Net wor k Wor ki ng Group M Bj orkl und
I nternet-Draft Tail -f Systens
I ntended status: Standards Track J. Schoenwael der
Expi res: Septenber 14, 2017 Jacobs University
P. Shafer

K. Wt sen

Juni per Networks

R Wlton

Ci sco Systens

March 13, 2017

Net wor k Managenent Datastore Architecture
draft-ietf-netnod-revi sed-datastores-01

Abst r act

Dat astores are a fundanental concept binding the data nodels witten
in the YANG data nodel i ng | anguage to network nanagenent protocols
such as NETCONF and RESTCONF. This docunent defines an architectura
framework for datastores based on the experience gained with the
initial sinpler nodel, addressing requirenents that were not well
supported in the initial nodel.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on Septenber 14, 2017

Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 1]



Internet-Draft

(http://trustee.ietf.org/license-info)

publication

March 2017

of this docunent. Pl ease revi ew t hese docunents

in effect on the date of

carefully, as they describe your rights and restrictions with respect

to this docunent.

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

I ntroduction

1.
2. Term nol
3

ogy .

. Introduction . . . . . . . . . .
3.1. Oiginal Mdel of Datastores
4. Architectural ©Mdel of Datastores .

The

ol

The
31
.3.2.
.3.3.

Def i
Def i
Def i
Def i
Def i
Def i

o
aoa oo ;
mmewwegeeewwe

<i nt ended> Dat ast ore

Dynami ¢ Dat ast ores

<operational > Dat ast ore .

M ssi ng Resources . .
System control | ed Resour ces .
Origin Metadata Annotation

i delines for Defining Dynam c Dat ast ores

ne a nane for the dynamic datastore .

ne whi ch YANG nodul es can be used in the dat ast ore

ne whi ch subset of YANG nodel ed data appl i es
ne how dynanic data is actualized .

ne whi ch protocols can be used

ne a nodule for the dynanmi c datastore .

6. YANG Modules . . . .
7. | ANA Consi derations .

~ ~

.1. Updates to the | ETF XM | Regr stry . .
.2. Updates to the YANG Mbdul e Nanes Regl stry .

8. Security Considerations .

9. Acknow edgnents .

10. References .
10.1. Normative Ref erences .

10.2. Informative References .
Appendi x A.  Exanple Data .
A.1. System Exanpl e
A 2. BGP Exanple .
A .2.1. Datastores
A . 2.2. Adding a Peer
A.2.3. Renoving a Peer
A.3. Interface Exanple . .
A.3.1. Pre-provisioned Int erf aces
A .3.2. Systemprovided Interface .
Appendi x B. Epheneral Dynanic Datastore ExaerI e
Appendix C. Inplications on Data Mbdel s .

Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
Provi sions and are provided wi thout warranty as

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 2]



Internet-Draft March 2017

C1 Proposed migration of existing YANG Data Mbdels . . . . . 33
C. 2. Standardization of new YANG Data Mbdels . . . . . . . . . 34
Appendix D. Inplications on other Docunents . . . . . . . . . . 34
D1 Inmplications on YANG . . . . 7

D. 2 I mplications on YANG L|brary e 71
D.3 Inmplications to YANG Guidelines . . . . . . . . 35
D.3.1. Nodes with different config/state value sets .. . . 35
D.3.2. Auto-configured or Auto-negotiated Values . . . . . . 35

D.4. Inplications on NETCONF . . . . . . . . . . . . . . . . . 35
D.4.1. Introduction . . T 13
D.4.2. Overview of addltlons to NETCCNF e . . . . . . . . 36
D.4.3. Overview of NETCONF version 2 . . . . . . . . . . . . 37

D.5 Implications on RESTCONF . . . . . . . . . . . . . . . . 40
D.5.1. Introduction . . e 10]
D.5.2. Overview of addltlons to RESTCCNF Coe . . . . . 40
D.5.3. Overview of a possible new RESTCONF verS|on .. .. 42
Appendix E. Open lssues . . . . . . . . . . . . . . . . . . . . 43
Authors’ Addresses . . . . . . . . . . . . . . . . . . . .. .. 44

1. Introduction

This docunment provides an architectural framework for datastores as
they are used by network managenent protocols such as NETCONF

[ RFC6241], RESTCONF [ RFC8040] and the YANG [ RFC7950] data nodeling

| anguage. Datastores are a fundanmental concept bindi ng network
managenent data nodel s to network managenent protocols. Agreenent on
a conmon architectural nodel of datastores ensures that data nodels
can be witten in a network managenent protocol agnostic way. This
architectural franework identifies a set of conceptual datastores but
it does not nmandate that all network managenent protocols expose al

t hese conceptual datastores. This architecture is agnostic with
regard to the encodi ng used by network managenent protocols.

2. Term nol ogy
The keywords "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14, [RFC2119].
Thi s docunent defines the follow ng terns:
o configuration data: Data that deterni nes how a devi ce behaves

This data is nodel ed in YANG using "config true" nodes.
Configuration data can originate fromdifferent sources

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 3]



Internet-Draft March 2017

0o static configuration data: Configuration data that is eventually
persistent and used to get a device fromits initial default state
into its desired operational state.

o0 dynamc configuration data: Configuration data that is obtained
dynanically during the operation of a device through interaction
with other systems and not persistent.

0 systemconfiguration data: Configuration data that is supplied by
the device itself.

o default configuration data: Configuration data that is not
explicitly provided but for which a value defined in the data
nmodel is used.

o applied configuration data: Configuration data that is currently
used by a device. Applied configuration data consists of static
configuration data and dynam ¢ configuration data.

0 state data: The additional data on a systemthat is not
configuration data such as read-only status information and
collected statistics. State data is transient and nodified by
interactions with internal conponents or other systens. State
data is nodeled in YANG using "config fal se" nodes.

0 datastore: A conceptual place to store and access information. A
datastore m ght be inplenented, for exanple, using files, a
dat abase, flash nenory | ocations, or conbinations thereof. A
datastore nmaps to an instantiated YANG data tree.

o configuration datastore: A datastore holding static configuration
data that is required to get a device fromits initial default
state into a desired operational state. A configuration datastore
maps to an instantiated YANG data tree consisting of configuration
data nodes and interior data nodes.

0 running configuration datastore: A configuration datastore hol ding
the conplete static configuration currently active on the device
The running configuration datastore always exists. It may include
i nactive configuration or tenplate-nechanismoriented
configuration that require further expansion

0 intended configuration datastore: A configuration datastore
hol di ng the conplete configuration currently active on the device.
It does not include inactive configuration and it does include the
expansi on of any tenplate nechani sns.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 4]



Internet-Draft March 2017

o candidate configuration datastore: A configuration datastore that
can be mani pul ated wi thout inpacting the device' s running
configuration datastore and that can be commtted to the running
configuration datastore. A candi date datastore may not be
supported by all protocols or inplenentations.

0 startup configuration datastore: The configuration datastore
hol di ng the configuration | oaded by the device into the running
configuration datastore when it boots. A startup datastore may
not be supported by all protocols or inplenentations.

o dynam c datastore: A datastore hol ding dynani c configuration data.

0 operational state datastore: A datastore holding the currently
active applied configuration data as well as the device's state
dat a.

0 origin: A netadata annotation indicating the origin of a data
item

0 remant data: Configuration data that remains in the systemfor a
period of tine after it has be renpbved froma configuration
datastore. The tine period may be mininmal, or nmay last until al
resources used by the new y-del eted configuration data (e.g.
net work connections, nenory allocations, file handl es) have been
deal | ocat ed.

The followi ng additional terns are not datastore specific but
commonly used and thus defined here as well:

o client: An entity that can access YANG defined data on a server
over sone networ k management protocol

0 server: An entity that provides access to YANG defined data to a
client, over sonme network nmanagenent protocol

o notification: A server-initiated nmessage indicating that a certain
event has been recogni zed by the server.

0 renote procedure call: An operation that can be invoked by a
client on a server.

3. Introduction

NETCONF [ RFC6241] provides the followi ng definitions:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 5]



Internet-Draft March 2017

0 datastore: A conceptual place to store and access information. A
datastore might be inplenented, for exanple, using files, a
dat abase, flash nmenory | ocations, or conbinations thereof.

o configuration datastore: The datastore hol ding the conplete set of
configuration data that is required to get a device fromits
initial default state into a desired operational state.

