editor.org/info/rfc1918>.

 [RFC6052] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
 Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
 DOI 10.17487/RFC6052, October 2010,
 <http://www.rfc-editor.org/info/rfc6052>.

 [RFC6144] Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
 IPv4/IPv6 Translation", RFC 6144, DOI 10.17487/RFC6144,
 April 2011, <http://www.rfc-editor.org/info/rfc6144>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <http://www.rfc-editor.org/info/rfc6146>.

 [RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 DOI 10.17487/RFC6147, April 2011,
 <http://www.rfc-editor.org/info/rfc6147>.

 [RFC7050] Savolainen, T., Korhonen, J., and D. Wing, "Discovery of
 the IPv6 Prefix Used for IPv6 Address Synthesis",
 RFC 7050, DOI 10.17487/RFC7050, November 2013,
 <http://www.rfc-editor.org/info/rfc7050>.

 [RFC7757] Anderson, T. and A. Leiva Popper, "Explicit Address
 Mappings for Stateless IP/ICMP Translation", RFC 7757,
 DOI 10.17487/RFC7757, February 2016,
 <http://www.rfc-editor.org/info/rfc7757>.

 [RFC7915] Bao, C., Li, X., Baker, F., Anderson, T., and F. Gont,
 "IP/ICMP Translation Algorithm", RFC 7915,
 DOI 10.17487/RFC7915, June 2016,
 <http://www.rfc-editor.org/info/rfc7915>.

Authors’ Addresses

Li, et al. Expires September 7, 2017 [Page 9]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

 Lishan Li
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-15201441862
 Email: lilishan9248@126.com

 Yong Cui
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-10-6260-3059
 Email: yong@csnet1.cs.tsinghua.edu.cn

 Cong Liu
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-10-6278-5822
 Email: gnocuil@gmail.com

 Jianping Wu
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-10-6278-5983
 Email: jianping@cernet.edu.cn

 Fred Baker
 Goleta, CA 93117
 United States

 Email: fredbaker.ietf@gmail.com

Li, et al. Expires September 7, 2017 [Page 10]

Internet-Draft NAT64 Prefix Discovery by DHCPv6 March 2017

 Jordi Palet Martinez
 Consulintel, S.L.
 La Navata - Galapagar 28420
 Spain

 Email: jordi.palet@consulintel.es

Li, et al. Expires September 7, 2017 [Page 11]

INTAREA E. Nordmark
Internet-Draft Arista Networks
Intended status: Standards Track October 26, 2016
Expires: April 29, 2017

 IP over Intentionally Partially Partitioned Links
 draft-nordmark-intarea-ippl-05

Abstract

 IP makes certain assumptions about the L2 forwarding behavior of a
 multi-access IP link. However, there are several forms of
 intentional partitioning of links ranging from split-horizon to
 Private VLANs that violate some of those assumptions. This document
 specifies that link behavior and how IP handles links with those
 properties.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 29, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Nordmark Expires April 29, 2017 [Page 1]

Internet-Draft IPPL October 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Keywords and Terminology 3
 3. Private VLAN . 4
 3.1. Bridge Behavior . 4
 4. IP over IPPL . 5
 5. IPv6 over IPPL . 5
 6. IPv4 over IPPL . 6
 7. Multiple routers . 7
 8. Multicast over IPPL . 8
 9. DHCP Implications . 8
 10. Redirect Implications . 9
 11. Security Considerations 9
 12. IANA Considerations . 9
 13. Acknowledgements . 9
 14. Appendix: Layer 2 Implications 9
 15. References . 10
 15.1. Normative References 10
 15.2. Informative References 10
 Author’s Address . 12

1. Introduction

 IPv4 and IPv6 can in general handle two forms of links; point-to-
 point links when only have two IP nodes (self and remote), and multi-
 access links with one or more nodes attached to the link. For the
 multi-access links IP in general, and particular protocols like ARP
 and IPv6 Neighbor Discovery, makes a few assumptions about transitive
 and reflexive connectivity i.e., that all nodes attached to the link
 can send packets to all other nodes.

 There are cases where for various reasons and deployments one wants
 what looks like one link from the perspective of IP and routing, yet
 the L2 connectivity is restrictive. A key property is that an IP
 subnet prefix is assigned to the link, and IP routing sees it as a
 regular multi-access link. But a host attached to the link might not
 be able to send packets to all other hosts attached to the link. The
 motivation for this is outside the scope of this document, but in
 summary the motivation to preserve the subnet view as seen by IP
 routing is to conserve IP(v4) address space, and the motivation to
 restrict communication on the link could be due to (security) policy
 or potentially wireless connectivity approaches.

Nordmark Expires April 29, 2017 [Page 2]

Internet-Draft IPPL October 2016

 This intentional and partial partition appears in a few different
 forms. For DSL [TR-101] and Cable [DOCSIS-MULPI] the pattern is to
 have a single access router on the link, and all the hosts can send
 and receive from the access router, but host-to-host communication is
 blocked. A richer set of restrictions are possible for Private VLANs
 (PVLAN) [RFC5517], which has a notion of three different ports i.e.
 attachment points: isolated, community, and promiscuous. Note that
 other techniques operate at L2/L3 boundary like [RFC4562] but those
 are out of scope for this document.

 The possible connectivity patterns for PVLAN appears to be a superset
 of the DSL and Cable use of split horizon, thus this document
 specifies the PVLAN behavior, shows the impact on IP/ARP/ND, and
 specifies how IP/ARP/ND must operate to work with PVLAN.

 If private VLANs, or the split horizon subset, has been configured at
 layer 2 for the purposes of IPv4 address conservation, then that
 layer 2 configuration will affect IPv6 even though IPv6 might not
 have the same need for address conservation.

2. Keywords and Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 The following terms from [RFC4861] are used without modifications:

 node a device that implements IP.
 router a node that forwards IP packets not explicitly
 addressed to itself.
 host any node that is not a router.
 link a communication facility or medium over which nodes
 can communicate at the link layer, i.e., the layer
 immediately below IP. Examples are Ethernets (simple
 or bridged), PPP links, X.25, Frame Relay, or ATM
 networks as well as Internet-layer (or higher-layer)
 "tunnels", such as tunnels over IPv4 or IPv6 itself.
 interface a node’s attachment to a link.
 neighbors nodes attached to the same link.

 This document defines the following set of terms:

 bridge a layer-2 device which implements 802.1Q
 port a bridge’s attachment to another bridge or to a node.

Nordmark Expires April 29, 2017 [Page 3]

Internet-Draft IPPL October 2016

3. Private VLAN

 A private VLAN is a structure which uses two or more 802.1Q (VLAN)
 values to separate what would otherwise be a single VLAN, viewed by
 IP as a single broadcast domain, into different types of ports with
 different L2 forwarding behavior between the different ports. A
 private VLAN consists of a single primary VLAN and multiple secondary
 VLANs.

 From the perspective of both a single bridge and a collection of
 interconnected bridges there are three different types of ports use
 to attach nodes plus an inter-bridge port:

 o Promiscuous: A promiscuous port can send packets to all ports that
 are part of the private VLAN. Such packets are sent using the
 primary VLAN ID.
 o Isolated: Isolated VLAN ports can only send packets to promiscuous
 ports. Such packets are sent using an isolated VLAN ID.
 o Community: A community port is associated with a per-community
 VLAN ID, and can send packets to both ports in the same community
 VLAN and promiscuous ports.
 o Inter-bridge: A port used to connect a bridge to another bridge.

3.1. Bridge Behavior

 Once a bridge or a set of interconnected bridges have been configured
 with both the primary and isolated VLAN ID, and zero or more
 community VLAN IDs associated with the private VLAN, the following
 forward behaviors apply to the bridge:

 o A packet received on an isolated port MUST NOT be forwarded out an
 isolated or community port; it SHOULD (subject to bandwidth/
 resource issues) be forwarded out promiscuous and inter-bridge
 ports.
 o A packet received on a community port MUST NOT be forwarded out an
 isolated port or a community port with a different VLAN ID; it
 SHOULD be forwarded out promiscuous and inter-bridge ports as well
 as community ports that have the same community VLAN ID.
 o A packet received on a promiscuous port SHOULD be forwarded out
 all types of ports in the private VLAN.
 o A packet received on an inter-bridge port with an isolated VLAN ID
 should be forwarded as a packet received on an isolated port.
 o A packet received on an inter-bridge port with a community VLAN ID
 should be forwarded as a packet received on a community port
 associated with that VLAN ID.
 o A packet received on an inter-bridge port with a promiscuous VLAN
 ID should be forwarded as a packet received on a promiscuous port.

Nordmark Expires April 29, 2017 [Page 4]

Internet-Draft IPPL October 2016

 In addition to the above VLAN filtering and implied MAC address
 learning rules, the packet forwarding is also subject to the normal
 802.1Q rules with blocking ports due to spanning-tree protocol etc.

4. IP over IPPL

 When IP is used over Intentionally Partially Partitioned links like
 private VLANs the normal usage is to attached routers (and
 potentially other shared resources like servers) to promiscuous
 ports, while attaching other hosts to either community or isolated
 ports. If there is a single host for a given tenant or other domain
 of separation, then it is most efficient to attach that host to an
 isolated port. If there are multiple hosts in the private VLAN that
 should be able to communicate at layer 2, then they should be
 assigned a common community VLAN ID and attached to ports with that
 VLAN ID.

