QAut h Wor ki ng G oup B. Canpbel |

I nternet-Draft J. Bradl ey
I ntended status: Standards Track Ping Identity
Expires: Cctober 1, 2017 N. Saki mura

Normur a Research Institute
T. Lodder st edt
YES Europe AG
March 30, 2017

Mutual TLS Profiles for QAuth Cients
draft - canpbel | - oaut h-ntl s-00

Abstract

Thi s docunent describes Transport Layer Security (TLS) nutual

aut hentication using X 509 certificates as a nechanismfor both QAuth
client authentication to the token endpoint as well as for sender
constrai ned access to QAuth protected resources.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on October 1, 2017.
Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Legal
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 1]

Internet-Draft MILSPCC March 2017

include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . . 2
1.1. Requirenents Not atl on and Oonventl ons . 3
2. Mitual TLS for dient Authentication . 3
2.1. Mitual TLS dient Authentication to the Token Endp0| nt 3
2.2. Authorization Server Mtadata . C e e e e e 4
2.3. Dynamic dient Registration . 4
3. Mitual TLS Sender Constrai ned Resources Access . . 4
3.1. X. 509 Certificate SHA- 256 Thurrbprl nt Confirmtion l\/bt hod
for Jwr . . . S . e e 5
4. | ANA Considerati ons . . . 6
4.1. JW Confirmation Met hods Regl st ratl on . 6
4.1.1. Registry Contents . . 6
4.2. Token Endpoint Authenti catl on I\/Et hod Regl st ratl on . 6
4.2.1. Registry Contents . . 6
4.3. QAuth Dynami c Cient Regi st ratl on Met adat a Regl st ratl on . 6
4.3.1. Registry Contents . e e e e e e 6
5. Security Considerations . . 7
5.1. TLS Versions and Best Pr actl ces . 7
5.2. dient ldentity Blndlng . 7
6. References . 7
6.1. Normative Ref erences 7
6.2. Informative References 8
Appendi x A, Acknow edgenents . . 9
Appendi x B. Docunent(s) History 9
Aut hors’ Addresses 10

1. I nt roduction

Thi s docunent describes Transport Layer Security (TLS) nutual

aut hentication using X 509 certificates as a nechanismfor both OQAuth
client authentication to the token endpoint as well as for sender
constrai ned access to QAuth protected resources.

The QAuth 2.0 Authorization Framework [RFC6749] defines a shared
secret nethod of client authentication but also allows for the
definition and use of additional client authentication nechanisns
when interacting with the authorization server’s token endpoint.

Thi s docunent describes an additional nechani smof client

aut hentication utilizing nutual TLS [RFC5246] certificate-based

aut henti cation, which provides better security characteristics than
shared secrets.

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 2]

Internet-Draft MILSPCC March 2017

Mut ual TLS sender constrai ned access to protected resources ensures
that only the party in possession of the private key corresponding to
the certificate can utilize the access token to get access to the
associ ated resources. Such a constraint is unlike the case of the
basi ¢ bearer token described in [RFC6750], where any party in
possession of the access token can use it to access the associated
resources. Mitual TLS sender constrai ned access prevents the use of
stol en access tokens by binding the access token to the client’s
certificate.

Miut ual TLS sender constrai ned access tokens and nutual TLS client
aut hentication are distinct mechanisnms that can don’t necessarily
need to be depl oyed together

1.1. Requirenents Notation and Conventions

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in RFC
2119 [RFC2119].

2. Mutual TLS for dient Authentication
2.1. Miutual TLS dient Authentication to the Token Endpoi nt

The follow ng section defines, as an extension of QAuth 2.0,

Section 2.3 [RFC6749], the use of mutual TLS as client credential s.
The requirenent of nutual TLS for client authentications is

determi ned by the authorization server based on policy or
configuration for the given client (regardless of whether the client
was dynami cally registered or statically configured or otherw se
established). QAuth 2.0 requires that access token requests by the
client to the token endpoint use TLS. In order to utilize TLS for
client authentication, the TLS connection MJST have been established
or reestablished with nutual X 509 certificate authentication (i.e.
the Client Certificate and Certificate Verify nessages are sent
during the TLS Handshake [RFC5246]).

For all access token requests to the token endpoint, regardl ess of
the grant type used, the client MJUST include the "client id"
paraneter, described in QAuth 2.0, Section 2.2 [RFC6749]. The
presence of the "client _id" paraneter enabl es the authorization
server to easily identify the client independently fromthe content
of the certificate and allows for trust nodels to vary as appropriate
for a given deploynment. The authorization server can |ocate the
client configuration by the client identifier and check the
certificate presented in the TLS Handshake agai nst the expected
credentials for that client. As described in Section 5.2, the

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 3]

Internet-Draft MILSPCC March 2017

aut hori zati on server MJST enforce some nethod of binding a
certificate to a client.

2.2. Authorization Server Mtadata

"tls _client_auth" is used as a new val ue of the

"t oken_endpoi nt _aut h_met hods_supported" netadata paranmeter to

i ndi cate server support for nutual TLS as a client authentication
met hod in authorization server netadata such as [Openl D. Di scovery]
and [I-D.ietf-oauth-discovery].

2.3. Dynamic Cient Registration

This draft adds the follow ng val ues and netadata paraneters to the
QAuth 2.0 Dynamic Cient Registration [RFC7591].

The value "tls client_auth" is used to indicate the client’s
intention to use nutual TLS as an authentication nethod to the token
endpoi nt for the "token_endpoi nt _aut h_nethod" client netadata field.

For authorization servers that associate certificates with clients
using subject information in the certificate, the followi ng two new
string netadata paraneters can be used:

tls_client_auth_subject_dn The expected subject distinguished name
of the client certificate can be represented using
"tls_client_auth_subject_dn".

tls_client_auth_issuer_dn The netadata paraneter
"tl's_client_auth_issuer_dn" can optionally be used to constrain
t he expected distinguished nane of the root issuer of the client
certificate.

For authorization servers that use the key or full certificate to
associate clients with certificate, the existing "jwks_uri" or "jwks"
met adat a paranmeters from [RFC7591] shall be used

3. Mut ual TLS Sender Constrai ned Resources Access

Wien nutual TLS X. 509 client certificate authentication is used at
the token endpoint, the authorization server is able to bind the

i ssued access token to the client certificate. Such a binding is
acconpl i shed by associating a hash of the certificate with the token
in a way that can be accessed by the protected resource, such as
enbedding the certificate hash in the issued access token directly,
usi ng the syntax described in Section 3.1, or through token

i ntrospection [RFC7662]. The specific nmethod for associating the
certificate with the access token is determ ned by the authorization

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 4]

Internet-Draft MILSPCC March 2017

server and the protected resource, and is beyond the scope for this
speci fication.

The client nakes protected resource requests as described in

[RFC6750], however, those requests MJST be nmade over a nutually

aut henticated TLS connection using the same certificate that was used
to authenticate to the token endpoint.

The protected resource MIST obtain the client certificate used for
TLS aut hentication and MJST verify that the hash of that certificate
exactly matches the hash of the certificate associated with the
access token. |If the hash values do not match, the resource access
attenpt MJUST be rejected with an error.

3.1. X. 509 Certificate SHA-256 Thunbprint Confirmation Method for JWI

When access tokens are represented as a JSON Wb Tokens
(JWI) [RFC7519], the certificate hash information SHOULD be
represented using the "x5t#S256" confirmati on net hod nmenber defined
her ei n.

To represent the hash of a certificate in a JW, this specification
defines the new JWI Confirnmation Method RFC 7800 [RFC7800] nenber
"x5t #5256" for the X. 509 Certificate SHA-256 Thunbprint. The val ue
of the "x5t#S256" nenber is a base64url-encoded SHA-256[SHS] hash
(a.k.a. thunmbprint or digest) of the DER encoding of the X 509
certificate[RFC5280] (note that certificate thunbprints are al so
sonetines al so known as certificate fingerprints).

The following is an exanple of a JW payl oad containing an "x5t#S256"
certificate thunmbprint confirmation method.

{
"iss": "https://server.exanple.cont,
"aud": "https://resource. exanpl e. org",
"sub": "ty.webb@xanpl e. cont,
"exp": "1493726400",
"nbf": "1493722800",
"enf":{
" x5t #s256": " bwcKOesc3ACC3DB2Y5_| ESs XE809I t c05089j dN- dg2"
}
}

Figure 1: Exanple clainms of a Certificate Thunbprint Constrained JW.

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 5]

Internet-Draft MILSPCC March 2017

4.

4.

Canpbel |, et al.

1.

| ANA Consi der ati ons

JWI' Confirmation Met hods Registration

This specification requests registration of the followi ng value in
the 1 ANA "JWI Confirmation Methods" registry [I ANA JW. d ains] for
JWI "cnf" menber val ues established by [RFC7800].

1.

. 2.

1.

Regi stry Contents

Confirmation Method Val ue: "x5t#S256"

Confirmation Method Description: X 509 Certificate SHA-256
Thunbpri nt

Change Controller: |ESG

Speci fication Docunent(s): Section 3.1 of [[this specification]]

Token Endpoi nt Aut hentication Method Registration

This specification requests registration of the followi ng value in
the 1 ANA "QAut h Token Endpoi nt Aut hentication Methods" registry
[ANA. QAut h. Par amet ers] established by [RFC7591].

2.

(0]
0
0

. 3.

1.

Regi stry Contents
Token Endpoint Authentication Method Name: "tls_client_auth”
Change Controller: |ESG
Speci fication Docunent(s): Section 2.2 of [[this specification]]

QAuth Dynanmic Cient Registration Metadata Registration

This specification requests registration of the follow ng client
met adata definitions in the | ANA "QAuth Dynanic Cient Registration
Met adat a" registry [l ANA. QAut h. Paramet ers] established by [RFC7591]:

. 3.

1.

Regi stry Contents

Client Metadata Name: "tls_client_auth_subject_dn"

Client Metadata Description: String val ue specifying the expected
subj ect distinguished name of the client certificate.

Change Controller: |ESG

Speci fication Docunent(s): Section 2.3 of [[this specification]]

Client Metadata Name: "tls_client_auth_issuer_dn"

Client Metadata Description: String value specifying the expected
di stingui shed name of the root issuer of the client certificate
Change Controller: |ESG

Speci fication Docunent(s): Section 2.3 of [[this specification]]

Expi res Cctober 1, 2017 [Page 6]

Internet-Draft MILSPCC March 2017

5. Security Considerations
5.1. TLS Versions and Best Practices

TLS 1.2 [RFC5246] is cited in this docunment because, at the tine of
witing, it is latest version that is w dely deployed. However, this
docunment is applicable with other TLS versions supporting
certificate-based client authentication. |Inplenmentation security
consi derations for TLS, including version recommendati ons, can be
found in Recommendations for Secure Use of Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS) [BCP195].

5.2. dient ldentity Binding

No specific nmethod of binding a certificate to a client identifier at
the token endoint is prescribed by this docunent. However, sone

met hod MUST be enpl oyed so that, in addition to proving possession of
the private key corresponding to the certificate, the client identity
is also bound to the certificate. One such binding would be to
configure for the client a value that the certificate nmust contain in
the subject field or the subjectAltNane extension and possibly a
restricted set of trust anchors. An alternative nmethod would be to
configure a public key for the client directly that would have to

mat ch the subject public key info of the certificate.

6. Ref er ences
6.1. Normative References

[BCP195] Sheffer, Y., Holz, R, and P. Saint-Andre,
"Recommendati ons for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, DO 10.17487/ RFC7525, My
2015, <http://ww.rfc-editor.org/info/bcpl95>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997,
<http://ww. rfc-editor.org/info/rfc2119>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DA 10.17487/ RFC5246, August 2008,
<http://ww.rfc-editor.org/info/rfc5246>.

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 7]

Internet-Draft MILSPCC March 2017

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DO 10.17487/ RFC5280, May 2008,
<http://ww.rfc-editor.org/info/rfc5280>.

[RFC6749] Hardt, D., Ed., "The QAuth 2.0 Authorization Franework",
RFC 6749, DO 10. 17487/ RFC6749, COctober 2012,
<http://ww. rfc-editor.org/info/rfc6749>.

[RFC6750] Jones, M and D. Hardt, "The QAuth 2.0 Authorization
Framewor k: Bearer Token Usage", RFC 6750,
DO 10.17487/ RFC6750, Cctober 2012,
<http://ww. rfc-editor.org/info/rfc6750>.

[RFC7800] Jones, M, Bradley, J., and H Tschofenig, "Proof-of-
Possessi on Key Semantics for JSON Wb Tokens (JWIs)",
RFC 7800, DO 10.17487/ RFC7800, April 2016,
<http://wwmv rfc-editor.org/info/rfc7800>.

[SHS] National Institute of Standards and Technol ogy, "Secure
Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
<http://csrc.nist.gov/publications/fips/fipsl80-4/
fips-180-4. pdf >.

6. 2. I nformati ve References

[1-D.ietf-oauth-di scovery]
Jones, M, Sakimura, N., and J. Bradley, "QAuth 2.0
Aut hori zation Server Metadata", draft-ietf-oauth-
di scovery-04 (work in progress), August 2016.

[ANA. JWI. Cl ai 8]
| ANA, "JSON Wb Token d ai ns",
<http://ww.iana. org/assi gnnments/jw >.

[I ANA. QAut h. Par anet er s]
| ANA, "QAut h Paraneters”,
<http://ww. i ana. or g/ assi gnnment s/ oaut h- par anet er s>.

[Openl D. Di scovery]
Sakimura, N., Bradley, J., Jones, M, and E. Jay, "OpenlD
Connect Discovery 1.0", February 2014.

[RFC7519] Jones, M, Bradley, J., and N Sakinura, "JSON Wb Token

(JWNn", RFC 7519, DO 10.17487/RFC7519, My 2015,
<http://ww.rfc-editor.org/info/rfc7519>.

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 8]

Internet-Draft MILSPCC March 2017

[RFC7591] Richer, J., Ed., Jones, M, Bradley, J., Machulak, M, and
P. Hunt, "QAuth 2.0 Dynanmic Cient Registration Protocol"”
RFC 7591, DA 10.17487/ RFC7591, July 2015,
<http://ww.rfc-editor.org/info/rfc7591>

[RFC7662] Richer, J., Ed., "QAuth 2.0 Token I ntrospection"
RFC 7662, DO 10. 17487/ RFC7662, Cctober 2015,
<http://ww.rfc-editor.org/info/rfc7662>

Appendi x A, Acknow edgenent s

Scott "not Toml inson" Tonilson and Matt Peterson were involved in the
original design and devel opnent work on a nutual TLS client

aut hentication inplenentation that informed sone of the content of
thi s docunent.

Additionally, the authors would like to thank the follow ng people
for their input and contributions to the specification: Sergey
Beryozkin, VI adimr Dzhuvinov, Samnuel Erdtrman, Phil Hunt, Sean
Leonard, Ji m Manico, Sascha Preibisch, Justin Richer, and Hannes
Tschof eni g.

Appendi x B. Document(s) Hi story
[[to be renoved by the RFC Editor before publication as an RFC]]
draft - canpbel | - oaut h-ntl s-00

0 Add a Mutual TLS sender constrai ned protected resource access
met hod and a x5t #s256 cnf method for JWI access tokens (concepts
taken in part fromdraft-saki nura-oauth-jpop-04).

o Fixed "token_endpoi nt_aut h_net hods_supported” to
"t oken_endpoi nt _aut h_net hod" for client netadata.

0 Add "tls client _auth _subject _dn" and "tls_client_auth_issuer_dn"
client nmetadata paraneters and nmention using "jwks uri" or "jwks".

0 Say that the authentication nethod is determined by client policy
regardl ess of whether the client was dynanically registered or
statically configured.

0 Expand acknow edgenents to those that participated in discussions
around draft-canpbell-oauth-tls-client-auth-00

0 Add Nat Sakinmura and Torsten Lodderstedt to the author |ist.

draft-canpbel | -oauth-tls-client-auth-00

o Initial draft.

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 9]

Internet-Draft MILSPCC March 2017

Aut hors’ Addr esses

Bri an Canpbel |
Ping Identity

Emai | . brian.d. canpbel | @mail . com
John Bradl ey

Ping Identity

Email: ve7jtb@e7jtb.com

URI : http://ww.t hread- saf e. conf
Nat Saki nura

Nonmura Research Institute

Emai | : n-sakinura@ri.co.jp

URI : htt ps://nat. saki rnura. org/
Tor st en Lodder st edt

YES Europe AG

Emai |l : torsten@ odder st edt. net

Canpbel |, et al. Expi res Cctober 1, 2017 [Page 10]

OAuth W. Denniss

Internet-Draft Google
Intended status: Standards Track J. Bradley
Expires: July 20, 2019 Ping Identity
M. Jones
Microsoft

H. Tschofenig
ARM Limited
January 16, 2019

OAuth 2.0 Device Flow for Browserless and Input Constrained Devices
draft-ietf-oauth-device-flow-14

Abstract

This OAuth 2.0 authorization flow is designed for devices that either
lack a browser to perform a user—-agent based OAuth flow, or are
input-constrained to the extent that requiring the user to input a
lot of text (like their credentials to authenticate with the
authorization server) is impractical. It enables OAuth clients on
such devices (like smart TVs, media consoles, digital picture frames,
and printers) to obtain user authorization to access protected
resources without using an on-device user-agent, provided that they
have an Internet connection.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It 1s inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on July 20, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

Denniss, et al. Expires July 20, 2019 [Page 1]

Internet-Draft OAuth 2.0 Device Flow January 2019

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 3
2. Terminology 5
3. Protocol . .o 5
3.1. Device Authorlzatlon Request 5
3.2. Device Authorization Response 6
3.3. User Interaction . . 7
3.3.1. Non-textual Verlflcatlon URI Optlmlzatlon 9
3.4. Device Access Token Request « .« .« . . 9
3.5. Device Access Token Response « 10
4. Discovery Metadata o . . . 0 o e e e .. 12
5. Security Considerations« < o o o . 12
5.1. User Code Brute Forcing« « « « v « « o o« « « o« 12
5.2. Device Code Brute Forcing « « « « « . . . 13
5.3. Device Trustworthiness 13
5.4. Remote Phishing < 13
5.5. Session Spying . . . 3
5.6. Non-confidential Cllents e)
5.7. Non-Visual Code Transmission « 15
6. Usability Considerations « <« ¢« « « « . . 15
6.1. User Code Recommendations 15
6.2. Non-Browser User Interaction 16
7. IANA Considerations . . . D)
7.1. OAuth Parameters Reglstratlon A)
7.1.1. Registry Contents « « « < . < . . 16
7.2. OAuth URI Registration « .« .« « « . . 17
7.2.1. Registry Contents . . . T
7.3. OAuth Extensions Error Reglstratlon e
7.3.1. Registry Contents . . . A |
7.4. OAuth 2.0 Authorization Server Metadata e
7.4.1. Registry Contents « .« < < . o . . 18

8. Normative References + « ¢« « « « « « « « « . . 18
Appendix A. Acknowledgements 19
Appendix B. Document History < 19
Authors’ Addresses . . .« ¢« v v v e e e e e e e e e e e e e e e 21

Denniss, et al. Expires July 20, 2019 [Page 2]

Internet-Draft OAuth 2.0 Device Flow January 2019

1. Introduction

This OAuth 2.0 [RFC6749] protocol extension known as the "device
flow" enables OAuth clients to request user authorization from
applications on devices that have limited input capabilities or lack
a suitable browser. Such devices include those smart TVs, media
console, picture frames and printers which lack an easy input method
or suitable browser required for a more traditional OAuth flow. This
authorization flow instructs the user to perform the authorization
request on a secondary device, such as a smartphone which does have
the requisite input and browser capabilities for an OAuth flow.