YANG 1.1 [ RFC7950] provides the follow ng refinenents when NETCONF is
used with YANG (which is the usual case but note that NETCONF was
defined before YANG did exist):

0 datastore: Wien nodeled with YANG a datastore is realized as an
instanti ated data tree.

o configuration datastore: Wien nodeled with YANG a configuration
datastore is realized as an instantiated data tree with
configuration data.

[ RFC6244] defined operational state data as foll ows:

0 COperational state data is a set of data that has been obtained by
the systemat runtine and influences the systenis behavior simlar
to configuration data. In contrast to configuration data,
operational state is transient and nodified by interactions with
i nternal conponents or other systens via specialized protocols.

Section 4.3.3 of [RFC6244] discusses operational state and anobng
other things nentions the option to consider operational state as
being stored in another datastore. Section 4.4 of this document then
concludes that at the time of the witing, nodeling state as a
separate data tree is the reconmended approach

| mpl enent ati on experience and requests from operators
[I-D.ietf-netnod-opstate-reqs], [I|-D.openconfig-netnod-opstate]
indicate that the datastore nodel initially designed for NETCONF and
refined by YANG needs to be extended. |In particular, the notion of

i ntended configuration and applied configuration has devel oped.

Furt hernore, separating operational state data from configuration
data in a separate branch in the data nodel has been found
operationally conplicated, and typically inpacts the readability of
nodul e definitions due to overuse of groupings. The relationship

bet ween the branches is not nachine readable and filter expressions
operating on configuration data and on rel ated operational state data
are different.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 6]



Internet-Draft March 2017

3.1. Oiginal Mdel of Datastores

The followi ng drawi ng shows the original nodel of datastores as it is
currently used by NETCONF [ RFC6241]:

oo + oo +
| <candi date> | | <startup> |
| (ct, rw)  [<---+ t---> (ct, rw) |
o m e e e oo - + | | S +
I I I I
| Fomm e eaaan + |
B >| <running> | <-------- +
| (ct, rw) |
B +
I
%
operational state <--- control plane
(cf, ro)

ct = config true; cf = config fal se
rw=read-wite; ro = read-only
boxes denote datastores

Note that this diagramsinplifies the nodel: read-only (ro) and read-
wite (rw) is to be understood at a conceptual level. |n NETCONF,
for exanple, support for the <candi date> and <startup> datastores is
optional and the <runni ng> datastore does not have to be witable.
Furthernore, the <startup> datastore can only be nodified by copying
<running> to <startup> in the standardi zed NETCONF datastore editing
nmodel .  The RESTCONF protocol does not expose these differences and

i nstead provides only a witable unified datastore, which hides

whet her edits are done through a <candi date> datastore or by directly
nmodi fyi ng the <runni ng> datastore or via sone other inplenmentation
specific nechanism RESTCONF al so hi des how configuration is nade
persistent. Note that inplenentations nmay al so have additiona
datastores that can propagate changes to the <runni ng> datastore.
NETCONF explicitly mentions so called naned datastores.

Sone observati ons:

0 Operational state has not been defined as a datastore although
there were proposals in the past to introduce an operational state
dat ast or e.

0 The NETCONF <get/> operation returns the content of the <running>
configuration datastore together with the operational state. It
is therefore necessary that config false data is in a different
branch than the config true data if the operational state data can

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 7]



Internet-Draft March 2017

have a different lifetine conpared to configuration data or if
configuration data is not imrediately or successfully applied.

o Several inplenentations have proprietary nechani sns that all ow
clients to store inactive data in the <running> datastore; this
inactive data is only exposed to clients that indicate that they
support the concept of inactive data; clients not indicating
support for inactive data receive the content of the <running>
datastore with the inactive data renpved. Inactive data is
conceptual ly renoved before validation

o Sone inplenentations have proprietary mechani sns that all ow
clients to define configuration tenplates in <running>  These
tenpl ates are expanded automatically by the system and the
resulting configuration is applied internally.

0 Sone operators have reported that it is essential for themto be
able to retrieve the configuration that has actually been
successfully applied, which may be a subset or a superset of the
<runni ng> configuration

4. Architectural Mdel of Datastores
Bel ow i s a new conceptual nodel of datastores extending the origina

nodel in order to reflect the experience gained with the origina
nmodel .

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 8]



Internet-Draft March 2017

Fomm e oo + S +
| <candi date> | | <startup> |
| (ct, rw)  [<---+ +---> (ct, rw) |
e e e - + [ [ [ S +
I I I I
| Fomm e eaaaa + |
R >| <running> | <-------- +
| (ct, rw) |
Fom e e e e - - +

I

| /1l e.g., renoval of "inactive"

| /'l nodes, expansion of tenpl ates
v

| <intended> | // subject to validation
| (ct, ro) |

/1l e.g., mssing resources, delays

I
I
I
| +ommm - aut o-di scovery
| to-m- oo dynami ¢ configuration protocols
| Foemem- control - pl ane protocols
| +--mm - dynani ¢ dat astores
I I
% %
e e e o +

| <operational > |
| (ct + cf, ro) |

ct = config true; cf = config fal se
rw=read-wite; ro = read-only
boxes denote datastores

4.1. The <intended> Datastore

The <intended> datastore is a read-only datastore that consists of
config true nodes. It is tightly coupled to <running>  Wen data is
witten to <running> the data that is to be validated is also
conceptually witten to <intended>. Validation is perfornmed on the
contents of <intended>.

On a traditional NETCONF inpl enentation, <running> and <intended> are
al ways t he sane.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 9]



Internet-Draft March 2017

Currently there are no standard mechani snms defined that affect
<intended> so that it would have different contents than <running>
but this architecture allows for such mechanisns to be defined

One exanpl e of such a nechanismis support for narking nodes as
inactive in <running> Inactive nodes are not copied to <intended>
and are thus not taken into account when validating the

confi guration.

Anot her exanple is support for tenplates. Tenplates are expanded
when copied into <intended> and the expanded result is vali dated.

4.2. Dynanic Datastores

The nmodel recogni zes the need for dynam c datastores that are by

definition not part of the persistent configuration of a device. In
some contexts, these have been terned epheneral datastores since the
information is epheneral, i.e., lost upon reboot. The dynamc

datastores interact with the rest of the systemthrough the
<oper ati onal > dat astore.

Note that the epheneral datastore discussed in |I2RS docunents maps to
a dynam c datastore in the datastore nodel described here

4.3. The <operational > Datastore

The <operational > datastore is a read-only datastore that consists of
config true and config false nodes. In the original NETCONF nodel
the operational state only had config fal se nodes. The reason for

i ncorporating config true nodes here is to be able to expose all
operational settings without having to replicate definitions in the
dat a nodel s.

The <operational > datastore contains all configuration data actually
used by the system including all applied configuration, system

provi ded configuration and val ues defined by any supported data
model s. I n addition, the <operational > datastore al so contains state
dat a.

Changes to configuration data may take tine to percolate through to
the <operational > datastore. During this period, the <operational >
datastore will return data nodes for both the previous and current
configuration, as closely as possible tracking the current operation
of the device. These "remants" of the previous configuration
persi st while the system has rel eased resources used by the new y-
del eted configuration data (e.g., network connections, nenory

al |l ocations, file handles).

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 10]



Internet-Draft March 2017

As a result of these remmants, the senmantic constraints defined in
the data nodel cannot be relied upon for the <operational > datastore,
since the system may have remants whose constraints were valid with
the previous configuration and that are not valid with the current
configuration. Since constraints on "config false" nodes may refer
to "config true" nodes, remants nmay force the violation of those
constraints. The constraints that may not hold include "when"
"must", "mn-elenments”, and "max-elenments". Note that syntactic
constraints cannot be violated, including hierarchical organization
identifiers, and type-based constraints.

4.3.1. Mssing Resources

The <intended> configuration can refer to resources that are not
avail abl e or otherw se not physically present. In these situations,
these parts of the <intended> configuration are not applied. The
data appears in <intended> but does not appear in <operational >.

A typical exanple is an interface configuration that refers to an
interface that is not currently present. 1In such a situation, the
interface configuration remains in <intended> but the interface
configuration will not appear in <operational>.

Note that configuration validity cannot depend on the current state
of such resources, since that would inply the renoving a resource

m ght render the configuration invalid. This is unacceptable,
especially given that rebooting such a device would fail to boot due
to an invalid configuration. Instead we allow configuration for

m ssing resources to exist in <running> and <intended>, but it wll
not appear in <operational >.

