Net wor k Wor ki ng Group A. demm

I nternet-Draft J. Medved
I ntended status: Experinental E. Voit
Expires: March 23, 2017 Cisco Systens

Sept enber 19, 2016

Mounti ng YANG Defined Information from Renote Dat astores
draft-cl emm net nod- nount - 05. t xt

Abst ract

Thi s docunent introduces capabilities that all ow YANG datastores to
reference and incorporate information fromrenote datastores. This
is acconplished by extending YANGwith the ability to define nount
poi nts that reference data nodes in another YANG subtree, by
subsequently all owi ng those data nodes to be accessed by client
applications as if part of an alternative data hierarchy, and by
provi di ng the necessary nmeans to nmanage and admini ster those nount
points. Two flavors are defined: Alias-Munt allows to nmount | ocal
subtrees, while Peer-Munt allows subtrees to reside on and be
authoritatively owned by a renpte server. YANG Mount facilitates the
devel opnent of applications that need to access data that transcends
i ndi vi dual network devices while inproving network-w de obj ect

consi stency, or that require an aliasing capability to be able to
create overlay structures for YANG data.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute

wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on March 23, 2017.

Clemm et al. Expi res March 23, 2017 [Page 1]

Internet-Draft YANG- Mount Sept enber 2016

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

This docunent may contain material from | ETF Docunents or |ETF
Contri butions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
materi al may not have granted the I ETF Trust the right to allow
nmodi fi cations of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |license fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornat
it for publication as an RFC or to translate it into |anguages other
than Engli sh.

Tabl e of Contents

1. Introduction 3
1.1. Overview 3
1.2. Exanples 5

2. Definitions and A@ronyns 7

3. Exanpl e scenarios . . . 8
3.1. Network controller V|ew . . 8
3.2. Consistent network conflguratlon 10

4. Qperating on mounted data . 11
4.1. General principles 12
4.2. Data retrieval 12
4.3. Oher operations 13
4.4, O her considerations 13

5. Data nodel structure 14
5.1. YANG nount poi nt exten5|ons 14
5.2. YANG structure diagrans . 15
5.3. Munt poi nt managenent 15
5.4. Caching . 17
5.5. Oher conS|derat|ons 18

5.5.1. Authorization . 18

Clemm et al. Expi res March 23, 2017 [Page 2]

Internet-Draft YANG- Mount Sept enber 2016

1.

1.

5.5.2. Datastore qualification 18
5.5.3. Munt cascades . . . e e 18
5.5.4. Inplenentation conS|derat|ons Y X
5.5.5. Modeling best practices 20

6. Datastore mountpoint YANG nodule 20
7. Security Considerations 28
8. Acknow edgements . 28
9. References . . e e e e s s s 29
9.1. Normative References A]
9.2. Informative References 30
Appendix A, Exanple 3
Authors’ Addresses 35

I nt roducti on
1. Overview

Thi s docunment introduces a new capability that allows YANG dat astores
[RFC6020] to incorporate and reference information from other YANG
subtrees. The capability allows a client application to retrieve and
have visibility of that YANG data as part of an alternative
structure. This is provided by introducing a nountpoint concept.
This concept allows to declare a YANG data node in a prinmary
datastore to serve as a "nount point" under which a subtree with YANG
data can be mounted. This way, data nodes from anot her subtree can
be inserted into an alternative data hierarchy, arranged bel ow | oca
data nodes. To the user, this provides visibility to data from ot her
subtrees, rendered in a way that nakes it appear largely as if it
were an integral part of the datastore. This enables users to
retrieve local "native" as well as nmounted data in integrated
fashion, using e.g. Netconf [RFC6241] or Restconf
[I-D.ietf-netconf-restconf] data retrieval primtives. The concept
is rem niscent of concepts in a Network File Systemthat allows to
mount renote folders and nmake them appear as if they were contained
in the local file systemof the user’s nachine.

Two variants of YANG Mount are introduced, which build on one
anot her:

0o Alias-Munt allows nountpoints to reference a | ocal YANG subtree
residing on the sane server. |t provides effectively an aliasing
capability, allowing for an alternative hierarchy and path for the
sane YANG dat a.

0 Peer-Munt allows nountpoints to reference a renote YANG subtree,
residing on a different server. It can be thought of as an
extension to Alias-Munt, in which a renote server can be

Clemm et al. Expi res March 23, 2017 [Page 3]

Internet-Draft YANG- Mount Sept enber 2016

specified. Peer-Munt allows a server to effectively provide a
federated datastore, including YANG data from across the networKk.

In each case, nounted data is authoritatively owned by the server
that it is a part of. Validation of integrity constraints apply to
the authoritative copy; nounting nerely provides a different view of
the sane data. It does not inpose additional constraints on that
same data; however, mounted data may be referred to fromother data
nodes. The nount point concept applies in principle to operations
beyond data retrieval, i.e. to configuration, RPCs, and
notifications. However, support for such operations involves

addi tional considerations, for exanple if support for configuration
transactions and | ocking (which might now apply across the network)
were to be provided. Wiile it is conceivable that additiona
capabilities for operations on nounted information are introduced at
some point in time, their specification is beyond the scope of this
speci fication.

YANG does provi de nmeans by which nodul es that have been separately
defined can reference and augnment one another. YANG al so does
provi de means to specify data nodes that reference other data nodes.
However, all the data is assuned to be instantiated as part of the
sanme datastore, for exanple a datastore provided through a NETCONF
server. Existing YANG nechani sns do not account for the possibility
that sonme information that needs to be referred not only resides in a
different subtree of the sane datastore, or was defined in a separate
modul e that is also instantiated in the same datastore, but that is
genuinely part of a different datastore that is provided by a
different server.

The ability to nount information fromlocal and renote datastores is
new and not covered by existing YANG nmechani snms. Until now,
managenent information provided in a datastore has been intrinsically
tied to the same server and to a single data hierarchy. |In contrast,
the capability introduced in this specification allows the server to
render alternative data hierarchies, and to represent information
fromrenote systens as if it were its own and contained in its own

| ocal data hierarchy.

The capability of allow ng the nmounting of information from other
subtrees is acconplished by a set of YANG extensions that allowto
define such nount points. For this purpose, a new YANG nodule is

i ntroduced. The nodul e defines the YANG extensions, as well as a
data nodel that can be used to manage the nount poi nts and nmounting
process itself. Only the mounting nodule and its server (i.e. the
"receivers" or "consuners" of the nounted infornmation) need to be
aware of the concepts introduced here. Munting is transparent to
the "providers" of the mounted information and nodels that are being

Clemm et al. Expi res March 23, 2017 [Page 4]

Internet-Draft YANG- Mount Sept enber 2016

mount ed; any data nodes or subtrees within any YANG nodel can be

nmount ed.
Ali as- Mount and Peer-Munt build on top of each other. It is
possi ble for a server to support Alias-Munt but not Peer-Munt. In

essence, Peer-Munt requires an additional paraneter that is used to
refer to the target system This paraneter does not need to be
supported if only Alias-Munt is provided.

Finally, it should be nentioned that Alias-Munt and Peer-Munt are
not to be confused with the ability to nmount a schenma, aka Schena
Mount. A Scherma Mount allows to instantiate an existing node
definition underneath a mount point, not reference a set of YANG data
that has already been instantiated sonewhere else. In that sense
Schema- Mbunt resenbl es nore a "groupi ng” concept that allows to reuse
an existing definition in a new context, as opposed to referencing
and incorporating existing instance information into a new context.