The device flow is not intended to replace browser-based OAuth in

native apps on capable devices (like smartphones). Those apps should
follow the practices specified in OAuth 2.0 for Native Apps
[RFC8252].

The operating requirements to be able to use this authorization flow
are:

(1) The device is already connected to the Internet.
(2) The device is able to make outbound HTTPS requests.

(3) The device is able to display or otherwise communicate a URI and
code sequence to the user.

(4) The user has a secondary device (e.g., personal computer or
smartphone) from which they can process the request.

As the device flow does not require two-way communication between the
OAuth client and the user-agent (unlike other OAuth 2 flows), it
supports several use cases that cannot be served by those other
approaches.

Instead of interacting with the end user’s user agent, the client
instructs the end user to use another computer or device and connect
to the authorization server to approve the access request. Since the
client cannot receive incoming requests, it polls the authorization
server repeatedly until the end user completes the approval process.

The device typically chooses the set of authorization servers to
support (i.e., its own authorization server, or those by providers it
has relationships with). It is not uncommon for the device
application to support only a single authorization server, such as
with a TV application for a specific media provider that supports
only that media provider’s authorization server. The user may not
have an established relationship yet with that authorization

Denniss, et al. Expires July 20, 2019 [Page 3]

Internet-Draft OAuth 2.0 Device Flow January 2019

provider, though one can potentially be set up during the
authorization flow.

o ———— + o —— +
>-——(A)—-— Client Identifier —-——>
<———(B)—-—- Verification Code, -—-<

User Code,
& Verification URI
Device
Client Client Identifier &
>——— (E)—— Verification Code ———>
polling...
>———(E)—-—- Verification Code —-—->
Authorization

<———(F)—-- Access Token ———————-— < Server

t———— + (w/ Optional Refresh Token)

v
(C) User Code & Verification URI
v
o ——— +
| End user |
at |<-——(D)-- User authenticates —-->
| Browser |
o ———— + e +

Figure 1: Device Flow.
The device flow illustrated in Figure 1 includes the following steps:

(A) The client requests access from the authorization server and
includes its client identifier in the request.

(B) The authorization server issues a verification code, an end-
user code, and provides the end-user verification URI.

(C) The client instructs the end user to use its user agent
(elsewhere) and visit the provided end-user verification URI. The
client provides the user with the end-user code to enter in order
to grant access.

(D) The authorization server authenticates the end user (via the
user agent) and prompts the user to grant the client’s access
request. If the user agrees to the client’s access request, the
user enters the user code provided by the client. The
authorization server validates the user code provided by the user.

Denniss, et al. Expires July 20, 2019 [Page 4]

Internet-Draft OAuth 2.0 Device Flow January 2019

2.

3.

(E) While the end user authorizes (or denies) the client’s request
(step D), the client repeatedly polls the authorization server to
find out if the user completed the user authorization step. The
client includes the verification code and its client identifier.

(F) Assuming the end user granted access, the authorization server
validates the verification code provided by the client and
responds back with the access token.

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Device Authorization Endpoint:
The authorization server’s endpoint capable of issuing device
verification codes, user codes, and verification URLs.

Device Verification Code:
A short-lived token representing an authorization session.

End-User Verification Code:
A short-lived token which the device displays to the end user, is
entered by the user on the authorization server, and is thus used
to bind the device to the user.

Protocol

.1. Device Authorization Request

This specification defines a new OAuth endpoint, the device
authorization endpoint. This is separate from the OAuth
authorization endpoint defined in [RFC6749] with which the user
interacts with via a user-agent (i.e., a browser). By comparison,
when using the device authorization endpoint, the OAuth client on the
device interacts with the authorization server directly without
presenting the request in a user—-agent, and the end user authorizes
the request on a separate device. This interaction is defined as
follows.

The client initiates the authorization flow by requesting a set of
verification codes from the authorization server by making an HTTP
"POST" request to the device authorization endpoint.

Denniss, et al. Expires July 20, 2019 [Page 5]

Internet-Draft OAuth 2.0 Device Flow January 2019

The client constructs the request with the following parameters, sent
as the body of the request, encoded with the "application/x-www-form-
urlencoded" encoding algorithm defined by Section 4.10.22.6 of
[HTMLS5] :

client_id
REQUIRED. The client identifier as described in Section 2.2 of
[RFC6749].

scope
OPTIONAL. The scope of the access request as described by
Section 3.3 of [RFC6749].

For example, the client makes the following HTTPS request:

POST /device_authorization HTTP/1.1
Host: server.example.com
Content-Type: application/x-www—form-urlencoded

client_1id=459691054427

All requests from the device MUST use the Transport Layer Security
(TLS) [RFC8446] protocol and implement the best practices of BCP 195
[REC7525].

Parameters sent without a value MUST be treated as if they were
omitted from the request. The authorization server MUST ignore
unrecognized request parameters. Request and response parameters
MUST NOT be included more than once.

Due to the polling nature of this protocol, care is needed to avoid
overloading the capacity of the token endpoint. To avoid unneeded
requests on the token endpoint, the client SHOULD only commence a
device authorization request when prompted by the user, and not
automatically such as when the app starts or when the previous
authorization session expires or fails.

3.2. Device Authorization Response

In response, the authorization server generates a unique device
verification code and an end-user code that are valid for a limited
time and includes them in the HTTP response body using the
"application/json" format [RFC8259] with a 200 (OK) status code. The
response contains the following parameters:

device_code
REQUIRED. The device verification code.

Denniss, et al. Expires July 20, 2019 [Page 6]

Internet-Draft OAuth 2.0 Device Flow January 2019

user_code
REQUIRED. The end-user verification code.

verification_uri
REQUIRED. The end-user verification URI on the authorization
server. The URI should be short and easy to remember as end users
will be asked to manually type it into their user-agent.

verification_uri_complete
OPTIONAL. A verification URI that includes the "user_code" (or
other information with the same function as the "user_code"),
designed for non-textual transmission.

expires_in
REQUIRED. The lifetime in seconds of the "device_code" and
"user_code".

interval
OPTIONAL. The minimum amount of time in seconds that the client
SHOULD wait between polling requests to the token endpoint. If no
value is provided, clients MUST use 5 as the default.

For example:
HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store

"device_code": "GmRhmhcxhwAzkoEgqiMEg DnyEysNkuNhszIySk9eS",
"user_code": "WDJB-MJHT",
"verification_uri": "https://example.com/device",

"verification_uri_complete":
"https://example.com/device?user_code=WDJB-MJHT",

"expires_in": 1800,

"interval": 5

3.3. User Interaction

After receiving a successful Authorization Response, the client
displays or otherwise communicates the "user_code" and the
"verification_uri" to the end user and instructs them to visit the
URI in a user agent on a secondary device (for example, in a browser
on their mobile phone), and enter the user code.

Denniss, et al. Expires July 20, 2019 [Page 7]

Internet-Draft OAuth 2.0 Device Flow January 2019

Using a browser on another device, visit:
https://example.com/device

And enter the code:
WDJB—MJHT

Figure 2: Example User Instruction

The authorizing user navigates to the "verification_uri" and
authenticates with the authorization server in a secure TLS-protected
([RFC8446]) session. The authorization server prompts the end user
to identify the device authorization session by entering the
"user_code" provided by the client. The authorization server should
then inform the user about the action they are undertaking and ask
them to approve or deny the request. Once the user interaction is
complete, the server MAY inform the user to return to their device.

During the user interaction, the device continuously polls the token
endpoint with the "device_code", as detailed in Section 3.4, until
the user completes the interaction, the code expires, or another
error occurs. The "device_code" is not intended for the end user
directly, and thus should not be displayed during the interaction to
avoid confusing the end user.

Authorization servers supporting this specification MUST implement a
user interaction sequence that starts with the user navigating to
"verification_uri" and continues with them supplying the "user_code"
at some stage during the interaction. Other than that, the exact
sequence and implementation of the user interaction is up to the
authorization server, for example, the authorization server may
enable new users to sign up for an account during the authorization
flow, or add additional security verification steps.

It is NOT RECOMMENDED for authorization servers to include the user
code in the verification URI ("verification_uri"), as this increases
the length and complexity of the URI that the user must type. While
the user must still type the same number of characters with the
user_code separated, once they successfully navigate to the
verification_uri, any errors in entering the code can be highlighted
by the authorization server to improve the user experience. The next
section documents user interaction with "verification_uri_complete”,
which is designed to carry both pieces of information.

Denniss, et al. Expires July 20, 2019 [Page 8]

Int

3.3.

3.4.

ernet-Draft OAuth 2.0 Device Flow January 2019

1. Non-textual Verification URI Optimization

When "verification_uri_complete" is included in the Authorization
Response (Section 3.2), clients MAY present this URI in a non-textual
manner using any method that results in the browser being opened with
the URI, such as with QR (Quick Response) codes or NFC (Near Field
Communication), to save the user typing the URI.

For usability reasons, it is RECOMMENDED for clients to still display
the textual verification URI ("verification_uri") for users not able
to use such a shortcut. Clients MUST still display the "user_code",
as the authorization server will require the user to confirm it to
disambiguate devices, or as a remote phishing mitigation (See

Section 5.4).

If the user starts the user interaction by browsing to
"verification_uri_complete", then the user interaction described in
Section 3.3 is still followed, but with the optimization that the
user does not need to type the "user_code". The server SHOULD
display the "user_code" to the user and ask them to verify that it
matches the "user_code" being displayed on the device, to confirm
they are authorizing the correct device. As before, in addition to
taking steps to confirm the identity of the device, the user should
also be afforded the choice to approve or deny the authorization
request.

e +
Scan the QR code, or using F—————————— +
a browser on another device, [_1.. |
visit:

|
https://example.com/device |
|
|

And enter the code: e e
WDJB-MJHT b +

Figure 3: Example User Instruction with QR Code Representation of the
Complete Verification URI

Device Access Token Request
After displaying instructions to the user, the client makes an Access

Token Request to the token endpoint (as defined by Section 3.2 of
[RFC6749]) with a "grant_type" of

Denniss, et al. Expires July 20, 2019 [Page 9]

Internet-Draft OAuth 2.0 Device Flow January 2019

"urn:ietf:params:oauth:grant-type:device_code". This is an extension
grant type (as defined by Section 4.5 of [RFC6749]) created by this
specification, with the following parameters:

grant_type
REQUIRED. Value MUST be set to
"urn:ietf:params:ocauth:grant-type:device_code".

device_code
REQUIRED. The device verification code, "device_code" from the
Device Authorization Response, defined in Section 3.2.

client_id
REQUIRED, if the client is not authenticating with the
authorization server as described in Section 3.2.1. of [RFC6749].

For example, the client makes the following HTTPS request (line
breaks are for display purposes only):

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x—-www—form—urlencoded

grant_type=urn%$3Aietf$3Aparams$3Acoauth%3Agrant-type%$3Adevice_code
&device_code=GmRhmhcxhwAzkoEgiMEg_DnyEysNkuNhszIySk9eS
&client_id=459691054427

If the client was issued client credentials (or assigned other
authentication requirements), the client MUST authenticate with the
authorization server as described in Section 3.2.1 of [RFC6749].
Note that there are security implications of statically distributed
client credentials, see Section 5.6.

The response to this request is defined in Section 3.5. Unlike other
OAuth grant types, it is expected for the client to try the Access
Token Request repeatedly in a polling fashion, based on the error
code in the response.

3.5. Device Access Token Response
If the user has approved the grant, the token endpoint responds with

a success response defined in Section 5.1 of [RFC6749]; otherwise it
responds with an error, as defined in Section 5.2 of [RFC6749].

Denniss, et al. Expires July 20, 2019 [Page 10]

Internet-Draft OAuth 2.0 Device Flow January 2019

In addition to the error codes defined in Section 5.2 of [RFC6749],
the following error codes are specified by the device flow for use in
token endpoint responses:

authorization_pending
The authorization request is still pending as the end user hasn’t
yet completed the user interaction steps (Section 3.3). The
client SHOULD repeat the Access Token Request to the token
endpoint (a process known as polling). Before each new request
the client MUST wait at least the number of seconds specified by
the "interval" parameter of the Device Authorization Response (see
Section 3.2), or 5 seconds if none was provided, and respect any
increase in the polling interval required by the "slow_down"
error.

slow_down
A variant of "authorization_pending", the authorization request is
still pending and polling should continue, but the interval MUST
be increased by 5 seconds for this and all subsequent requests.

access_denied
The end user denied the authorization request.

expired_token
The "device_code" has expired and the device flow authorization
session has concluded. The client MAY commence a new Device
Authorization Request but SHOULD wait for user interaction before
restarting to avoid unnecessary polling.

A client receiving an error response as defined in Section 5.2 of
[REC6749] MUST stop polling and SHOULD react accordingly, for
example, by displaying an error to the user, except for the error
codes "authorization_pending” and "slow_down" which are processed as
described above.

On encountering a connection timeout, clients MUST unilaterally
reduce their polling frequency before retrying. The use of an
exponential backoff algorithm to achieve this, such as by doubling
the polling interval on each such connection timeout, is RECOMMENDED.

The assumption of this specification is that the secondary device the
user is authorizing the request on does not have a way to communicate
back to the OAuth client. Only a one-way channel is required to make
this flow useful in many scenarios. For example, an HTML application
on a TV that can only make outbound requests. If a return channel
were to exist for the chosen user interaction interface, then the
device MAY wait until notified on that channel that the user has
completed the action before initiating the token request (as an

Denniss, et al. Expires July 20, 2019 [Page 11]

Internet-Draft OAuth 2.0 Device Flow January 2019

alternative to polling). Such behavior is, however, outside the
scope of this specification.

4. Discovery Metadata

Support for the device flow MAY be declared in the OAuth 2.0
Authorization Server Metadata [RFC8414] with the following metadata:

device_authorization_endpoint
OPTIONAL. URL of the authorization server’s device authorization
endpoint defined in Section 3.1.

5. Security Considerations
5.1. User Code Brute Forcing

Since the user code is typed by the user, shorter codes are more
desirable for usability reasons. This means the entropy is typically
less than would be used for the device code or other OAuth bearer
token types where the code length does not impact usability. It is
therefore recommended that the server rate-limit user code attempts.

The user code SHOULD have enough entropy that when combined with rate
limiting and other mitigations makes a brute-force attack infeasible.
For example, it’s generally held that 128-bit symmetric keys for
encryption are seen as good enough today because an attacker has to
put in 2796 work to have a 27-32 chance of guessing correctly via
brute force. The rate limiting and finite lifetime on the user code
places an artificial limit on the amount of work an attacker can
"do", so if, for instance, one uses a 8-character base—-20 user code
(with roughly 34.5 bits of entropy), the rate-limiting interval and
validity period would need to only allow 5 attempts in order to get
the same 27"-32 probability of success by random guessing.

A successful brute forcing of the user code would enable the attacker
to authenticate with their own credentials and make an authorization
grant to the device. This is the opposite scenario to an OAuth
bearer token being brute forced, whereby the attacker gains control
of the victim’s authorization grant. Such attacks may not always
make economic sense, for example for a video app the device owner may
then be able to purchase movies using the attacker’s account, though
a privacy risk would still remain and thus is important to protect
against. Furthermore, some uses of the device flow give the granting
account the ability to perform actions such as controlling the
device, which needs to be protected.

The precise length of the user code and the entropy contained within
is at the discretion of the authorization server, which needs to

Denniss, et al. Expires July 20, 2019 [Page 12]

Internet-Draft OAuth 2.0 Device Flow January 2019

consider the sensitivity of their specific protected resources, the
practicality of the code length from a usability standpoint, and any
mitigations that are in place such as rate-limiting, when determining
the user code format.

5.2. Device Code Brute Forcing

An attacker who guesses the device code would be able to potentially
obtain the authorization code once the user completes the flow. As
the device code is not displayed to the user and thus there are
usability considerations on the length, a very high entropy code
SHOULD be used.

5.3. Device Trustworthiness

Unlike other native application OAuth 2.0 flows, the device
requesting the authorization is not the same as the device that the
user grants access from. Thus, signals from the approving user’s
session and device are not relevant to the trustworthiness of the
client device.

Note that if an authorization server used with this flow is
malicious, then it could man—-in-the-middle the backchannel flow to
another authorization server. 1In this scenario, the man-in-the-
middle is not completely hidden from sight, as the end user would end
up on the authorization page of the wrong service, giving them an
opportunity to notice that the URL in the browser’s address bar is
wrong. For this to be possible, the device manufacturer must either
directly be the attacker, shipping a device intended to perform the
man-in-the-middle attack, or be using an authorization server that is
controlled by an attacker, possibly because the attacker compromised
the authorization server used by the device. 1In part, the person
purchasing the device is counting on it and its business partners to
be trustworthy.

5.4. Remote Phishing

It is possible for the device flow to be initiated on a device in an
attacker’s possession. For example, an attacker might send an email
instructing the target user to visit the verification URL and enter
the user code. To mitigate such an attack, it is RECOMMENDED to
inform the user that they are authorizing a device during the user
interaction step (see Section 3.3), and to confirm that the device is
in their possession. The authorization server SHOULD display
information about the device so that the person can notice if a
software client was attempting to impersonating a hardware device.

Denniss, et al. Expires July 20, 2019 [Page 13]

Internet-Draft OAuth 2.0 Device Flow January 2019

For authorization servers that support the option specified in
Section 3.3.1 for the client to append the user code to the
authorization URI, it is particularly important to confirm that the
device is in the user’s possession, as the user no longer has to type
the code manually. One possibility is to display the code during the
authorization flow and asking the user to verify that the same code
is being displayed on the device they are setting up.

The user code needs to have a long enough lifetime to be useable
(allowing the user to retrieve their secondary device, navigate to
the verification URI, login, etc.), but should be sufficiently short
to limit the usability of a code obtained for phishing. This doesn’t
prevent a phisher presenting a fresh token, particularly in the case
they are interacting with the user in real time, but it does limit
the viability of codes sent over email or SMS.

5.5. Session Spying

While the device is pending authorization, it may be possible for a
malicious user to physically spy on the device user interface (by
viewing the screen on which it’s displayed, for example) and hijack
the session by completing the authorization faster than the user that
initiated it. Devices SHOULD take into account the operating
environment when considering how to communicate the code to the user
to reduce the chances it will be observed by a malicious user.

5.6. Non-confidential Clients

Device clients are generally incapable of maintaining the
confidentiality of their credentials, as users in possession of the
device can reverse engineer it and extract the credentials.
Therefore, unless additional measures are taken, they should be
treated as public clients (as defined by Section 2.1 of OAuth 2.0)
susceptible to impersonation. The security considerations of
Section 5.3.1 of [RFC6819] and Sections 8.5 and 8.6 of [RFC8252]
apply to such clients.

The user may also be able to obtain the device_code and/or other
OAuth bearer tokens issued to their client, which would allow them to
use their own authorization grant directly by impersonating the
client. Given that the user in possession of the client credentials
can already impersonate the client and create a new authorization
grant (with a new device_code), this doesn’t represent a separate
impersonation vector.

Denniss, et al. Expires July 20, 2019 [Page 14]

Internet-Draft OAuth 2.0 Device Flow January 2019

5.7. Non-Visual Code Transmission

There is no requirement that the user code be displayed by the device
visually. Other methods of one-way communication can potentially be
used, such as text-to-speech audio, or Bluetooth Low Energy. To
mitigate an attack in which a malicious user can bootstrap their
credentials on a device not in their control, it is RECOMMENDED that
any chosen communication channel only be accessible by people in
close proximity. E.g., users who can see, or hear the device.