 The above configuration means that hosts will not be able to
 communicate with each other unless they are in the same community.
 However, mechanisms outside of the scope of this document can be used
 to allow IP communication between such hosts e.g., by having firewall
 or gateway in or beyond the routers connected to the promiscuous
 ports. When such a policy is in place it is important that all
 packets which cross communities are sent to a router, which can have
 access-control lists or deeper firewall rules to decide which packets
 to forward.

5. IPv6 over IPPL

 IPv6 Neighbor Discovery [RFC4861] can be used to get all the hosts on
 the link to send all unicast packets except those send to link-local
 destination addresses to the routers. That is done by setting the
 L-flag (on-link) to zero for all of the Prefix Information options.
 Note that this is orthogonal to whether SLAAC (Stateless Address
 Auto-Configuration) [RFC4862] or DHCPv6 [RFC3315] is used for address
 autoconfiguration. Setting the L-flag to zero is RECOMMENDED
 configuration for private VLANs.

 If the policy includes allowing some packets that are sent to link-
 local destinations to cross between different tenants, then some for
 of NS/NA proxy is needed in the routers, and the routers need to
 forward packets addressed to link-local destinations out the same
 interface as REQUIRED in [RFC2460]. If the policy allows for some
 packets sent to global IPv6 address to cross between tenants then the
 routers would forward such packets out the same interface. However,
 with the L=0 setting those global packets will be sent to the default
 router, while the link-local destinations would result in a Neighbor
 Solicitation to resolve the IPv6 to link-layer address binding.

Nordmark Expires April 29, 2017 [Page 5]

Internet-Draft IPPL October 2016

 Handling such a NS when there are multiple promiscuous ports hence
 multiple routers risks creating loops. If the router already has a
 neighbor cache entry for the destination it can respond with an NA on
 behalf of the destination. However, if it does not it MUST NOT send
 a NS on the link, since the NA will be received by the other
 router(s) on the link which can cause an unbounded flood of multicast
 NS packets (all with hoplimit 255), in particular of the host IPv6
 address does not respond. Note that such an NS/NA proxy is defined
 in [RFC4389] under some topological assumptions such as there being a
 distinct upstream and downstream direction, which is not the case of
 two or more peer routers on the same IPPL. For that reason NS/NA
 packet proxies as in [RFC4389] MUST NOT be used with IPPL.

 IPv6 includes Duplicate Address Detection [RFC4862], which assumes
 that a link-local IPv6 multicast can be received by all hosts which
 share the same subnet prefix. That is not the case in a private
 VLAN, hence there could potentially be undetected duplicate IPv6
 addresses. However, the DAD proxy approach [RFC6957] defined for
 split-horizon behavior can safely be used even when there are
 multiple promiscuous ports hence multiple routers attached to the
 link, since it does not rely on sending Neighbor Solicitations
 instead merely gathers state from received packets. The use of
 [RFC6957] with private VLAN is RECOMMENDED.

 The Router Advertisements in a private VLAN MUST be sent out on a
 promiscuous VLAN ID so that all nodes on the link receive them.

6. IPv4 over IPPL

 IPv4 [RFC0791] and ARP [RFC0826] do not have a counterpart to the
 Neighbor Discovery On-link flag. Hence nodes attached to isolated or
 community ports will always ARP for any destination which is part of
 its configured subnet prefix, and those ARP request packets will not
 be forwarded by the bridges to the target nodes. Thus the routers
 attached to the promiscuous ports MUST provide a robust proxy ARP
 mechanism if they are to allow any (firewalled) communication between
 nodes from different tenants or separation domains.

 For the ARP proxy to be robust it MUST avoid loops where router1
 attached to the link sends an ARP request which is received by
 router2 (also attached to the link), resulting in an ARP request from
 router2 to be received by router1. Likewise, it MUST avoids a
 similar loop involving IP packets, where the reception of an IP
 packet results in sending a ARP request from router1 which is proxied
 by router2. At a minimum, the reception of an ARP request MUST NOT
 result in sending an ARP request, and the routers MUST either be
 configured to know each others MAC addresses, or receive the VLAN
 tagged packets so they can avoid proxying when the packet is received

Nordmark Expires April 29, 2017 [Page 6]

Internet-Draft IPPL October 2016

 on with the promiscuous VLAN ID. Note that should there be an IP
 forwarding loop due to proxying back and forth, the IP TTL will
 expire avoiding unlimited loops.

 Any proxy ARP approach MUST work correctly with Address Conflict
 Detection [RFC5227]. ACD depends on ARP probes only receiving
 responses if there is a duplicate IP address, thus the ARP probes
 MUST NOT be proxied. These ARP probes have a Sender Protocol Address
 of zero, hence they are easy to identify.

 When proxying an ARP request (with a non-zero Sender Protocol
 Address) the router needs to respond by placing its own MAC address
 in the Sender Hardware Address field. When there are multiple
 routers attached to the private VLAN this will not only result in
 multiple ARP replies for each ARP request, those replies would have a
 different Sender Hardware Address. That might seem surprising to the
 requesting node, but does not cause an issue with ARP implementations
 that follow the pseudo-code in [RFC0826].

 If the two or more routers attached to the private VLAN implement
 VRRP [RFC5798] the routers MAY use their VRRP MAC address as the
 Sender Hardware Address in the proxied ARP replies, since this
 reduces the risk nodes that do not follow the pseudo-code in
 [RFC0826]. However, if they do so it can cause flapping of the MAC
 tables in the bridges between the routers and the ARPing node. Thus
 such use is NOT RECOMMENDED in general topologies of bridges but can
 be used when there are no intervening bridges.

7. Multiple routers

 In addition to the above issues when multiple routers are attached to
 the same PVLAN, the routers need to avoid potential routing loops for
 packets entering the subnet. When such a packet arrives the router
 might need to send a ARP request (or Neighbor Solicitation) for the
 host, which can trigger the other router to send a proxy ARP (or
 Neighbor Advertisement). The host, if present, will also respond to
 the ARP/NS. This issue is described in [PVLAN-HOSTING] in the
 particular case of HSRP.

 When multiple routers are attached to the same PVLAN, wheter they are
 using VRRP, HSRP, or neither, they SHOULD NOT proxy ARP/ND respond to
 a request from another router. At a minimum a router MUST be
 configurable with a list of IP addresses to which it should not proxy
 respond. Thus the user can configure that list with the IP
 address(es) of the other router(s) attached to the PVLAN.

Nordmark Expires April 29, 2017 [Page 7]

Internet-Draft IPPL October 2016

8. Multicast over IPPL

 Layer 2 multicast or broadcast is used by protocols like ARP
 [RFC0826], IPv6 Neighbor Discovery [RFC4861] and Multicast DNS
 [RFC6762] with link-local scope. The first two have been discussed
 above.

 Multicast DNS can be handled by implementing using some proxy such as
 [I-D.ietf-dnssd-hybrid] but that is outside of the scope of this
 document.

 IP Multicast which spans across multiple IP links and that have
 senders that are on community or isolated ports require additional
 forwarding mechanisms in the routers that are attached to the
 promiscuous ports, since the routers need to forward such packets out
 to any allowed receivers in the private VLAN without resulting in
 packet duplication. For multicast senders on isolated ports such
 forwarding would result in the sender potentially receiving the
 packet it transmitted. For multicast senders on community ports, any
 receivers in the same community VLAN are subject to receiving
 duplicate packets; one copy directly from layer 2 from the sender and
 a second copy forwarded by the multicast router.

 For that reason it is NOT RECOMMENDED to configure outbound multicast
 forwarding from private VLANs.

9. DHCP Implications

 With IPv4 both a static configuration and a DHCPv4 configuration will
 assign a subnet prefix to any hosts including those attached to the
 isolated or community ports. Hence the above robust proxy ARP is
 needed even in the case of DHCPv4.

 With IPv6 static configuration, or SLAAC (Stateless Address Auto-
 Configuration) [RFC4862] or DHCPv6 [RFC3315] can be used to configure
 the IPv6 addresses on the interfaces. However, when DHCPv6 is used
 to configure the IPv6 addresses it does not configure any notion of
 an on-link prefix length. Thus in that case the on-link
 determination comes from the Router Advertisement. Hence the above
 approach of setting L=0 in the Prefix Information Option will result
 in packets being sent to the default router(s).

 Hence no special considerations are needed for DHCPv4 or DHCPv6.

Nordmark Expires April 29, 2017 [Page 8]

Internet-Draft IPPL October 2016

10. Redirect Implications

 ICMP redirects can be used for both IPv4 and IPv6 to indicate a
 better first-hop router to hosts, and in addition for IPv6 can be
 used to indicate the direct link-layer address to use to send to a
 node which is on the link. ICMP redirects to another router which
 attached to a promiscious port would work since the host can reach
 it. However, communication will fail if that port is not promicious.
 In addition, the IPv6 redirect to an on-link host is likely to be
 problematic since a host is likely to be attached to an isolated or
 community port.