1.2. Exanples

The requirenents for nounting YANG subtrees from renote datastores

as long as a set of associated use cases, are docunented in

[1-D. voit-netnod-yang-nmount-requirenments]. The ability to nount data
fromrenote datastores is useful to address various problens that
several categories of applications are faced with.

One category of applications that can | everage this capability are
network controller applications that need to present a consolidated
vi ew of managenent information in datastores across a network
Control l er applications are faced with the problemthat in order to
expose information, that information needs to be part of their own
datastore. Today, this requires support of a correspondi ng YANG dat a
module. I n order to expose information that concerns other network
el ements, that information has to be replicated into the controller’s
own datastore in the formof data nodes that may nmirror but are
clearly distinct fromcorresponding data nodes in the network

el ement’s datastore. In addition, in nmany cases, a controller needs
to inmpose its own hierarchy on the data that is different fromthe
one that was defined as part of the original nodule. An exanple for
this concerns interface data, both operational data (e.g. various
types of interface statistics) and configuration data, such as
defined in [RFC7223]. This data will be contained in a top-Ileve
container ("interfaces", in this particular case) in a network

el ement datastore. The controller may need to provide its clients a
view on interface data frommultiple devices under its scope of
control. One way of to do so would involve organizing the data in a
list with separate list elenments for each device. However, this in
turn would require introduction of redundant YANG nodul es that

Clemm et al. Expi res March 23, 2017 [Page 5]

Internet-Draft YANG- Mount Sept enber 2016

effectively replicate the same interface data save for differences in
hi er ar chy.

By directly nmounting information fromnetwork el enent datastores, the
controll er does not need to replicate the sane information from
nmul ti ple datastores, nor does it need to re-define any network

el ement and system| evel abstractions to be able to put themin the
context of network abstractions. Instead, the subtree of the renote
systemis attached to the local nount point. Operations that need to
access data bel ow the nount point are in effect transparently
redirected to renote system which is the authoritative owner of the
data. The nounting system does not even necessarily need to be aware
of the specific data in the renpte subtree. Optionally, caching
strategi es can be enployed in which the nounting system prefetches
dat a.

A second category of applications concerns decentralized networking
applications that require globally consistent configuration of
paranmeters. Wen each network el ement naintains its own datastore
with the sane configurable settings, a single global change requires
nmodi fying the same information in many network el ements across a
network. In case of inconsistent configurations, network failures
can result that are difficult to troubleshoot. In nmany cases, what
is nore desirable is the ability to configure such settings in a
single place, then nmake them available to every network el enent.
Today, this requires in general the introduction of specialized
servers and configuration options outside the scope of NETCONF, such
as RADI US [RFC2866] or DHCP [RFC2131]. |In order to address this
within the scope of NETCONF and YANG the sane information would have
to be redundantly nodel ed and mai ntai ned, representing operationa
data (mrroring some renpte server) on sonme network el ements and
configuration data on a designated naster. Either way, additiona
compl exity ensues.

I nstead of replicating the sane gl obal paraneters across different

dat astores, the solution presented in this document allows a single
copy to be maintained in a subtree of single datastore that is then
mount ed by every network el enent that requires awareness of these
paraneters. The global paraneters can be hosted in a controller or a
designated network elenent. This considerably sinplifies the
managenent of such paraneters that need to be known across el enents
in a network and require global consistency.

It should be noted that for these and many other applications nerely
having a view of the renpte information is sufficient. It allows to
define consolidated views of information wthout the need for

replicating data and nodel s that have al ready been defined, to audit
informati on, and to validate consistency of configurations across a

Clemm et al. Expi res March 23, 2017 [Page 6]

Internet-Draft YANG- Mount Sept enber 2016
network. Only retrieval operations are required; no operations that
i nvol ve configuring renote data are invol ved.

2. Definitions and Acronyns
Dat a node: An instance of nanagenent information in a YANG datastore.
DHCP: Dynam ¢ Host Configuration Protocol.
Dat astore: A conceptual store of instantiated nmanagenent information,
with individual data itens represented by data nodes which are
arranged in hierarchical nanner.
Dat ast or e- push: A nechanismthat allows a client to subscribe to
updates from a datastore, which are then automatically pushed by the

server to the client.

Data subtree: An instantiated data node and the data nodes that are
hi erarchically contained within it.

Mount client: The system at which the nount point resides, into which
the renmote subtree is nounted.

Mount point: A data node that receives the root node of the renote
dat ast ore bei ng nount ed.

Mount server: The server with which the nount client communicates and
whi ch provides the nount client with access to the nounted

informati on. Can be used synonynously w th nount target.

Mount target: A renote server whose datastore is bei ng nounted.

NACM NETCONF Access Control Model

NETCONF: Networ k Confi guration Protocol

RADI US: Renote Authentication Dial In User Service.

RPC. Renpte Procedure Call

Renote datastore: A datastore residing at a renote node.

URI: Uni form Resource ldentifier

YANG A data definition |anguage for NETCONF

Clemm et al. Expi res March 23, 2017 [Page 7]

Internet-Draft YANG- Mount Sept enber 2016

3. Exanpl e scenari os

The foll owi ng exanpl e scenarios outline sone of the ways in which the
ability to nount YANG datastores can be applied. O her nount
t opol ogi es can be conceived in addition to the ones presented here.

3. 1. Net wor k controller view

Net work controllers can use the mounting capability to present a
consol i dated vi ew of managenent information across the network. This
all ows network controllers to expose network-wi de abstractions, such
as topologies or paths, nulti-device abstractions, such as VRRP

[RFC3768], and networ k-el ement specific abstractions, such as

i nformati on about a network elenent’s interfaces.

Whil e an application on top of a controller could bypass the
controller to access network elenents directly for their el enent-
specific abstractions, this would cone at the expense of added

i nconveni ence for the client application. In addition, it would
conprom se the ability to provide |ayered architectures in which
access to the network by controller applications is truly channel ed
through the controller.

Wthout a nmounting capability, a network controller would need to at
| east conceptually replicate data fromnnetwork el ements to provide
such a view, incorporating network elenment information into its own
controller nodel that is separate fromthe network el ement’s,
indicating that the information in the controller nodel is to be
popul ated from network el ements. This can introduce issues such as
data inconsistency and staleness. FEqually inportant, it would |ead
to the need to define redundant data nodels: one nodel that is

i npl emented by the network el ement itself, and another nodel to be

i npl emented by the network controller. This |eads to poor

mai ntai nability, as anal ogous information has to be redundantly
defined and i npl enented across different data nodels. |n general
controll ers cannot sinply support the sane nodul es as their network
el ements for the same information because that information needs to
be put into a different context. This |leads to "node"-information
that needs to be instantiated and indexed differently, because there
are nultiple instances across different data stores.

For exanple, "system'-level information of a network el enent would
nmost naturally placed into a top-level container at that network

el ement’s datastore. At the same time, the sane information in the
context of the overall network, such as maintained by a controller
m ght better be provided in a list. For exanple, the controller
mght maintain a list with a list elenent for each network el enent,
underneath which the network element’s systemlevel information is

Clemm et al. Expi res March 23, 2017 [Page 8]

Internet-Draft YANG- Mount Sept enber 2016

contai ned. However, the containnment structure of data nodes in a
nmodul e, once defined, cannot be changed. This nmeans that in the
context of a network controller, a second nodul e that repeats the
same systemlevel information would need to be defined, inplenented,
and nai ntai ned. Any augnentations that add additional systeml evel
information to the original nmodule will |ikew se need to be
redundantly defined, once for the "system' nodule, a second tine for
the "controller" nodul e.