6. Usability Considerations

This section is a non-normative discussion of usability
considerations.

6.1. User Code Recommendations

For many users, their nearest Internet-connected device will be their
mobile phone, and typically these devices offer input methods that
are more time consuming than a computer keyboard to change the case
or input numbers. To improve usability (improving entry speed, and
reducing retries), these limitations should be taken into account
when selecting the user-code character set.

One way to improve input speed is to restrict the character set to
case—insensitive A-Z characters, with no digits. These characters
can typically be entered on a mobile keyboard without using modifier
keys. Further removing vowels to avoid randomly creating words
results in the base-20 character set: "BCDFGHJKLMNPQRSTVWXZ". Dashes
or other punctuation may be included for readability.

An example user code following this guideline containing 8
significant characters and dashes added for end-user readability,
with a resulting entropy of 2078: "WDJB-MJHT".

Pure numeric codes are also a good choice for usability, especially
for clients targeting locales where A-Z character keyboards are not
used, though their length needs to be longer to maintain a high
entropy.

An example numeric user code containing 9 significant digits and
dashes added for end-user readability, with an entropy of 1079:
"019-450-730".

When processing the inputted user code, the server should strip
dashes and other punctuation it added for readability (making the
inclusion of that punctuation by the user optional). For codes using
only characters in the A-Z range as with the base-20 charset defined

Denniss, et al. Expires July 20, 2019 [Page 15]

Internet-Draft OAuth 2.0 Device Flow January 2019

above, the user’s input should be upper-cased before comparison to
account for the fact that the user may input the equivalent lower-
case characters. Further stripping of all characters outside the
user_code charset is recommended to reduce instances where an
errantly typed character (like a space character) invalidates
otherwise valid input.

It is RECOMMENDED to avoid character sets that contain two or more
characters that can easily be confused with each other like "0" and
"o", or "1", "1" and "I". Furthermore, the extent practical, where a
character set contains one character that may be confused with
characters outside the character set the character outside the set
MAY be substituted with the one in the character set that it is
commonly confused with (for example, "O" for "O" when using a
numerical 0-9 character set).

6.2. Non-Browser User Interaction

Devices and authorization servers MAY negotiate an alternative code
transmission and user interaction method in addition to the one
described in Section 3.3. Such an alternative user interaction flow
could obviate the need for a browser and manual input of the code,
for example, by using Bluetooth to transmit the code to the
authorization server’s companion app. Such interaction methods can
utilize this protocol, as ultimately, the user just needs to identify
the authorization session to the authorization server; however, user
interaction other than via the verification URI is outside the scope
of this specification.

7. IANA Considerations

7.1. OAuth Parameters Registration
This specification registers the following values in the IANA "OAuth
Parameters" registry [IANA.OAuth.Parameters] established by
[REC6749].

7.1.1. Registry Contents

Parameter name: device_code

Parameter usage location: token request

Change controller: IESG
Specification Document: Section 3.1 of [[this specification]]

O O OO

Denniss, et al. Expires July 20, 2019 [Page 16]

Internet-Draft OAuth 2.0 Device Flow January 2019

7.2. OAuth URI Registration

This specification registers the following values in the IANA "OAuth
URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

7.2.1. Registry Contents

URN: urn:ietf:params:ocauth:grant-type:device_code

Common Name: Device flow grant type for OAuth 2.0

Change controller: IESG

Specification Document: Section 3.1 of [[this specification 1]

O O OO

7.3. OAuth Extensions Error Registration
This specification registers the following values in the IANA "OAuth
Extensions Error Registry" registry [IANA.OAuth.Parameters]
established by [RFC6749].

7.3.1. Registry Contents

o Error name: authorization_pending

o Error usage location: Token endpoint response

o Related protocol extension: [[this specification]]

o Change controller: IETF

o Specification Document: Section 3.5 of [[this specification]]
o Error name: access_denied

o Error usage location: Token endpoint response

o Related protocol extension: [[this specification]]

o Change controller: IETF

o Specification Document: Section 3.5 of [[this specification]]
o Error name: slow_down

o Error usage location: Token endpoint response

o Related protocol extension: [[this specification]]

o Change controller: IETF

o Specification Document: Section 3.5 of [[this specification]]
o Error name: expired_token

o Error usage location: Token endpoint response

o Related protocol extension: [[this specification]]

o Change controller: IETF

o Specification Document: Section 3.5 of [[this specification]]

Denniss, et al. Expires July 20, 2019 [Page 17]

Internet-Draft OAuth 2.0 Device Flow January 2019

7.4. OAuth 2.0 Authorization Server Metadata

This specification registers the following values in the IANA "OAuth
2.0 Authorization Server Metadata" registry [IANA.OAuth.Parameters]
established by [RFC8414].

7.4.1. Registry Contents

Metadata name: device_authorization_endpoint

Metadata Description: The Device Authorization Endpoint.
Change controller: IESG

Specification Document: Section 4 of [[this specification]]

O O OO

8. Normative References

[HTML5] IANA, "HTML5",
<https://www.w3.0rg/TR/2014/REC-htm15-20141028/>.

[IANA.OAuth.Parameters]
IANA, "OAuth Parameters",
<http://www.iana.org/assignments/oauth-parameters>.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
<https://www.rfc-editor.org/info/rfc6749>.

[RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
<https://www.rfc-editor.org/info/rfc6755>.

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations"™, RFC 6819,
DOI 10.17487/RFC6819, January 2013,
<https://www.rfc—editor.org/info/rfc6819>.

[REC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS) ", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
2015, <https://www.rfc—editor.org/info/rfc7525>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",

BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
<https://www.rfc-editor.org/info/rfc8252>.

Denniss, et al. Expires July 20, 2019 [Page 18]

Internet-Draft OAuth 2.0 Device Flow January 2019

[REC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017,
<https://www.rfc—editor.org/info/rfc8259>.

[RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
Authorization Server Metadata", RFC 8414,
DOI 10.17487/RFC8414, June 2018,
<https://www.rfc-editor.org/info/rfc8414>.

[RFC844506] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Acknowledgements

The starting point for this document was the Internet-Draft draft-
recordon-oauth-v2-device, authored by David Recordon and Brent
Goldman, which itself was based on content in draft versions of the
OAuth 2.0 protocol specification removed prior to publication due to
a then lack of sufficient deployment expertise. Thank you to the
OAuth working group members who contributed to those earlier drafts.

This document was produced in the OAuth working group under the
chairpersonship of Rifaat Shekh-Yusef and Hannes Tschofenig with
Benjamin Kaduk, Kathleen Moriarty, and Eric Rescorla serving as
Security Area Directors.

The following individuals contributed ideas, feedback, and wording
that shaped and formed the final specification:

Adam Roach, Alissa Cooper, Ben Campbell, Brian Campbell, Benjamin
Kaduk, Roshni Chandrashekhar, Eric Fazendin, Torsten Lodderstedt,
James Manger, Breno de Medeiros, Simon Moffatt, Stein Myrseth, Justin
Richer, Nat Sakimura, Andrew Sciberras, Marius Scurtescu, Ken Wang,
and Steven E. Wright.

Appendix B. Document History
[[to be removed by the RFC Editor before publication as an RFC]]
-14

Added more normative text on polling behavior.

o Added discussion on risk of user retrieving their own device_code.
o Editorial improvements.

e}

-13

Denniss, et al. Expires July 20, 2019 [Page 19]

Internet-Draft OAuth 2.0 Device Flow January 2019

o Added a longer discussion about entropy, proposed by Benjamin
Kaduk.

o Added device_code to OAuth IANA registry.

o Expanded explanation of "case insensitive".

o Added security section on Device Code Brute Forcing.

o application/x-www—form-urlencoded normativly referenced.

o Editorial improvements.

=12

o Set a default polling interval to 5s explicitly.

o Defined the slow_down behavior that it should increase the current
interval by 5s.

o expires_in now REQUIRED

o Other changes in response to review feedback.

-11
o Updated reference to OAuth 2.0 Authorization Server Metadata.
-10

o0 Added a missing definition of access_denied for use on the token
endpoint.

o Corrected text documenting which error code should be returned for
expired tokens (it’s "expired_token", not "invalid_grant").

o Corrected section reference to RFC 8252 (the section numbers had
changed after the initial reference was made).

o Fixed line length of one diagram (was causing xml2rfc warnings).

o Added line breaks so the URN grant_type is presented on an
unbroken line.

o Typos fixed and other stylistic improvements.

-09

o Addressed review comments by Security Area Director Eric Rescorla
about the potential of a confused deputy attack.

-08

o Expanded the User Code Brute Forcing section to include more
detail on this attack.

-07
o Replaced the "user_code" URI parameter optimization with

verification_uri_complete following the IETF99 working group
discussion.

Denniss, et al. Expires July 20, 2019 [Page 20]

Internet-Draft OAuth 2.0 Device Flow January 2019

o Added security consideration about spying.
o Required that device_code not be shown.
o Added text regarding a minimum polling interval.

-06

o Clarified usage of the "user_code" URI parameter optimization
following the IETF98 working group discussion.

-05

o response_type parameter removed from authorization request.

o Added option for clients to include the user_code on the
verification URI.

o Clarified token expiry, and other nits.

-04

o Security & Usability sections. OAuth Discovery Metadata.

-03

o device_code is now a URN. Added IANA Considerations

-02

o Added token request & response specification.

-01

o Applied spelling and grammar corrections and added the Document
History appendix.

-00

o Initial working group draft based on draft-recordon-oauth-
v2-device.

Authors’ Addresses

William Denniss

Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
USA

Email: wdenniss@google.com
URI: http://wdenniss.com/device-flow

Denniss, et al. Expires July 20, 2019 [Page 21]

Internet-Draft OAuth 2.0 Device Flow January 2019
John Bradley
Ping Identity
Email: ve7jtb@ve7jtb.com
URI: http://www.thread-safe.com/
Michael B. Jones
Microsoft
Email: mbj@microsoft.com

URI: http://self-issued.info/

Hannes Tschofenig
ARM Limited
Austria

Email: Hannes.Tschofenig@gmx.net
URI: http://www.tschofenig.priv.at

Denniss, et al. Expires July 20, 2019 [Page 22]

QAut h Wor ki ng G oup M Jones

I nternet-Draft M crosof t
I nt ended status: Standards Track N. Saki nura
Expi res: Septenber 5, 2018 NRI

J. Bradl ey

Ping ldentity
March 4, 2018

QAuth 2.0 Authorization Server Metadata
draft-ietf-oauth-di scovery-10

Abst ract

This specification defines a netadata format that an QAuth 2.0 client
can use to obtain the information needed to interact with an QAuth
2.0 authorization server, including its endpoint |ocations and

aut hori zation server capabilities.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 5, 2018.
Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of

Jones, et al. Expi res Septenber 5, 2018 [Page 1]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . 2
1.1. Requirements hbtatlon and Cbnventlons . 3
1.2. Terminology . . 3

2. Authorization Server thadata . Coe 4
2.1. Signed Authorization Server Mt adata 7

3. Obtaining Authorization Server Mtadata . 8
3.1. Authorization Server Metadata Request 9
3.2. Authorization Server Mtadata Response Coe e 9
3.3. Authorization Server Mtadata Validation 10

4. String Operations 1n

5. Conpatibility Notes 11

6. Security Considerations 12
6.1. TLS Requirenments 12
6.2. Inpersonation Attacks . . . e e .12
6.3. Publishing Metadata in a Standard Fornat 13
6. 4 Protected Resources 13

7. |1 ANA Considerations . . . <
7.1 QAut h Aut hori zation Server Met adata Registry 14

7.1.1 Regi stration Template 15
7.1.2. Initial Registry Contents 15
7.2. Updated Registration Instructions 18
7.3. Well-Known URI Registry 19
7.3.1. Registry Contents 19

8. References . P e |
8.1. Nornative References e R
8.2. Informative References 21

Appendi x A. Acknow edgenents 22

Appendi x B. Document History 22

Authors’ Addresses 25

1. Introduction

This specification generalizes the nmetadata format defined by "COpenl D
Connect Discovery 1.0" [OpenlD.Discovery] in a way that is conpatible
wi th Openl D Connect Discovery, while being applicable to a w der set
of QAuth 2.0 use cases. This is intentionally parallel to the way
that the "OAuth 2.0 Dynamic Cient Registration Protocol" [RFC7591]
specification generalized the dynamic client registration nechanisns
defined by "Openl D Connect Dynamic Cient Registration 1.0"

[Openl D. Regi stration] in a way that was conpatible with it.

The netadata for an authorization server is retrieved froma well -
known | ocation as a JSON [RFC7159] docunent, which declares its

Jones, et al. Expi res Septenber 5, 2018 [Page 2]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

endpoi nt | ocations and authorization server capabilities. This
process is described in Section 3.

This metadata can either be communicated in a self-asserted fashion
by the server origin via HTTPS or as a set of signed netadata val ues
represented as clains in a JSON Wb Token (JWI) [JWI]. In the JWI
case, the issuer is vouching for the validity of the data about the
aut hori zation server. This is analogous to the role that the
Software Statenment plays in QAuth Dynamic Client Registration

[RFC7591] .

The means by which the client chooses an authorization server is out
of scope. In sone cases, its issuer identifier nmay be manual ly
configured into the client. |In other cases, it may be dynanically
di scovered, for instance, through the use of WebFi nger [RFC7033], as
described in Section 2 of "Openl D Connect Discovery 1.0"

[Openl D. Di scovery].

1.1. Requirements Notation and Conventi ons

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14 [RFC2119] [RFCB174] when, and only when, they appear in all
capitals, as shown here.

Al'l uses of JSON Wb Signature (JW5) [JW5] and JSON Web Encryption
(JVWE) [JVE] data structures in this specification utilize the JWS
Conpact Serialization or the JWE Conpact Serialization; the JW5 JSON
Serialization and the JWE JSON Serialization are not used.

1.2. Termnol ogy

This specification uses the ternms "Access Token", "Authorization
Code", "Authorization Endpoint", "Authorization Gant",

"Aut hori zation Server", "Client", "Cient Authentication", "Cient
Identifier", "Client Secret", "Gant Type", "Protected Resource",
"Redirection URI", "Refresh Token", "Resource Omer", "Resource
Server", "Response Type", and "Token Endpoint" defined by QAuth 2.0

[RFC6749], the terns "C aimNane", "C aimValue", and "JSON Wb Token
(JWN " defined by JSON Wb Token (JWI) [JWI], and the term "Response
Mode" defined by QAuth 2.0 Multiple Response Type Encoding Practices
[QAut h. Responses] .

Jones, et al. Expi res Septenber 5, 2018 [Page 3]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

2

Jones,

Aut hori zati on Server Mt adata

Aut hori zation servers can have netadata describing their
configuration. The follow ng authorization server netadata val ues
are used by this specification and are registered in the I ANA "QAuth
Aut hori zation Server Metadata" registry established in Section 7.1

i ssuer

REQUI RED. The aut hori zation server’s issuer identifier, whichis
a URL that uses the "https" schene and has no query or fragnent
conmponents. Authorization server netadata is published at a
".well-known" RFC 5785 [RFC5785] | ocation derived fromthis issuer
identifier, as described in Section 3. The issuer identifier is
used to prevent authorization server mx-up attacks, as described
in "QAuth 2.0 Mx-Up Mtigation"

[I-D.ietf-oauth-m x-up-nitigation].

aut hori zati on_endpoi nt

URL of the authorization server’s authorization endpoint
[RFC6749]. This is REQU RED unless no grant types are supported
that use the authorization endpoint.

t oken_endpoi nt

URL of the authorization server’s token endpoint [RFC6749]. This
is REQU RED unless only the inplicit grant type is supported.

jwks_uri

OPTIONAL. URL of the authorization server’s JW Set [JVK]
docunent. The referenced docunent contains the signing key(s) the
client uses to validate signatures fromthe authorization server
This URL MJUST use the "https" schene. The JWK Set MAY al so
contain the server’s encryption key(s), which are used by clients
to encrypt requests to the server. When both signing and
encryption keys are nade avail able, a "use" (public key use)
paraneter value is REQU RED for all keys in the referenced JVWK Set
to indicate each key's intended usage.

regi stration_endpoi nt

OPTIONAL. URL of the authorization server’s QAuth 2.0 Dynanic
Client Registration endpoint [RFC7591].

scopes_support ed

RECOMVENDED. JSON array containing a list of the QAuth 2.0

[RFC6749] "scope" values that this authorization server supports.
Servers MAY choose not to advertise sone supported scope val ues
even when this paraneter is used.

response_t ypes_supported

et al. Expi res Septenber 5, 2018 [Page 4]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

REQUI RED. JSON array containing a list of the QAuth 2.0
"response_type" values that this authorization server supports.
The array val ues used are the sane as those used with the
"response_types" paraneter defined by "QAuth 2.0 Dynanmic Cient
Regi stration Protocol" [RFC7591].

response_nodes_support ed
OPTI ONAL. JSON array containing a list of the QAuth 2.0
"response_node" values that this authorization server supports, as
specified in QAuth 2.0 Multiple Response Type Encoding Practices
[QAut h. Responses]. If onmitted, the default is "["query",
"fragment"]". The response node value "formpost" is also defined
in QAuth 2.0 Form Post Response Mdde [QAut h. Post].

grant _types_supported
OPTIONAL. JSON array containing a list of the QAuth 2.0 grant
type values that this authorization server supports. The array
val ues used are the sanme as those used with the "grant types"
paraneter defined by "QAuth 2.0 Dynanic Cient Registration
Protocol " [RFC7591]. If omtted, the default value is
"["aut horization_code", "inplicit"]".

t oken_endpoi nt _aut h_net hods_support ed
OPTI ONAL. JSON array containing a list of client authentication
met hods supported by this token endpoint. dient authentication
met hod val ues are used in the "token_endpoi nt _auth_net hod"
paraneter defined in Section 2 of [RFC7591]. |If omitted, the
default is "client_secret_basic" -- the HITP Basic Authentication
Schene specified in Section 2.3.1 of QAuth 2.0 [RFC6749].

t oken_endpoi nt _aut h_si gni ng_al g_val ues_supported
OPTI ONAL. JSON array containing a list of the JW5 signing
algorithnms ("al g" val ues) supported by the token endpoint for the
signature on the JW [JW] used to authenticate the client at the
token endpoint for the "private key jw" and "client_secret jwt"
aut henti cation nmethods. This netadata entry MJST be present if
ei ther of these authentication methods are specified in the
"t oken_endpoi nt _aut h_met hods_supported” entry. No default
algorithnms are inplied if this entry is omtted. Servers SHOULD
support "RS256". The val ue "none" MJST NOT be used.

servi ce_docunent ati on
OPTIONAL. URL of a page containi ng human-readabl e i nfornmation
that devel opers m ght want or need to know when using the
aut hori zation server. In particular, if the authorization server
does not support Dynamic Client Registration, then information on
how to register clients needs to be provided in this
document at i on.