 For those reasons it is RECOMMENDED that the sending of IPv4 and IPv6
 redirects is disabled on the routers attached to the IPPL.

11. Security Considerations

 In general DAD is subject to a Denial of Service attack since a
 malicious host can claim all the IPv6 addresses [RFC3756]. Same
 issue applies to IPv4/ARP when Address Conflict Detection [RFC5227]
 is implemented.

12. IANA Considerations

 There are no IANA actions needed for this document.

13. Acknowledgements

 The author is grateful for the comments from Mikael Abrahamsson, Fred
 Baker, Wes Beebee, Hemant Singh, Dave Thaler, and Sowmini Varadhan.

14. Appendix: Layer 2 Implications

 While not in scope for this document, there are some observations
 relating to the interaction of IPPL (and private VLANs in particular)
 and layer 2 learning which are worth mentioning. Depending on the
 details of how the deployed Ethernet bridges perform learning, a side
 effect of using a different .1Q tag for packets sent from the routers
 than for packets sent towards the routers mean that the 802.1Q
 learning and aging process in intermediate bridges might age out the
 MAC address entry for the routers MAC address. If that happens
 packets sent towards the router will be flooded at layer two. The
 observed behavior is that an ARP request for the router’s IP address
 will result in re-learning the MAC address. Thus some operators work
 around this issue by configuring the ARP aging time to be shorter
 than the MAC aging time.

Nordmark Expires April 29, 2017 [Page 9]

Internet-Draft IPPL October 2016

15. References

15.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <http://www.rfc-editor.org/info/rfc791>.

 [RFC0826] Plummer, D., "Ethernet Address Resolution Protocol: Or
 Converting Network Protocol Addresses to 48.bit Ethernet
 Address for Transmission on Ethernet Hardware", STD 37,
 RFC 826, DOI 10.17487/RFC0826, November 1982,
 <http://www.rfc-editor.org/info/rfc826>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <http://www.rfc-editor.org/info/rfc2460>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <http://www.rfc-editor.org/info/rfc4862>.

 [RFC6957] Costa, F., Combes, J-M., Ed., Pougnard, X., and H. Li,
 "Duplicate Address Detection Proxy", RFC 6957,
 DOI 10.17487/RFC6957, June 2013,
 <http://www.rfc-editor.org/info/rfc6957>.

15.2. Informative References

 [DOCSIS-MULPI]
 "DOCSIS 3.0: MAC and Upper Layer Protocols Interface
 Specification", August 2015, <http://www.cablelabs.com/wp-
 content/uploads/specdocs/CM-SP-MULPIv3.0-I28-150827.pdf>.

Nordmark Expires April 29, 2017 [Page 10]

Internet-Draft IPPL October 2016

 [I-D.ietf-dnssd-hybrid]
 Cheshire, S., "Hybrid Unicast/Multicast DNS-Based Service
 Discovery", draft-ietf-dnssd-hybrid-03 (work in progress),
 February 2016.

 [PVLAN-HOSTING]
 "PVLANs in a Hosting Environment", March 2010,
 <https://puck.nether.net/pipermail/cisco-
 nsp/2010-March/068469.html>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <http://www.rfc-editor.org/info/rfc3315>.

 [RFC3756] Nikander, P., Ed., Kempf, J., and E. Nordmark, "IPv6
 Neighbor Discovery (ND) Trust Models and Threats",
 RFC 3756, DOI 10.17487/RFC3756, May 2004,
 <http://www.rfc-editor.org/info/rfc3756>.

 [RFC4389] Thaler, D., Talwar, M., and C. Patel, "Neighbor Discovery
 Proxies (ND Proxy)", RFC 4389, DOI 10.17487/RFC4389, April
 2006, <http://www.rfc-editor.org/info/rfc4389>.

 [RFC4562] Melsen, T. and S. Blake, "MAC-Forced Forwarding: A Method
 for Subscriber Separation on an Ethernet Access Network",
 RFC 4562, DOI 10.17487/RFC4562, June 2006,
 <http://www.rfc-editor.org/info/rfc4562>.

 [RFC5227] Cheshire, S., "IPv4 Address Conflict Detection", RFC 5227,
 DOI 10.17487/RFC5227, July 2008,
 <http://www.rfc-editor.org/info/rfc5227>.

 [RFC5517] HomChaudhuri, S. and M. Foschiano, "Cisco Systems’ Private
 VLANs: Scalable Security in a Multi-Client Environment",
 RFC 5517, DOI 10.17487/RFC5517, February 2010,
 <http://www.rfc-editor.org/info/rfc5517>.

 [RFC5798] Nadas, S., Ed., "Virtual Router Redundancy Protocol (VRRP)
 Version 3 for IPv4 and IPv6", RFC 5798,
 DOI 10.17487/RFC5798, March 2010,
 <http://www.rfc-editor.org/info/rfc5798>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

Nordmark Expires April 29, 2017 [Page 11]

Internet-Draft IPPL October 2016

 [TR-101] "Migration to Ethernet-Based DSL Aggregation", The
 Broadband Forum Technical Report TR-101, July 2011,
 <http://www.broadband-forum.org/technical/download/
 TR-101_Issue-2.pdf>.

Author’s Address

 Erik Nordmark
 Arista Networks
 Santa Clara, CA
 USA

 Email: nordmark@arista.com

Nordmark Expires April 29, 2017 [Page 12]

Internet Area WG C. Perkins
Internet-Draft Futurewei
Intended status: Informational D. Stanley
Expires: September 14, 2017 HPE
 W. Kumari
 Google
 JC. Zuniga
 SIGFOX
 March 13, 2017

 Multicast Considerations over IEEE 802 Wireless Media
 draft-perkins-intarea-multicast-ieee802-02

Abstract

 Some performance issues have been observed when multicast packet
 transmissions of IETF protocols are used over IEEE 802 wireless
 media. Even though enhamcements for multicast transmissions have
 been designed at both IETF and IEEE 802, there seems to exist a
 disconnect between specifications, implementations and configuration
 choices.

 This draft describes the different issues that have been observed,
 the multicast enhancement features that have been specified at IETF
 and IEEE 802 for wireless media, as well as the operational chioces
 that can be taken to improve the performace of the network. Finally,
 it provides some recommendations about the usage and combination of
 these features and operational choices.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Perkins, et al. Expires September 14, 2017 [Page 1]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Identified mulitcast issues 4
 3.1. Issues at Layer 2 and below 4
 3.1.1. Multicast reliability 4
 3.1.2. Lower data rate 4
 3.1.3. Power-save effects on multicast 5
 3.2. Issues at Layer 3 and above 5
 3.2.1. IPv4 issues . 5
 3.2.2. IPv6 issues . 5
 3.2.3. MLD issues . 6
 3.2.4. Spurious Neighbor Discovery 6
 4. Multicast protocol optimizations 7
 4.1. Proxy ARP in 802.11-2012 7
 4.2. Buffering to improve Power-Save 8
 4.3. IPv6 support in 802.11-2012 8
 4.4. Conversion of multicast to unicast 8
 4.5. Directed Multicast Service (DMS) 8
 4.6. GroupCast with Retries (GCR) 9
 5. Operational optimizations 10
 5.1. Mitigating Problems from Spurious Neighbor Discovery . . 10
 6. Multicast Considerations for Other Wireless Media 12
 7. Recommendations . 12
 8. Security Considerations 12
 9. IANA Considerations . 12
 10. Informative References 12
 Authors’ Addresses . 13

Perkins, et al. Expires September 14, 2017 [Page 2]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

1. Introduction

 Many IETF protocols depend on multicast/broadcast for delivery of
 control messages to multiple receivers. Multicast is used for
 various purposes such as neighborhood discovery, network flooding,
 address resolution, as well as for reduction in media access for the
 transmission of data that is intended for multiple receivers.

 IETF protocols typically rely on network protocol layering in order
 to reduce or eliminate any dependence of higher level protocols on
 the specific nature of the MAC layer protocols or the physical media.
 In the case of multicast transmissions, higher level protocols have
 traditionally been designed as if transmitting a packet to an IP
 address had the same cost in interference and network media access,
 regardless of whether the destination IP address is a unicast address
 or a multicast or broadcast address. This model was reasonable for
 networks where the physical medium was usually wired, like Ethernet.
 Unfortunately, for many wireless media, the costs to access the
 medium can be quite different. Some enhancements have been designed
 in IETF protocols that are assumed to work primarily over wilress
 media. However, these enhancements are usually implemented in
 limited deployments and not widely spread on most wireless networks.

 IEEE 802 wireless protocols have been designed with certain fetures
 to support multicat traffic. For instance, lower modulations are
 used to transmit multicast frames, so that these can be received by
 all stations in the cell, regardless of the distance or path
 attenuation from the base station or access point. However, these
 lower modulation transmissions take longer on the medium and
 therefore they reduce the capabilities to transmit more high
 efficiency traffic with higher order modulations to stations that may
 be in closer vicinity. Due to these and other reasons, some IEEE 802
 working groups like 802.11 have designed several features to improve
 the performance of multicast transmissions at Layer 2 [REF
 11-15-1261-03]. Besides protocol design features, some operational
 and configuration enhancements can also be applied to overcome the
 network performance issues created by multicast traffic.