By allowing a network controller to directly nount information from
network el enent datastores, the controller does not need to replicate
the sane information fromnultiple datastores. Perhaps even nore
importantly, the need to re-define any network el ement and system

| evel abstractions just to be able to put themin the context of
networ k abstractions is avoided. 1In this solution, a network
controller’s datastore nounts infornmation from many network el enent
datastores. For exanple, the network controller datastore (the
"primary" datastore) could inplenent a list in which each |ist

el ement contains a nountpoint. Each nmountpoint nounts a subtree from
a different network element’s datastore. The data fromthe nounted
subtrees is then accessible to clients of the primary datastore using
the usual data retrieval operations.

This scenario is depicted in Figure 1. In the figure, ML is the
mount point for the datastore in Network Elenent 1 and M2 is the
mount point for the datastore in Network Elenent 2. MDNL is the
mount ed data node in Network Elenment 1, and MDN2 is the nounted data
node in Network El enent 2.

Clemm et al. Expi res March 23, 2017 [Page 9]

Internet-Draft YANG- Mount Sept enber 2016

Net wor k |
Controller |
Dat astore |

I
I
I

+--N11
+--N12 |

+- - 'vll*******************************

I
|
I
I
| +--N10
I
I
|
I
I

- - \NRF* xR EF R *
| * *
o e e e e e o m - oo + * *
* o m e oo e - + * o m e oo e - +
ol e N R |
LI T T -
Kxkxkkxkxx S 4o VDN2 | kkxkkkkxkx> 4 - NVDNL |
| +-N3 | | N7 |
| +-N4 | | +-N8 |
I I I I
| Net wor k | | Net wor k |
| El enment | | El enment |
[Dat ast or e [[Dat ast or e
oo + oo +

Figure 1: Network controller nount topol ogy
3.2. Consistent network configuration

A second category of applications concerns decentralized networking
applications that require globally consistent configuration of
paraneters that need to be known across el enents in a network.

Today, the configuration of such paraneters is generally perforned on
a per network el enent basis, which is not only redundant but, nore
importantly, error-prone. |Inconsistent configurations lead to
erroneous network behavi or that can be challenging to troubl eshoot.

Using the ability to mount information fromrenote datastores opens
up a new possibility for managi ng such settings. |I|nstead of
replicating the same gl obal paraneters across different datastores, a
single copy is maintained in a subtree of single datastore. This
datastore can hosted in a controller or a designated network el enent.
The subtree is subsequently nounted by every network el enent that
requires access to these paraneters.

In many ways, this category of applications is an inverse of the
previ ous category: Wiereas in the network controller case data from
many di fferent datastores would be nounted into the sane datastore
with nultiple mountpoints, in this case many el enents, each with

Clemm et al. Expi res March 23, 2017 [Page 10]

Internet-Draft YANG- Mount Sept enber 2016

their own datastore, nount the sane renpte datastore, which is then
mounted by many di fferent systens.

The scenario is depicted in Figure 2. In the figure, ML is the

mount poi nt for the Network Controller datastore in Network El enent 1
and M2 is the nountpoint for the Network Controller datastore in
Network Element 2. MDN is the nounted data node in the Network
Controll er datastore that contains the data nodes that represent the
shared configuration settings. (Note that there is no reason why the
Network Controller Datastore in this figure could not sinply reside
on a network elenent itself; the division of responsibilities is a

| ogi cal one.

B + B +
| Net wor k | | Net wor k |
[El enent [[El enent [
| Dat ast ore | | Dat ast or e |
I I I I
| +--N1 | | +--N5 |
| | +-N2 I | | +--N6 I
	+-N2			+--N6
	+-N3			+-N7
	+-N4			+-N8
	I		I	
+-M		+-we		
+----- * oo + +----- * oo +

* * o e e e e m +

* * | |

* * | +--N10 |

* * | +--N11 |

***> +__|VDN |

| +--N20 |

| +--N21 |

[[

| +--N22 |

I I

| Net wor k |

| Controller |

| Dat ast or e |

Fom e e e oo +

Figure 2: Distributed config settings topol ogy
4. (Qperating on mounted data

This section provides a rough illustration of the operations flow
i nvol ving nount ed dat ast ores.

Clemm et al. Expi res March 23, 2017 [Page 11]

Internet-Draft YANG- Mount Sept enber 2016

4.1. General principles

The first thing that shoul d be noted about these operations flows
concerns the fact that a nount client essentially constitutes a
speci al managenent application that interacts with a subtree to
render the data of that subtree as an alternative tree hierarchy. In
the case of Alias-Munt, both original and alternative tree are

mai nt ai ned by the sane server, which in effect provides alternative
paths to the sane data. In the case of Peer-Munt, the nmount client
constitutes in effect another application, with the renpote system
remaining the authoritative owner of the data. While it is
conceivable that the renpte system (or an application that proxies
for the renote system provides certain functionality to facilitate
the specific needs of the mount client to make it nore efficient, the
fact that another system decides to expose a certain "view' of that
data is fundanentally not the renpte systenis concern

When a client application nakes a request to a server that involves
data that is mounted froma renpte system the server wll
effectively act as a proxy to the renote systemon the client

application’s behalf. It will extract fromthe client application
request the portion that involves the nounted subtree fromthe renote
system It will strip that portion of the local context, i.e. renove

any local data paths and insert the data path of the nounted renote
subtree, as appropriate. The server will then forward the transposed
request to the renote systemthat is the authoritative owner of the
mount ed data, acting itself as a client to the renote server. Upon
receiving the reply, the server will transpose the results into the

| ocal context as needed, for exanple nmap the data paths into the

|l ocal data tree structure, and conbine those results with the results
of the renminder portion of the original request.

4. 2. Data retrieva

Data retrieval operations are the only category of operations that is
supported for peer-nounted information. |In that case, a Netconf
"get" or "get-configuration" operation might be applied on a subtree
whose scope includes a nount point. Wen resolving the nount point,
the server issues its own "get" or "get-configuration" request

agai nst the renote system s subtree that is attached to the nount
point. The returned information is then inserted into the data
structure that is in turn returned to the client that originally

i nvoked the request.

Clemm et al. Expi res March 23, 2017 [Page 12]

Internet-Draft YANG- Mount Sept enber 2016

4.3. O her operations

The fact that only data retrieval operations are the only category of
operations that are supported for peer-nounted infornation does not
precl ude ot her operations to be applied to datastore subtrees that
contai n nount poi nts and peer-nmounted information. Peer-nounted
information is sinply transparent to those operations. Wen an
operation is applied to a subtree which includes nmountpoints, nounted
information is ignored for purposes of the operation. For exanple,
for a Netconf "edit-config" operation that includes a subtree with a
mount point, a server will ignore the data under the nountpoint and
apply the operation only to the local configuration. Munted data is
"read-only" data. The server does not even need to return an error
message that the operation could not be applied to nounted data; the
mount point is sinply ignored.