4.3.2. Systemcontroll ed Resources

Sonetines resources are controlled by the device and the
correspondi ng system control |l ed data appear in (and di sappear from
<operational > dynanically. If a systemcontrolled resource has

mat chi ng configuration in <intended> when it appears, the systemw ||
try to apply the configuration, which causes the configuration to
appear in <operational> eventually (if application of the
configuration was successful).

4.3.3. Oigin Metadata Annotation

As data flows into the <operational > datastore, it is conceptually
mar ked with a nmetadata annotation ([ RFC7952]) that indicates its
origin. The "origin" netadata annotation is defined in Section 6.
The values are YANG identities. The following identities are

defi ned:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 11]



Internet-Draft March 2017

+-- origin
+-- static
+-- dynamic
+-- default
+-- system

These identities can be further refined, e.g., there nmight be an
identity "dhcp" derived from "dynam c".

The "static" origin represents data provided by the <intended>
datastore. The "dynami c" origin represents data provided by a
dynani ¢ datastore. The "default" origin represents data val ues
specified in the data nodel, using either sinple values in the
"default" statement or any val ues described in the "description”
statement. Finally, the "systen origin represents data | earned from
the nornal operational of the system including control-plane

pr ot ocol s.

5. @uidelines for Defining Dynam ¢ Datastores

The definition of a dynam c datastore SHOULD be provided in a
docunent (e.g., an RFC) purposed to the definition of the dynanic
datastore. Wen it nmakes sense, nore than one dynam c datastore MAY
be defined in the sane docunment (e.g., when the datastores are

I ogically connected). Each dynamic datastore’ s definition SHOULD
address the points specified in the sections bel ow.

5.1. Define a nane for the dynamic datastore

Each dynani c datastores MJST have a name using the character set
described by Section 6.2 of [RFC7950]. The nanme SHOULD be consi stent
in style and I ength to other datastore nanes described in this
docunent .

The datastore’s nanme does not need to be globally unique, as it wll
be uniquely qualified by the nanmespace of the nodule in which it is
defined (Section 5.6). This nmeans that names such as "runni ng" and
"operational" are valid datastore names. However, it is usually
desirable to avoid using the same name for nultiple different

dat ast or es.

5.2. Define which YANG nodul es can be used in the datastore

Not all YANG nodules nmay be used in all datastores. Sone datastores
may constrain which data nodels can be used in them If it is
desirabl e that a subset of all nodul es can be targeted to the dynamic
datastore, then the docunentation defining the dynanic datastore MJST
use the mechani snms described in Appendix D.2 to provide the necessary

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 12]



Internet-Draft March 2017

hooks for nodul e-designers to indicate that their nodule is to be
accessible in the dynam c datastore.

5.3. Define which subset of YANG nodel ed data applies

By default, the data in a dynanic datastore is nodeled by all YANG
statenments in the avail abl e YANG nodul es. However, it is possible to
specify criteria YANG statenents nust satisfy in order to be present
in a dynam c datastore. For instance, maybe only config true nodes
are present, or config false nodes that also have a specific YANG
extension (e.g., i2rs:epheneral true) are present in the dynanmic
dat ast or e.

5.4. Define how dynamic data is actualized

The diagramin Section 4 depicts dynam c datastores feeding into the
<operational > datastore. How this interaction occurs nust be defined
by the dynanic datastore. |n sone cases, it may occur inplicitly, as
soon as the data is put into the dynam c datastore while, in other
cases, an explicit action (e.g., an RPC) may be required to trigger
the application of the dynam c datastore’s data.

5.5. Define which protocols can be used

By default, it is assumed that both the NETCONF and RESTCONF
protocols can be used to interact with a dynanic datastore. However,
it my be that only a specific protocol can be used (e.g., Forces) or
that a subset of all protocol operations or capabilities are
avail able (e.g., no locking, no xpath-based filtering, etc.).

5.6. Define a nodule for the dynanic datastore

Each dynami c datastore MJUST be defined by a YANG nodul e. This nodul e
is used by servers to indicate (e.g., via YANG Li brary) their support
for the dynam c datastore.

The YANG nodul e MJUST inport the "ietf-datastores" and "ietf-origin"
nmodul es, defined in this docunment. This is necessary in order to
access the base identities they define.

The YANG nodul e MUST define an identity that uses the "ds: datastore"
identity as its base. This identity is necessary so that the
datastore can be referenced in protocol operations (e.g.
<get - dat a>) .

The YANG nodul e MUST define an identity that uses the "or:dynamc"
identity as its base. This identity is necessary so that data

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 13]



Internet-Draft March 2017

originating fromthe datastore can be identified as such via the
"origin" netadata attribute defined in Section 6.

An exanpl e of these guidelines in use is provided in Appendi x B.
6. YANG Modul es
<CODE BEG@ NS> file "ietf-datastores@017-03-13.yang"

nodul e ietf-datastores {
yang-version 1.1;
nanespace "urn:ietf:parans: xm :ns:yang:ietf-datastores"”;
prefix ds;

organi zati on
"I ETF NETMOD ( NETCONF Dat a Mbdel i ng Language) Worki ng G oup”;

cont act
"W Web: <https://datatracker.ietf.org/wg/ netnod/ >

W5 List: <mailto:netnod@etf.org>

Aut hor : Martin Bjorklund
<mailto: nmbj @ail-f.conp

Aut hor : Juer gen Schoenwael der
<mai | to:j . schoenwael der @ acobs- uni versity. de>

Aut hor : Phi | Shafer
<mai | t o: phi | @ uni per. net>

Aut hor : Kent WAt sen
<mai | t o: kwat sen@ uni per. net >

Aut hor : Rob W ton
<rwi | ton@i sco. conmp";

description
"This YANG nodul e defines a set of identities for datastores.
These identities can be used to identify datastores in protocol
operations.

Copyright (c) 2017 | ETF Trust and the persons identified as
authors of the code. All rights reserved.

Redi stribution and use in source and binary forns, with or

wi thout nodification, is pernmitted pursuant to, and subject to
the license terns contained in, the Sinplified BSD License set

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 14]



Internet-Draft March 2017

forth in Section 4.c of the | ETF Trust’'s Legal Provisions
Rel ating to | ETF Docunents
(http://trustee.ietf.org/license-info).

This version of this YANG nodul e is part of RFC XXXX
(http://ww.rfc-editor.org/info/rfcxxxx); see the RFC itself
for full legal notices.";

revision 2017-03-13 {
description
“Initial revision.";
ref erence
"RFC XXXX: Network Managenent Datastore Architecture";
}

/*
* |dentities
*/

identity datastore {

description

"Abstract base identity for datastore identities."
}

identity static {

description

"Abstract base identity for static configuration datastores.”
}

i dentity dynam c {
description
"Abstract base identity for dynam c configuration datastores."”;
}

identity running {

base static;

description

"The 'running’ datastore.";
}

identity candidate {

base static;

description

"The 'candi date’ datastore."
}

identity startup {
base static;

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 15]



Internet-Draft March 2017

description
"The 'startup’ datastore.";

}

identity intended {
base stati c;
description
"The 'intended' datastore.";

}

identity operational {
base dat ast ore;
description
"The ’'operational’ state datastore."”;

}
<CCDE ENDS>
<CODE BEG@ NS> file "ietf-datastores@017-03-13. yang"
nmodul e ietf-origin {
yang-version 1.1;
namespace "urn:ietf:paranms: xm :ns:yang:ietf-origin";
prefix or;
i mport ietf-yang-netadata {
prefix nd;
}
organi zati on

"I ETF NETMOD ( NETCONF Dat a Mbdel i ng Language) Worki ng G oup”;

cont act
"WG Web: <https://datatracker.ietf.org/wg/ netnod/ >

W5 List: <mailto:netnod@etf.org>

Aut hor : Martin Bjorkl und
<mailto: nbj @ail-f.conp

Aut hor : Juer gen Schoenwael der
<mai |t 0:j . schoenwael der @ acobs- uni versity. de>

Aut hor : Phil Shafer
<mai | t o: phi | @ uni per. net >

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 16]



Internet-Draft March 2017

Aut hor : Kent Watsen
<mai | t 0: kwat sen@ uni per. net >

Aut hor : Rob W ton
<rwi | ton@i sco. conp";

description
"This YANG nmodul e defines an 'origin’ netadata annotation, and a
set of identities for the origin value. The ’origin netadata
annotation is used to nark data in the 'operational’
datastore with informati on on where the data ori gi nat ed.