 This Internet Draft identifies the problems created by the usage of
 multicast traffic over wireless networks. It also highlights the
 different enhancements that have been designed at IETF and IEEE 802,
 as well as the operational choices that can be taken, to ameliorate
 the effects of multicast traffic. Some recommendations about the
 usage and combinations of these enhancements are also provided.

Perkins, et al. Expires September 14, 2017 [Page 3]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

2. Terminology

 This document uses the following definitions:

 AP
 IEEE 802.11 Access Point.

 STA
 IEEE 802.11 station.

 basic rate
 The "lowest common denominator" data rate at which multicast and
 broadcast traffic is generally transmitted.

 MCS
 Modulation and Coding Scheme.

3. Identified mulitcast issues

3.1. Issues at Layer 2 and below

 In this section we list some of the issues related to the use of
 multicast transmissions over IEEE 802 wireless technologies.

3.1.1. Multicast reliability

 Multicast traffic is typically much less reliable than unicast
 traffic. Since multicast makes point-to-multipoint communications,
 multiple acknowledgements would be needed to guarantee the reception
 on all recepients.

3.1.2. Lower data rate

 Because lower MCS have longer range but also lower data rate,
 multicast / broadcast traffic is generally transmitted at the lowest
 common denominator rate, also known as a basic rate. On IEEE 802.11
 networks (aka Wi-Fi), this rate might be as low as 6 Mbps, when some
 unicast links in the same cell can be operating at rates up to 600
 Mbps. Transmissions at a lower rate require more occupancy of the
 wireless medium and thus restrict the airtime for all other medium
 communications and degrade the overall capacity.

 Wired multicast affects wireless LANs because the AP extends the
 wired segment and multicast / broadcast frames on the wired LAN side
 are copied to WLAN. Since broadcast messages are transmitted at the
 most robust MCS, this implies that large frames sent at slow rate
 over the air.

Perkins, et al. Expires September 14, 2017 [Page 4]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

3.1.3. Power-save effects on multicast

 Multicast can work poorly with the power-save mechanisms defined in
 IEEE 802.11.

 o Both unicast and multicast traffic can be delayed by power-saving
 mechanisms.
 o Unicast is delayed until a STA wakes up and asks for it.
 Additionally, unicast traffic may be delayed to improve power
 save, efficiency and increase probability of aggregation.
 o Multicast traffic is delayed in a wireless network if any of the
 STAs in that network are power savers. All STAs have to be awake
 at a known time to receive multicast traffic.
 o Packets can also be discarded due to buffer limitations in the AP
 and non-AP STA.

3.2. Issues at Layer 3 and above

 In this section we mention a few representative IETF protocols, and
 describe some possible negative effects due to performance
 degradation when using multicast transmissions for control messages.
 Common uses of multicast include:

 o Control plane for IPv4 and IPv6
 o ARP and Neighbor Discovery
 o Service discovery
 o Applications (video delivery, stock data etc)
 o Other L3 protocols (non-IP)

3.2.1. IPv4 issues

 The following list contains a few representative IPv4 protocols using
 multicast.

 o ARP
 o DHCP
 o mDNS

 After initial configuration, ARP and DHCP occur much less commonly.

3.2.2. IPv6 issues

 The following list contains a few representative IPv6 protocols using
 multicast. IPv6 makes much more extensive use of multicast.

 o DHCPv6
 o Liveness detection (NUD)

Perkins, et al. Expires September 14, 2017 [Page 5]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

 o Some control plane protocols are not very tolerant of packet loss,
 especially neighbor discovery.
 o Services may be considered lost if several consecutive packets
 fail.

 Address Resolution

 Service Discovery

 Route Discovery

 Decentralized Address Assignment

 Geographic routing

3.2.3. MLD issues

 Multicast Listener Discovery(MLD) [RFC4541] is often used to identify
 members of a multicast group that are connected to the ports of a
 switch. Forwarding multicast frames into a WiFi-enabled area can use
 such switch support for hardware forwarding state information.
 However, since IPv6 makes heavy use of multicast, each STA with an
 IPv6 address will require state on the switch for several and
 possibly many multicast solicited-node addresses. Multicast
 addresses that do not have forwarding state installed (perhaps due to
 hardware memory limitations on the switch) cause frames to be flooded
 on all ports of the switch.

3.2.4. Spurious Neighbor Discovery

 On the Internet there is a "background radiation" of scanning traffic
 (people scanning for vulnerable machines) and backscatter (responses
 from spoofed traffic, etc). This means that the router is constantly
 getting packets destined for machines whose IP addresses may or may
 not be in use. In the cases where the IP is assigned to a machine,
 the router broadcasts an ARP request, gets back an ARP reply, caches
 this and then can deliver traffic to the host. In the cases where
 the IP address is not in use, the router broadcasts one (or more) ARP
 requests, and never gets a reply. This means that it does not
 populate the ARP cache, and the next time there is traffic for that
 IP address it will broadcast ARP requests again.

 The rate of these ARP requests is proportional to the size of the
 subnets, the rate of scanning and backscatter, and how long the
 router keeps state on non-responding ARPs. As it turns out, this
 rate is inversely proportional to how occupied the subnet is (valid
 ARPs end up in a cache, stopping the broadcasting; unused IPs never
 respond, and so cause more broadcasts). Depending on the address

Perkins, et al. Expires September 14, 2017 [Page 6]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

 space in use, the time of day, how occupied the subnet is, and other
 unknown factors, on the order of 2000 broadcasts per second have been
 observed at the IETF NOCs.

 On a wired network, there is not a huge difference amongst unicast,
 multicast and broadcast traffic; but this is not true in the wireless
 realm. Wireless equipment often is unable to send this amount of
 broadcast and multicast traffic. Consequently, on the wireless
 networks, we observe a significant amount of dropped broadcast and
 multicast packets. This, in turn, means that when a host connects it
 is often not able to complete DHCP, and IPv6 RAs get dropped, leading
 to users being unable to use the network.

4. Multicast protocol optimizations

 This section lists some optimizations that have been specified in
 IEEE 802 and IETF that are aimed at reducing or eliminating the
 issues discussed in Section 3.

4.1. Proxy ARP in 802.11-2012

 The AP knows all associated STAs MAC address and IP address; in other
 words, the AP acts as the central "manager" for all the 802.11 STAs
 in its BSS. Proxy ARP is easy to implement at the AP, and offers the
 following advantages:

 o Reduced broadcast traffic (transmitted at low MCS) on the wireless
 medium
 o STA benefits from extended power save in sleep mode, as ARP
 requests are replied to by AP.
 o Keeps ARP frames off the wireless medium.
 o Changes are not needed to STA implementation.

 Here is the specification language from clause 10.23.13 in [2] as
 described in [dot11-proxyarp]:

 When the AP supports Proxy ARP "[...] the AP shall maintain a
 Hardware Address to Internet Address mapping for each associated
 station, and shall update the mapping when the Internet Address of
 the associated station changes. When the IPv4 address being
 resolved in the ARP request packet is used by a non-AP STA
 currently associated to the BSS, the proxy ARP service shall
 respond on behalf of the non-AP STA"

Perkins, et al. Expires September 14, 2017 [Page 7]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

4.2. Buffering to improve Power-Save

 The AP acts on behalf of STAs in various ways. In order to improve
 the power-saving feature for STAs in its BSS, the AP buffers frames
 for delivery to the STA at the time when the STA is scheduled for
 reception.

4.3. IPv6 support in 802.11-2012

 IPv6 uses Neighbor Discovery Protocol (NDP) instead Every IPv6 node
 subscribes to special multicast address Neighbor-Solicitation message
 replaces ARP

 Here is the specification language from-10.23.13 in [2]:

 "When an IPv6 address is being resolved, the Proxy Neighbor
 Discovery service shall respond with a Neighbor Advertisement
 message [...] on behalf of an associated STA to an [ICMPv6]
 Neighbor Solicitation message [...]. When MAC address mappings
 change, the AP may send unsolicited Neighbor Advertisement
 Messages on behalf of a STA."

 NDP may be used to request additional information

 o Maximum Transmission Unit
 o Router Solicitation
 o Router Advertisement, etc.

 NDP messages are sent as group addressed (broadcast) frames in
 802.11. Using the proxy operation helps to keep NDP messages off the
 wireless medium.

4.4. Conversion of multicast to unicast

 It is often possible to transmit control and data messages by using
 unicast transmissions to each station individually.

4.5. Directed Multicast Service (DMS)

 There are situations where more is needed than simply converting
 multicast to unicast [Editor’s note: citation needed]. For these
 purposes, DMS enables a client to request that the AP transmit
 multicast group addressed frames destined to the requesting clients
 as individually addressed frames [i.e., convert multicast to
 unicast].

 o DMS Requires 802.11n A-MSDUs

Perkins, et al. Expires September 14, 2017 [Page 8]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

 o Individually addressed frames are acknowledged and are buffered
 for power save clients
 o Requesting STA may specify traffic characteristics for DMS traffic
 o DMS was defined in IEEE Std 802.11v-2011

 DMS is not currently implemented in products. DMS does require
 changes to both AP and STA implementation.