In principle, it is conceivable that operations other than data-
retrieval are applied to nounted data as well. For exanple, an
operation to edit configuration information mght expect edits to be
applied to renote systenms as part of the operation, where the edited
subtree involves nounted information. However, editing of
information and "witing through" to renpote systens potentially

i nvol ves significant conplexity, particularly if transactions and

| ocking across nultiple configuration itens are involved. Support
for such operations will require additional capabilities,
specification of which is beyond the scope of this specification

Li kewi se, YANG Mount does not extend towards RPCs that are defined as
part of YANG nodul es whose contents is being nounted. Support for
RPCs that involve nounted portions of the datastore, while

concei vabl e, would require introduction of an additional capability,
whose definition is outside the scope of this specification

By the sane token, YANG Mount does not extend towards notifications.
It is conceivable to offer such support in the future using a
separate capability, definition of which is once again outside the
scope of this specification

4.4, Oher considerations

Since nounting of information typically involves comunication with a
renote system there is a possibility that the renpte systemw |l not
respond within a certain amount of time, that connectivity is |ost,

or that other errors occur. Accordingly, the ability to nmount

dat astores al so i nvol ves nount poi nt managenent, which includes the
ability to configure tineouts, retries, and nmanagenent of nountpoint
state (including dynanic addition renoval of nountpoints).

Mount poi nt managenent will be discussed in section Section 5. 3.

Clemm et al. Expi res March 23, 2017 [Page 13]

Internet-Draft YANG- Mount Sept enber 2016

5.

5.

It is expected that some inplenmentations will introduce caching
schenes. Caching can increase performance and efficiency in certain
scenarios (for exanple, in the case of data that is frequently read
but that rarely changes), but increases inplenentation conplexity.
Caching is not required for YANG nount to work - in which case access
to mounted information is "on-demand”, in which the authoritative
data node al ways gets accessed. Wether to performcaching is a

| ocal inplenmentation decision

When caching is introduced, it can benefit fromthe ability to
subscribe to updates on renote data by renpte servers. Requirenents
for such a capability have been defined in [RFC7923]. Sone
optinmizations to facilitate caching support will be discussed in
section Section 5.4.

Dat a nodel structure
1. YANG nount poi nt extensions

At the center of the nodule is a set of YANG extensions that allow to
define a nount point.

o The first extension, "nountpoint”, is used to declare a
nmount point. The extension takes the nane of the nountpoint as an
ar gunent .

0 The second extension, "subtree", serves as substatenent underneath
a nmountpoint statenent. It takes an argunment that defines the
root node of the datastore subtree that is to be nobunted,
specified as string that contains a path expression. This
extension is used to define nmountpoints for Alias-Munt, as well
as Peer- Munt.

o The third extension, "target", also serves as a substat enent
underneath a nountpoint statement. It is used for Peer-Munt and
takes an argunent that identifies the target system The argunent
is areference to a data node that contains the information that
is needed to identify and address a renote server, such as an IP
address, a host nane, or a URl [RFC3986].

A nount poi nt MJUST be contai ned underneath a container. Future
revisions mght allow for mountpoints to be contained underneath

ot her data nodes, such as lists, leaf-lists, and cases. However, to
keep things sinple, at this point mounting is only allowed directly
under neath a cont ai ner.

Only a single data node can be nounted at one tine. Wile the nount
target could refer to any data node, it is recommended that as a best

Clemm et al. Expi res March 23, 2017 [Page 14]

Internet-Draft YANG- Mount Sept enber 2016

practice, the nmount target SHOULD refer to a container. It is
possible to maintain e.g. a list of nmount points, with each nmount
poi nt each of which has a nmount target an elenent of a renote |ist.
However, to avoid unnecessary proliferation of the nunber of nount
poi nts and associ at ed managenent overhead, when data fromlists or
leaf-lists is to be nounted, a container containing the |ist
respectively leaf-list SHOULD be nmounted instead of individual |ist
el ement s.

It is possible for a nounted datastore to contain another nountpoint,
thus leading to several |evels of nount indirections. However,
mount poi nts MJUST NOT introduce circular dependencies. |n particular
a nounted datastore MJUST NOT contain a nountpoint which specifies the
mounti ng datastore as a target and a subtree which contains as root
node a data node that in turn contains the original nountpoint.
Whenever a nount operation is perforned, this condition nountpoint.
Whenever a nount operation is perforned, this condition MJST be
val i dated by the mount client.

5.2. YANG structure diagrans

YANG dat a nodel structure overvi ews have proven very useful to convey
the "Big Picture". It would be useful to indicate in YANG data nodel
structure overviews the fact that a given data node serves as a

mount point. We propose for this purpose also a correspondi ng
extension to the structure representation convention. Specifically,
we propose to prefix the nane of the nounting data node w th upper-
case 'M.

rw networ k
+-- rw nodes
+-- rw node [node-1D]
+-- rw node-I1D
+-- M node-systeminfo

5.3. Munt poi nt nanagenent

The YANG nodul e contains facilities to manage the nountpoints
t hensel ves

For this purpose, a list of the nmountpoints is introduced. Each |ist
el ement represents a single mountpoint. It includes an
identification of the mount target, i.e. the renote system hosting
the renote datastore and a definition of the subtree of the renote
data node being mounted. It also includes nonitoring information
about current status (indicating whether the nount has been
successful and is operational, or whether an error condition applies

Clemm et al. Expi res March 23, 2017 [Page 15]

Internet-Draft YANG- Mount Sept enber 2016

such as the target being unreachable or referring to an invalid
subtree).

In addition to the Iist of nountpoints, a set of global nount policy
settings allows to set paraneters such as nmount retries and tinmeouts.

Each nmountpoint |ist elenent also contains a set of the sane
configuration knobs, allow ng adm nistrators to override gl obal nount
policies and configure nount policies on a per-nountpoint basis if
needed.

There are two ways how nounting occurs: automatic (dynanically
performed as part of system operation) or manually (adm nistered by a
user or client application). A separate nountpoint-origin object is
used to distingui sh between nmanual ly configured and automatically
popul at ed nount poi nts.

Whet her nounting occurs autonatically or needs to be nanually
configured by a user or an application can depend on the nount poi nt
being defined, i.e. the semantics of the nodel

When configured autonatically, mountpoint information is
autonmatically popul ated by the datastore that inplenents the

nmount point. The precise nmechanisns for discovering nmount targets and
boot st rappi ng mount points are provided by the nmount client
infrastructure and outside the scope of this specification

Li kewi se, when a nount poi nt should be deleted and when it should
merely have its nount-status indicate that the target is unreachable
is a systemspecific inplenentation decision

Manual mounting consists of two steps. In a first step, a nmountpoint
is manually configured by a user or client application through

adm nistrative action. Once a nountpoint has been configured, actua
nmounti ng occurs through an RPCs that is defined specifically for that
purpose. To unnount, a separate RPC is invoked; nountpoint
configuration informati on needs to be explicitly deleted. Mnua
nmounting can al so be used to override automatic nounting, for exanple
to allow an adninistrator to set up or renove a nount point.

It should be noted that nountpoint nmanagenent does not allow users to
manual |y "extend" the nodel, i.e. sinply add a subtree underneath
sone arbitrary data node into a datastore, w thout a supporting

nmount poi nt defined in the nodel to support it. A mountpoint
definition is a formal part of the nodel with well-defined senmantics.
Accordi ngly, nountpoint nanagenment does not allow users to
dynanmically "extend" the data nodel itself. It allows users to

popul ate the datastore and nount structure within the confines of a
nodel that has been defined prior.