Jones, et al. Expi res Septenber 5, 2018 [Page 5]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

ui _

op_

op_

| ocal es_supported

OPTI ONAL. Languages and scripts supported for the user interface,
represented as a JSON array of BCP47 [RFC5646] |anguage tag
values. |If omtted, the set of supported | anguages and scripts is
unspeci fi ed.

policy_uri

OPTIONAL. URL that the authorization server provides to the
person registering the client to read about the authorization
server’'s requirements on how the client can use the data provided
by the authorization server. The registration process SHOULD
display this URL to the person registering the client if it is
given. As described in Section 5, despite the identifier
"op_policy_ uri", appearing to be Openl D specific, its usage in
this specification is actually referring to a general QAuth 2.0
feature that is not specific to Openl D Connect.

tos_uri

OPTIONAL. URL that the authorization server provides to the
person registering the client to read about the authorization
server’s terns of service. The registration process SHOULD
display this URL to the person registering the client if it is
given. As described in Section 5, despite the identifier

"op_tos_ uri", appearing to be Openl D specific, its usage in this
specification is actually referring to a general QAuth 2.0 feature
that is not specific to Openl D Connect.

revocati on_endpoi nt

OPTI ONAL. URL of the authorization server’s QAuth 2.0 revocation
endpoi nt [RFC7009] .

revocati on_endpoi nt _aut h_net hods_support ed

OPTI ONAL. JSON array containing a list of client authentication
met hods supported by this revocation endpoint. The valid client
aut henti cation nmethod val ues are those registered in the | ANA
"QAut h Token Endpoi nt Authentication Methods" registry

[ANA. QAut h. Paranmeters]. |If omitted, the default is

"client _secret _basic" -- the HITP Basic Authentication Schene
specified in Section 2.3.1 of QAuth 2.0 [RFC6749].

revocati on_endpoi nt _auth_si gning_al g val ues_supported

Jones,

OPTI ONAL. JSON array containing a list of the JW5 signing
algorithnms ("al g" val ues) supported by the revocation endpoint for
the signature on the JWI [JW] used to authenticate the client at
the revocation endpoint for the "private_key jw" and

"client _secret _jw" authentication nethods. This netadata entry
MUST be present if either of these authentication nethods are
specified in the "revocation_endpoi nt _aut h_net hods_supported"”

et al. Expi res Septenber 5, 2018 [Page 6]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

entry. No default algorithnms are inplied if this entry is
omtted. The value "none" MJST NOT be used.

i ntrospection_endpoi nt
OPTIONAL. URL of the authorization server’s QAuth 2.0
i ntrospection endpoint [RFC7662].

i ntrospection_endpoi nt _aut h_net hods_support ed
OPTI ONAL. JSON array containing a list of client authentication
met hods supported by this introspection endpoint. The valid
client authentication nethod values are those registered in the
| ANA "QAut h Token Endpoi nt Aut hentication Methods" registry
[1 ANA. QAut h. Paraneters] or those registered in the | ANA "QAuth
Access Token Types" registry [IANA QAut h. Paraneters]. (These
values are and will remain distinct, due to Section 7.2.) |If
omtted, the set of supported authentication nmethods MJST be
det ermi ned by ot her neans.

i ntrospection_endpoi nt_auth_si gning_al g _val ues_supported
OPTI ONAL. JSON array containing a list of the JW5 signing
al gorithnms ("al g" val ues) supported by the introspection endpoint
for the signature on the JWI [JWI] used to authenticate the client
at the introspection endpoint for the "private key jw" and
"client _secret _jw" authentication nethods. This nmetadata entry
MUST be present if either of these authentication nethods are
specified in the "introspection_endpoi nt _aut h_met hods_supported”
entry. No default algorithns are inplied if this entry is
omtted. The value "none" MJST NOT be used.

code_chal | enge_net hods_supported
OPTIONAL. JSON array containing a list of PKCE [RFC7/636] code
chal | enge met hods supported by this authorization server. Code
chal | enge met hod val ues are used in the "code_chal | enge_net hod"
paraneter defined in Section 4.3 of [RFC7636]. The valid code
chal | enge net hod val ues are those registered in the | ANA "PKCE
Code Chal l enge Methods" registry [IANA QAut h. Paraneters]. |If
omitted, the authorization server does not support PKCE

Addi tional authorization server netadata paraneters MAY al so be used
Sone are defined by other specifications, such as Qpenl D Connect
Di scovery 1.0 [Openl D. Di scovery].

2.1. Signed Authorization Server Metadata
In addition to JSON el enents, netadata val ues MAY al so be provided as
a "signed_netadata" value, which is a JSON Wb Token (JWI) [JW] that

asserts netadata val ues about the authorization server as a bundl e.
A set of clainms that can be used in signed netadata are defined in

Jones, et al. Expi res Septenber 5, 2018 [Page 7]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

Section 2. The signed netadata MJUST be digitally signed or MACed
usi ng JSON Wb Signature (JW5) [JW5] and MUST contain an "iss"
(issuer) claimdenoting the party attesting to the clainms in the
signed netadata. Consuners of the netadata MAY ignore the signed
metadata i f they do not support this feature. |f the consuner of the
met adat a supports signed netadata, netadata val ues conveyed in the

si gned netadata MJIST take precedence over the correspondi ng val ues
conveyed using plain JSON el ements.

Signed netadata is included in the authorization server netadata JSON
obj ect using this OPTI ONAL nenber:

si gned_net adat a
A JWI cont ai ni ng nmet adata val ues about the authorization server as
clainms. This is a string value consisting of the entire signed
JWI. A "signed netadata" netadata val ue SHOULD NOT appear as a
claimin the JW.

3. ntaining Authorization Server Mtadata

Aut hori zation servers supporting nmetadata MJST make a JSON docunent
containing netadata as specified in Section 2 available at a path
fornmed by inserting a well-known URI string into the authorization
server’s issuer identifier between the host conponent and the path
component, if any. By default, the well-known URI string used is
"/ .wel | - known/ oaut h- aut hori zati on-server”. This path MJST use the
"https" scheme. The syntax and semantics of ".well-known" are
defined in RFC 5785 [RFC5785]. The well-known URI suffix used MJST
be registered in the | ANA "Wl | -Known URIs" registry

[1 ANA. wel | - known] .

Different applications utilizing QAuth authorization servers in
application-specific ways nmay define and register different well-
known URI suffixes used to publish authorization server netadata as
used by those applications. For instance, if the Exanpl e application
uses an QAut h aut hori zation server in an Exanpl e-specific way, and
there are Exanpl e-specific netadata values that it needs to publish
then it mght register and use the "exanpl e-configuration" UR suffix
and publish the nmetadata docunent at the path formed by inserting

"/ .well - known/ exanpl e- confi guration" between the host and path
conmponents of the authorization server’'s issuer identifier

Al ternatively, many such applications will use the default well-known
URI string "/.well-known/oaut h-authorization-server", which is the

ri ght choice for general - purpose QAuth authorization servers, and not
regi ster an application-specific one.

An QAuth 2.0 application using this specification MIST specify what
wel | -known URI suffix it will use for this purpose. The sane

Jones, et al. Expi res Septenber 5, 2018 [Page 8]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

aut hori zati on server MAY choose to publish its metadata at nmultiple
wel | -known | ocations derived fromits issuer identifier, for exanple,
publ i shing nmetadata at both "/.well -known/exanpl e-confi guration"” and
"/ .wel |l -known/ oaut h- aut hori zati on-server™".

Sone QAuth applications will choose to use the well-known URI suffix
"openi d-configuration". As described in Section 5, despite the
identifier "/.well-known/openid-configuration", appearing to be
Openl D-specific, its usage in this specification is actually
referring to a general QAuth 2.0 feature that is not specific to
Openl D Connect.

3.1. Authorization Server Metadata Request

An aut hori zation server netadata docunent MJST be queried using an
HTTP "GET" request at the previously specified path.

The client would nmake the follow ng request when the issuer
identifier is "https://exanple.cont and the well-known URl suffix is
"oaut h-aut hori zation-server” to obtain the netadata, since the issuer
identifier contains no path conponent:

CET /. wel | - known/ oaut h- aut hori zati on-server HITP/ 1.1
Host: exanpl e. com

If the issuer identifier value contains a path conponent, any
termnating "/" MJST be renoved before inserting "/.well-know/" and
the well-known URI suffix between the host conponent and the path
conmponent. The client would make the foll owi ng request when the

i ssuer identifier is "https://exanple.comissuerl" and the well-known
URI suffix is "oauth-authorization-server"” to obtain the metadata,
since the issuer identifier contains a path conponent:

CGET /. wel | - known/ oaut h- aut hori zati on-server/issuerl HTTP/ 1.1
Host: exanpl e. com

Usi ng pat h conponents enabl es supporting multiple issuers per host.
This is required in some multi-tenant hosting configurations. This
use of ".well-known" is for supporting nultiple issuers per host;
unlike its use in RFC 5785 [RFC5785], it does not provide genera

i nformation about the host.

3.2. Authorization Server Metadata Response
The response is a set of clains about the authorization server’s
configuration, including all necessary endpoints and public key

| ocation information. A successful response MJST use the 200 OK HTTP
status code and return a JSON object using the "application/json"

Jones, et al. Expi res Septenber 5, 2018 [Page 9]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

content type that contains a set of clains as its nenbers that are a
subset of the netadata values defined in Section 2. Oher clains NAY
al so be returned.

Clains that return nmultiple values are represented as JSON arrays.
Clains with zero el enents MJST be omitted fromthe response.

An error response uses the applicable HTITP status code val ue.
The following is a non-normative exanpl e response:

HTTP/ 1.1 200 K
Cont ent - Type: application/json

{)
i ssuer":
"https://server. exanpl e. cont,
"aut hori zati on_endpoi nt":
"https://server.exanpl e. conf aut hori ze",
"t oken_endpoi nt":
"https://server. exanpl e. com t oken",
"t oken_endpoi nt _aut h_net hods_support ed”:
["client _secret_basic", "private key jw"],
"t oken_endpoi nt _auth_signing_al g val ues_supported":
["RS256", "ES256"],
"userinfo_endpoint":
"https://server.exanpl e.conf useri nfo",
"fwks _uri":
"https://server.exanple.confjwks.json",
"registrati on_endpoint":
"https://server.exanpl e.coniregister",
"scopes_supported":
["openid", "profile", "email", "address",
"phone", "offline_access"],
"response_types_supported":
["code", "code token"],
"servi ce_docunentation":
"http://server. exanpl e.coni servi ce_docunentation. htnm ",
"ui _l ocal es_supported”:
["en-US", "en-GB", "en-CA", "fr-FR', "fr-CA"]
}

3.3. Authorization Server Metadata Validation
The "issuer" value returned MJST be identical to the authorization

server’'s issuer identifier value into which the well-known URl string
was inserted to create the URL used to retrieve the netadata. |If

Jones, et al. Expi res Septenber 5, 2018 [Page 10]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

these values are not identical, the data contained in the response
MUST NOT be used.

4, String Operations

Processi ng sone QAuth 2.0 nessages requires conparing values in the
messages to known val ues. For exanple, the nenber nanmes in the

nmet adat a response ni ght be conpared to specific nmenber nanes such as
"issuer". Conparing Unicode [UNI CODE] strings, however, has
significant security inplications.

Ther ef ore, conpari sons between JSON strings and ot her Unicode strings
MUST be performed as specified bel ow

1. Rempove any JSON applied escaping to produce an array of Unicode
code points.

2. Unicode Nornalization [USA15] MJST NOT be applied at any point to
either the JSON string or to the string it is to be conpared
agai nst .

3. Conparisons between the two strings MJST be perfornmed as a
Uni code code point to code point equality conparison

Note that this is the sanme equality conparison procedure described in
Section 8.3 of [RFC7159].

5. Conpatibility Notes

The identifiers "/.well-known/openid-configuration", "op_policy_uri"
and "op_tos_uri" contain strings referring to the Openl D Connect

[Openl D. Core] family of specifications that were originally defined
by "Openl D Connect Discovery 1.0" [OpenlD.Di scovery]. Despite the
reuse of these identifiers that appear to be Openl D-specific, their
usage in this specification is actually referring to general QAuth
2.0 features that are not specific to Openl D Connect.

The algorithmfor transform ng the issuer identifier to an

aut hori zati on server netadata | ocation defined in Section 3 is

equi val ent to the corresponding transformation defined in Section 4
of "Openl D Connect Discovery 1.0" [Openl D. Di scovery], provided that
the issuer identifier contains no path conponent. However, they are
different when there is a path conponent, because Openl D Connect

Di scovery 1.0 specifies that the well-known URl string is appended to
the issuer identifier (e.g., "https://exanple.confissuerl/.well-
known/ openi d-configuration"), whereas this specification specifies
that the well-known URI string is inserted before the path conponent

Jones, et al. Expi res Septenber 5, 2018 [Page 11]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

6

6

6

of the issuer identifier (e.g., "https://exanple.coni.well-known/
openi d- configuration/issuerl").

Goi ng forward, QAuth authorization server netadata | ocations should
use the transformation defined in this specification. However, when
depl oyed in I egacy environnments in which the Openl D Connect Discovery
1.0 transformation is already used, it nay be necessary during a
transition period to publish netadata for issuer identifiers
containing a path conmponent at both locations. During this
transition period, applications should first apply the transfornmation
defined in this specification and attenpt to retrieve the

aut hori zation server nmetadata fromthe resulting location; only if
the retrieval fromthat |ocation fails should they fall back to
attenpting to retrive it fromthe alternate |ocation obtained using
the transformati on defined by Openl D Connect Di scovery 1.0. This
backwar ds-conpati bility behavi or should only be necessary when the
wel | -known URI suffix enpl oyed by the application is "openid-
configuration".

Security Considerations
1. TLS Requirenents

| mpl enent ati ons MUST support TLS. Wich version(s) ought to be

i mpl erented will vary over tinme and depend on the wi despread

depl oynent and known security vulnerabilities at the tinme of

i npl ementation. The authorization server MJST support TLS version
1.2 [RFC5246] and MAY support additional transport-layer security
mechani snms neeting its security requirenents. Wen using TLS, the
client MUST performa TLS/ SSL server certificate check, per RFC 6125
[RFC6125]. Inplenentation security considerations can be found in
Recommendati ons for Secure Use of TLS and DTLS [BCP195].

To protect against information disclosure and tanpering,
confidentiality protection MUST be applied using TLS with a
ci phersuite that provides confidentiality and integrity protection

2. Inpersonation Attacks

TLS certificate checking MJUST be perfornmed by the client, as
described in Section 6.1, when nmaking an authorization server

met adata request. Checking that the server certificate is valid for
the issuer identifier URL prevents man-in-niddl e and DNS- based
attacks. These attacks could cause a client to be tricked into using
an attacker’s keys and endpoints, which would enabl e i npersonation of
the legitimate authorization server. |If an attacker can acconplish
this, they can access the resources that the affected client has
access to using the authorization server that they are inpersonating.

Jones, et al. Expi res Septenber 5, 2018 [Page 12]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

An attacker may also attenpt to inpersonate an authorization server
by publishing a nmetadata docunment that contains an "issuer" claim
using the issuer identifier URL of the authorization server being

i npersonated, but with its own endpoints and signing keys. This
woul d enable it to inpersonate that authorization server, if accepted
by the client. To prevent this, the client MJST ensure that the

i ssuer identifier URL it is using as the prefix for the netadata
request exactly matches the value of the "issuer" nmetadata value in
the aut horization server metadata document received by the client.

6.3. Publishing Metadata in a Standard For nat

Publ i shing i nformati on about the authorization server in a standard
format nmekes it easier for both legitimate clients and attackers to
use the authorization server. Wether an authorization server
publishes its nmetadata in an ad-hoc nanner or in the standard fornmat
defined by this specification, the sane defenses against attacks that
ni ght be nounted that use this information should be applied.

6. 4. Pr ot ect ed Resources

Secure determ nation of appropriate protected resources to use with
an aut horization server for all use cases is out of scope of this
specification. This specification assunes that the client has a
means of determ ning appropriate protected resources to use with an
aut hori zation server and that the client is using the correct

met adata for each authorization server. |Inplenenters need to be
aware that if an inappropriate protected resource is used by the
client, that an attacker nay be able to act as a man-in-the-niddle
proxy to a valid protected resource without it being detected by the
aut hori zati on server or the client.

The ways to determne the appropriate protected resources to use with
an authorization server are in general, application-dependent. For

i nstance, sone authorization servers are used with a fixed protected
resource or set of protected resources, the locations of which nmay be
wel | known, or which could be published as nmetadata val ues by the

aut hori zation server. |In other cases, the set of resources that can
be used with an authorization server can by dynam cally changed by
adm nistrative actions. Many other neans of determ ning appropriate
associ ations between authorization servers and protected resources
are al so possible.

7. | ANA Consi der ati ons

The following registration procedure is used for the registry
established by this specification.

Jones, et al. Expi res Septenber 5, 2018 [Page 13]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

Val ues are registered on a Specification Required [RFC8126] basis
after a two-week review period on the oauth-ext-review@etf.org
mailing list, on the advice of one or nore Designated Experts.
However, to allow for the allocation of values prior to publication
the Designated Experts nmy approve registration once they are
satisfied that such a specification will be published.

Regi stration requests sent to the mailing list for review should use
an appropriate subject (e.g., "Request to register QAuth
Aut hori zation Server Metadata: exanple").

Wthin the review period, the Designated Experts will either approve
or deny the registration request, communicating this decision to the
review list and I ANA. Denials should include an explanation and, if
appl i cabl e, suggestions as to how to nmake the request successful

Regi stration requests that are undeternmined for a period | onger than
21 days can be brought to the ESG s attention (using the
iesg@etf.org mailing list) for resolution.

Criteria that should be applied by the Designated Experts includes
det erm ni ng whet her the proposed registration duplicates existing
functionality, deternmning whether it is likely to be of genera
applicability or whether it is useful only for a single application
and whet her the registration makes sense.

I ANA nust only accept registry updates fromthe Designated Experts
and should direct all requests for registration to the review mailing
list.

It is suggested that nultiple Designated Experts be appointed who are
able to represent the perspectives of different applications using
this specification, in order to enable broadly-informed revi ew of
registration decisions. In cases where a registration decision could
be perceived as creating a conflict of interest for a particular
Expert, that Expert should defer to the judgnent of the other

Experts.

7.1. CQAuth Authorization Server Metadata Registry
This specification establishes the I ANA "QAuth Authorization Server
Met adat a" registry for QAuth 2.0 authorization server netadata nanes.
The registry records the authorization server metadata nenber and a
reference to the specification that defines it.
The Designated Experts nust either

(a) require that netadata nanes and val ues being registered use only
printable ASCI| characters excluding double quote ('"') and backsl ash

Jones, et al. Expi res Septenber 5, 2018 [Page 14]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

("\") (the Unicode characters with code points U+0021, U+0023 t hrough
U+005B, and W+005D t hrough U+007E), or

(b) if new netadata nenbers or values are defined that use other code
points, require that their definitions specify the exact Unicode code
poi nt sequences used to represent them Furthernore, proposed

regi strations that use Unicode code points that can only be
represented in JSON strings as escaped characters nust not be

accept ed.

7.1.1. Registration Tenplate

Met adat a Nane:
The nane requested (e.g., "issuer"). This nane is case-sensitive.
Nanmes may not match other registered nanes in a case-insensitive
manner (one that would cause a match if the Unicode tolLowerCase()
operation were applied to both strings) unless the Designated
Experts state that there is a conpelling reason to allow an
exception.

Met adat a Descri pti on:
Brief description of the netadata (e.g., "lssuer identifier URL").

Change Controller:
For Standards Track RFCs, list the "IESG'. For others, give the
nane of the responsible party. Oher details (e.g., postal
address, emmil| address, home page URI) may al so be incl uded.

Speci fication Docunent(s):
Ref erence to the docunent or docunments that specify the paraneter,
preferably including URIs that can be used to retrieve copies of
the docunents. An indication of the relevant sections may al so be
i ncluded but is not required.