4.6. GroupCast with Retries (GCR)

 GCR (defined in [dot11aa]) provides greater reliability by using
 either unsolicited retries or a block acknowledgement mechanism. GCR
 increases probability of broadcast frame reception success, but still
 does not guarantee success.

 For the block acknowledgement mechanism, the AP transmits each group
 addressed frame as conventional group addressed transmission.
 Retransmissions are group addressed, but hidden from non-11aa
 clients. A directed block acknowledgement scheme is used to harvest
 reception status from receivers; retransmissions are based upon these
 responses.

 GCR is suitable for all group sizes including medium to large groups.
 As the number of devices in the group increases, GCR can send block
 acknowledgement requests to only a small subset of the group. GCR
 does require changes to both AP and STA implementation.

 GCR may introduce unacceptable latency. After sending a group of
 data frames to the group, the AP has do the following:

 o unicast a Block Ack Request (BAR) to a subset of members.
 o wait for the corresponding Block Ack (BA).
 o retransmit any missed frames.
 o resume other operations which may have been delayed.

 This latency may not be acceptable for some traffic.

 There are ongoing extensions in 802.11 to improve GCR performance.

 o BAR is sent using downlink MU-MIMO (note that downlink MU-MIMO is
 already specified in 802.11-REVmc 4.3).
 o BA is sent using uplink MU-MIMO (which is a .11ax feature).
 o Additional 802.11ax extensions are under consideration; see
 [mc-ack-mux]
 o Latency may also be reduced by simultaneously receiving BA
 information from multiple clients.

Perkins, et al. Expires September 14, 2017 [Page 9]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

5. Operational optimizations

 This section lists some operational optimizations that can be
 implemented when deploying wireless IEEE 802 networks to mitigate the
 issues discussed in Section 3.

5.1. Mitigating Problems from Spurious Neighbor Discovery

 ARP Sponges

 An ARP Sponge sits on a network and learn which IPs addresses
 are actually in use. It also listen for ARP requests, and, if
 it sees an ARP for an IP address which it believes is not used,
 it will reply with its own MAC address. This means that the
 router now has an IP to MAC mapping, which it caches. If that
 IP is later assigned to an machine (e.g using DHCP), the ARP
 sponge will see this, and will stop replying for that address.
 Gratuitous ARPs (or the machine ARPing for its gateway) will
 replace the sponged address in the router ARP table. This
 technique is quite effective; but, unfortunately, the ARP
 sponge daemons were not really designed for this use (the
 standard one [arpsponge], was designed to deal with the
 disappearance of participants from an IXP) and so are not
 optimized for this purpose. We have to run one daemon per
 subnet, the tuning is tricky (the scanning rate versus the
 population rate versus retires, etc.) and sometimes the daemons
 just seem to stop, requiring a restart of the daemon and
 causing disruption.

 Router mitigations

 Some routers (often those based on Linux) implement a "negative
 ARP cache" daemon. Simply put, if the router does not see a
 reply to an ARP it can be configured to cache this information
 for some interval. Unfortunately, the core routers which we
 are using do not support this. When a host connects to network
 and gets an IP address, it will ARP for its default gateway
 (the router). The router will update its cache with the IP to
 host MAC mapping learnt from the request (passive ARP
 learning).

 Firewall unused space

 The distribution of users on wireless networks / subnets
 changes from meeting to meeting (e.g the "IETF-secure" SSID was
 renamed to "IETF", fewer users use "IETF-legacy", etc). This
 utilization is difficult to predict ahead of time, but we can
 monitor the usage as attendees use the different networks. By

Perkins, et al. Expires September 14, 2017 [Page 10]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

 configuring multiple DHCP pools per subnet, and enabling them
 sequentially, we can have a large subnet, but only assign
 addresses from the lower portions of it. This means that we
 can apply input IP access lists, which deny traffic to the
 upper, unused portions. This means that the router does not
 attempt to forward packets to the unused portions of the
 subnets, and so does not ARP for it. This method has proven to
 be very effective, but is somewhat of a blunt axe, is fairly
 labor intensive, and requires coordination.

 Disabling/filtering ARP requests

 In general, the router does not need to ARP for hosts; when a
 host connects, the router can learn the IP to MAC mapping from
 the ARP request sent by that host. This means that we should
 be able to disable and / or filter ARP requests from the
 router. Unfortunately, ARP is a very low level / fundamental
 part of the IP stack, and is often offloaded from the normal
 control plane. While many routers can filter layer-2 traffic,
 this is usually implemented as an input filter and / or has
 limited ability to filter output broadcast traffic. This means
 that the simple "just disable ARP or filter it outbound" seems
 like a really simple (and obvious) solution, but
 implementations / architectural issues make this difficult or
 awkward in practice.

 NAT

 The broadcasts are overwhelmingly being caused by outside
 scanning / backscatter traffic. This means that, if we were to
 NAT the entire (or a large portion) of the attendee networks,
 there would be no NAT translation entries for unused addresses,
 and so the router would never ARP for them. The IETF NOC has
 discussed NATing the entire (or large portions) attendee
 address space, but a: elegance and b: flaming torches and
 pitchfork concerns means we have not attempted this yet.

 Stateful firewalls

 Another obvious solution would be to put a stateful firewall
 between the wireless network and the Internet. This firewall
 would block incoming traffic not associated with an outbound
 request. The IETF philosophy has been to have the network as
 open as possible / honor the end-to-end principle. An attendee
 on the meeting network should be an Internet host, and should
 be able to receive unsolicited requests. Unfortunately,
 keeping the network working and stable is the first priority

Perkins, et al. Expires September 14, 2017 [Page 11]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

 and a stateful firewall may be required in order to achieve
 this.

6. Multicast Considerations for Other Wireless Media

 Many of the causes of performance degradation described in earlier
 sections are also observable for wireless media other than 802.11.

 For instance, problems with power save, excess media occupancy, and
 poor reliability will also affect 802.15.3 and 802.15.4. However,
 802.15 media specifications do not include similar mechanisms of the
 type that have been developed for 802.11. In fact, the design
 philosophy for 802.15 is more oriented towards minimality, with the
 result that many such functions would more likely be relegated to
 operation within higher layer protocols. This leads to a patchwork
 of non-interoperable and vendor-specific solutions. See [uli] for
 some additional discussion, and a proposal for a task group to
 resolve similar issues, in which the multicast problems might be
 considered for mitigation.

7. Recommendations

 This section provides some recommendations about the usage and
 combinations of the multicast enhancements described in Section 4 and
 Section 5.

 (FFS)

8. Security Considerations

 This document does not introduce any security mechanisms, and does
 not have any impact on existing security mechanisms.

9. IANA Considerations

 This document does not specify any IANA actions.

10. Informative References

 [arpsponge]
 Arien Vijn, Steven Bakker, , "Arp Sponge", March 2015.

 [dot11] P802.11, , "Part 11: Wireless LAN Medium Access Control
 (MAC) and Physical Layer (PHY) Specifications", March
 2012.

 [dot11-proxyarp]
 P802.11, , "Proxy ARP in 802.11ax", September 2015.

Perkins, et al. Expires September 14, 2017 [Page 12]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

 [dot11aa] P802.11, , "Part 11: Wireless LAN Medium Access Control
 (MAC) and Physical Layer (PHY) Specifications Amendment 2:
 MAC Enhancements for Robust Audio Video Streaming", March
 2012.

 [mc-ack-mux]
 Yusuke Tanaka et al., , "Multiplexing of Acknowledgements
 for Multicast Transmission", July 2015.

 [mc-prob-stmt]
 Mikael Abrahamsson and Adrian Stephens, , "Multicast on
 802.11", March 2015.

 [mc-props]
 Adrian Stephens, , "IEEE 802.11 multicast properties",
 March 2015.

 [RFC4541] Christensen, M., Kimball, K., and F. Solensky,
 "Considerations for Internet Group Management Protocol
 (IGMP) and Multicast Listener Discovery (MLD) Snooping
 Switches", RFC 4541, DOI 10.17487/RFC4541, May 2006,
 <http://www.rfc-editor.org/info/rfc4541>.

 [uli] Pat Kinney, , "LLC Proposal for 802.15.4", Nov 2015.