Clemm et al. Expi res March 23, 2017 [Page 16]

Internet-Draft YANG- Mount Sept enber 2016

The structure of the nountpoint nanagenent data nodel is depicted in
the following figure, where brackets enclose |ist keys, "rw' neans
configuration, "ro" operational state data, and "?" designates
optional nodes. Parantheses enclose choice and case nodes. The
figure does not depict all definitions; it is intended to illustrate
the overall structure.

nmodul e: ietf-nmount
+--rw nount - server-ngnt {nount-server-ngnt}?
+--rw nount poi nts
| +--rw nountpoi nt* [nountpoint-id]

+--rw nountpoint-id string
+--ro nountpoint-origin? enuneration
+--rw subtree-ref subtree-ref

+--rw nount -t ar get
| +--rw (target-address-type)

I

I

I

|

I

I I +--:(1P)

| | | +--rwtarget-ip? i net:ip-address
| | +--:(URl)

| | | +--rwuri? inet:uri

| | +--: (host-nane)

[[| +--rw hostnane? i net: host
| | +--:(node-1D)

| | | +--rw node-info-ref? subtree-ref
[[+--:(other)

| | +--rw opaque-target-1D? string

| +--ro nount-status? nmount - st at us

[+--rw manual - nount ? enpty

| +-rwretry-tiner? uintl16

I

+--rw nunber-of -retri es? uint8
+--rw gl obal - mount - pol i ci es

+--rw manual - nmount ? enpty
+-rwretry-tiner? uint16
+--rw nunber-of-retries? uint8

5.4. Caching

Under certain circunstances, it can be useful to maintain a cache of

renote information. |Instead of accessing the renote system requests
are served froma copy that is locally nmaintained. This is
particul arly advantageous in cases where data is slow changing, i.e.

when there are many nore "read" operations than changes to the
underlying data node, and in cases when a significant delay were

i ncurred when accessing the renote system which night be prohibitive
for certain applications. Exanples of such applications are
applications that involve real-tine control | oops requiring response
times that are nmeasured in nmlliseconds. However, as data nodes that
are mounted froman authoritative datastore represent the "gol den

Clemm et al. Expi res March 23, 2017 [Page 17]

Internet-Draft YANG- Mount Sept enber 2016

copy", it is inportant that any nodifications are reflected as soon
as they are nade.

It is a local inplenmentation decision of nmount clients whether to
cache information once it has been fetched. However, in order to
support nore powerful caching schenes, it becones necessary for the
nmount server to "push" information proactively. For this purpose, it
is useful for the mount client to subscribe for updates to the
mounted i nformation at the nmount server. A correspondi ng nmechani sm
that can be | everaged for this purpose is specified in
[1-D.ietf-netconf-yang-push].

Not e that caching | arge nountpoints can be expensive. Therefore
limting the amount of data unnecessarily passed when nounting near
the top of a YANG subtree is inmportant. For these reasons, an
ability to specify a particular caching strategy in conjunction with
nmount poi nts can be desirable, including the ability to exclude
certain nodes and subtrees from caching. According capabilities may
be introduced in a future version of this draft.

5.5. Oher considerations
5.5.1. Authorization

Access to nmounted information is subject to authorization rules. To
the mounted system a mounting client will in general appear |ike any
other client. Authorization privileges for renmote nounting clients
need to be specified through NACM (NETCONF Access Control Model)

[RFC6536] .

5.5.2. Datastore qualification

It is conceivable to differentiate between different datastores on
the renote server, that is, to designate the nane of the actua
datastore to nount, e.g. "running" or "startup". However, for the
pur poses of this spec, we assune that the datastore to be nounted is
generally inplied. Mounted information is treated as anal ogous to
operational data; in general, this neans the running or "effective"
datastore is the target. That said, the information which targets to
nmount does constitute configuration and can hence be part of a
startup or candi date datastore.

5.5.3. Mount cascades
It is possible for the nounted subtree to in turn contain a
nmount poi nt. However, circular nount rel ationships MJUST NOT be

i ntroduced. For this reason, a nounted subtree MJUST NOT contain a
mount poi nt that refers back to the nmounting systemwi th a nount

Clemm et al. Expi res March 23, 2017 [Page 18]

Internet-Draft YANG- Mount Sept enber 2016

target that directly or indirectly contains the originating
mount point. As part of a nmount operation, the mount points of the
mount ed system need to be checked accordingly.

5.5.4. Inplenentation considerations

| mpl enent ati on specifics are outside the scope of this specification
That said, the follow ng considerations apply:

Systens that wish to nount information fromrenote datastores need to
i mpl ement a nount client. The nount client comrunicates with a
renote systemto access the renote datastore. To do so, there are
several options:

o0 The mount client acts as a NETCONF client to a renote system
Al ternatively, another interface to the renote system can be used,
such as a REST APl using JSON encodings, as specified in
[I-D.ietf-netconf-restconf]. Either way, to the renote system
the mount client constitutes essentially a client application Iike
any other. The nmount client in effect 1S a special kind of client
appl i cation.

0 The nmount client communicates with a renote nount server through a
separate protocol. The nmount server is deployed on the sane
system as the renote NETCONF datastore and interacts with it
through a set of |ocal APIs.

0 The mount client communicates with a renpte nmount server that acts
as a NETCONF client proxy to a renpote system on the client’s
behal f. The conmuni cation between nount client and renote nount
server night involve a separate protocol, which is translated into
NETCONF operations by the renote nmount server.

It is the responsibility of the nount client to manage the
association with the target system e.g. validate it is stil
reachabl e by mai ntai ning a permanent association, perform
reachability checks in case of a connectionless transport, etc.

It is the responsibility of the nmount client to manage the
mount poi nts. This neans that the nount client needs to popul ate the
mount point nonitoring information (e.g. keep nount-status up to data
and determine in the case of automatic nounting when to add and
renove nountpoint configuration). |In the case of autonatic nounting,
the mount client also interacts with the nountpoint discovery and
boot strap process.

The nmount client needs to also participate in servicing datastore
operations involving nounted information. An operation requested

Clemm et al. Expi res March 23, 2017 [Page 19]

Internet-Draft YANG- Mount Sept enber 2016

i nvol ving a nountpoint is relayed by the nounting systenis
infrastructure to the mount client. For exanple, a request to
retrieve information froma datastore | eads to an invocation of an
internal nmount client APl when a nount point is reached. The nount
client then relays a correspondi ng operation to the renote datastore.
It subsequently relays the result along with any responses back to
the invoking infrastructure, which then nerges the result (e.g. a
retrieved subtree with the rest of the information that was
retrieved) as needed. Relaying the result may involve the need to
transpose error response codes in certain corner cases, e.g. when
mount ed i nformati on could not be reached due to | oss of connectivity
with the renpte server, or when a configuration request failed due to
val idation error.

5.5.5. Mbodeling best practices

There is a certain ambunt of overhead associated with each nount
point. The nmount point needs to be managed and state naintained.
Dat a subscriptions need to be nuaintained. Requests including nmounted
subtrees need to be deconposed and responses fromnultiple systens
combi ned.