Copyright (c) 2017 | ETF Trust and the persons identified as
authors of the code. All rights reserved.

Redi stribution and use in source and binary forns, with or

wi thout nodification, is pernitted pursuant to, and subject to
the license terns contained in, the Sinplified BSD License set
forth in Section 4.c of the | ETF Trust’'s Legal Provisions

Rel ating to | ETF Docunents
(http://trustee.ietf.org/license-info).

This version of this YANG nodule is part of RFC XXXX
(http://ww.rfc-editor.org/info/rfcxxxx); see the RFC itself
for full legal notices.";

revision 2017-03-13 {
description
“Initial revision.";
ref erence
"RFC XXXX: Network Managenent Datastore Architecture";

}

/*
* |dentities
*/

identity origin {
description
"Abstract base identity for the origin annotation.";

}

identity static {
base origin;
description
"Denotes data fromstatic configuration (e.g., <intended>).";

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 17]



Internet-Draft March 2017

identity dynam c {
base origin;
description
"Denotes data from dynam c configuration protocols
or dynam c datastores (e.g., DHCP).";
}

identity system {
base origin;
description
"Denotes data created by the systemindependently of what
has been configured.";

}

identity default {
base origin;
description
"Denotes data that does not have an explicitly configured
val ue, but has a default value in use. Covers both sinple
defaults and defaults defined via an explanation in a
description statenent."”;

}

/*
* Met adata annot ati ons
*/
nmd: annotation origin {
type identityref {
base origin;
}

}

}
<CODE ENDS>
7. | ANA Consi derations
7.1. Updates to the IETF XM. Registry
This docunment registers two URIs in the | ETF XM registry [ RFC3688].

Following the format in [RFC3688], the followi ng registrations are
request ed:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 18]



Internet-Draft March 2017

7.

8.

2.

URI: urn:ietf:parans: xm :ns:yang:ietf-datastores
Regi strant Contact: The | ESG
XM.: N A, the requested URI is an XM. nanespace.

URI: urn:ietf:parans:xm:ns:yang:ietf-origin
Regi strant Contact: The | ESG
XM.: N A the requested URI is an XM. nanespace.

Updates to the YANG Mbdul e Nanes Registry
This docunment registers two YANG nodul es in the YANG Modul e Nanes

registry [RFC6020]. Following the format in [RFC6020], the the
followi ng registrations are requested:

nane: i etf-datastores

nanespace: urn:ietf:parans: xn :ns:yang:ietf-datastores
prefix: ds

r ef erence: RFC XXXX

nane: ietf-origin

nanespace: urn:ietf:params:xm:ns:yang:ietf-origin
prefix: or

ref erence: RFC XXXX

Security Considerations

Thi s docunent di scusses a conceptual nodel of datastores for network
managenent usi ng NETCONF/ RESTCONF and YANG. It has no security
i mpact on the Internet.

Acknowl edgrent s

Thi s docunment grew out of many discussions that took place since
2010. Several Internet-Drafts ([I-D.bjorklund-netnod-operational],
[1-D.wilton-netnod-opstate-yang], [|-D.ietf-netnod-opstate-reqs],
[1-D. kwat sen-net nod- opstate], [I-D.openconfig-netnod-opstate]) and

[ RFC6244] touched on sone of the problens of the original datastore
nmodel . The followi ng people were authors to these Internet-Drafts or
otherw se actively involved in the discussions that led to this
docunent :

0 Lou Berger, LabN Consulting, L.L.C., <l|berger@ abn. net>
0 Andy Bierman, YumaWrks, <andy@umaworks. conp
o Marcus Hi nes, Google, <hines@oogle.conr

o Christian Hopps, Deutsche Tel ekom <chopps@hopps. org>

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 19]



Internet-Draft March 2017

0 Acee Lindem Cisco Systens, <acee@i sco.conp

o Ladislav Lhotka, CZ.NIC, <lhotka@ic.cz>

0o Thomas Nadeau, Brocade Networks, <tnadeau@ ucidvision.conp
0 Anees Shai kh, Googl e, <aashai kh@oogl e. con»

0 Rob Shakir, Google, <robjs@oogle.conr

Juergen Schoenwael der was partly funded by Flanmi ngo, a Network of
Excel | ence project (ICT-318488) supported by the European Conmi ssion
under its Seventh Framework Progranmme.

10. Ref er ences
10.1. Normative References

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, DO 10.17487/
RFC2119, WMarch 1997,
<http://ww.rfc-editor.org/info/rfc2119>.

[ RFC6241] Enns, R, Ed., Bjorklund, M, Ed., Schoenwael der, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF) ", RFC 6241, DO 10.17487/ RFC6241, June 2011,
<http://ww. rfc-editor.org/info/rfc6241>.

[ RFC7895] Biernan, A., Bjorklund, M, and K Watsen, "YANG Mdul e
Li brary", RFC 7895, DO 10.17487/RFC7895, June 2016,
<http://wwmv. rfc-editor.org/info/rfc7895>.

[ RFC7950] Bjorklund, M, Ed., "The YANG 1.1 Data Moddel i ng Language",
RFC 7950, DO 10. 17487/ RFC7950, August 2016,
<http://ww.rfc-editor.org/info/rfc7950>.

[ RFC7952] Lhotka, L., "Defining and Using Metadata with YANG', RFC
7952, DA 10.17487/ RFC7952, August 2016,
<http://ww. rfc-editor.org/info/rfc7952>.

[ RFC8040] Biernman, A., Bjorklund, M, and K Watsen, "RESTCONF

Protocol ", RFC 8040, DO 10.17487/ RFC8040, January 2017,
<http://wmv rfc-editor.org/info/rfc8040>.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 20]



Internet-Draft March 2017

10.

2. Informative References

[I-D. bjorkl und- net nod- oper ati onal ]
Bj orklund, M and L. Lhotka, "QOperational Data in NETCONF
and YANG', draft-bjorklund-netnod-operational-00 (work in
progress), Cctober 2012.

[1-D.ietf-netnod-opstate-reqs]
Wat sen, K. and T. Nadeau, "Term nol ogy and Requirenents
for Enhanced Handling of Operational State", draft-ietf-
net nod- opst ate-reqs-04 (work in progress), January 2016.

[I-D.ietf-netnod-rfc6087bis]
Bierman, A., "Q@idelines for Authors and Revi ewers of YANG
Dat a Mbdel Docunments", draft-ietf-netnod-rfc6087bis-12
(work in progress), March 2017.

[1-D. kwat sen- net nod- opst at €]
Watsen, K., Bierman, A., Bjorklund, M, and J.
Schoenwael der, "Operational State Enhancenments for YANG
NETCONF, and RESTCONF", draft-kwatsen-net nod-opstate-02
(work in progress), February 2016.

[I-D. openconfi g- net nod- opst at €]
Shakir, R, Shaikh, A, and M Hines, "Consistent Mddeling
of Operational State Data in YANG', draft-openconfig-
net nod- opstate-01 (work in progress), July 2015.

[1-D.wilton-netnod-opstate-yang]
Wliton, R, ""Wth-config-state" Capability for NETCONF/
RESTCONF", draft-wlton-netnod-opstate-yang-02 (work in
progress), Decenber 2015.

[ RFC3688] Mealling, M, "The I ETF XM. Registry", BCP 81, RFC 3688,
DA 10. 17487/ RFC3688, January 2004,
<http://wwv rfc-editor.org/info/rfc3688>.

[ RFC6020] Bjorklund, M, Ed., "YANG - A Data Mdeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DO 10.17487/ RFC6020, Cctober 2010,
<http://ww.rfc-editor.org/info/rfc6020>.

[ RFC6243] Bierman, A and B. Lengyel, "Wth-defaults Capability for
NETCONF", RFC 6243, DO 10.17487/ RFC6243, June 2011,
<http://ww. rfc-editor.org/info/rfc6243>.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 21]



Internet-Draft March 2017

[ RFC6244] Shafer, P., "An Architecture for Network Managenent Using
NETCONF and YANG', RFC 6244, DO 10.17487/ RFC6244, June
2011, <http://www.rfc-editor.org/info/rfc6244>

Appendi x A,  Exanple Data

The use of datastores is conplex, and many of the subtle effects are
nmore easily presented using exanples. This section presents a series
of exanple data nodels with sone sanple contents of the various

dat ast or es.