Authors’ Addresses

 Charles E. Perkins
 Futurewei Inc.
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Phone: +1-408-330-4586
 Email: charliep@computer.org

 Dorothy Stanley
 Hewlett Packard Enterprise
 2000 North Naperville Rd.
 Naperville, IL 60566
 USA

 Phone: +1 630 979 1572
 Email: dstanley@arubanetworks.com

Perkins, et al. Expires September 14, 2017 [Page 13]

Internet-Draft Multicast Over IEEE 802 Wireless March 2017

 Warren Kumari
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 USA

 Email: warren@kumari.net

 Juan Carlos Zuniga
 SIGFOX
 425 rue Jean Rostand
 Labege 31670
 France

 Email: j.c.zuniga@ieee.org

Perkins, et al. Expires September 14, 2017 [Page 14]

INTAREA S. Kanugovi
Internet-Draft S. Vasudevan
Intended status: Standards Track Nokia
Expires: September 14, 2017 J. Zhu
 Intel
 F. Baboescu
 Broadcom
 S. Peng
 Huawei
 March 13, 2017

 Control Plane Protocols and Procedures for Multiple Access Management
 Services
 draft-zhu-intarea-mams-control-protocol-00

Abstract

 Today, a device can be simultaneously connected to multiple
 communication networks based on different technology implementations
 and network architectures like WiFi, LTE, DSL. In such multi-
 connectivity scenario, it is desirable to combine multiple access
 networks or select the best one to improve quality of experience for
 a user and improve overall network utilization and efficiency. This
 document presents the control plane protocols, as well as describes
 control plane procedures for configuring the user plane in a multi
 access management services (MAMS) framework that can be used to
 flexibly select the combination of uplink and downlink access and
 core network paths, and user plane treatment for improving network
 efficiency and enhanced application quality of experience.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Kanugovi, et al. Expires September 14, 2017 [Page 1]

Internet-Draft MAMS C-plane March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Conventions used in this document 3
 2. Introduction . 3
 3. Terminology . 3
 4. MAMS Control-Plane Protocol 3
 4.1. Overview . 3
 5. MAMS User Plane Protocol 4
 6. MAMS Control Plane Procedures 6
 6.1. Overview . 6
 6.2. Common fields in MAMS Control Messages 7
 6.3. Discovery & Capability Exchange 7
 6.4. User Plane Configuration 10
 6.5. MAMS Path Quality Estimation 12
 6.6. MAMS Traffic Steering 13
 7. Applying MAMS Control Procedures with MPTCP Proxy as User
 Plane . 14
 8. Co-existence of MX Adaptation and MX Convergence Layers . . . 16
 9. Security Considerations 16
 9.1. MAMS Control plane security 16
 9.2. MAMS User plane security 16
 10. Contributing Authors . 16
 11. References . 17
 11.1. Normative References 17
 11.2. Informative References 17
 Appendix A. MAMS Control Plane Optimization over Secure
 Connections . 18
 Authors’ Addresses . 18

Kanugovi, et al. Expires September 14, 2017 [Page 2]

Internet-Draft MAMS C-plane March 2017

1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 Multi Access Management Service (MAMS)
 [I-D.kanugovi-intarea-mams-protocol] is a framework to select and
 configure network paths when multiple connections can serve a client
 device. It allows the path selection and configuration to adapt to
 dynamic network conditions. It is based on principles of user plane
 interworking that enables the solution to be deployed as an overlay
 without impacting the underlying networks.

 This document presents the control plane protocols for the MAMS
 framework. It co-exists and complements user plane protocols (e.g.
 MPTCP [RFC6824] or MPTCP Proxy [I-D.boucadair-mptcp-plain-mode],
 [I-D.wei-mptcp-proxy-mechanism]) by providing a way to negotiate and
 configure them based on client and network capabilities. It allows
 exchange of network state information and leverages network
 intelligence to optimize the performance of such protocols.

3. Terminology

 "Anchor Connection": Refers to the network path from the N-MADP to
 the Application Server that corresponds to a specific IP anchor that
 has assigned an IP address to the client.

 "Delivery Connection": Refers to the network path from the N-MADP to
 the client.

 "Network Connection Manager" (NCM), "Client Connection Manager"
 (CCM), "Network Multi Access Data Proxy" (N-MADP), and "Client Multi
 Access Data Proxy" (C-MADP) in this document are to be interpreted as
 described in [I-D.kanugovi-intarea-mams-protocol].

4. MAMS Control-Plane Protocol

4.1. Overview

 The MAMS architecture [I-D.kanugovi-intarea-mams-protocol] introduces
 the following functional elements,

 o Network Connection Manager (NCM) and Client Connection Manager
 (CCM) in the control plane, and

Kanugovi, et al. Expires September 14, 2017 [Page 3]

Internet-Draft MAMS C-plane March 2017

 o Network Multi Access Data Proxy (N-MADP) and Client Multi Access
 Data Proxy (C-MADP) handling the user plane.

 Figure 1 shows the default MAMS control plane protocol stack. HTTPS
 is used for transporting management and control messages between NCM
 and CCM.

 +--+
 | Multi Access (MX) Control Message |
 | |
 +--+
 | HTTPS |
 | |
 +--+
 | TCP/TLS |
 | |
 +--+

 Figure 1: TCP-based MAMS Control Plane Protocol Stack

5. MAMS User Plane Protocol

 Figure 2 shows the MAMS user plane protocol stack.

Kanugovi, et al. Expires September 14, 2017 [Page 4]

Internet-Draft MAMS C-plane March 2017

 +---+
 | User Payload (e.g. IP PDU) |
 +---+

 +---+
 | +---+ |
 | | Multi Access (MX) Convergence Sublayer | |
 | +---+ |
 | +---+ |
 | | MX Adaptation | MX Adaptation | MX Adaptation | |
 | | Sublayer | Sublayer | Sublayer | |
 | | (optional) | (optional) | (optional) | |
 | +----------------++--------------+-+------------------+ |
 | | Access #1 IP | Access #2 IP | Access #3 IP | |
 | +---+ |
 | MAMS User Plane Protocol Stack|
 +---+

 Figure 2: MAMS User Plane Protocol Stack

 It consists of the following two Sublayers:

 o Multi-Access (MX) Convergence Sublayer: This layer performs multi-
 access specific tasks, e.g. access (path) selection, multi-link
 (path) aggregation, splitting/reordering, lossless switching,
 fragmentation, concatenation, etc. For example, MX Convergence
 layer can be implemented using existing user plane protocols like
 MPTCP or by adapting encapsulating header/trailer schemes (e.g
 Trailer Based MX Convergence as specified in
 [I-D.zhu-intarea-mams-user-protocol]).
 o Multi-Access (MX) Adaptation Sublayer: This layer performs
 functions to handle tunnelling, network layer security, and NAT.
 For example, MX Adaptation can be implemented using IPsec, DTLS or
 Client NAT (Source NAT at Client with inverse mapping at N-MADP
 [I-D.zhu-intarea-mams-user-protocol]). The MX Adaptation Layer
 is optional and can be independently configured for each of the
 Access Links, e.g. in a deployment with LTE (assumed secure) and
 Wi-Fi (assumed not secure), the MX Adaptation Sublayer can be
 omitted for the LTE link but MX Adaptation Sublayer is configured
 as IPsec for the Wi-Fi link.

Kanugovi, et al. Expires September 14, 2017 [Page 5]

Internet-Draft MAMS C-plane March 2017

6. MAMS Control Plane Procedures

6.1. Overview

 CCM and NCM exchange signaling messages to configure the user plane
 functions, C-MADP and N-MADP, at the client and network respectively.
 The means for CCM to obtain the NCM credentials (FQDN or IP Address)
 for sending the initial discovery messages are outside of the scope
 of MAMS document, e.g. using methods like provisioning, DNS. Once
 the discovery process is successful, the (initial) NCM can update and
 assign additional NCM addresses for sending subsequent control plane
 messages.

 CCM discovers and exchanges capabilities with the NCM. NCM provides
 the credentials of the N-MADP end-point and negotiates the parameters
 for user plane with the CCM. CCM configures C-MADP to setup the user
 plane path (e.g. MPTCP/UDP Proxy Connection) with the N-MADP based
 on the credentials (e.g. (MPTCP/UDP) Proxy IP address and port,
 Associated Core Network Path), and the parameters exchanged with the
 NCM. The key procedures are described in details in the following
 sub-sections.

Kanugovi, et al. Expires September 14, 2017 [Page 6]

Internet-Draft MAMS C-plane March 2017

 +-----+ +-----+
 | CCM | | NCM |
 +--+--+ +--+--+
 | Discovery and |
 | Capability |
 | Exchange |
 <---------------------->
 | |
 | User Plane |
 | Protocols |
 | Setup |
 <---------------------->
 | Path Quality |
 | Estimation |
 <---------------------->
 | Network capabilities |
 | e.g. Radio (RNIS) |
 <----------------------+
 | |
 | Network policies |
 <----------------------+
 + +

 Figure 3: MAMS Control Plane Procedures

6.2. Common fields in MAMS Control Messages

 Each MAMS control message consists of the following common fields:

 o Version: indicates the version of MAMS control protocol.
 o Message Type: indicates the type of the message, e.g. MX
 Discovery, MX Capability REQ/RSP etc.
 o Sequence Number: auto-incremented integer to uniquely identify a
 transaction of message exchange, e.g. MX Capability REQ/RSP.

6.3. Discovery & Capability Exchange

 Figure 4 shows the MAMS discovery and capability exchange procedure
 consisting of the following key steps:

Kanugovi, et al. Expires September 14, 2017 [Page 7]

Internet-Draft MAMS C-plane March 2017

 CCM NCM
 | |
 +------- MX Discovery Message ---------------------->|
 | +-----------------+
 | |Learn CCM |
 | | IP address |
 | |& port |
 | +-----------------+
 | |
 |<--------------------------------MX System INFO-----|
 | |
 |<--------------------------------MX Capability REQ--|
 |------ MX Capability RSP+-------------------------->|
 | |
 + +

 Figure 4: MAMS Control Procedure for Discovery & Capability Exchange

 Step 1 (Discovery): CCM periodically sends out the MX Discovery
 Message to a pre-defined (NCM) IP Address/ port until receives an MX
 System INFO message in acknowledgement.