For those reasons, as a general best practice, nodels that make use
of mount points SHOULD be defined in a way that mnimzes the nunber
of mountpoints required. Finely granular nmounts, in which nultiple
mount points are maintained with the sane renote system each
containing only very snmall data subtrees, SHOULD be avoi ded. For
exanpl e, lists SHOULD only contain nountpoints when individual |ist
el ements are associated with different renpbte systens. To nount data
fromlists in renote datastores, a container node that contains al
list elements SHOULD be nounted instead of mounting each list el enent
i ndividually. Likew se, instead of having mount points refer to
nodes cont ai ned underneath choi ces, a nountpoint should refer to a
cont ai ner of the choice.

6. Datastore nmountpoint YANG nodul e

<CODE BEGQ NS>

file "ietf-nount @016-09-19. yang"

nmodul e i etf-nount {
nanespace "urn:ietf:parans: xm:ns:yang:ietf-nount"”;
prefix mt;

inmport ietf-inet-types {
prefix inet;

}

organi zati on

Clemm et al. Expi res March 23, 2017 [Page 20]

Internet-Draft YANG- Mount Sept enber 2016

"I ETF NETMOD (NETCONF Dat a Mbdel i ng Language) Worki ng G oup”;
cont act

"WG Web: <http://tools.ietf.org/wy/ netnod/ >

WG List: <mailto:netnod@etf.org>

WG Chair: Kent Watsen
<mai | t 0: kwat sen@ uni per. net >

WG Chair: Lou Berger
<mai | t o: | ber ger @ abn. net >

Edi tor: Al exander O emm
<mai |l to: | udwi g@l emm or g>

Editor: Jan Medved
<mai | t 0: j medved@i sco. con®

Editor: Eric Voit
<mai | to: evoi t @i sco. conp";
description
"This nodul e provides a set of YANG extensions and definitions
that can be used to nmount information fromrenote datastores.”

revision 2016-09-19 {
description
"Initial revision.";
ref erence
"draft-cl emm net nod- nount - 05. t xt";
}

ext ensi on nount poi nt {
argunment nane;
description
"Thi s YANG extension is used to nount data from anot her
subtree in place of the node under which this YANG extension
statenment is used

Thi s extension takes one argunent which specifies the name
of the nount point.

Thi s extension can occur as a substatenent underneath a
container statenent, a |list statenent, or a case statenent.
As a best practice, it SHOULD occur as statenent only
underneath a container statenent, but it MAY al so occur
underneath a list or a case statenent.

The extension can take two paraneters, target and subtree,
each defined as their own YANG ext ensi ons.

Clemm et al. Expi res March 23, 2017 [Page 21]

Internet-Draft YANG- Mount Sept enber 2016

}

For Alias-Munt, a nountpoint statenment MJST contain a
subtree statenment for the nountpoint definition to be valid.
For Peer-Munt, a nountpoint statenent MJST contain both a
target and a subtree substatenent for the nountpoint
definition to be valid.

The subtree SHOULD be specified in terms of a data node of
type 'mmt:subtree-ref’. The targeted data node MJIST
represent a container

The target system MAY be specified in terns of a data node
that uses the grouping 'mmt:nount-target’. However, it

can be specified also in ternms of any other data node that
contains sufficient information to address the nmount target,
such as an | P address, a host nanme, or a URl.

It is possible for the nounted subtree to in turn contain a
nmount poi nt. However, circular nount relationships MJST NOT
be introduced. For this reason, a nmounted subtree MJUST NOT
contain a mountpoint that refers back to the nmounting system
with a nount target that directly or indirectly contains the
ori gi nati ng nountpoint.";

extension target {

}

argunent target-nane;
description
"This YANG extension is used to perform a Peer-NMount.
It is used to specify a renpte target systemfromwhich to
nmount a datastore subtree. This YANG
ext ensi on takes one argument which specifies the renote
system |In general, this argument will contain the nane of
a data node that contains the renpte systeminformation. It
i s recomended that the reference data node uses the
nmount -target grouping that is defined further belowin this
nodul e.

Thi s YANG ext ensi on can occur only as a substatenent bel ow
a mountpoint statement. It MJST NOT occur as a substatenent
bel ow any other YANG statenent.";

ext ensi on subtree {

d emm

argunent subtree- pat h;

description
"This YANG extension is used to specify a subtree in a
datastore that is to be nmounted. This YANG extension takes
one argurent which specifies the path to the root of the

et al. Expi res March 23, 2017 [Page 22]

Internet-Draft YANG- Mount Sept enber 2016

subtree. The root of the subtree SHOULD represent an
i nstance of a YANG container. However, it MAY represent
al so anot her data node.

Thi s YANG ext ensi on can occur only as a substatenent bel ow
a nmountpoint statement. It MJST NOT occur as a substatenent
bel ow any ot her YANG statement.";

}

feature nount-server-ngm {
description
"Provide additional capabilities to manage renote nount
poi nts";

}

typedef nount-status {
type enuneration {
enum "ok" {
description
"Mount ed” ;
}
enum "no-target" {
description
"The argunent of the nountpoint does not define a
target systent;
}
enum "no-subtree" {
description
"The argunent of the nountpoint does not define a
root of a subtree";
}
enum "t arget - unr eachabl e" {
description
"The specified target systemis currently
unr eachabl e";
}
enum "nmount -failure" {
description
"Any ot her mount failure”
}
enum "unrount ed" {
description
"The specified nmountpoint has been unmounted as the
result of a managenent operation"

}
}

description
"This type is used to represent the status of a

Clemm et al. Expi res March 23, 2017 [Page 23]

Internet-Draft YANG- Mount Sept enber 2016

mount poi nt . ";

}

typedef subtree-ref {

type string;

description
"This string specifies a path to a datanode. It corresponds
to the path substatenment of a leafref type statenent. |Its
syntax needs to conformto the correspondi ng subset of the
XPat h abbreviated syntax. Contrary to a |leafref type,
subtree-ref allows to refer to a node in a renote datastore.
Al so, a subtree-ref refers only to a single node, not a |ist
of nodes.";

}

groupi ng nount -noni tor {
description
"Thi s groupi ng contains data nodes that indicate the
current status of a mount point.";
| eaf mount-status {
t ype nount - st at us;
config fal se
description
"I ndi cat es whet her a nount poi nt has been successfully
nmount ed or whether sone kind of fault condition is
present.";
}
}

groupi ng nount-target {
description
"This groupi ng contains data nodes that can be used to
identify a remote systemfromwhich to nount a datastore
subtree.";
cont ai ner nount-target {
description
"A container is used to keep nount target information
t oget her.";
choi ce target-address-type {
mandat ory true
description
"Allows to identify nmount target in different ways
i.e. using different types of addresses.”
case I P {
| eaf target-ip {
type inet:ip-address;
description
"I P address identifying the nmount target.";

Clemm et al. Expi res March 23, 2017 [Page 24]

Internet-Draft YANG- Mount Sept enber 2016

}

}
case UR {
| eaf uri {
type inet:uri;
description
"URlI identifying the mount target";

}

case host-nane {
| eaf hostnane {
type inet: host;
description
"Host nanme of nount target."”;

}
}

case node-1D {
| eaf node-info-ref {
type subtree-ref;
description
"Node identified by naned subtree.”
}
}

case other {
| eaf opaque-target-I1D {
type string;
description
"Catch-all; could be used also for nounting
of data nodes that are local."