7.1.2. Initial Registry Contents

0 Metadata Nane: "issuer”

0 Metadata Description: Authorization server’s issuer identifier URL
0 Change Controller: IESG

o Specification Docunent(s): Section 2 of [[this specification]]

0 Metadata Nane: "authorization_endpoint"

0 Metadata Description: URL of the authorization server’s

aut hori zati on endpoi nt
0 Change Controller: |IESG
o0 Specification Docunent(s): Section 2 of [[this specification]]

o Metadata Nane: "token_endpoint"

Jones, et al. Expi res Septenber 5, 2018 [Page 15]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

Jones,

Met adat a Description: URL of the authorization server’s token
endpoi nt

Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adata Nane: "jwks_uri"

Met adat a Description: URL of the authorization server’'s JW Set
docunent

Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Name: "regi stration_endpoint"

Met adat a Description: URL of the authorization server’s QAuth 2.0
Dynamic Cient Registration Endpoint

Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Name: "scopes_supported"

Met adat a Description: JSON array containing a list of the QAuth
2.0 "scope" values that this authorization server supports
Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Name: "response_types_supported"

Met adat a Description: JSON array containing a list of the QAuth
2.0 "response_type" values that this authorization server supports
Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Name: "response_nodes_supported"

Met adat a Description: JSON array containing a list of the QAuth
2.0 "response_node" values that this authorization server supports
Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Name: "grant _types_supported"

Met adat a Description: JSON array containing a list of the QAuth
2.0 grant type values that this authorization server supports
Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Nanme: "token_endpoi nt _aut h_net hods_support ed"

Met adat a Description: JSON array containing a list of client

aut henti cati on nmet hods supported by this token endpoint

Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Name: "token_endpoi nt _auth_signing _al g_val ues_supported"

et al. Expi res Septenber 5, 2018 [Page 16]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

Jones,

Met adat a Description: JSON array containing a list of the JWs
signing algorithms supported by the token endpoint for the
signature on the JW used to authenticate the client at the token
endpoi nt

Change Controller: |ESG

Speci fication Document(s): Section 2 of [[this specification]]

Met adat a Nane: "service_docunentation”

Met adat a Description: URL of a page containi ng human-readabl e

i nformati on that devel opers m ght want or need to know when using
t he aut hori zation server

Change Controller: |ESG

Speci fication Docunment(s): Section 2 of [[this specification]]

Met adat a Name: "ui _| ocal es_supported”

Met adat a Description: Languages and scripts supported for the user
interface, represented as a JSON array of BCP47 | anguage tag

val ues

Change Controller: |ESG

Speci fication Docunment(s): Section 2 of [[this specification]]

Met adata Name: "op_policy uri™

Met adata Description: URL that the authorization server provides
to the person registering the client to read about the

aut hori zation server’s requirenents on how the client can use the
data provided by the authorization server

Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adata Name: "op_tos uri”

Met adata Description: URL that the authorization server provides
to the person registering the client to read about the

aut hori zation server’s terns of service

Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Nanme: "revocati on_endpoi nt"

Met adat a Description: URL of the authorization server’s QAuth 2.0
revocati on endpoi nt

Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

Met adat a Nanme: "revocati on_endpoi nt _aut h_met hods_support ed"

Met adat a Description: JSON array containing a list of client

aut henti cati on met hods supported by this revocation endpoi nt
Change Controller: |ESG

Speci fication Docunent(s): Section 2 of [[this specification]]

et al. Expi res Septenber 5, 2018 [Page 17]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

0 Metadata Nane:

"revocati on_endpoi nt _aut h_si gni ng_al g_val ues_support ed"

0 Metadata Description: JSON array containing a list of the JW5
signing algorithnms supported by the revocation endpoint for the
signature on the JW used to authenticate the client at the
revocati on endpoi nt

o Change Controller: |IESG

0 Specification Docunment(s): Section 2 of [[this specification]]

0 Metadata Nane: "introspection_endpoint"

0 Metadata Description: URL of the authorization server’'s QAuth 2.0
i ntrospection endpoi nt

o0 Change Controller: |IESG

0 Specification Docunment(s): Section 2 of [[this specification]]

0 Metadata Nane: "introspection_endpoint_auth_nethods_supported”
0 Metadata Description: JSON array containing a list of client
aut henti cati on nmet hods supported by this introspection endpoint
o0 Change Controller: |IESG
0 Specification Docunment(s): Section 2 of [[this specification]]

0 Metadata Nane:

"introspection_endpoi nt_auth_signing al g val ues_supported"

0 Metadata Description: JSON array containing a list of the JWs
signing al gorithnms supported by the introspection endpoint for the
signature on the JW used to authenticate the client at the
i ntrospection endpoi nt

0 Change Controller: |ESG

o0 Specification Docunent(s): Section 2 of [[this specification]]

0 Metadata Nane: "code_chal | enge_net hods_support ed"

0 Metadata Description: PKCE code chal |l enge nmet hods supported by
this authorization server

0 Change Controller: |ESG

0 Specification Docunent(s): Section 2 of [[this specification]]

7.2. Updated Registration Instructions
This specification adds to the instructions for the Designated
Experts of the following | ANA registries, both of which are in the
"QAut h Paraneters" registry [|ANA QAut h. Paraneters]:

o QAuth Access Token Types
o QAuth Token Endpoi nt Authentication Methods

| ANA has added a link to this specification in the Reference sections

of these registries. [[RFC Editor: The above sentence is witten in
the past tense as it would appear in the final specification, even

Jones, et al. Expi res Septenber 5, 2018 [Page 18]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

t hough these links won't actually be created until after the |IESG has
requested publication of the specification. Please delete this note
after the links are in place.]]

For these registries, the designated experts nust reject registration
requests in one registry for values already occurring in the other
registry. This is necessary because the

"introspection_endpoi nt _auth_mnet hods_supported" parameter allows for
the use of values fromeither registry. That way, because the val ues
inthe two registries will continue to be nutually exclusive, no
anbiguities will arise.

7.3. Well-Known URI Registry

This specification registers the well-known URI defined in Section 3
in the | ANA "Wl | -Known URIs" registry [| ANA wel |l -known] established
by RFC 5785 [RFC5785] .

7.3.1. Registry Contents

URI suffix: "oauth-authorization-server”

Change controller: |ESG

Speci fication docunent: Section 3 of [[this specification]]
Rel ated i nfornmation: (none)

O o0Oo0oOo

8. Ref er ences
8.1. Normative References

[BCP195] Sheffer, Y., Holz, R, and P. Saint-Andre,
"Recommendati ons for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, DO 10.17487/ RFC7525, My
2015, <http://ww.rfc-editor.org/info/bcpl95>.

[1 ANA. QAut h. Par anet er s]
| ANA, " QAut h Par aneters”,
<http://ww. i ana. or g/ assi gnment s/ oaut h- par anet er s>.

[JVE] Jones, M and J. Hildebrand, "JSON Wb Encryption (JVWE)",
RFC 7516, DO 10. 17487/ RFC7516, My 2015,
<http://tools.ietf.org/htm/rfc7516>.

[IVK] Jones, M, "JSON Wb Key (JWK)", RFC 7517,

DO 10.17487/ RFC7517, May 2015,
<http://tools.ietf.org/htm /rfc7517>.

Jones, et al. Expi res Septenber 5, 2018 [Page 19]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

[IWE] Jones, M, Bradley, J., and N. Sakimura, "JSON Wb
Signature (JW8)", RFC 7515, DO 10.17487/ RFC7515, May
2015, <http://tools.ietf.org/htm /rfc7515>.

[JwWr] Jones, M, Bradley, J., and N. Sakimura, "JSON Wb Token
(JWn", RFC 7519, DO 10.17487/ RFC7519, May 2015,
<http://tools.ietf.org/htm/rfc7519>.

[QAut h. Post]
Jones, M and B. Canpbell, "QAuth 2.0 Form Post Response
Mode", April 2015, <http://openid. net/specs/
oaut h-v2-f or m post - response-node-1_0. ht il >.

[QAut h. Responses]
de Medeiros, B., Ed., Scurtescu, M, Tarjan, P., and M
Jones, "QAuth 2.0 Miultiple Response Type Encodi ng
Practices", February 2014, <http://openid. net/specs/
oaut h-v2-nul tipl e-response-types-1 0. html >,

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997,
<https://www. rfc-editor.org/info/rfc2119>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DA 10.17487/ RFC5246, August 2008,
<https://ww. rfc-editor.org/info/rfc5246>.

[RFC5646] Phillips, A, Ed. and M Davis, Ed., "Tags for Identifying
Languages", BCP 47, RFC 5646, DO 10.17487/ RFC5646,
Sept ember 2009, <https://www. rfc-editor.org/info/rfc5646>.

[RFC5785] Nottingham M and E. Hammer-Lahav, "Defining Well-Known
Uni form Resource ldentifiers (URIs)", RFC 5785,
DA 10. 17487/ RFC5785, April 2010,
<https://ww. rfc-editor.org/info/rfc5785>.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domai n-Based Application Service ldentity
within Internet Public Key Infrastructure Using X 509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DA 10.17487/ RFC6125, MNarch
2011, <https://www. rfc-editor.org/info/rfc6125>.

[RFC6749] Hardt, D., Ed., "The QAuth 2.0 Authorization Franmework",

RFC 6749, DA 10.17487/ RFC6749, Cctober 2012,
<https://ww. rfc-editor.org/info/rfc6749>.

Jones, et al. Expi res Septenber 5, 2018 [Page 20]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

[RFC7009] Lodderstedt, T., Ed., Dronia, S., and M Scurtescu, "QAuth
2.0 Token Revocation", RFC 7009, DO 10.17487/ RFC7009,
August 2013, <https://ww. rfc-editor.org/info/rfc7009>.

[RFC7033] Jones, P., Salgueiro, G, Jones, M, and J. Snarr,
"WebFi nger", RFC 7033, DO 10.17487/ RFC7033, Septenber
2013, <https://www. rfc-editor.org/info/rfc7033>.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, DO 10.17487/ RFC7159, March
2014, <https://ww.rfc-editor.org/info/rfc7159>.

[RFC7591] Richer, J., Ed., Jones, M, Bradley, J., Machulak, M, and
P. Hunt, "QAuth 2.0 Dynamic Cient Registration Protocol",
RFC 7591, DA 10. 17487/ RFC7591, July 2015,
<https://ww.rfc-editor.org/info/rfc7591>.

[RFC7636] Sakinura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
for Code Exchange by QAuth Public dients", RFC 7636,
DO 10.17487/ RFC7636, Septenber 2015,
<https://www. rfc-editor.org/info/rfc7636>.

[RFC7662] Richer, J., Ed., "QAuth 2.0 Token Introspection",
RFC 7662, DO 10.17487/ RFC7662, Cctober 2015,
<https://ww. rfc-editor.org/info/rfc7662>.

[RFC8126] Cotton, M, Leiba, B., and T. Narten, "CQuidelines for
Witing an | ANA Considerations Section in RFCs", BCP 26,
RFC 8126, DO 10.17487/ RFC8126, June 2017,
<https://ww. rfc-editor.org/info/rfc8126>.

[RFC8174] Leiba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Wrds", BCP 14, RFC 8174, DA 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.

[UNI CODE] The Uni code Consortium "The Uni code Standard",
<htt p: // www. uni code. or g/ versi ons/ | at est/ >.

[USA15] Davis, M and K. Wiistler, "Unicode Normalization Forns",
Uni code Standard Annex 15, June 2015,
<http://ww. uni code. org/reports/tr15/>.

8.2. Informative References
[I-D.ietf-oauth-m x-up-ntigation]
Jones, M, Bradley, J., and N. Sakinmura, "QAuth 2.0 M x-Up

Mtigation", draft-ietf-oauth-m x-up-nitigation-01 (work
in progress), July 2016.

Jones, et al. Expi res Septenber 5, 2018 [Page 21]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

[1 ANA. wel | - known]
I ANA, "Wl | - Known URIs",
<http://ww.iana. org/assi gnment s/ wel | - known- uri s>.

[Openl D. Cor €]
Saki nura, N., Bradley, J., Jones, M, de Medeiros, B., and
C. Mortinmore, "Openl D Connect Core 1.0", Novenber 2014,
<http://openid. net/specs/ openi d-connect-core-1_0. ht m >.

[Openl D. Di scovery]
Saki mura, N., Bradley, J., Jones, M, and E Jay, "OpenlD
Connect Discovery 1.0", Novenber 2014,
<htt p://openi d. net/specs/
openi d- connect - di scovery-1_0. html >.

[Openl D. Regi strati on]
Saki mura, N., Bradley, J., and M Jones, "Qpenl D Connect
Dynanmic Client Registration 1.0", Novenber 2014,
<htt p://openi d. net/specs/
openi d-connect-regi stration-1_0. htm >.

Appendi x A, Acknow edgenent s

This specification is based on the Openl D Connect Discovery 1.0
speci fication, which was produced by the Qpenl D Connect working group
of the Openl D Foundation. This specification standardizes the de
facto usage of the netadata format defined by Openl D Connect

Di scovery to publish QAuth authorization server netadata.

The authors would like to thank the follow ng people for their
reviews of this specification: Shwetha Bhandari, Ben Canpbell, Brian
Canpbel |, Brian Carpenter, WIIliam Denniss, Vladimr Dzhuvinov,
Donal d Eastl| ake, Samuel Erdtman, CGeorge Fletcher, Dick Hardt, Phil
Hunt, Al exey Mel ni kov, Tony Nadalin, Mark Nottingham Eric Rescorla,
Justin Richer, Adam Roach, Hannes Tschof eni g, and Hans Zandbelt.
Appendi x B. Document Hi story
[[to be renoved by the RFC Editor before publication as an RFC]]
-10

o Cdarified the neaning of "case-insensitive", as suggested by
Al exey Mel ni kov.

-09

Jones, et al. Expi res Septenber 5, 2018 [Page 22]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

0 Revised the transfornati on between the issuer identifier and the
aut hori zati on server netadata | ocation to conformto BCP 190, as
suggest ed by Adam Roach

o0 Defined the characters allowed in registered netadata nanes and
val ues, as suggested by Al exey Ml ni kov.

0 Changed to using the RFC 8174 boilerplate instead of the RFC 2119
boi l erpl ate, as suggested by Ben Canpbell.

0 Acknow edged additional reviewers.

o Changed the "authorization_endpoint” to be REQUI RED only when
grant types are supported that use the authorization endpoint.

0 Added the statenment, to provide historical context, that this
speci fication standardi zes the de facto usage of the netadata
format defined by Openl D Connect Discovery to publish QAuth
aut hori zati on server netadata.

o Applied clarifications suggested by Mark Nottingham about when
application-specific well-known suffixes are and are not
appropri at e.

0 Acknow edged additional reviewers.

- 07

0 Applied clarifications suggested by EKR

- 06

0 Incorporated resolutions to working group last call comments.

-05

0 Renoved the "protected_resources” elenent and the reference to
draft-j ones-oaut h-resour ce- net adat a.

- 04

0 Added the ability to list protected resources with the
"protected_resources" el enent.

0 Added ability to provide signed netadata with the
"si gned_net adata" el enent.

Jones, et al. Expi res Septenber 5, 2018 [Page 23]

I nternet-Draft QAuth 2.0 Authorization Server Metadata March 2018

0 Renoved "Discovery" fromthe nane, since this is now just about
aut hori zati on server netadata.

-03

0 Changed term "issuer URL" to "issuer identifier" for term nol ogy
consi stency, paralleling the same term nol ogy consistency change
in the mx-up mtigation spec.

-02

0 Changed the title to QAuth 2.0 Authorization Server Discovery
Met adat a.

0 Made "jwks_uri" and "registration_endpoi nt” OPTI ONAL.

o0 Defined the well-known URI string "/.well-known/oaut h-
aut hori zati on-server".

0 Added security considerations about publishing authorization
server discovery netadata in a standard format.

0 Added security considerations about protected resources.

0 Added nore information to the "grant _types_supported" and
"response_types_supported" definitions.

o0 Referenced the working group Mx-Up Mtigation draft.
0 Changed sone exanpl e netadata val ues

0 Acknow edged individuals for their contributions to the
speci fication.

0 Renoved WebFi nger discovery.

o Cdarified the relationship between the issuer identifier URL and
the well-known URI path relative to it at which the discovery
nmet adat a docunent is | ocated.

-00

0 Created the initial working group version based on draft-jones-
oaut h-di scovery-01, with no normative changes

Jones, et al. Expi res Septenber 5, 2018 [Page 24]

Internet-Draft QAuth 2.0 Authorization Server Metadata March 2018

Aut hors’ Addr esses

M chael B. Jones
M crosof t

Enmai | : nbj @ri crosoft.com

URI : http://self-issued.info/
Nat Saki nura

Nonmura Research Institute, Ltd.
Emai | : n-sakinura@ri.co.jp

URI : http://nat. sakinura. org/
John Bradl ey

Ping ldentity

Email: ve7jtb@e7jtb.com
URI : http://ww.thread-safe.com

Jones, et al. Expi res Septenber 5, 2018 [Page 25]

Net wor k Wor ki ng Group J. Bradl ey
I nternet-Draft Ping Identity
I ntended status: Standards Track P. Hunt
Expi res: August 28, 2017 Oracl e Corporation
M Jones

M crosoft

H. Tschofenig

ARM Lim ted

February 24, 2017

QAut h 2.0 Proof -of - Possessi on: Authorization Server to Cient Key
Di stri bution
draft-ietf-oauth-pop-key-distribution-03

Abst r act

RFC 6750 specified the bearer token concept for securing access to
protected resources. Bearer tokens need to be protected in transit
as well as at rest. Wen a client requests access to a protected
resource it hands-over the bearer token to the resource server

The QAuth 2.0 Proof-of-Possessi on security concept extends bearer
token security and requires the client to denonstrate possession of a
key when accessing a protected resource.

Thi s docunment describes how the client obtains this keying materia
fromthe authorization server

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on August 28, 2017

Bradl ey, et al. Expi res August 28, 2017 [Page 1]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

Copyright Notice

Copyright (c) 2017 |IETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 2
2. Term nol ogy . 4
3. Audi ence Coe e 4
3.1. Audience Paraneter 5
3.2. Processing Instructions . 5
4, Symmetric Key Transport 6
4.1. dient-to-AS Request 6
4.2. Cient-to-AS Response . 7
5. Asymmetric Key Transport 9
5.1. dient-to-AS Request e e e 9
5.2. dient-to-AS Response 11
6. Token Types and Al gorithns 12
7. Security Considerations 13
8. | ANA Considerations 14
9. Acknow edgements .. 15
10. References ... 15
10.1. Normative References 15
10.2. Informative References 16
Appendi x A. Augnment ed Backus- Naur Form (ABNF) Syntax 17
A.1l. ’aud Syntax e 4
A.2. ’'key Syntax ... 18
A.3. ’alg Syntax .. . 18
Aut hors’ Addresses .. . 18

I nt roducti on

The work on additional security nechani snms beyond QAuth 2.0 bearer
tokens [12] is notivated in [17], which also outlines use cases,
requirenents and an architecture. This docunent defines the ability
for the client indicate support for this functionality and to obtain
keying material fromthe authorization server. As an outcone of the

Bradl ey, et al. Expi res August 28, 2017 [Page 2]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

exchange between the client and the authorization server is an access
token that is bound to keying material. Cdients that access
protected resources then need to denonstrate know edge of the secret
key that is bound to the access token

To best describe the scope of this specification, the QAuth 2.0
prot ocol exchange sequence is shown in Figure 1. The extension
defined in this docunent piggybacks on the nessage exchange marked
with (C and (D).

oo + oo +
| | --(A)- Authorization Request ->| Resour ce |
[[[Owner |
[| <-(B)-- Authorization Gant ---| |
| | S +
I I

| | . +
| |--(CQ-- Authorization Gant -->| Authorization

| Cient | | Ser ver |
[| <-(D)----- Access Token ------- | |
| | S +
I I

| | . +
| |--(E)----- Access Token ------ >| Resour ce |
| | | Ser ver |
[| <-(F)--- Protected Resource ---| |
Fom e e e - - + e e e o +

Figure 1: Abstract QAuth 2.0 Protocol Flow

In QAuth 2.0 [2] access tokens can be obtained via authorization
grants and using refresh tokens. The core QAuth specification
defines four authorization grants, see Section 1.3 of [2], and [14]
adds an assertion-based authorization grant to that list. The token
endpoint, which is described in Section 3.2 of [2], is used with
every authorization grant except for the inplicit grant type. 1In the
inmplicit grant type the access token is issued directly.