 MX Discovery Message includes the following information:

 o MAMS Version

 MX System INFO includes the following information:

 o Number of Anchor Connections

 For each Anchor Connection, it includes the following parameters:

 * Connection ID: Unique identifier for the Anchor Connection
 * Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
 LTE)
 * NCM Endpoint Address (For Control Plane Messages over this
 connection)

 + IP Address or FQDN (Fully Qualified Domain Name)
 + Port Number

 Step 2 (Capability Exchange): once receiving a MX discovery message,
 NCM learns the IP address and port number to communicate with CCM,
 and sends out the MX Capability REQ message, including the following
 Parameters:

Kanugovi, et al. Expires September 14, 2017 [Page 8]

Internet-Draft MAMS C-plane March 2017

 o MX Feature Activation List: Indicates if the corresponding feature
 is enabled or not, e.g. lossless switching, fragmentation,
 concatenation, Uplink aggregation, Downlink aggregation,
 Measurement, etc.
 o Number of Anchor Connections (Core Networks)

 For each Anchor Connection, it includes the following parameters:

 * Connection ID
 * Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
 LTE)
 o Number of Delivery Connections (Access Links)

 For each Delivery Connection, it includes the following
 parameters:

 * Connection ID
 * Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
 LTE)
 o MX Convergence Method Support List

 * Trailer-based MX Convergence;
 * MPTCP Proxy;
 o MX Adaptation Method Support List

 * UDP Tunnel without DTLS;
 * UDP Tunnel with DTLS;
 * IPsec Tunnel[RFC3948];
 * Client NAT;

 In response, CCM sends out the MX Capability RSP message, including
 the following information:

 o MX Feature Activation List: Indicates if the corresponding feature
 is enabled or not, e.g. lossless switching, fragmentation,
 concatenation, Uplink aggregation, Downlink aggregation,
 Measurement, etc.
 o Number of Anchor Connections (Core Networks)

 For each Anchor Connection, it includes the following parameters:

 * Connection ID
 * Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
 LTE)
 o Number of Delivery Connections (Access Links)

 For each Delivery Connection, it includes the following
 parameters:

Kanugovi, et al. Expires September 14, 2017 [Page 9]

Internet-Draft MAMS C-plane March 2017

 * Connection ID
 * Connection Type (e.g., 0: Wi-Fi; 1: 5G NR; 2: Multi-Fire; 3:
 LTE)
 o MX Convergence Method Support List

 * Trailer-based MX Convergence;
 * MPTCP Proxy;
 o MX Adaptation Method Support List

 * UDP Tunnel without DTLS;
 * UDP Tunnel with DTLS;
 * IPsec Tunnel[RFC3948];
 * Client NAT;

6.4. User Plane Configuration

 Figure 5 shows the user plane configuration procedure consisting of
 the following key steps:

CCM NCM
 | |
 | +-----------+----------------+
 | | NCM prepares N+MADP for |
 | | User Plane|Setup |
 | +----------------------------+
 |<----------------------------- MX UP Setup Config---|
 |-----| MX UP Setup CNF+---------------------------->|
+-------------------+ |
|Link "X" is up/down| |
+-------------------+ |
 |-----|MX Reconfiguration REQ +--------------------->|
 |<------------------------+MX Reconfiguration RSP+---|

 Figure 5: MAMS Control Procedure for User Plane Configuration

 User Plane Protocols Setup: Based on the negotiated capabilities, NCM
 sets up the user plane (Adaptation Layer and Convergence Layer)
 protocols at the N-MADP, and informs the CCM of the user plane
 protocols to setup at the client (C-MADP) and the parameters for
 C-MADP to connect to N-MADP.

 Each MADP instance is responsible for one anchor connection. The MX
 UP Setup Config consists of the following parameters:

Kanugovi, et al. Expires September 14, 2017 [Page 10]

Internet-Draft MAMS C-plane March 2017

 o Number of Anchor Connections (Core Networks)

 For Each Anchor Connection, it includes the following parameters

 * Anchor Connection ID
 * Connection Type (e.g., 0: Wi-Fi; 1: 5G NGC; 2: Multi-Fire; 3:
 LTE)
 * MX Convergence Method

 + Trailer-based MX Convergence;
 + MPTCP Proxy;
 * MX Convergence Method Parameters

 + Convergence Proxy IP Address
 + Convergence Proxy Port
 * Number of Delivery Connections

 For each Delivery Connection, include the following:

 + Delivery Connection ID
 + Connection Type (e.g., 0: Wi-Fi; 1: 5G NGC; 2: Multi-Fire;
 3: LTE)
 + MX Adaptation Method

 - UDP Tunnel without DTLS;
 - UDP Tunnel with DTLS;
 - IPSec Tunnel;
 - Client NAT;
 + MX Adaptation Method Parameters

 - Tunnel Endpoint IP Address
 - Tunnel Endpoint Port
 - Shared Secret

 e.g. When LTE and Wi-Fi are the two user plane accesses, NCM conveys
 to CCM that IPsec needs to be setup as the MX Adaptation Layer over
 the Wi-Fi Access, using the following parameters - IPsec end-point IP
 address, Pre-Shared Key., No Adaptation Layer is needed over the LTE
 Access as it is considered secure with no NAT. The MX Convergence
 Method is configured as MPTCP Proxy along with parameters for
 connection to the MPTCP Proxy, namely IP Address and Port of the
 MPTCP Proxy for TCP Applications.

 Once the user plane protocols are configured, CCM informs the NCM of
 the status via the MX UP Setup CNF message

 Reconfiguration: when the client detects that the link is up/down or
 the IP address changes (e.g. via APIs provided by the client OS), CCM

Kanugovi, et al. Expires September 14, 2017 [Page 11]

Internet-Draft MAMS C-plane March 2017

 sends out a MX Reconfiguration REQ Message to setup / release /update
 the connection, and the message SHOULD include the following
 information

 o Reconfiguration Action: indicate the reconfiguration action (0:
 release; 1: setup; 2: update)
 o Connection ID: identify the connection for reconfiguration

 If (Reconfiguration Action is setup or update), then include the
 following parameters

 o IP address of the connection
 o MTU (Maximum Transmission Unit) size of the connection

6.5. MAMS Path Quality Estimation

 CCM NCM
 | |
 |<--------------+ MX Path Estimation Configuration+--|
 |-----+ MX Path Estimation Results+----------------->|
 | |

 Figure 6: MAMS Control Plane Procedure for Path Quality Estimation

 NCM sends following the configuration parameters in the MX Path
 Estimation Configuration message to the CCM

 o Connection ID (of Delivery Connection whose path quality needs to
 be estimated)
 o Init Probe Test Duration (ms)
 o Init Probe Test Rate (Mbps)
 o Init Probe Size (Bytes)
 o Init Probe Ack Required (0 -> No/1 -> Yes)
 o Active Probe Frequency (ms)
 o Active Probe Size (Bytes)
 o Active Probe Ack Required (0 -> No/1 -> Yes)

 CCM configures the C-MADP for probe reception based on these
 parameters and for collection of the statistics according to the
 following configuration.

 o Init Probe Results Configuration

Kanugovi, et al. Expires September 14, 2017 [Page 12]

Internet-Draft MAMS C-plane March 2017

 * Lost Probes (%)
 * Probe Delay
 * Probe Rate
 o Active Probe Results Configuration

 * Average Throughput in the last Probe Duration

 The user plane probing is divided into two phases - Initialization
 phase and Active phase.

 o Initialization phase: A network path that is not included by
 N-MADP for transmission of user data is deemed to be in the
 Initialization phase. The user data may be transmitted over other
 available network paths.
 o Active phase: A network path that is included by N-MADP for
 transmission of user data is deemed to be in Active phase.

 In Initialization phase, NCM configures N-MADP to send an MX Idle
 Probe REQ message. CCM collects the Idle probe statistics from
 C-MADP and sends the MX Path Estimation Results Message to NCM per
 the Initialization Probe Results configuration.

 In Active phase, NCM configures N-MADP to send an MX Active Probe REQ
 message.. C-MADP calculates the metrics as specified by the Active
 Probe Results Configuration. CCM collects the Active probe
 statistics from C-MADP and sends the MX Path Estimation Results
 Message to NCM per the Active Probe Results configuration.