A. 1. System Exanpl e
In this exanple, the followi ng fictional nodule is used:

nmodul e exanpl e- system {
yang-version 1.1;
namespace urn:exanpl e: system
prefix sys;

inmport ietf-inet-types {
prefix inet;

}

cont ai ner system {
| eaf host nane {
type string;

list interface {
key narne;

| eaf nane {
type string;
}

cont ai ner aut o-negotiation {
| eaf enabled {
type bool ean;
default true;
}
| eaf speed {
type uint32;
units nbps;
description
"The advertised speed, in nbps.";

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 22]



Internet-Draft March 2017

| eaf speed {
type uint32;
units nbps;
config fal se
description
"The speed of the interface, in nbps.";

}

list address {
key ip;

leaf ip {
type inet:ip-address;

| eaf prefix-length {
type uint8;

The operator has configured the host name and two interfaces, so the
contents of <intended> is:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 23]



Internet-Draft March 2017

<system xm ns="ur n: exanpl e: systent >
<host nane>f oo</ host nanme>

<interface>
<nane>et h0</ name>
<aut o- negoti ati on>
<speed>1000</ speed>
</ aut o- negoti ati on>
<addr ess>
<i p>2001: db8: : 10</i p>
<prefix-Iength>32</prefix-|ength>
</ addr ess>
</interface>

<i nterface>
<nane>et hl</ nanme>
<addr ess>
<i p>2001: db8: : 20</i p>
<prefix-1engt h>32</ prefix-Iength>
</ addr ess>
</interface>

</ syst enp

The system has detected that the hardware for one of the configured
interfaces ("ethl") is not yet present, so the configuration for that
interface is not applied. Further, the systemhas received a host
name and an additional |IP address for "ethO" over DHCP. |n addition
to a default value, a |oopback interface is automatically added by
the system and the result of the "speed" auto-negotiation. Al of
this is reflected in <operational >:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 24]



Internet-Draft March 2017

<system
xm ns="ur n: exanpl e: syst ent
xm ns:or="urn:ietf:parans: xm :ns:yang:ietf-origin">

<host nane or:origi n="or:dynam c" >bar </ host nane>

<interface or:origin="or:static">
<name>et h0</ name>
<aut o- negoti ati on>
<enabl ed or:origi n="or: defaul t">true</ enabl ed>
<speed>1000</ speed>
</ aut o- negoti ati on>
<speed>100</ speed>
<addr ess>
<i p>2001: db8: : 10</i p>
<prefix-1engt h>32</ prefix-Iength>
</ addr ess>
<address or:origin="or:dynamc">
<i p>2001: db8: : 1: 100</i p>
<prefix-1engt h>32</ prefix-Iength>
</ addr ess>
</interface>

<interface or:origin="or:system>
<name>| 00</ name>
<addr ess>
<ip>:1</ip>
<prefix-1ength>128</prefix-1engt h>
</ addr ess>
</interface>

</ syst enp
A. 2. BGP Exanple

Consi der the followi ng piece of a ersatz BGP nodul e:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 25]



Internet-Draft March 2017

cont ai ner bgp {
| eaf | ocal-as {
type uint32;

| eaf peer-as {
type uint32;

list peer {
key nane;
| eaf nane {
type i paddress;

| eaf | ocal-as {
type uint32;
description
".... Defaults to ../l ocal-as"
}
| eaf peer-as {
type uint32;
description
"... Defaults to ../peer-as"

| eaf | ocal-port {
type inet:port;

| eaf renote-port {
type inet:port;
default 179;

| eaf state {
config fal se
type enuneration {
enuminit;
enum est abl i shed;
enum cl osi ng;
}
}
}
}

In this exanpl e nodel, both bgp/peer/local -as and bgp/ peer/ peer-as
have conpl ex hierarchical values, allow ng the user to specify
default values for all peers in a single |location

The nmodel also follows the pattern of fully integrating state

("config false") nodes with configuration ("config true") nodes.
There is not separate "bgp-state" hierarchy, with the acconpanying

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 26]



Internet-Draft March 2017

repetition of containment and naning nodes. This makes the nodel
simpl er and nore readabl e.

A 2. 1. Dat ast or es

Each datastore represents differing views of these data nodes. The
<runni ng> datastore will hold the configuration data provided by the
user, for exanple a single BGP peer. The <intended> datastore wll
conceptual ly hold the data as validated, after the renoval of data
not intended for validation and after any | ocal tenplate nechani sns
are perforned. The <operational > datastore will show data from
<intended> as well as any "config fal se" nodes.

A . 2.2. Adding a Peer

If the user configures a single BGP peer, then that peer will be
visible in both the <runni ng> and <i ntended> datastores. It nay al so
appear in the <candi date> datastore, if the server supports the
"candi date" feature. Retrieving the peer will return only the user-
speci fi ed val ues.

No tine delay shoul d exi st between the appearance of the peer in
<runni ng> and <i nt ended>

In this scenario, we’'ve added the following to <running>

<bgp>
<l ocal - as>64642</1| ocal - as>
<peer - as>65000</ peer - as>
<peer >
<name>10. 1. 2. 3</ nane>
</ peer >
</ bgp>

A . 2.2.1. <operational >

The <operational > datastore will contain the fully expanded peer
data, including "config false" nodes. |In our exanple, this means the
"state" node wll appear.

In addition, the <operational > datastore will contain the "currently
in use" values for all nodes. This neans that |ocal-as and peer-as
will be popul ated even if they are not given values in <intended>.

The val ue of bgp/local-as will be used if bgp/peer/local-as is not
provi ded; bgp/ peer-as and bgp/ peer/peer-as will have the sane
relationship. In the operational view, this neans that every peer

will have values for their local-as and peer-as, even if those val ues

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 27]



Internet-Draft March 2017

are not explicitly configured but are provided by bgp/local -as and
bgp/ peer - as.

Each BGP peer has a TCP connection associated with it, using the

val ues of local-port and renote-port fromthe intended datastore. |f
those val ues are not supplied, the systemw ||l select values. Wen
the connection is established, the <operational > datastore wl|l
contain the current values for the local-port and renote-port nodes
regardl ess of the origin. |If the system has chosen the val ues, the
"origin" attribute will be set to "operational". Before the
connection is established, one or both of the nodes nay not appear
since the system nay not yet have their val ues.

<bgp origin="or:static" xm ns="urn:exanple: bgp">
<l ocal -as origin="or:static">64642</Iocal -as>
<peer-as origin="or:static">65000</ peer-as>
<peer origin="or:static">
<name origin="or:static">10.1. 2. 3</ nanme>
<l ocal -as origin="or:default">64642</1ocal - as>
<peer-as origin="or:defaul t">65000</peer-as>
<l ocal -port origin="or:systenl>60794</| ocal - port >
<renote-port origin="or:default">179</renote-port>
</ peer >
</ bgp>

A.2.3. Renoving a Peer

Changes to configuration data may take tine to percol ate through the
various software conponents involved. During this period, it is

i mperative to continue to give an accurate view of the working of the
device. The <operational > datastore will return data nodes for both
the previous and current configuration, as closely as possible
tracking the current operation of the device.

Consi der the scenario where a client renoves a BGP peer. Wen a peer
is renoved, the operational state will continue to reflect the

exi stence of that peer until the peer’s resources are rel eased,

i ncluding closing the peer’s connection. During this period, the
current data values will continue to be visible in the <operational >
datastore, with the "origin" attribute set to indicate the origin of
the original data.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 28]



Internet-Draft March 2017

<bgp origin="or:static">
<l ocal -as origin="or:static">64642</|ocal - as>
<peer-as origin="or:static">65000</peer-as>
<peer origin="or:static">
<name origin="or:static">10.1. 2. 3</ nane>
<l ocal -as origin="or:default">64642</1ocal - as>
<peer-as origi n="or:defaul t">65000</ peer - as>
<l ocal -port origin="or:static">60794</| ocal -port>
<renote-port origin="or:static">179</renote-port>
</ peer >
</ bgp>

Once resources are released and the connection is closed, the peer’'s
data is renoved fromthe <operational > datastore

A.3. Interface Exanple
In this section, we'll use this sinple interface data nodel:

contai ner interfaces {
list interface {
key nane;
| eaf nane {
type string;

| eaf description {
type string;

leaf nmtu {
type uint;

| eaf ipv4-address {
type inet:ipv4-address;

}
}

A.3.1. Pre-provisioned Interfaces

One common issue in networking devices is the support of Field

Repl aceabl e Units (FRUs) that can be inserted and renoved fromthe
device without requiring a reboot or interfering with nornal
operation. These FRUs are typically interface cards, and the devices
support pre-provisioning of these interfaces.