groupi ng nount -policies {
description
"This groupi ng contains data nodes that allow to configure
policies associated with nountpoints.”;
| eaf manual - nount {
type enpty;
description
"When present, a specified nountpoint is not
automatically nounted when the nmount data node is
created, but needs to nounted via specific RPC
i nvocation.";

leaf retry-timer {

Clemm et al. Expi res March 23, 2017 [Page 25]

Internet-Draft YANG- Mount Sept enber 2016

type uint 16;
units "seconds";
description
"When specified, provides the period after which
mounting will be automatically reattenpted in case of a
mount status of an unreachable target";

| eaf nunber-of-retries {
type uint8;
description
"When specified, provides a limt for the nunber of
times for which retries will be automatically
attenpted”;
}
}

rpc nount {
description
"This RPC all ows an application or administrative user to

performa nmount operation. |If successful, it will result in
the creation of a new nountpoint.”
i nput {

| eaf nountpoint-id {
type string {
length "1..32";
}
description
"Identifier for the nountpoint to be created.
The nmountpoint-id needs to be unique;
if the nountpoint-id of an existing nountpoint is
chosen, an error is returned."”;
}
}
out put {
| eaf nount-status {
t ype nount - st at us;
description
"Indicates if the nount operation was successful."

}
}
}
rpc unmount {

description
"This RPC all ows an application or adm nistrative user to

unmount information froma renote datastore. |f successful
the correspondi ng mountpoint will be renoved fromthe
datastore.";

i nput {

Clemm et al. Expi res March 23, 2017 [Page 26]

Internet-Draft YANG- Mount Sept enber 2016

| eaf mountpoint-id {
type string {
length "1..32";
}
description
"Identifies the nmountpoint to be unnounted."”;
}
}
out put {
| eaf nount-status {
t ype nount - st at us;
description
"Indicates if the unnount operation was successful.";

}
}
}
cont ai ner nmount-server-ngnt {
i f-feature nount-server-ngnt
description
"Contains informati on associ ated with managi ng the
mount poi nts of a datastore.”;
cont ai ner nount poi nts {
description
"Keep the nountpoint information consolidated
in one place.";
I'ist mountpoint {
key "nmount point-id"
description
"There can be nultipl e nountpoints.
Each nountpoint is represented by its own
list element.";
| eaf mountpoint-id {
type string {
length "1..32";
}
description
"An identifier of the nountpoint.
RPC operations refer to the nountpoint
using this identifier.”
}
| eaf nount point-origin {
type enuneration {
enum "client" {
description
"Mount poi nt has been supplied and is
manual |y administered by a client"”;

enum "aut 0" {

Clemm et al. Expi res March 23, 2017 [Page 27]

Internet-Draft YANG- Mount Sept enber 2016

description
"Mountpoint is automatically
adm ni stered by the server”;

}

config fal se
description
"Thi s descri bes how t he mount poi nt camne
into being.";

| eaf subtree-ref {
type subtree-ref;
mandat ory true
description
"Identifies the root of the subtree in the
target systemthat is to be nounted.";

uses nount-target;
uses nount - noni t or;
uses nount-policies;
}
}
cont ai ner gl obal - nount-policies {
description
"Provides mount policies applicable for all rnountpoints,
unl ess overridden for a specific nountpoint.";
uses nount-policies;
}
}
}

<CCDE ENDS>
7. Security Considerations
TBD
8. Acknow edgemnent s
We wi sh to acknowl edge the hel pful contributions, coments, and
suggestions that were received from Tony Tkaci k, Anbi ka Tri pat hy,

Robert Varga, Prabhakara Yellai, Shashi Kumar Bansal, Lukas Sedl ak,
and Benoit C ai se.

Clemm et al. Expi res March 23, 2017 [Page 28]

Internet-Draft YANG- Mount Sept enber 2016

9. References
9. 1. Nor mati ve Ref erences

[RFC2131] Droms, R, "Dynamic Host Configuration Protocol",
RFC 2131, DO 10.17487/ RFC2131, March 1997,
<http://wwmv rfc-editor.org/info/rfc2131>.

[RFC2866] Rigney, C., "RADI US Accounting", RFC 2866,
DO 10.17487/ RFC2866, June 2000,
<http://ww.rfc-editor.org/info/rfc2866>.

[RFC3768] Hinden, R, Ed., "Virtual Router Redundancy Protocol
(VRRP)", RFC 3768, DO 10.17487/RFC3768, April 2004,
<http://ww. rfc-editor.org/info/rfc3768>.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Ceneric Syntax", STD 66,
RFC 3986, DO 10.17487/ RFC3986, January 2005,
<http://ww. rfc-editor.org/info/rfc3986>.

[RFC6020] Bjorklund, M, Ed., "YANG - A Data Mdeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DO 10.17487/ RFC6020, Cctober 2010,
<http://wwmv rfc-editor.org/info/rfc6020>.

[RFC6241] Enns, R, Ed., Bjorklund, M, Ed., Schoenwael der, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF) ", RFC 6241, DA 10.17487/ RFC6241, June 2011,
<http://wwv. rfc-editor.org/info/rfc6241>.

[RFC6536] Biernman, A. and M Bjorklund, "Network Configuration
Prot ocol (NETCONF) Access Control Mdel", RFC 6536,
DO 10. 17487/ RFC6536, March 2012,
<http://ww.rfc-editor.org/info/rfc6536>.

[RFC7223] Bjorklund, M, "A YANG Data Mdel for Interface
Managerent ", RFC 7223, DO 10.17487/ RFC7223, May 2014,
<http://ww. rfc-editor.org/info/rfc7223>.

[RFC7923] WVoit, E., Cdemm A, and A Gonzalez Prieto, "Requirenents
for Subscription to YANG Dat astores", RFC 7923,
DO 10.17487/ RFC7923, June 2016,
<http://ww.rfc-editor.org/info/rfc7923>.

Clemm et al. Expi res March 23, 2017 [Page 29]

Internet-Draft YANG- Mount Sept enber 2016

9.2. Informative References

[I-D.ietf-netconf-restconf]

Bi erman, A, Bjorklund, M, and K Watsen, "RESTCONF
Protocol", draft-ietf-netconf-restonf-16 (work in
progress), August 2016.

[1-D.ietf-netconf-yang-push]
Cemm A, Conzalez Prieto, A, Voit, E., Tripathy, A,
and E. Nil sen-Nygaard, "Subscribing to YANG dat astore push

updat es", draft-ietf-netconf-yang-push-03 (work in
progress), June 2016.

[1-D.voit-netnod-yang- nount - r equi r enent s]
Voit, E., demm A, and S. Mertens, "Requirenents for
mounting of |ocal and renote YANG subtrees", draft-voit-

net nod- yang- nount - r equi renent s-00 (work in progress),
March 2016.