Thi s docunment extends the functionality of the token endpoint, i.e.
the protocol exchange between the client and the authorization
server, to allow keying material to be bound to an access token. Two
types of keying material can be bound to an access token, nanely
synmetric keys and asynmetric keys. Conveying symetric keys from
the authorization server to the client is described in Section 4 and
the procedure for dealing with asymretric keys is described in
Section 5.

Bradl ey, et al. Expi res August 28, 2017 [Page 3]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

2

Ter ni nol ogy

The key words 'MJUST', 'MJST NOT', 'REQUIRED , 'SHALL', ' SHALL NOT,
"SHOULD , ' SHOULD NOT', ' RECOWENDED , 'MAY', and "OPTIONAL' in this
specification are to be interpreted as described in [1].

Sessi on Key:

The term session key refers to fresh and uni que keying materia
establ i shed between the client and the resource server. This
session key has a lifetinme that corresponds to the lifetinme of the
access token, is generated by the authorization server and bound
to the access token

Thi s docunent uses the foll ow ng abbreviations:
JWA: JSON Web Al gorithms (JWA) [7]

JWI: JSON Web Token (JWI) [9]

JWE: JSON Wb Signature (JWS) [6]

JVWK: JSON Wb Key (JVK) [5]

JWE: JSON Wb Encryption (JWE) [8]

Audi ence

When an aut hori zation server creates an access token, according to
the PoP security architecture [17], it may need to know which
resource server will process it. This information is necessary when
the authorization server applies integrity protection to the JWI
using a symmetric key and has to selected the key of the resource
server that has to verify it. The authorization server also requires
this audience information if it has to encrypt a symmetric session
key inside the access token using a long-termsymetric key.

This section defines a new header that is used by the client to

i ndi cate what protected resource at which resource server it wants to
access. This information nmay subsequently al so comuni cated by the
aut hori zation server securely to the resource server, for exanple
within the audience field of the access token.

QUESTI ON: A benefit of asymmetric cryptography is to allow clients to
request a PoP token for use with nultiple resource servers. The
downsi de of that approach is linkability since different resource
servers will be able to link individual requests to the sane client.

Bradl ey, et al. Expi res August 28, 2017 [Page 4]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

3.

3.

1.

2

(The sane is true if the a single public key is linked with PoP
tokens used with different resource servers.) Nevertheless, to
support the functionality the audi ence paraneter could carry an array
of values. |Is this desirable?

Audi ence Par anet er

The client constructs the access token request to the token endpoint
by adding the "aud’ paraneter using the "application/x-ww-form

url encoded" format with a character encoding of UTF-8 in the HITP
request entity-body.

The URI included in the aud paraneter MJST be an absolute URI as
defined by Section 4.3 of [3]. It MAY include an "application/ x-ww-
formurl encoded” formatted query conponent (Section 3.4 of [3]).

The URI MUST NOT include a fragnment conponent.

The ABNF syntax for the 'aud’ elenent is defined in Appendix A
Processing Instructions

Step (0): As an initial step the client typically determ nes the
resource server it wants to interact with. This may, for exanple,
happen as part of a discovery procedure or via nanual
configuration.

Step (1): The client starts the QAuth 2.0 protocol interaction
based on the selected grant type.

Step (2): When the client interacts with the token endpoint to
obtain an access token it MJST popul ate the newly defined
"audi ence’ paraneter with the information obtained in step (0).

Step (2): The authorization server who obtains the request from
the client needs to parse it to deternine whether the provided
audi ence val ue mat ches any of the resource servers it has a
relationship with. |If the authorization server fails to parse the
provided value it MJST reject the request using an error response
with the error code "invalid request”. |If the authorization
server does not consider the resource server acceptable it MJST
return an error response with the error code "access _denied". In
both cases additional error information may be provided via the
error_description, and the error_uri paranmeters. |f the request
has, however, been verified successfully then the authorization
server MJST include the audience claiminto the access token with
the val ue copied fromthe audience field provided by the client.
In case the access token is encoded using the JSON Wb Token
format [9] the "aud" claim MJST be used. The access token, if

Bradl ey, et al. Expi res August 28, 2017 [Page 5]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

passed per val ue, MJST be protected agai nst nodification by either
using a digital signature or a keyed nessage digest. Access
tokens can al so be passed by reference, which then requires the
token introspection endpoint (or a sinmliar, proprietary protoco
mechani sm) to be used. The authorization server returns the
access token to the client, as specified in [2].

Subsequent steps for the interaction between the client and the
resource server are beyond the scope of this docunent.

4, Symmetric Key Transport

4.1. dient-to-AS Request
In case a symmetric key shall be bound to an PoP token the follow ng
procedure is applicable. 1In the request nessage fromthe QAuth
client to the QAuth authorization server the follow ng paraneters NAY
be incl uded:
token_type: OPTIONAL. See Section 6 for nore details.
alg: OPTIONAL. See Section 6 for nore details.
These two new paraneters are optional in the case where the
aut hori zation server has prior know edge of the capabilities of the
client otherwi se these two paraneters are required. This prior
know edge may, for exanple, be set by the use of a dynamic client
regi stration protocol exchange.

QUESTI ON: Shoul d we regi ster these two paraneters for use with the
dynanic client registration protocol ?

For exanple, the client makes the foll owing HTTP request using TLS
(extra line breaks are for display purposes only).

Bradl ey, et al. Expi res August 28, 2017 [Page 6]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

POST /token HTTP/ 1.1

Host: server. exanpl e.com

Aut hori zation: Basic czZCaGRSa3FOMzpnWDFnTFOM2IW
Cont ent - Type: application/ x-wwform url encoded; char set =UTF- 8

grant _t ype=aut hori zati on_code
&code=Spl x| OBeZQQYbYS6W Sbl A

& edi rect _uri=htt ps¥BAYRFY2Fcl i ent %2Eexanpl e¥2Econ?2Fcb
&t oken_t ype=pop

&al g=HS256

Exanpl e Request to the Authorization Server
4.2. Cient-to-AS Response

If the access token request has been successfully verified by the

aut hori zation server and the client is authorized to obtain a PoP
token for the indicated resource server, the authorization server

i ssues an access token and optionally a refresh token. If client
authentication failed or is invalid, the authorization server returns
an error response as described in Section 5.2 of [2].

The aut horization server MJST include an access token and a ’'key’
el ement in a successful response. The ’'key' paraneter either
contains a plain JW structure or a JW encrypted with a JWE. The
di fference between the two approaches is the foll ow ng:

Plain JWK: |f the JWK container is placed in the 'key' elenent then
the security of the overall PoP architecture relies on Transport
Layer Security (TLS) between the authorization server and the
client. Figure 2 illustrates an exanple response using a plain
JWK for key transport fromthe authorization server to the client.

JWK protected by a JWE: |If the JWK container is protected by a JWE
then additional security protection at the application layer is
provi ded between the authorization server and the client beyond
the use of TLS. This approach is a reasonable choice, for
exanpl e, when a hardware security nodule is available on the
client device and confidentiality protection can be offered
directly to this hardware security nodul e.

Note that there are potentially two JSON encoded structures in the
response, nanely the access token (with the recommended JWI encodi ng)
and the actual key transport mechanismitself. Note, however, that
the two structures serve a different purpose and are consuned by
different parites. The access token is created by the authorization
server and processed by the resource server (and opaque to the

Bradl ey, et al. Expi res August 28, 2017 [Page 7]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

client) whereas the key transport payload is created by the
aut hori zati on server and processed by the client; it is never
forwarded to the resource server

HTTP/ 1.1 200 K
Cont ent - Type: application/json
Cache-Control : no-store

{
"access_token": "SI AV32hkKG . ..

(remai nder of JWI omitted for brevity;

JWI' contains JWK in the cnf claim",
"token_type": " pop",

"expires_in":3600,
"refresh_t oken":"8xLOxBt Zp8",
"key":"eyJhbGeci O JSUOEXXzU

(remai nder of plain JWK onmitted for brevity)"

Fi gure 2: Exanple: Response fromthe Authorization Server (Synmmetric
Vari ant)

The content of the key parameter, which is a JWK in our exanple, is
shown in Figure 3.

"kty":"oct",
"kid":"idl23",
"al g": " HS256",

"k": " ZoRSOr FzN_FzUA5XKMYoVHy zf f 50RIxI - | XRt zt JGUE"
}

Figure 3: Exanple: Key Transport to Cient via a JWK

The content of the ’access token” in JW format contains the ’cnf’
(confirmation) claim as shown in Figure 4. The confirmation claim
is defined in [10]. The digital signature or the keyed nessage
digest offering integrity protection is not shown in this exanple but
MUST be present in a real deploynment to mitigate a nunber of security
threats. Those security threats are described in [17].

The JWK in the key el enment of the response fromthe authorization

server, as shown in Figure 2, contains the sane session key as the
JWK inside the access token, as shown in Figure 4. It is, inthis

Bradl ey, et al. Expi res August 28, 2017 [Page 8]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

5.

5.

exanpl e, protected by TLS and transnmitted fromthe authorization
server to the client (for processing by the client).

"iss": "https://server.exanple.cont,
"sub": "24400320",
"aud": "s6BhdRkqt 3",
"nonce": "n-0S6_WA2M ",
"exp": 1311281970,
"iat": 1311280970,
"cenf":{

"jwk":

"JDLUhRTM W2l i wi Y3R5I j oi
(remai nder of JWK protected by JWE onitted for brevity)”

Figure 4: Exanpl e: Access Token in JW Format

Not e: When the JVWK inside the access token contains a symmetric key
it MJUST be confidentiality protected using a JWE to naintain the
security goals of the PoP architecture, as described in [17] since
content is neant for consunption by the sel ected resource server
only.

Not e: This docunent does not inpose requirenents on the encodi ng of
the access token. The exanples used in this docunent nake use of the
JWI structure since this is the only standardi zed fornat.

If the access token is only a reference then a | ook-up by the
resource server is needed, as described in the token introspection
specification [18].

Asymretri c Key Transport
1. dient-to-AS Request

In case an asymmetric key shall be bound to an access token then the
followi ng procedure is applicable. |In the request nmessage fromthe
QAuth client to the QAuth authorization server the request MAY

i nclude the followi ng paraneters

token_type: OPTIONAL. See Section 6 for nore details.

alg: OPTIONAL. See Section 6 for nore details.

Bradl ey, et al. Expi res August 28, 2017 [Page 9]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

key: OPTIONAL. This field contains information about the public key
the client would like to bind to the access token in the JW
format. If the client does not provide a public key then the
aut hori zati on server MJST create an epheneral key pair
(considering the information provided by the client) or
alternatively respond with an error nessage. The client may
al so convey the fingerprint of the public key to the
aut hori zati on server instead of passing the entire public key
along (to conserve bandwi dth). [11] defines a way to conpute a
thunbprint for a JWK and to enbedd it within the JW fornmat.

The 'token_type’ and the 'al g’ paraneters are optional in the case
where the authorization server has prior know edge of the
capabilities of the client otherw se these two paraneters are
required.

For exanple, the client nmakes the foll owing HTTP request using TLS
(extra line breaks are for display purposes only) shown in Figure 5.

POST /token HTTP/ 1.1

Host: server.exanpl e. com

Aut hori zation: Basic czZCaGRSa3FOMzpnWDFnTnFOM2IW
Cont ent - Type: application/ x-ww«form url encoded; char set =UTF- 8

grant _type=aut hori zati on_code
&code=Spl x| OBeZQQYbYS6WShl A

& edi rect _uri=https¥BAYRFY2Fcl i ent ¥%2Eexanpl e%2Econt@Fcb
&t oken_t ype=pop

&al g=RS256

&key=eyJhbGci O JSUOEXxXz U

(remai nder of JWK omitted for brevity)

Fi gure 5: Exanpl e Request to the Authorization Server (Asymmetric Key
Vari ant)

As shown in Figure 6 the content of the 'key' paraneter contains the

RSA public key the client would Iike to associate with the access
t oken.

Bradl ey, et al. Expi res August 28, 2017 [Page 10]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

{"kty":"RSA",
"n": "Ovx7agoebGcQSuuPi LIXZpt NOnndr QrbXEps2ai AFbVWAM? 8LhWk
4cbbf AAt VT86zwulRK7aPFFxuhDR1L6t Soc_BJECPebWKRXj BZC FV4n3oknj hVs
tn64t Z_2W 5JsGY4Hc5n9y BXAr wl 931 gt 7_RN5SwW6Cf 0h4Qy Qbv- 65YG QRO_FDW2
QvzqY368QQM cAt aSqzs8KJIZgnYb9c7d0zgdAZHzu6gM RL5haj rn1n91ChOpb
SDO8qNLyr dkt - bFTWhAI 4vMOFh6WeZuOf MAl Fd2Nc Rwr 3XPks| NHaQ G xBni | gb
WOLs1j F44- csFCur - kEgUBawapJzKngDKgw'
"e":" AQAB",
"al g": " RS256",
"kid":"id123"}

Figure 6: Cient Providing Public Key to Authorization Server
5.2. dient-to-AS Response

If the access token request is valid and authorized, the

aut hori zati on server issues an access token and optionally a refresh
token. If the request client authentication failed or is invalid,
the aut hori zation server returns an error response as described in
Section 5.2 of [2].

The aut horization server also places information about the public key
used by the client into the access token to create the binding
between the two. The new token type "public_key" is placed into the
"token_type’ paraneter.

An exanpl e of a successful response is shown in Figure 7.

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

{
"access_token":"2Yot nFZFE. . . .jr1zCsi cMApAA"
"t oken_type": "pop",
"al g": " RS256",
"expires_in":3600,
"refresh_token":"t Gzv3JOKFOXGEQx2TI KW A"

}

Figure 7: Exanple: Response fromthe Authorization Server (Asynmmetric

Vari ant)

The content of the 'access token’ field contains an encoded JWI with
the following structure, as shown in Figure 8. The digital signature

Bradl ey, et al. Expi res August 28, 2017 [Page 11]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

or the keyed nessage digest offering integrity protection is not
shown (but nust be present).

"iss":"xas. exanpl e. cont',
"aud":"http://auth. exanpl e. cont',
"exp":"1361398824",
“nbf":"1360189224",
"enf":{

"jwk"{"kty": " RSA",

"n": "Ovx7agoebGcQSuuPi LIXZpt NOnndr QrbXEps2ai AFbWAMZ 8LhWk
4cbbf AAt VT86zwulRK7aPFFxuhDR1L6t Soc_BJECPebWKRXj BZC FV4n3oknj hMs
tn64t Z_2W 5JsGY4Hc5n9y BXAr wl 931 gt 7_RN5SwW6Cf 0h4Qy QBv- 65YG QRO_FDW2
QvzqY368QQM cAt aSqzs8KJIZgnYb9c7d0zgdAZHzu6gqMY/RL5haj r n1n91ChOpbl
SDO8qgNLyr dkt - bFTVWhAI 4v MOFh6WeZuOf MAl Fd2Nc Rwr 3XPks| NHaQ G_xBni | gb
wOLs1j F44- csFCur - kEgUBawapJz KngDKgw"

"e": " AQAB",

"al g": " RS256",

"kid":"id123"}

}
}

Fi gure 8: Exanple: Access Token Structure (Asymetric Variant)

Note: In this exanple there is no need for the authorization server
to convey further keying material to the client since the client is
al ready in possession of the private RSA key.

6. Token Types and Al gorithns

To allow clients to indicate support for specific token types and
respective algorithnms they need to interact with authorization
servers. They can either provide this information out-of-band, for
exanpl e, via pre-configuration or up-front via the dynanic client
registration protocol [16].

The value in the "alg’ paraneter together with value fromthe
"token_type paraneter allow the client to indicate the supported
algorithnms for a given token type. The token type refers to the
specification used by the client to interact with the resource server
to denonstrate possession of the key. The 'alg paraneter provides
further information about the algorithm such as whether a symretric
or an asynmetric crypto-systemis used. Hence, a client supporting a
specific token type al so knows how to popul ate the values to the
"al g’ paraneter.

Bradl ey, et al. Expi res August 28, 2017 [Page 12]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

The value for the 'token_type’ MJIST be taken fromthe ' QAuth Access
Token Types’ registry created by [2].

Thi s docunent does not register a new value for the QAuth Access
Token Types registry nor does it define values to be used for the
"al g’ paraneter since this is the responsibility of specifications
defining the mechanismfor clients interacting with resource servers.
An exanpl e of such specification can be found in [19].

The values in the "alg paraneter are case-sensitive. |If the client
supports nore than one algorithmthen each individual value MJST be
separated by a space.

7. Security Considerations

[17] describes the architecture for the QAuth 2.0 proof-of-possession
security architecture, including use cases, threats, and

requi renents. This requirenents describes one solution conmponent of
that architecture, nanely the mechanismfor the client to interact
with the authorization server to either obtain a symretric key from
the authorization server, to obtain an asynmmretric key pair, or to
offer a public key to the authorization. |In any case, these keys are
then bound to the access token by the authorization server

To sunmarize the main security recomendations: A |arge range of
threats can be mitigated by protecting the contents of the access
token by using a digital signature or a keyed message di gest.
Consequently, the token integrity protection MJST be applied to
prevent the token from being nodified, particularly since it contains
a reference to the symmetric key or the asymetric key. |If the
access token contains the symetric key (see Section 2.2 of [10] for
a description about how symmetric keys can be securely conveyed
within the access token) this synmetric key MJUST be encrypted by the
aut hori zation server with a long-termkey shared with the resource
server.

To deal with token redirect, it is inportant for the authorization
server to include the identity of the intended recipient (the

audi ence), typically a single resource server (or a list of resource
servers), in the token. Using a single shared secret with nultiple
aut hori zation server to sinplify key managenent is NOI RECOVMENDED
since the benefit from using the proof-of-possession concept is
significantly reduced.

Token replay is al so not possible since an eavesdropper will also

have to obtain the corresponding private key or shared secret that is
bound to the access token. Nevertheless, it is good practice to

Bradl ey, et al. Expi res August 28, 2017 [Page 13]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

limt the lifetine of the access token and therefore the lifetinme of
associ at ed key.

The aut horization server MJUST offer confidentiality protection for
any interactions with the client. This step is extrenely inportant
since the client will obtain the session key fromthe authorization
server for use with a specific access token. Not using
confidentiality protection exposes this secret (and the access token)
to an eavesdropper thereby making the QAuth 2.0 proof-of-possession
security nodel conpletely insecure. QAuth 2.0 [2] relies on TLS to
of fer confidentiality protection and additional protection can be
applied using the JWK [5] offered security nechani sm which woul d add
an additional layer of protection on top of TLS for cases where the
keying material is conveyed, for exanple, to a hardware security
modul e. Which version(s) of TLS ought to be inplenmented will vary
over time, and depend on the wi despread depl oynent and known security
vulnerabilities at the tinme of inplenmentation. At the tine of this
witing, TLS version 1.2 [4] is the npost recent version. The client
MUST validate the TLS certificate chain when maki ng requests to
protected resources, including checking the validity of the
certificate.