If aclient creates an interface "et-0/0/0" but the interface does

not physically exist at this point, then the <intended> datastore
nmi ght contain the follow ng:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 29]



Internet-Draft March 2017

<interfaces>
<interface>
<nane>et - 0/ 0/ 0</ nane>
<descri ption>Test interface</description>
</interface>
</interfaces>

Since the interface does not exist, this data does not appear in the
<oper ati onal > dat astore.

When a FRU containing this interface is inserted, the systemwl|
detect it and process the associated configuration. The
<operational > will contain the data from <i ntended>, as well as the
"config fal se" nodes, such as the current value of the interface’s
MTU.

<interfaces origin="or:static">
<interface origin="or:static">
<name ori gi n="or:static">et-0/0/0</name>
<description origin="or:static">Test interface</description>
<mtu origin="or:systent>1500</nt u>
</interface>
</interfaces>

If the FRUis renpbved, the interface data is renoved fromthe
<oper ati onal > dat astore.

A .3.2. Systemprovided Interface

Imagine if the system provides a | oopback interface (named "l o00")
with a default ipv4-address of "127.0.0.1". The systemwll only
provi de configuration for this interface if the is no data for it in
<i nt ended>.

When no configuration for "lIo0" appears in <intended> then
<operational > will show the system provided data:

<interfaces origin="or:static">
<interface origin="or:systenm >
<nane ori gi n="or: syst ent >l 00</ nane>
<i pv4-address origi n="or:systenm>127.0.0. 1</i pv4- addr ess>
</interface>
</interfaces>

When configuration for "l o0" does appear in <intended> then
<operational> will show that data with the origin set to "intended"
If the "ipv4-address" is not provided, then the system provided val ue
will appear as foll ows:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 30]



Internet-Draft March 2017

<interfaces origin="or:static">
<interface origin="or:static">
<name origi n="or:static">l o0</ nanme>
<description origin="or:static">l oopback</description>
<i pv4-address origi n="or:systenm>127.0.0. 1</i pv4- addr ess>
</interface>
</interfaces>

Appendi x B. Ephemeral Dynanic Dat astore Exanple

The section defines docunentation for an exanpl e dynanic datastore
using the guidelines provided in Section 5. Wile this exanple is
very terse, it is expected to be that a standal one RFC woul d be
needed when fully expanded.

This exanpl e defines a dynanmic datastore called "epheneral", which is
| cosely nodel ed after the work done in the |I2RS working group

1. Nane . ephener al

2. YANG nodul es :all (default)

3. YANG statenents : config false + epheneral true
4. How applied : automatic

5. Protocols . NC/ RC (default)

6. YANG Modul e . (see bel ow)

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 31]



Internet-Draft March 2017

nodul e exanpl e-ds- epheneral {
yang-version 1.1;
nanespace "urn: exanpl e: ds-epheneral "
prefix eph;

import ietf-datastores {
prefix ds;
}

inmport ietf-origin {
prefix or;
}

/1 add datastore identity
identity ds-epheneral {
base ds: dat ast ore;
description
"The 'epheneral’ datastore.”

}

/1 add origin identity
identity or-epheneral {
base or:dynamc
description
"Denotes data fromthe epheneral dynamic datastore."”;

}

/1 define epheneral extension
ext ensi on epheneral {
argunent "val ue";
description
"This extension is mxed into config fal se YANG nodes to
indicate that they are witable nodes in the ’'epheneral
datastore. This statenent takes a single argunent
representing a bool ean having the values "true’ and ’'false’
The default value is 'false .";

}
}

Appendix C. Inplications on Data Mbddels

Since the NETCONF <get/> operation returns the content of the

<runni ng> configuration datastore and the operational state together
in one tree, data nodels were often forced to branch at the top-Ieve
into a config true branch and a structurally simlar config fal se
branch that replicated sone of the config true nodes and added state
nodes. Wth the datastore nodel described here this is not needed
anynore since the different datastores handle the different lifetines
of data objects. Introducing this nodel together with the

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 32]



Internet-Draft March 2017

deprecation of the <get/> operation nmakes it possible to wite
si mpl er nodel s.

C 1

Proposed migration of existing YANG Data Mbdel s

For standards based YANG nodul es that have al ready been published,
that are using split config and state trees, it is planned that these
nmodul es are updated with new revisions containing the follow ng
changes:

(0]

The top | evel nodul e description is updated to indicate that the
nodul e confornms to the revised datastore architecture with a
conbined config and state tree, and that the existing state tree
nodes are deprecated, to be obsol eted over tine.

Al'l status "current" data nodes under the existing "state" trees
are copied to the equival ent place under the "config" tree:

* |f a node with the sane nane and type already exists under the
equi valent path in the config tree then the nodes are nerged
and t he description updated.

* |f a node with the sane nane but different type exists under
the equivalent path in the config tree, then the nodul e authors
must choose the appropriate nechanismto conbine the config and
state nodes in a backwards conpatible way based on the data
nmodel design guidelines below This may require the state node
to be added to the config tree with a nodified nane. This
scenario is expected to be relatively uncomon.

* |f no node with the same name and path already exi sts under the
config tree then the state node schema is copied verbatiminto
the config tree

* As the state nodes are copied into the config trees, any
|l eafrefs that reference other nodes in the state tree are
adjusted to reference the equivalent path in the config tree.

* Al status "current" nodes under the existing "state" trees are
mar ked as "status" deprecated.

Augnentations are similarly handled to data nodes as descri bed
above.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 33]



Internet-Draft March 2017

C. 2. Standardi zati on of new YANG Dat a Mbdel s

New st andards based YANG nodul es, or those in active devel opnent,
shoul d be designed to conformto the revised datastore architecture,
foll owi ng the design guidelines described below, and only need to
provi de conbi ned config/state trees.

Appendi x D. Inplications on other Docunents

The sections bel ow describe the authors’ thoughts on how vari ous

ot her docunents may be updated to support the datastore architecture
described in this docunent. They have been incorporated as an
appendi x of this docurment to facilitate easier review, but the
expectation is that this work will be noved into another docunent as
soon as the appropriate working group decides to take on the work.

D.1. Inplications on YANG

Note: This section describes the authors’ thoughts on how YANG

[ RFC7950] coul d be updated to support the datastore architecture
described in this docunent. It has been incorporated here as a
tenporary neasure to facilitate easier review, but the expectation is
that this work will be owned and standardi zed via the NETCONF wor ki ng

gr oup.

o Sone clarifications may be needed if this datastore nodel is
adopted. YANG currently describes validation in ternms of the
<runni ng> configuration datastore while it really happens on the
<i nt ended> configurati on datastore

D.2. Inplications on YANG Library

Note: This section describes the authors’ thoughts on how YANG

Li brary [ RFC7895] could be updated to support the datastore
architecture described in this docunent. |t has been incorporated
here as a tenporary neasure to facilitate easier review, but the
expectation is that this work will be owned and standardi zed via the
NETCONF wor ki ng group

Wth the introduction of nultiple datastores, it is inportant that a
server can advertise to clients which nodul es are supported in the

different datastores inplenented by the server. 1In order to do this,
we propose that the "ietf-yang-nodule" ([RFC7895]) is revised, with
the following addition to the "nodule” list in the "nodule-list"

gr oupi ng:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 34]



Internet-Draft March 2017

leaf-1ist datastore {
type identityref {
base ds: dat ast ore;
}

description
"The datastores in which this nodule is supported.”

D.3. Inplications to YANG Gui del i nes

Note: This section describes the authors’ thoughts on how Gui del i nes
for Authors and Reviewers of YANG Data Mdel Docunents
[I-D.ietf-netnod-rfc6087bis] could be updated to support the
datastore architecture described in this docunent. It has been

i ncorporated here as a tenporary neasure to facilitate easier review,
but the expectation is that this work will be owned and standardi zed
via the NETCONF wor ki ng group.