6.6. MAMS Traffic Steering

 CCM NCM
 | |
 | +------------------------------+
 | |Steer user traffic to Path "X"|
 | +------------------------------+
 |<------------------MX Traffic Steering (TS) REQ--|
 |----- MX Traffic Steering (TS) RSP ------------->|

 Figure 7: MAMS Traffic Steering Procedure

 NCM sends out a MX Traffic Steering (TS) REQ message to steer data
 traffic. It is also possible to send data traffic over multiple
 connections simultaneously, i.e. aggregation. The message includes
 the following information:

 o Connection ID of the Anchor Connection

Kanugovi, et al. Expires September 14, 2017 [Page 13]

Internet-Draft MAMS C-plane March 2017

 o Connection ID List of Delivery Connections for DL traffic
 o Connection ID List of Delivery connections for UL traffic
 o MX Feature Activation List: each parameter indicates if the
 corresponding feature is enabled or not: lossless switching,
 fragmentation, concatenation, Uplink aggregation, Downlink
 aggregation, Measurement

 In response, CCM sends out a MX Traffic Steering (TS) RSP message,
 including the following information:

 o MX Feature Activation List: each parameter indicates if the
 corresponding feature is enabled or not: lossless switching,
 fragmentation, concatenation, Uplink aggregation, Downlink
 aggregation

7. Applying MAMS Control Procedures with MPTCP Proxy as User Plane

 If NCM determines that N-MADP is to be instantiated with MPTCP as the
 MX Convergence Protocol, it exchanges the MPTCP capability support in
 discovery and capability exchange procedures. NCM then exchanges the
 credentials of the N-MADP instance, setup as MPTCP Proxy, along with
 related parameters to the CCM. CCM configures C-MADP with these
 parameters to connect with the N-MADP (MPTCP proxy
 [I-D.wei-mptcp-proxy-mechanism], [I-D.boucadair-mptcp-plain-mode])
 instance, on the available network path (Access).

 Figure 8 shows the MAMS assisted MPTCP Proxy control procedure.

 o For securing the TCP subflow data over links that cannot be
 assumed to be secure, NCM configures MX Adaptation Layer. E.g.
 NCM can inform CCM to use IPsec as the MX Adaptation Layer over
 the link "X" (e.g. Wi-Fi). CCM informs C-MADP to set up IPSec
 (transport mode) with N-MADP using the MPTCP-Proxy IP address to
 protect the TCP subflow over Link "X".
 o NCM informs the CCM that N-MADP is configured as the MPTCP proxy
 and provides the parameters like MPTCP Proxy IP address/Port.
 C-MADP obtains the IP address & port of MPTCP-Proxy for Link "X"
 locally from CCM. This is useful if N-MADP is reachable via
 different IP address or/and port, from different access networks.
 The current MPTCP signaling can’t identify or differentiate the
 MPTCP proxy IP address & port among multiple access networks.

Kanugovi, et al. Expires September 14, 2017 [Page 14]

Internet-Draft MAMS C-plane March 2017

 C-MADP N-MADP Internet
 (MPTCP) (MPTCP-Proxy) (TCP)
 | | |
 +---------------+ | |
 |Link "X" is up | | |
 +---------------+ | |
 | | |
 +---------------------+ | |
 |obtain MX Adaptation | | |
 |Layer (IPsec) Params | | |
 +---------------------+ | |
 |<-- IKEv2 Message Exchange--->| |
 +---+ |
 | IPSec transport mode is active to protect| |
 | IP traffic between C-MADP and MPTCP-Proxy| |
 +---+ |
 | | |
 +------------------+ | |
 |obtain MPTCP-Proxy| | |
 |IP address of Link| | |
 |"X" from CCM | | |
 +------------------+ | |
 | | |
 +--------------------------------|--+ |
 | MPTCP Signaling between | | |
 | C-MADP and MPTCP-Proxy | | |
 +--------------------------------|--+ |
 | +---------+ |
 | | inspect | |
 | | MPTCP | |
 | | signal | |
 | | and | |
 | |establish| |
 | |sub-flow | |
 | | over | |
 | | Link "X"| |
 | +--|------+ |
 | +------------+ |
 |<======Data===========>|Data Mapping|<----Data---------->|
 | +------|-----+ |

 Figure 8: MAMS-assisted MPTCP Proxy as User Plane

Kanugovi, et al. Expires September 14, 2017 [Page 15]

Internet-Draft MAMS C-plane March 2017

8. Co-existence of MX Adaptation and MX Convergence Layers

 MAMS u-plane protocols support multiple combinations and instances of
 user plane protocols to be used in the MX Adaptation and the
 Convergence layer.

 For example, one instance of the MX Convergence Layer can be MPTCP
 Proxy and another instance can be Trailer based. The MX Adaptation
 for each can be either UDP tunnel or IPsec. IPSec may be set up when
 network pathneeds to be secured, e.g. to protect the TCP subflow
 traversing the network path between the client and MPTCP proxy.

 Each of the instances of MAMS user plane, i.e. combination of MX
 Convergence and MX Adaptation layer protocols, can coexist
 simultaneously and independently handle different traffic types.

9. Security Considerations

9.1. MAMS Control plane security

 For deployment scenarios, where the client is configured (e.g. by the
 network operator) to use a specific network for exchanging control
 plane messages and assume the network path to be secure, MAMS control
 messages will rely on security provided by the underlying transport
 network.

 For deployment scenarios where the security of the network path
 cannot be assumed, NCM and CCM implementations MUST support the
 "https" URI scheme [RFC2818] and Transport Layer Security (TLS)
 [RFC5246] to secure control plane message exchange between the NCM
 and CCM.

 For deployment scenarios where client authentication is desired, HTTP
 Digest Authentication MUST be supported. TLS Client Authentication
 is the preferred mechanism if it is available.

9.2. MAMS User plane security

 User data in MAMS framework relies on the security of the underlying
 network transport paths. When this cannot be assumed, NCM configures
 use of protocols, like IPsec [RFC4301] [RFC3948] in the MX Adaptation
 Layer, for security.

10. Contributing Authors

 The editors gratefully acknowledge the following additional
 contributors in alphabetical order: A Krishna Pramod/Nokia, Hannu
 Flinck/Nokia, Hema Pentakota/Nokia, Nurit Sprecher/Nokia

Kanugovi, et al. Expires September 14, 2017 [Page 16]

Internet-Draft MAMS C-plane March 2017

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <http://www.rfc-editor.org/info/rfc4301>.

11.2. Informative References

 [I-D.boucadair-mptcp-plain-mode]
 Boucadair, M., Jacquenet, C., Bonaventure, O., Behaghel,
 D., stefano.secci@lip6.fr, s., Henderickx, W., Skog, R.,
 Vinapamula, S., Seo, S., Cloetens, W., Meyer, U.,
 Contreras, L., and B. Peirens, "Extensions for Network-
 Assisted MPTCP Deployment Models", draft-boucadair-mptcp-
 plain-mode-10 (work in progress), March 2017.

 [I-D.kanugovi-intarea-mams-protocol]
 Kanugovi, S., Vasudevan, S., Baboescu, F., Zhu, J., Peng,
 S., and J. Mueller, "Multiple Access Management Services",
 draft-kanugovi-intarea-mams-protocol-03 (work in
 progress), March 2017.

 [I-D.wei-mptcp-proxy-mechanism]
 Wei, X., Xiong, C., and E. Ed, "MPTCP proxy mechanisms",
 draft-wei-mptcp-proxy-mechanism-02 (work in progress),
 June 2015.

 [I-D.zhu-intarea-mams-user-protocol]
 Zhu, J., "User-Plane Protocols for Multiple Access
 Management Service", draft-zhu-intarea-mams-user-
 protocol-00 (work in progress), March 2017.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets",
 RFC 3948, DOI 10.17487/RFC3948, January 2005,
 <http://www.rfc-editor.org/info/rfc3948>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

Kanugovi, et al. Expires September 14, 2017 [Page 17]

Internet-Draft MAMS C-plane March 2017

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <http://www.rfc-editor.org/info/rfc7296>.

Appendix A. MAMS Control Plane Optimization over Secure Connections

 If the connection between CCM and NCM over which the MAMS control
 plane messages are transported is assumed to be secure, UDP is used
 as the transport for management & control messages between NCM and
 UCM (see Figure 9).

 +---+
 | Multi-Access (MX) Control Message |
 |---|
 | UDP |
 |---|

 Figure 9: UDP-based MAMS Control plane Protocol Stack

Authors’ Addresses

 Satish Kanugovi
 Nokia

 Email: satish.k@nokia.com

 Subramanian Vasudevan
 Nokia

 Email: vasu.vasudevan@nokia.com

 Jing Zhu
 Intel

 Email: jing.z.zhu@intel.com

Kanugovi, et al. Expires September 14, 2017 [Page 18]

Internet-Draft MAMS C-plane March 2017

 Florin Baboescu
 Broadcom

 Email: florin.baboescu@broadcom.com

 Shuping Peng
 Huawei

 Email: pengshuping@huawei.com

Kanugovi, et al. Expires September 14, 2017 [Page 19]

	draft-bonica-intarea-eping-04
	draft-bruneau-intarea-provisioning-domains-00
	draft-herbert-gue-extensions-01
	draft-herbert-nvo3-ila-04
	draft-ietf-intarea-gue-01
	draft-ietf-intarea-tunnels-04
	draft-li-intarea-nat64-prefix-dhcp-option-00
	draft-nordmark-intarea-ippl-05
	draft-perkins-intarea-multicast-ieee802-02
	draft-zhu-intarea-mams-control-protocol-00