Simlarly to the security recomendations for the bearer token
specification [12] devel opers MJST ensure that the epheneral
credentials (i.e., the private key or the session key) is not |eaked
to third parties. An adversary in possession of the ephenera
credentials bound to the access token will be able to inpersonate the
client. Be aware that this is a real risk with many snart phone app
and Web devel opnent envi ronnents.

Clients can at any time request a new proof-of-possessi on capabl e
access token. Using a refresh token to regularly request new access
tokens that are bound to fresh and unique keys is inmportant. Keeping
the lifetime of the access token short allows the authorization
server to use shorter key sizes, which translate to a perfornmance
benefit for the client and for the resource server. Shorter keys

al so lead to shorter nmessages (particularly with asymretric keying
mat eri al).

When aut hori zation servers bind symetric keys to access tokens then
they SHOULD scope these access tokens to a specific perm ssions.

8. | ANA Consi derati ons

This specification registers the follow ng paraneters in the QAuth
Paraneters Registry established by [2].

Paraneter nane: alg

Bradl ey, et al. Expi res August 28, 2017 [Page 14]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

10.

10.

Par amet er usage | ocation: token request, token response,
aut hori zati on response

Change controller: |ETF

Speci fication docunment(s): [[this docunent]]
Rel ated i nformation: None

Par anet er name: key

Par anet er usage | ocation: token request, token response,
aut hori zati on response

Change controller: |ETF

Speci fication docunent(s): [[this docunent]]

Rel ated information: None

Paraneter nane: aud

Par anet er usage | ocation: token request

Change controller: |ETF

Speci fication docunent(s): [[This docunent.]

Rel ated i nformati on: None

Acknow edgenent s

W woul d |i ke to thank Chuck Mrtinmore for his review comments.

Ref er ences

1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997
<http://wwv. rfc-editor.org/info/rfc2119>

[2] Hardt, D., Ed., "The QAuth 2.0 Authorization Framework"

RFC 6749, DO 10.17487/ RFC6749, Cctober 2012
<http://ww.rfc-editor.org/info/rfc6749>

Bradl ey, et al. Expi res August 28, 2017 [Page 15]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

[3] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, DO 10. 17487/ RFC3986, January 2005,
<http://ww.rfc-editor.org/info/rfc3986>.

[4] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DA 10.17487/ RFC5246, August 2008,
<http://ww. rfc-editor.org/info/rfc5246>.

[5] Jones, M, "JSON Wb Key (JWK)", RFC 7517,
DA 10. 17487/ RFC7517, May 2015,
<http://wwv rfc-editor.org/info/rfc7517>.

[6] Jones, M, Bradley, J., and N. Sakimura, "JSON Wb
Signature (JWs)", RFC 7515, DO 10.17487/ RFC7515, My
2015, <http://ww.rfc-editor.org/info/rfc7515>.

[7] Jones, M, "JSON Web Al gorithns (JWA)", RFC 7518,
DO 10.17487/ RFC7518, May 2015,
<http://ww. rfc-editor.org/info/rfc7518>.

[8] Jones, M and J. Hildebrand, "JSON Web Encryption (JVWE)",
RFC 7516, DA 10.17487/ RFC7516, May 2015,
<http://wwv. rfc-editor.org/info/rfc7516>.

[9] Jones, M, Bradley, J., and N. Sakimura, "JSON Wb Token
(Jwn)", RFC 7519, DO 10.17487/ RFC7519, May 2015,
<http://ww.rfc-editor.org/info/rfc7519>.

[10] Jones, M, Bradley, J., and H Tschofenig, "Proof-of-
Possessi on Key Semantics for JSON Wb Tokens (JWIs)",
RFC 7800, DO 10.17487/ RFC7800, April 2016,
<http://ww.rfc-editor.org/info/rfc7800>.

[11] Jones, M and N. Sakinura, "JSON Wb Key (JVK)
Thunbprint”, RFC 7638, DO 10.17487/ RFC7638, Septenber
2015, <http://ww. rfc-editor.org/info/rfc7638>.

10.2. Informative References
[12] Jones, M and D. Hardt, "The QAuth 2.0 Authorization
Framewor k: Bearer Token Usage", RFC 6750,

DO 10.17487/ RFC6750, Cctober 2012,
<http://ww. rfc-editor.org/info/rfc6750>.

Bradl ey, et al. Expi res August 28, 2017 [Page 16]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

[13] Crocker, D., Ed. and P. Overell, "Augnmented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234,
DO 10.17487/ RFC5234, January 2008,
<http://ww.rfc-editor.org/info/rfc5234>.

[14] Canmpbel |, B., Mrtinore, C., Jones, M, and Y. Gol and,
"Assertion Franework for QAuth 2.0 Cient Authentication
and Aut horization Gants", RFC 7521, DA 10.17487/ RFC7521,
May 2015, <http://ww. rfc-editor.org/info/rfc7521>.

[15] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
for Code Exchange by QAuth Public dients", RFC 7636,
DA 10. 17487/ RFC7636, Septenber 2015,
<http://ww. rfc-editor.org/info/rfc7636>.

[16] Richer, J., Ed., Jones, M, Bradley, J., Machulak, M, and
P. Hunt, "QAuth 2.0 Dynamic Cient Registration Protocol",
RFC 7591, DA 10.17487/ RFC7591, July 2015,
<http://wwv rfc-editor.org/info/rfc7591>.

[17] Hunt, P., Richer, J., MIls, W, Mshra, P., and H
Tschof enig, "QAuth 2.0 Proof-of-Possession (PoP) Security
Architecture", draft-ietf-oauth-pop-architecture-08 (work
in progress), July 2016.

[18] Richer, J., Ed., "QAuth 2.0 Token Introspection",
RFC 7662, DA 10.17487/ RFC7662, Cctober 2015,
<http://ww.rfc-editor.org/info/rfc7662>.
[19] Ri cher, J., Bradley, J., and H Tschofenig, "A Method for
Si gni ng HTTP Requests for QAuth", draft-ietf-oauth-signed-
http-request-03 (work in progress), August 2016.
Appendi x A, Augnent ed Backus- Naur Form (ABNF) Synt ax
This section provides Augnented Backus-Naur Form (ABNF) syntax
descriptions for the elenments defined in this specification using the
notation of [13].
A 1. ’aud Syntax

The ABNF syntax is defined as follows where by the "URI-reference"
definition is taken from|[3]:

aud = URI -reference

Bradl ey, et al. Expi res August 28, 2017 [Page 17]

Internet-Draft QAuth 2.0 PoP: AS-Client Key Distribution February 2017

A 2. ’'key' Syntax
The "key" elenent is defined in Section 4 and Section 5:
key = 1*VSCHAR
A 3. ’alg Syntax
The "al g" elenent is defined in Section 6
alg = al g-token *(SP al g-token)
al g-t oken = 1* NQCHAR
Aut hors’ Addr esses

John Bradl ey
Ping ldentity

Email: ve7jtb@e7jtb.com

URI : http://ww.thread-safe.com
Phi | Hunt

O acl e Corporation

Emai | : phil . hunt @ahoo. com

URI : http://ww. i ndepdenti d.com

M chael B. Jones
M crosof t

Enmai | : nbj @n crosoft.com
URI : http://self-issued.infol/

Hannes Tschof eni g
ARM Li m ted
Austri a

Emai | : Hannes. Tschof eni g@nx. net
URI : http://ww.tschofenig.priv.at

Bradl ey, et al. Expi res August 28, 2017 [Page 18]

QAut h Wor ki ng G oup M Jones

I nternet-Draft M crosoft
I ntended status: Standards Track B. Canpbel

Expires: April 22, 2019 Ping Identity

J. Bradl ey

Yubi co

W Denni ss

Googl e

Cct ober 19, 2018

QAut h 2.0 Token Bi ndi ng
draft-ietf-oauth-token-bindi ng-08

Abstract

This specification enables QAuth 2.0 inplenentations to apply Token
Bi nding to Access Tokens, Authorization Codes, Refresh Tokens, JWI
Aut hori zation Gants, and JWI Client Authentication. This
cryptographically binds these tokens to a client’s Token Bi ndi ng key
pai r, possession of which is proven on the TLS connections over which
the tokens are intended to be used. This use of Token Bi nding
protects these tokens fromman-in-the-mddl e and token export and
replay attacks.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on April 22, 2019.

Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Jones, et al. Expires April 22, 2019 [Page 1]

Internet-Draft QAuth 2.0 Token Bi ndi ng

Cct ober 2018

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega

Provisions Relating to | ETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . 3
1.1. Requirenents hbtatlon and Cbnventlons . 3
1.2. Termnology . . 3

2. Token Binding for Refresh Tokens .o 4
2.1. Exanple Token Binding for Refresh Tokens 4

3. Token Binding for Access Tokens . . 6
3.1. Access Tokens |ssued fromthe Authorlzatlon Endp0|nt 7

3.1.1. Exanple Access Token Issued fromthe Authorization

Endpoi nt 8
3.2. Access Tokens Issued fron1the Token Endp0|nt . 9
3.2.1. Exanple Access Token |ssued fromthe Token Endp0|nt 9
3.3. Protected Resource Token Binding Validation . 11
3.3.1. Exanple Protected Resource Request . . 11
3.4. Representing Token Binding in JW Access Tokens . . 11
3.5. Representing Token Binding in Introspecti on Responses . 12
4. Token Bi ndi ng Met adata . .o Co 13
4.1. Token Binding dient thadata . Coe e 13
4.2. Token Binding Authorization Server Mtadata . 13
5. Token Binding for Authorization Codes . 14
5.1. Native Application Cients 14
5.1.1. Code Challenge . . 14
5.1.1.1. Exanple Code ChaIIenge 15
5.1.2. Code Verifier . . 15
5.1.2.1. Exanpl e Code V@rlfler 16
5.2. Wb Server Cients . 16
5.2.1. Code Challenge . . 17
5.2.1.1. Exanple Code Challenge 17
5.2.2. Code Verifier . . . 18
5.2.2.1. Exanple Code Ver|f|er . 18

6. Token Binding JWI Aut horization Gants and G |ent

Aut henti cati on . S 19
6.1. JWI Format and Proce55|ng ReqU|renents 19
6.2. Token Bound JWIs for Cient Authentication 20
6.3. Token Bound JWs for as Authorization Gants 20

7. Security Considerations . 21
7.1. Phasing in Token Binding 21

Jones, et al. Expires April 22, 2019 [Page 2]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

7.2. Binding of Refresh Tokens 21
8. | ANA Considerations . . .22
8.1. (QAuth Dynamic C |ent Reglstratlon thadata Reglstratlon .22
8.1.1. Registry Contents 22

8. 2. OAuth Aut hori zation Server thadata Registration 23
8.2.1. Registry Contents . . X

8. 3. PKCE Code Chal | enge hbthod Reglstratlon e 23
8.3.1. Registry Contents 23

9. Token Endpoi nt Aut hentication h@thod Reglstratlon 23
9.1. Registry Contents 24
10. Sub- Nanespace Registrations 24
10.1. Registry Contents 24
11. References . . e e e s s, 24
11.1. Normative References e e e s s, 24
11.2. Informative References 26
Appendi x A, Acknow edgenents 27
Appendi x B. Document History 27
Authors’ Addresses 029

1. Introduction

This specification enables QAuth 2.0 [RFC6749] inplenentations to
apply Token Binding (TLS Extension for Token Binding Protoco
Negoti ati on [RFC8472], The Token Bi nding Protocol Version 1.0

[RFC8471] and Token Bi nding over HITP [RFC8473]) to Access Tokens,
Aut hori zati on Codes, Refresh Tokens, JW Authorization Gants, and
JWI Cient Authentication. This cryptographically binds these tokens
to a client’s Token Binding key pair, possession of which is proven
on the TLS connections over which the tokens are intended to be used.
This use of Token Binding protects these tokens from nman-in-the-

m ddl e and token export and replay attacks.

1.1. Requirenents Notation and Conventions

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capital s, as shown here

1.2. Termnol ogy

This specification uses the ternms "Access Token", "Authorization
Code", "Authorization Endpoint”, "Authorization Server", "Cient"
"Protected Resource”, "Refresh Token", and "Token Endpoi nt" defined
by QAuth 2.0 [RFC6749], the terns "Caint and "JSON Wb Token (JWI)"
defined by JSON Wb Token (JWI) [JWI], the term "User Agent" defined
by RFC 7230 [RFC7230], and the ternms "Provided", "Referred", "Token

Jones, et al. Expires April 22, 2019 [Page 3]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

Bi ndi ng" and "Token Binding I D' defined by Token Binding over HITP
[RFC8473] .

2. Token Binding for Refresh Tokens

Token Binding of refresh tokens is a straightforward first-party
scenario, applying term"first-party" as used in Token Bindi ng over
HTTP [RFC8473]. It cryptographically binds the refresh token to the
client’s Token Bi nding key pair, possession of which is proven on the
TLS connections between the client and the token endpoint. This case
is straightforward because the refresh token is both retrieved by the
client fromthe token endpoint and sent by the client to the token
endpoint. Unlike the federation use cases described in Token Binding
over HTTP [RFC8473], Section 4, and the access token case descri bed
in the next section, only a single TLS connection is involved in the
refresh token case.

Token Binding a refresh token requires that the authorization server
do two things. First, when refresh token is sent to the client, the
aut hori zati on server needs to renenber the Provided Token Binding ID
and renenber its association with the issued refresh token. Second,
when a token request containing a refresh token is received at the

t oken endpoint, the authorization server needs to verify that the
Provi ded Token Binding ID for the request matches the renenbered
Token Binding ID associated with the refresh token. |If the Token

Bi nding I Ds do not match, the authorization server should return an
error in response to the request.

How t he authorization server remenbers the association between the
refresh token and the Token Binding IDis an inplenmentation detai

that beyond the scope of this specification. Sonme authorization
servers will choose to store the Token Binding ID (or a cryptographic
hash of it, such a SHA-256 hash [SHS]) in the refresh token itself,
provided it is integrity-protected, thus reducing the anount of state
to be kept by the server. Oher authorization servers will add the
Token Binding ID value (or a hash of it) to an internal data
structure al so containing other information about the refresh token
such as grant type information. These choices nmake no difference to
the client, since the refresh token is opaque to it.

2.1. Exanple Token Binding for Refresh Tokens

Thi s section provides an exanple of what the interactions around a
Token Bound refresh token might ook like, along with some details of
the invol ved processing. Token Binding of refresh tokens is nost
useful for native application clients so the exanple has protoco

el ements typical of a native client flow Extra line breaks in all
exanpl es are for display purposes only.

Jones, et al. Expires April 22, 2019 [Page 4]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

A native application client makes the foll owi ng access token request
with an authorization code using a TLS connecti on where Token Bindi ng
has been negotiated. A PKCE "code_verifier” is included because use
of PKCE is considered best practice for native application clients
[BCP212]. The base64url -encoded representation of the exported
keying material (EKM fromthat TLS connection is

"p6ZuSwf | 6pl e8es5KyeV76T4swZmpO0_awd27j Hf r bo", which is needed to
val i date the Token Bi ndi ng Message.

POST /as/token. oauth2 HTTP/ 1.1

Host: server. exanpl e.com

Cont ent - Type: application/ x-ww«+form url encoded

Sec- Token- Bi ndi ng: Al kAAgBBQG 07hHRROY5nk ONgc OKNF wW@SdEFNSI _t CZ_Cb
7LW t 6Xj p3Dbj i DJavGFi KP2HV_2J SE42Vz mKOVWW8n7 eqAAQOKI DK1O 0z6v4X5B
P7ucOpFest VZ42TTOdImoHpj i 06Qq3j sC CRSIx9ck2f W Yx8t LVXRZPATB3x6c24
aYOZEAAA

grant type=aut hori zati on_code&code=4bwcZesc7Xacc330!l t c66VWKk8EAf P9j 2
&code_verifier=2x6_yl S390- 8V7j aT9wj . 8qPI9nKn¥YCf . V-rDOOAr _1
&client i d=exanpl e-native-client-id

Figure 1: Initial Request with Code

A refresh token is issued in response to the prior request. Although
it looks like a typical response to the client, the authorization
server has bound the refresh token to the Provided Token Binding ID
fromthe encoded Token Bindi ng nessage in the "Sec-Token-Bi ndi ng"
header of the request. |In this exanple, that binding is done by
saving the Token Binding ID al ongsi de other information about the
refresh token in sone server side persistent storage. The base64url -
encoded representation of that Token Binding ID is "AgBBQ& 07hHRROY5n
kONcOKNF WOS5dEFNSI _t CZ_Cbl 7LW t 6Xj p3Dbj i DJavGFi KP2HV_2JSE42Vz mKOVWV8
n/eqA".

HTTP/ 1.1 200 OK
Cont ent - Type: application/json
Cache-Control: no-cache, no-store

{
"access_token":"EdRs7gqM Lb167Z9f V2dcwoLTC"

"refresh_token":"ACO ZEl QTj W9ar T9GQI GCd 7 Q\NwqOvhUYf sJTi v8hi s4"
"token_type":"Bearer",

"expires_in":3600
}

Fi gure 2: Successful Response

Jones, et al. Expires April 22, 2019 [Page 5]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

When the access token expires, the client requests a newone with a
refresh request to the token endpoint. |In this exanple, the request
is made on a new TLS connection so the EKM (base64url -encoded: "va-
84UkwdZgf d7uMX Fr Alda96WwgbdaPDX2knoQO AE") and signature in the Token
Bi ndi ng Message are different than in the initial request.

POST /as/token. oauth2 HTTP/ 1.1

Host: server. exanpl e. com

Cont ent - Type: application/x-wwform url encoded

Sec- Token- Bi ndi ng: Al kAAgBBQG 07hHRROY5nk ONc OKNf WB5dEFNSI _t CZ Cb
7LW t 6Xj p3Dbj i DJavGFi KP2HV_2JSE42VznKOVWVBn7eqAAQCPGhaG_YRf 27q0r a
LOUT4f sKKj L6PukuOT00qzamAXxCOg7m i d7GnLpnb_sM7kwSxLi 7i NHzz DgCAKP
t 31 HWAAA

ref resh_t oken=ACC ZEI QTj Wpar T9GOJ GGd 7 Q\Nwg OMTUYT sJTi v8hi s4
&grant _type=refresh_token&client id=exanple-native-client-id

Fi gure 3: Refresh Request

However, because the Token Binding IDis long-lived and may span

mul tiple TLS sessions and connections, it is the sane as in the
initial request. That Token Binding IDis what the refresh token is
bound to, so the authorization server is able to verify it and issue
a new access token.

HTTP/ 1.1 200 OK
Cont ent - Type: application/json
Cache-Control : no-cache, no-store

{
"access_t oken": " bwc ESOWC4yOC(Bi Psgcn117k7",
"token_type":"Bearer",
"expires_in":3600

}

Fi gure 4: Successful Response
3. Token Binding for Access Tokens

Token Binding for access tokens cryptographically binds the access
token to the client’s Token Binding key pair, possession of which is
proven on the TLS connections between the client and the protected
resource. Token Binding is applied to access tokens in a sinilar
manner to that described in Token Bi nding over HTITP [RFC8473],
Section 4 (Federation Use Cases). It also builds upon the nechanisns
for Token Binding of ID Tokens defined in Openl D Connect Token Bound
Aut hentication 1.0 [Openl D. TokenBi ndi ng] .