It is inmportant to design data nodels with clear semantics that work
equally well for instantiation in a configuration datastore and
instantiation in the <operational > datastore.

D.3.1. Nodes with different config/state value sets

There may be sonme differences in the value set of some nodes that are
used for both configuration and state. At this point of tine, these
are considered to be rare cases that can be dealt with using

di fferent nodes for the configured and state val ues.

D.3.2. Auto-configured or Auto-negotiated Val ues

Sonetimes configuration |eafs support special values that instruct
the systemto automatically configure a value. An exanple is an MU
that is configured to "auto" to let the systemdetermne a suitable
MIU val ue. Anot her exanple is Ethernet auto-negotiation of |ink
speed. |In such a situation, it is recommended to nodel this as two
separate | eafs, one config true leaf for the input to the auto-
negoti ati on process, and one config false | eaf for the output from

t he process.

D.4. Inplications on NETCONF
Note: This section describes the authors’ thoughts on how NETCONF
[ RFC6241] coul d be updated to support the datastore architecture

described in this docunent. |t has been incorporated here as a
tenporary neasure to facilitate easier review, but the expectation is

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 35]



Internet-Draft March 2017

that this work will be owned and standardi zed via the NETCONF wor ki ng
group.

D.4.1. Introduction

The NETCONF protocol [RFC6241] defines a sinple mechani smthrough

whi ch a network device can be managed, configuration data infornmation
can be retrieved, and new configuration data can be upl oaded and
mani pul at ed.

NETCONF al ready has support for configuration datastores, but it does
not define an operational datastore. |Instead, it provides the <get>
operation that returns the contents of the <running> datastore al ong
with all config false | eaves. However, this <get> operation is

i nconpatible with the new datastore architecture defined in this
docunent, and hence shoul d be deprecated.

There are two possi ble ways that NETCONF coul d be extended to support
the new architecture: Either as new optional capabilities extending
the current version of NETCONF (v1.1, [RFC6241]), or by defining a
new version of NETCONF.

Many of the required additions are common to both approaches, and are
described below. A followi ng section then describes the benefits of
defining a new NETCONF version, and the additional changes that would
entail.

D.4.2. Overview of additions to NETCONF

0 A new "supported datastores" capability allows a device to |ist
all datastores it supports. |Inplenmentations can choose which
dat astores they expose, but MJST at |east expose both the
<runni ng> and <operational > datastores. They MAY expose
addi tional datastores, such as <intended>, <candidate>, etc.

0 A new <get-data> operation is introduced that allows the client to
return the contents of a datastore. For configuration datastores,
this operation returns the sane data that would be returned by the
exi sting <get-config> operation

o Sone formof new filtering nechanismis required to allow the
device to filter the data based on the YANG netadata in addition
to other filters (such as the subtree filter). See also
Appendi x E

0 A new "with-nmetadata" capability allows a device to indicate that

it supports the capability of including YANG netadata annotations
in the responses to <get> and <get-config> requests. This is

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 36]



Internet-Draft March 2017

achieved in a simlar way to with-defaults [ RFC6243], by
i ntroducing a <wi th-netadata> XM el ement to <get> and
<get - confi g> requests.

* The capability would allow a device to indicate which types of
nmet adat a are support ed.

*  The XML el enent woul d specify which types of netadata are
included in the response.

o The handling of defaults for the new configuration datastores is
as described in with-defaults [ RFC6243], but that does not apply
for the operational state datastore that defines new semantics

D.4.2.1. (Qperational State Datastore Defaults Handling

The nornmal semantics for the <operational > datastore are that al

val ues that match the default specified in the schema are included in
response to requests on the operational state datastore. This is
equi valent to the "report-all" nmode of the with-defaults handling.

The "netadata-filter" query paraneter can be used to exclude nodes
with origin netadata matching "default”, that woul d excl ude nodes
that match the default val ue specified in the schena.

If the server cannot return a value for any reason (e.g., the server
cannot determne the value, or the value that would be returned is
outside the allowed | eaf value range) then the server can choose to
not return any value for a particular |eaf, which MJST be interpreted
by the client as the value of that |eaf not being known, rather than
implicitly having the default val ue.

D.4.3. Overview of NETCONF version 2
This section describes NETCONF version 2, by explaining the
differences to NETCONF version 1.1. \Were not explicitly specified,
t he behavi or of NETCONF version 2 is the sane as for NETCONF version
1.1 [ RFC6241].

D.4.3.1. Benefits of defining a new NETCONF versi on

Defining a new versi on of NETCONF (as opposed to extendi ng NETCONF
version 1.1) has several benefits:

o It allows for renoval of the existing <get> RPC operation, that

returns content fromboth the running configuration datastore
conbined with all config fal se | eaves.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 37]



Internet-Draft March 2017

o It could allow the existing <get-config> operation to also be
removed, replaced by the nore generic <get-data> that is naned
appropriately to also apply to the operational datastore.

o It nakes it easier for clients and servers to know what reasonabl e
comon baseline functionality to expect, rather than a collection
of capabilities that may not be inplenented in a consistent
fashion. |In particular, clients will able to assune support for
t he <operational > dat astore.

o It can gracefully coexist with NETCONF v1.1. A server could
i mpl ement both versions. EXisting YANG nodel s exposing split
config/state trees could be exposed via NETCONF v1.1, whereas
combi ned config/state YANG nodel s coul d be exposed via NETCONF v2,
providing a viable server upgrade path.

D.4.3.2. Proposed changes for NETCONF v2

The di fferences between NETCONF v2 and NETCONF v1.1 can be sunmari zed
as:

0 NETCONF v2 advertises a new base NETCONF capability
"urn:ietf:parans: netconf: base:2.0". A server nmay advertise ol der
NETCONF versions as well, to allow a client to choose which
version to use

0 NETCONF v2 renpves support for the existing <get> operation, that
is replaced by the <get-data> on the operational datastore.

0 NETCONF v2 can publish a separate version of YANG |ibrary froma
NETCONF v1.1 inplenmentation running on the same device, allow ng
different versions of NETCONF to support a different set of YANG
nodul es.

D.4.3.3. Possible Mgration Paths

A common approach in current data nodels is to have two separate
trees "/foo" and "/foo-state", where the former contains config true
nodes, and the latter config false nodes. A data nodel that is
designed for the revised architectural framework presented in this
docunent will have a single tree "/foo" with a conbination of config
true and config fal se nodes.

Two different nmigration strategi es are consi dered:

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 38]



Internet-Draft March 2017

D.4.3.3.1. Mgration Path using two instances of NETCONF

If, for backwards conpatability reasons, a server intends to support
both split config/state trees and the conbi ned config/state trees
proposed in this architecture, then this can be achi eved by having

t he devi ce support both NETCONF vl and NETCONF v2 at the same tine:

0 The NETCONF v1 inplementation could support existing YANG nodul e
revisions defined with split config/state trees.

0 The NETCONF v2 inplenentation could support different YANG
nmodul es, or YANG nodul e revisions, with conbined config/state
trees.

Clients can then decide on which type of nbdels to use by expressing
the appropriate version of the base NETCONF capability during
capability exchange

D.4.3.3.2. Mgration Path using a single instance of NETCONF

The proposed strategy for updating existing published data nodels is
to publish new revisions with the state trees’ nodes copi ed under the
config tree, and for the existing state trees to have all of their
nodes marked as deprecated. The expectation is that NETCONF servers
woul d use a conbi nati on of these updated nodel s al ongsi de new nodel s
that only follow the new datastore architecture

0 NETCONF servers can support clients that are not aware of the
revi sed datastore architecture, particularly if they continue to
support the deprecated <get> operation

* For updated YANG nodul es they woul d see additional information
returned via the <get> operation

*  For new YANG nodul es, sone of the state nodes may not be
available, i.e. for any state nodes that exist under a config
node that has not been configured (e.g., statistics under a
system created interface).

0 NETCONF servers can al so support clients that are aware of the
revi sed datastores architecture:

* For updated YANG nodul es they woul d see additional information
returned under the |l egacy state trees. This information can be
excl uded using appropriate subtree filters.