Clemm et al. Expi res March 23, 2017 [Page 30]

Internet-Draft YANG- Mount Sept enber 2016

Appendi x A. Exanpl e

In the foll owi ng exanple, we are assunmi ng the use case of a network
controller that wants to provide a controller network viewto its
client applications. This view needs to include network abstractions
that are maintained by the controller itself, as well as certain

i nformation about network devices where the network abstractions tie
in with element-specific information. For this purpose, the network
controller | everages the nount capability specified in this docunent
and presents a fictitious Controller Network YANG Module that is
depicted in the outlined structure below. The exanple illustrates
how nounted information is | everaged by the nounting datastore to
provide an additional level of information that ties together network
and devi ce abstractions, which could not be provided otherw se

wi t hout introducing a (redundant) nodel to replicate those device
abstractions

rw controll er-network
+-- rw topol ogi es
+-- rw topol ogy [topo-id]
+-- rwtopo-id node-i d
+-- rw nodes
+-- rw node [node-id]
+-- rw node-id node-id
+-- rw supporting-ne net wor k- el enent - r ef
+-- rw termnation-points
+-- rwtermpoint [tp-id]

——

+-- tp-id tp-id
+-- ifref nmount edl f Ref
-- rw links
+-- rw link [link-id]
+-- rwlink-id link-id
+-- rw source t p-ref
+-- rw dest t p-ref

+-- rw network-el ements
+-- rw network-el enment [el enent-id]

+-- rwelenment-id elenment-id
+-- rw el enent - addr ess
|-

+-- Minterfaces

The controller network nodel consists of the follow ng key
conponent s:

o A container with a list of topologies. A topology is a graph
representation of a network at a particular layer, for exanple, an
I S-1S topol ogy, an overlay topol ogy, or an Openfl ow t opol ogy.
Speci fic topol ogy types can be defined in their own separate YANG

Clemm et al. Expi res March 23, 2017 [Page 31]

Internet-Draft YANG- Mount Sept enber 2016

nmodul es that augment the controller network nodel. Those
augrment ati ons are outside the scope of this exanple

0 An inventory of network el enents, along with certain infornmation
that is nmounted fromeach elenent. The information that is
mounted in this case concerns interface configuration information.
For this purpose, each list elenment that represents a network
el ement contains a correspondi ng nountpoint. The nount poi nt uses
as its target the network el enment address information provided in
the same |ist el enment

o0 Each topology in turn contains a container with a |list of nodes.
A node is a network abstraction of a network device in the
topol ogy. A node is hosted on a network el ement, as indicated by
a network-el ement leafref. This way, the "logical" and "physical"
aspects of a node in the network are cleanly separated.

0 A node also contains a list of termination points that term nate
links. A ternmination point is inplenented on an interface.
Therefore, it contains a |leafref that references the correspondi ng
interface configuration which is part of the nmounted information
of a network elenment. Again, the distinction between term nation
points and interfaces provides a clean separation between | ogica
concepts at the network topology | evel and device-specific
concepts that are instantiated at the level of a network el ement.
Because the interface information is mounted froma different
datastore and therefore occurs at a different |evel of the
contai nment hierarchy than it would if it were not nounted, it is
not possible to use the interface-ref type that is defined in YANG
data nodel for interface nanagenent [] to allow the termination
point refer to its supporting interface. For this reason, a new
type definition "mountedl fRef" is introduced that allows to refer
to interface information that is nmounted and hence has a different
pat h.

o Finally, a topology also contains a container with a list of
links. A link is a network abstraction that connects nodes via
node term nation points. 1In the exanple, directional point-to-
point links are depicted in which one node term nation point
serves as source, another as destination

The following is a YANG sni ppet of the nodul e definition which makes
use of the nountpoint definition

Clemm et al. Expi res March 23, 2017 [Page 32]

Internet-Draft YANG- Mount Sept enber 2016

<CODE BEQ NS>
nmodul e controll er-network {
nanespace "urn:cisco: parans: xm : ns: yang: control | er-network";
/1l exanple only, replace with | ANA nanespace when assi gned
prefix cn;
i mport nount {
prefix mt;
}

import interfaces {
prefix if;
}

typedef nount edl f Ref {
type leafref {
path "/cn:controll er-network/cn: network-el ements/"
+"cn: network-element/cn:interfaces/if:interface/if:nane";
/1 cn:interfaces corresponds to the nountpoint

}
}
I|st term nati on-point {
key "tp-id";
leaf ifref {
type mount edl f Ref ;
i | ét net wor k- el enent {
key "element-id";
| eaf element-id {
type el enent- I D
cont ai ner el enent - address {
/1 choice definition that allows to specify
/'l host nane,
/1 1P addresses, URlIs, etc
}
mmt : nount poi nt "interfaces" {
mt : target "./el ement-address”;
mt : subtree "/if:interfaces";
}
}
<CODE ENDS>

Finally, the followi ng contains an XM. sni ppet of instantiated YANG
information. W assune three datastores: NE1 and NE2 each have a

Clemm et al. Expi res March 23, 2017 [Page 33]

Internet-Draft YANG- Mount Sept enber 2016

datastore (the mount targets) that contains interface configuration
data, which is mounted into NC s datastore (the nount client).

Interface informati on from NE1 dat ast ore:

<interfaces>
<interface>
<nane>f ast et her net - 1/ 0</ nane>
<name>et her net Csmacd</t ype>
<| ocati on>1/0</| ocati on>
</interface>
<interface>
<nane>f ast et her net - 1/ 1</ nane>
<nane>et her net Csmacd</ t ype>
<l ocati on>1/ 1</ | ocati on>
</interface>
<i nterfaces>

Interface informati on from NE2 dat ast ore:
<interfaces>
<interface>
<name>f ast et her net - 1/ 0</ nane>
<nane>et her net Csmacd</t ype>
<l ocati on>1/0</| ocati on>
</interface>
<interface>
<nane>f ast et her net - 1/ 2</ nane>
<nane>et her net Csmacd</t ype>
<l ocati on>1/ 2</| ocati on>
</interface>
<interfaces>

NC datastore with nounted interface information from NE1 and NE2:

Clemm et al. Expi res March 23, 2017 [Page 34]

Internet-Draft YANG- Mount Sept enber

<control |l er - net wor k>

<net wor k- el enent s>
<net wor k- el enent >
<el enent - i d>NE1</ el enent -i d>
<el enent -address> </elenent-address>
<interfaces>
<if:interface>
<i f: name>f ast et her net - 1/ 0</i f : name>
<i f:type>et hernet Csnacd</if:type>
<if:location>1/0</if:|ocation>
</lif:interface>
<if:interface>
<i f: name>f ast et her net - 1/ 1</i f : name>
<if:type>et hernet Csmacd</if:type>
<if:location>1/1</if: | ocation>
</if:interface>
<interfaces>
</ net wor k- el enent >
<net wor k- el enent >
<el ement -1 d>NE2</ el enent -i d>
<el enent - address> </el enent-address>
<i nterfaces>
<if:interface>
<i f:nanme>fastethernet-1/0</if:name>
<i f:type>et hernet Csmacd</if:type>
<if:location>1/0</if:|ocation>
</if:interface>
<if:interface>
<i f: name>f ast et her net - 1/ 2</i f : nanme>
<i f:type>et hernet Csnmacd</if:type>
<if:location>1/2</if:|ocation>
</lif:interface>
<i nterfaces>
</ net wor k- el enent >
</ net wor k- el enent s>

</ control | er-network>
Aut hor s’ Addr esses

Al exander C enm
Ci sco Systens

EMai | : | udwi g@l emm org

2016

Clemm et al. Expi res March 23, 2017 [Page 35]

Internet-Draft YANG- Mount Sept enber 2016

Jan Medved
Ci sco Systens

EMai | : j medved@i sco. com
Eric Voit
Ci sco Systens

EMui | : evoit @i sco.com

Clemm et al. Expi res March 23, 2017 [Page 36]