*  New YANG nodul es, confornmng to the datastores architecture,
woul d work exactly as expected.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 39]



Internet-Draft March 2017

D.5. Inplications on RESTCONF

This section describes the authors’ thoughts on how RESTCONF

[ RFC8040] could be updated to support the datastore architecture
described in this docunent. |t has been incorporated here as a
tenporary neasure to facilitate easier review, but the expectation is
that this work will be owned and standardi zed via the NETCONF wor ki ng

group.
D.5.1. Introduction

RESTCONF [ RFC8040] defines a protocol based on HITP for configuring
data defined in YANG version 1 or 1.1, using a conceptual datastore
that is conpatible with a server that inplements NETCONF 1.1

compl i ant dat ast or es.

The conbi ned conceptual datastore defined in RESTCONF is inconpatible
with the new datastore architecture defined in this document. There
are two possible ways that RESTCONF coul d be extended to support the
new architecture: Either as new optional capabilities extending the
exi sting RESTCONF RFC, or possibly as an new version of RESTCONF.

Many of the required additions are common to both approaches, and are
descri bed below. A follow ng section then describes the potenti al
benefits of defining a new RESTCONF version, and the additi onal
changes that might entail.

D.5.2. Overview of additions to RESTCONF

0 A new path {+restconf}/datastore/<datastore-name>/data/ to provide
a YANG data tree for each datastore that is exposed via RESTCONF.

o |Inplenentati ons can choose which datastores they expose, but MJST
at | east expose both the <running> and <operational > dat ast or es.
They MAY expose the <intended> datastores as needed.

0 The sane HITP Met hods supported on {+restconf}/data/ are al so
supported on {+restconf}/datastore/<dat ast ore- nane>/ dat a/ but
sui tably constrai ned dependi ng on whet her the datastore can be
witten to by the client, or is read-only.

0 The sane query paraneters supported on {+restconf}/data/ are al so
support on {+restconf}/datastore/<dat ast ore-nane>/ data/ except for
the followi ng query paraneters:

0o "netadata" - is a new optional query paraneter that filters the
returned data based on the netadata annotation.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 40]



Internet-Draft March 2017

0o "with-netadata" - is a new optional query paraneter that
i ndi cating that the netadata annotations should be included in the
reply.

0o "with-defaults" is supported on all configuration datastores, but
is not supported on the operational state datastore path, because
it has different default handling senmantics.

o The handling of defaults (include the with-defaults query
paraneter) for the new configuration datastores is the sane as the
exi sting conceptual datastore, but does not apply for the
operational state datastore that defines new semanti cs.

D.5.2.1. HITP Met hods
Al'l configuration datastores support all HTTP Met hods.

The <operational > datastore only supports the followi ng HTTP net hods:
OPTI ONS, HEAD, GET, and POST to invoke an RFC operation.

D.5.2.2. Query paraneters

[ RFC7952] specifies how a YANG data tree can be annotated with
generic nmetadata information, that is used by this document to
annotate data nodes with origin information indicating the mechani sm
by which the operational value cane into effect.

RESTCONF coul d be extended with an optional generic nechanismto
allow the filtering of nodes returned in a query based on netadata
annot ati ons associated with the data node.

RESTCONF coul d al so be extended with an optional generic nechanismto
choose whet her netadata annotati ons should be included in the
response, potentially filtering to a subset of annotations. E.g.,
only include @rigin netadata annotations, and not any others that
may be in use.

Both of the generic mechani sms could be controlled by a new
capability. A new capability is defined to indicate whether a device
supports filtering on, or annotating responses with, the origin neta
dat a.

D.5.2.3. Operational State Datastore Defaults Handling
The normal semantics for the <operational > datastore are that all
val ues that match the default specified in the schema are included in

response to requests on the operational state datastore. This is
equivalent to the "report-all" node of the with-defaults handling.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 41]



Internet-Draft March 2017

The "metadata" query parameter can be used to exclude nodes with a
origin nmetadata matching "default", that would exclude (only config
true?) nodes that match the default value specified in the schena.

If the server cannot return a value for any reason (e.g., the server
cannot determi ne the value, or the value that would be returned is
outside the allowed | eaf value range) then the server can choose to
not return any value for a particular |eaf, which MIST be interpreted
by the client as the value of that |eaf not being known, rather than
inmplicitly having the default val ue.

D.5.3. Overview of a possible new RESTCONF ver si on

This section describes a notional new RESTCONF version, by explaining
the differences to RESTCONF version 1. \Were not explicitly
specified, the behavior of a new RESTCONF version is the sane as for
RESTCONF version 1 [ RFC8040].

D.5.3.1. Potential benefits of defining a new RESTCONF versi on

Defining a new versi on of RESTCONF (as opposed to extendi ng RESTCONF
version 1) has several potential benefits:

0 It could expose datastores, and nodels designed for the revised
datastore architecture, in a clean and consistent way.

o It would allow the parts of RESTCONF that do not work well with
the revised datastore architecture to be onmitted fromthe new
RESTCONF ver si on.

o It would make it easier for clients and servers to know what
reasonabl e common baseline functionality to expect, rather than a
collection of capabilities that may not be inplenented in a
consi stent fashion.

o It could gracefully coexist with RESTCONF v1. A server could
i mpl emrent both versions. Existing YANG nodel s exposing split
config/state trees could be exposed via RESTCONF v1, whereas
combi ned config/state YANG nodels coul d be exposed via a new
RESTCONF version, providing a viable server upgrade path.

D.5.3.2. Possible changes for a new RESTCONF version

The di fferences between a notional new RESTCONF versi on and RESTCONF
version 1 (RESTCONF v1) [ RFC8040] can be summarized as:

0 A new RESTCONF version woul d define a new root resource, and a
separate link relation in the /.well-known/ host-neta resource.

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 42]



Internet-Draft March 2017

0 A new RESTCONF version could renove support for the
{+restconf}/data path supported in RESTCONF v1.

0 A new RESTCONF version could publish a separate version of YANG
library froma RESTCONF vl inplenentation running on the sane
device, allowing different versions of RESTCONF to support a
different set of YANG nodul es.

D.5.3.3. Possible Mgration Path using a new RESTCONF version

A common approach in current data nodels is to have two separate
trees "/foo" and "/foo-state", where the former contains config true
nodes, and the latter config false nodes. A data nodel that is
designed for the revised architectural framework presented in this
docunent will have a single tree "/foo" with a combination of config
true and config fal se nodes.

If for backwards conpatability reasons, a server intends to support
both split config/state trees, and the conbined config/state trees
proposed in this architecture, then this could be achieved by having
the devi ce support both RESTCONF vl and the new RESTCONF version at
the same tine:

0 The RESTCONF v1 inplenmentation could support existing YANG nodul e
revisions defined with split config/state trees.

0 The inplenentation of the new RESTCONF version coul d support
di fferent YANG nodul es, or YANG nodul e revisions, wth conbined
config/state trees

Clients can then decide on which type of nodels to use by choosing
whet her to use the RESTCONF vl root resource or the root resource
associ ated with the new RESTCONF ver si on.

Appendi x E.  Open | ssues

1. NETCONF needs to be able to filter data based on the origin
met adata. Possibly this could be done as part of the <get-data>
operati on.

2. W need a neans of inheriting @rigin values, so whole
hi erarchi es can avoid the noise of repeating parent val ues.
Shoul d "origin="system" (or whatever we call it) be the default?

3. W need to discuss sonewhere how renote procedure calls and
notifications/actions tie into datastores. RFC 7950 shows as an
exanple a ping action tied to an interface. Does this refer to
an interface defined in a configuration datastore? O an

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 43]



Internet-Draft March 2017

interface defined in the operational state datastore? O the
applied configuration datastore? Similarly, RFC 7950 shows an
exanple of a link-failure notification; this likely applies
inplicitly to the operational state datastore. The netconf-
config-change notification does explicitly identify a datastore.
I think we generally need to have renote procedure calls and
notifications be explicit about which datastores they apply to
and perhaps change the default xpath context from running plus
state to the operational state datastore.

Aut hors’ Addr esses

Martin Bjorklund
Tail -f Systens

Email: nbj @ail-f.com
Juer gen Schoenwael der
Jacobs University

Enmai | : j.schoenwael der @ acobs-uni versity. de
Phi | Shafer

Juni per Net wor ks

Enmai | : phil @ uni per. net
Kent Wat sen

Juni per Net wor ks

Enmai | : kwat sen@ uni per. net
Rob Wl ton

Ci sco Systens

Email: rwilton@i sco.com

Bj orkl und, et al. Expi res Septenber 14, 2017 [ Page 44]