Jones, et al. Expires April 22, 2019 [Page 6]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

In the Openl D Connect [OpenlD. Core] use case, HITP redirects are used
to pass information between the identity provider and the relying
party; this HITP redirect makes the Token Binding ID of the relying
party available to the identity provider as the Referred Token
Binding 1D, information about which is then added to the I D Token

No such redirect occurs between the authorization server and the
protected resource in the access token case; therefore, information
about the Token Binding ID for the TLS connecti on between the client
and the protected resource needs to be explicitly comunicated by the
client to the authorization server to achi eve Token Binding of the
access token.

This information is passed to the authorization server using the

Ref erred Token Binding ID, just as in the ID Token case. The only
difference is that the client needs to explicitly comunicate the
Token Binding ID of the TLS connection between the client and the
protected resource to the Token Binding inplenentation so that it is
sent as the Referred Token Binding IDin the request to the

aut hori zation server. This functionality provided by Token Bi ndi ng
i mpl ementations is described in |Inplementation Considerations of
Token Bi ndi ng over HITP [RFC8473], Section 6.

Note that to obtain this Token Binding ID, the client may need to
establish a TLS connection between itself and the protected resource
prior to making the request to the authorization server so that the
Provi ded Token Binding ID for the TLS connection to the protected
resource can be obtained. How the client retrieves this Token
Binding ID fromthe underlying Token Binding APl is inplenentation
and operating systemspecific. An alternative, if supported, is for
the client to generate a Token Binding key to use for the protected
resource, use the Token Binding ID for that key, and then later use
that key when the TLS connection to the protected resource is

est abl i shed.

3.1. Access Tokens Issued fromthe Authorization Endpoint

For access tokens returned directly fromthe authorization endpoint,
such as with the inplicit grant defined in QAuth 2.0 [RFC6749],
Section 4.2, the Token Binding ID of the client’s TLS channel to the
protected resource is sent with the authorization request as the

Ref erred Token Binding IDin the "Sec-Token-Bi ndi ng" header, and is
used to Token Bind the access token

Upon receiving the Referred Token Binding ID in an authorization
request, the authorization server associates (Token Binds) the ID
with the access token in a way that can be accessed by the protected
resource. Such nethods include enbedding the Referred Token Binding
ID (or a cryptographic hash of it) in the issued access token itself,

Jones, et al. Expires April 22, 2019 [Page 7]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

possi bly using the syntax described in Section 3.4, or through token
i ntrospection as described in Section 3.5. The method for
associating the referred token binding IDw th the access token is
determ ned by the authorization server and the protected resource,
and is beyond the scope for this specification.

3.1.1. Exanple Access Token |Issued fromthe Authorization Endpoi nt

This section provides an exanple of what the interactions around a
Token Bound access token issued fromthe authorization endpoint night
| ook Iike, along with sone details of the involved processing. Extra
line breaks in all exanples are for display purposes only.

The client directs the user-agent to nake the follow ng HTTP request
to the authorization endpoint. 1t is a typical authorization request
that, because Token Bi nding was negoti ated on the underlying TLS
connection and the user-agent was signaled to reveal the Referred
Token Bindi ng, also includes the "Sec-Token-Bindi ng" header with a
Token Bi ndi ng Message that contains both a Provided and Referred
Token Bi nding. The base64url-encoded EKM fromthe TLS connection
over which the request was nade is

"j I 5UAyj s5XCPI SUGQ wgc Sr O VI Wj4f hLVI FTQ4nLxc" .

GET /as/aut hori zati on. oaut h2?r esponse_t ype=t oken
&client i d=exanpl e-client-id&state=rMpzZxGlc3gKy6r EbsD8s
& edirect _uri=https¥BAYRF¥2Fcl i ent %2Eexanpl e%2Eor g¥%@2Fcb HTTP/ 1.1

Host: server. exanpl e.com

Sec- Token- Bi ndi ng: ARI AAgBBQ EE8nSM Dy2dj 9EEBdXaQT9VWBRq1NS- j WVBebPoF
6FyLOj | f ATVES5zI i rcgOTZnEglxel r C3DsGegwj s4bhwl4AQGKDI AXFFMy Gk ZegC
W bTI gX3F9HTt - | IXFU_pi 16ezka7qVRCpSFOBQLf Sql sxMoYf SSCIX1BDt r | L7PX
j __f UAAAECAEFALBNUNP3t e5W W Ewi ej Ez0OpesnC5PElI W 7kZ5n] LSqQTj 1ci |l p
5v@BOLLUCYM a2BYTUPKt d5EdS- Pal T4t 6ABADgei zRa5Nk TMuX4z OdC- RAcLNWV
@Bl Lu2Psko- UILR_XAHAQOH7- mD_nQR1zBN78nYMKPv Hs z8L 3z \WKRVy XEgAA

Fi gure 5: Authorization Request
The aut hori zation server issues an access token and delivers it to
the client by redirecting the user-agent with the foll owi ng HTTP
response:
HTTP/ 1.1 302 Found
Location: https://client.exanple.org/cbh#state=r MpZxGLc3gKy6r EbsD8s
&expi res_i n=3600&t oken_t ype=Bear er
&access_t oken=eyJhbCGeci G JFUzI[...omitted for brevity...]8xy5WssQ

Figure 6: Authorization Response

Jones, et al. Expires April 22, 2019 [Page 8]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

The access token is bound to the Referred Token Binding ID fromthe
aut hori zati on request, which when represented as a JWI, as described
in Section 3.4, contains the SHA-256 hash of the Token Binding ID as
the value of the "tbh" (token binding hash) nenber of the "cnf"
(confirmation) claim The confirmation claimportion of the JW
Clainms Set is shown in the follow ng figure.

{
...other clains omtted for brevity..
"enf":{
"tbh": "vowQESa_MgbGIW XaFm BTN2QDPwh8PhuBm Et UAgxc"
}
}

Figure 7: Confirmation O aim
3.2. Access Tokens Issued fromthe Token Endpoi nt

For access tokens returned fromthe token endpoint, the Token Bi ndi ng
ID of the client’s TLS channel to the protected resource is sent as
the Referred Token Binding IDin the "Sec-Token-Bi ndi ng" header, and
is used to Token Bind the access token. This applies to all the
grant types from QAuth 2.0 [RFC6749] using the token endpoint,
including, but not linted to the refresh and authorizati on code
token requests, as well as sone extension grants, such as JW
assertion authorization grants [RFC7523].

Upon receiving the Referred Token Binding IDin a token request, the
aut hori zati on server associates (Token Binds) the IDwth the access
token in a way that can be accessed by the protected resource. Such
nmet hods i ncl ude enbeddi ng the Referred Token Binding ID (or a
cryptographic hash of it) in the issued access token itself, possibly
usi ng the syntax described in Section 3.4, or through token

i ntrospection as described in Section 3.5. The nmethod for
associating the referred token binding IDwth the access token is
determi ned by the authorization server and the protected resource,
and is beyond the scope for this specification.

Note that if the request results in a new refresh token being
generated, it can be Token bound using the Provi ded Token Binding ID
per Section 2.

3.2.1. Exanple Access Token |Issued fromthe Token Endpoi nt
This section provides an exanple of what the interactions around a
Token Bound access token issued fromthe token endpoint mght | ook

like, along with sone details of the involved processing. Extra |line
breaks in all exanples are for display purposes only.

Jones, et al. Expires April 22, 2019 [Page 9]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

The client nakes an access token request to the token endpoint and

i ncl udes the "Sec-Token-Bi ndi ng" header with a Token Bindi ng Message
that contains both Provided and Referred Token Binding IDs. The
Provi ded Token Binding IDis used to validate the token binding of
the refresh token in the request (and to Token Bind a new refresh
token, if one is issued), and the Referred Token Binding IDis used
to Token Bind the access token that is generated. The base64url -
encoded EKM fromthe TLS connection over which the access token
request was nmade is "4j TcbelQ@ocgPTZ5I 6j sh6pRP18l FKdwwPvasYj n1- E"

POST /as/token. oauth2 HTTP/ 1.1

Host: server. exanpl e.com

Cont ent - Type: application/ x-wmwform url encoded

Sec- Token- Bi ndi ng: ARl AAgBBQIFXJi r 2w4dgbJ7gr BxOuTYW r s9V50- PWIZi j egQ
OLUM _bGnGT6DI zxUK- mbn3dQUI keH7ybn6wbh1C5dGyV_| AAQDDFToFr Ht 41Zppq7
u_SEMF_E- Ki mAB- HewW 2MyZz AQOQKoW JCLFi CKj gt r 1Rr A2- j aJvoB8051DTGXQ
ydWrk AAAECAEFAUCLA YU83r qTGHEauloqvNwyOf DsdXzl yT_4x1Fcl dsMkj FkJac
| BJFGuYcccvnCak_duFi 3QKFENuwxgl - HHABAMcU71 j JOUA4I yE6YOECT z9BMPQOw
MbMBhwa RZNQA58f sTCCs| QE_NmNCl 9J Xy 4Nkdk EZBxqvZGPr 0y 8QZ_bmAwWAA

ref resh_t oken=gZR_ZI 8EAhLgWR- gWBi mhgZRZi _ 8EAhLgWRgVWBi nbf
&grant _type=refresh_token&client id=exanple-client-id

Fi gure 8: Access Token Request

The aut horization server issues an access token bound to the Referred
Token Binding ID and delivers it in a response the client.

HTTP/ 1.1 200 OK
Cont ent - Type: application/json
Cache-Control: no-cache, no-store

{
"access_token":"eyJhbGeci G JFUzI INi I slmtp[...omtted...]1cs29j 5¢c3",
"token_type":"Bearer",

"expires_in": 3600

}

Fi gure 9: Response

The access token is bound to the Referred Token Binding ID of the
access token request, which when represented as a JWI, as descri bed
in Section 3.4, contains the SHA-256 hash of the Token Binding ID as
the value of the "tbh" (token binding hash) nmenmber of the "cnf"
(confirmation) claim The confirmation claimportion of the JW
Clains Set of the access token is shown in the follow ng figure.

Jones, et al. Expires April 22, 2019 [Page 10]

I nt

3. 3.

3. 3.

3. 4.

ernet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

{
...other clains omtted for brevity..
"cnf":{
"tbh": "7NRBu9i DdJI YCTOgyeYuLxXvObl EA- yTpn& r AwKAws "
}
}

Figure 10: Confirmation Cl aim
Prot ect ed Resource Token Binding Validation

Upon receiving a token bound access token, the protected resource
val i dates the binding by conparing the Provided Token Binding ID to
the Token Binding ID for the access token. Alternatively,

crypt ographi ¢ hashes of these Token Binding |ID val ues can be
conpared. |f the values do not match, the resource access attenpt
MUST be rejected with an error.

1. Exanple Protected Resource Request

For exanple, a protected resource request using the access token from
Section 3.2.1 would | ook sonething like the followi ng. The

base64url| -encoded EKM from the TLS connecti on over which the request
was made is "7LsNP3BTlaHHdXdk6nmeEW t Ski PVLb7YS6i Hp- IXnuE". The
protected resource validates the binding by conparing the Provided
Token Binding ID fromthe "Sec-Token-Bi ndi ng" header to the token

bi ndi ng hash confirmation of the access token. Extra |line breaks in
the exanpl e are for display purposes only.

GET /api/stuff HITP/ 1.1

Host: resource. exanple.org

Aut hori zation: Bearer eyJhbGci O JFUzI INiIsI[...onmtted...]1cs29j5c3

Sec- Token- Bi ndi ng: Al kAAgBBQLgt RoWFPN66kxhx Gt aKr zcM Hw7HV8y Mk _- MIR
XJI XbDMYx ZCWh CASRRr mHHHL5wmpP3bhYt 0ChRDbs Mapf h_QAQN1He3Ft j 4Wa_S fz
ZVns4salfj 6aBoVsQWbr Ls191 1 vHze7Lr G Ky Cf PTKX| aj ebxp- TLPFZCc0JTqTY5
O0MBAAAA

Figure 11: Protected Resource Request
Representing Token Binding in JW Access Tokens

If the access token is represented as a JWI, the token binding

i nformati on SHOULD be represented in the sane way that it is in token
bound Openl D Connect | D Tokens [Openl D. TokenBi ndi ng]. That
specification defines the new JW Confirmation Method RFC 7800

[RFC7800] nenber "tbh" (token binding hash) to represent the SHA-256
hash of a Token Binding IDin an ID Token. The value of the "tbh"
menber is the base64url encoding of the SHA-256 hash of the Token

Jones, et al. Expires April 22, 2019 [Page 11]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

Binding ID. Al trailing pad =" characters are onitted fromthe
encoded val ue and no |ine breaks, whitespace, or other additiona
characters are included.

The followi ng exanpl e denpbnstrates the JWI Clainms Set of an access
t oken containi ng the base64url encodi ng of the SHA-256 hash of a
Token Binding ID as the value of the "tbh" (token binding hash)
element in the "cnf" (confirmation) claim

{

"iss": "https://server.exanple.cont,
"aud": "https://resource. exanple.org"
"sub": "brian@xanpl e. cont
"iat": 1467324320,
"exp": 1467324920,
"enf":{
"tbh": "7NRBu9i DdJI YCTOgyeYuLxXvObl EA- yTpnd r AWKAws "

}
}

Figure 12: JW with Token Bi nding Hash Confirmation C aim
3.5. Representing Token Binding in |Introspecti on Responses

QAuth 2.0 Token Introspection [RFC7662] defines a method for a
protected resource to query an authorization server about the active
state of an access token as well as to determ ne neta-information
about the token.

For a token bound access token, the hash of the Token Binding ID to
whi ch the token is bound is conveyed to the protected resource as
meta-information in a token introspection response. The hash is
conveyed using sane structure as the token binding hash confirmation
met hod, described in Section 3.4, as a top-level nenber of the

i ntrospection response JSON. The protected resource conpares that

t oken binding hash to a hash of the provided Token Binding |ID and
rejects the request, if they do not natch.

The following is an exanple of an introspection response for an

active token bound access token with a "tbh" token bindi ng hash
confirmati on nethod.

Jones, et al. Expires April 22, 2019 [Page 12]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

HTTP/ 1.1 200 K
Cont ent - Type: application/json

{
"active": true,
"iss": "https://server.exanple.cont,
"aud": "https://resource. exanple.org"
"sub": "brian@xanpl e. cont
"iat": 1467324320,
"exp": 1467324920,
"enf":{
"tbh": "7NRBu9i DdJl YCTOgyeYuLxXvObl EA- yTpmd r AwKAws "
}
}
Figure 13: Exanple Introspection Response for a Token Bound Access

Token
4. Token Bi ndi ng Met adata
4.1. Token Binding Cient Mtadata

Clients supporting Token Binding that also support the QAuth 2.0
Dynamic dient Registration Protocol [RFC7591] use these netadata
val ues to declare their support for Token Binding of access tokens
and refresh tokens:

client_access_token_token_bindi ng_supported
OPTI ONAL. Bool ean val ue specifying whether the client supports
Token Bindi ng of access tokens. |If onmtted, the default value is
"fal se".

client_refresh_t oken_t oken_bi ndi ng_support ed
OPTI ONAL. Bool ean val ue specifying whether the client supports
Token Binding of refresh tokens. |If omtted, the default value is
"fal se". Authorization servers MIST NOT Token Bind refresh tokens
issued to a client that does not support Token Bi ndi ng of refresh
tokens, but MAY reject requests conpletely fromsuch clients if
token binding is required by authorization server policy by
returning an QAuth error response.

4.2. Token Binding Authorization Server Metadata
Aut hori zation servers supporting Token Binding that al so support
QAuth 2.0 Authorization Server Metadata [RFC8414] use these netadata

val ues to declare their support for Token Binding of access tokens
and refresh tokens:

Jones, et al. Expires April 22, 2019 [Page 13]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

as_access_t oken_t oken_bi ndi ng_support ed
OPTI ONAL. Bool ean val ue speci fyi ng whet her the authorization
server supports Token Bi nding of access tokens. |If omtted, the
default value is "fal se".

as_refresh_token_t oken_bi ndi ng_supported
OPTI ONAL. Bool ean val ue specifying whether the authorization
server supports Token Binding of refresh tokens. |If omitted, the
default value is "fal se"

5. Token Binding for Authorization Codes

There are two variations for Token Binding of an authorization code.
One is appropriate for native application clients and the other for
web server clients. The nature of where the various conponents
reside for the different client types demands different nethods of
Token Binding the authorization code so that it is bound to a Token
Bi nding key on the end user’s device. This ensures that a |ost or
stol en authorization code cannot be successfully utilized froma
different device. For native application clients, the code is bound
to a Token Binding key pair that the native client itself possesses.
For web server clients, the code is bound to a Token Bi nding key pair
on the end user’s browser. Both variations utilize the extensible
framewor k of Proof Key for Code Exchange (PKCE) [RFC7636], which
enables the client to show possession of a certain key when
exchangi ng the authorization code for tokens. The follow ng
subsections individually describe each of the two PKCE net hods
respectively.

5.1. Native Application Cients

This section describes a PKCE nethod suitable for native application
clients that cryptographically binds the authorization code to a
Token Binding key pair on the client, which the client proves
possession of on the TLS connection during the access token request
contai ning the authorization code. The authorization code is bound
to the Token Binding ID that the native application client uses to
resol ve the authorization code at the token endpoint. This binding
ensures that the client that made the authorization request is the
same client that is presenting the authorization code.

5.1.1. Code Chall enge
As defined in Proof Key for Code Exchange [RFC7636], the client sends
the code challenge as part of the QAuth 2.0 authorization request

with the two additional paraneters: "code chall enge" and
"code_chal | enge_net hod".

Jones, et al. Expires April 22, 2019 [Page 14]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

For this Token Binding nmethod of PKCE, "TB-S256" is used as the value
of the "code_chal | enge_met hod" paraneter.

The val ue of the "code _chall enge" paraneter is the base64url encoding
(per Section 5 of [RFC4648] with all trailing padding (' =)
characters onitted and without the inclusion of any line breaks or
whi t espace) of the SHA-256 hash of the Provided Token Binding ID that
the client will use when calling the authorization server’s token
endpoint. Note that, prior to making the authorization request, the
client may need to establish a TLS connection between itself and the
aut hori zation server’s token endpoint in order to establish the
appropriate Token Bi nding | D.

When the authorization server issues the authorization code in the
aut hori zati on response, it associates the code chal |l enge and net hod
values with the authorization code so they can be verified | ater when
the authorization code is presented in the access token request.

5.1.1.1. Exanple Code Chall enge

For exanple, a native application client sends an authorization
request by sending the user’s browser to the authorization endpoint.
The resulting HTTP request | ooks sonething like the following (with
extra line breaks for display purposes only).

GET /as/ aut hori zati on. oaut h2?r esponse_t ype=code
&cl i ent i d=exanpl e-nati ve-client-id&state=o0UC2j yYt zRCr \yW VnG
&code_chal | enge=r Bl gOyMY4t ei uJVDgOnkr psAj Pyl 07D2WEM dng6eE
&code_chal | enge_net hod=TB- S256 HTTP/ 1. 1

Host: server. exanpl e.com

Figure 14: Authorization Request with PKCE Chal |l enge
5.1.2. Code Verifier

Upon recei pt of the authorization code, the client sends the access
token request to the token endpoint. The Token Bi ndi ng Protoco

[RFC8471] is negotiated on the TLS connecti on between the client and
the aut horization server and the "Sec-Token-Bi ndi ng" header, as
defined in Token Binding over HITP [RFC8473], is included in the
access token request. The authorization server extracts the Provided
Token Binding ID fromthe header value, hashes it w th SHA-256, and
compares it to the "code_chall enge" val ue previously associated with
the authorization code. |If the values match, the token endpoint
continues processing as nornmal (as defined by QAuth 2.0 [RFC6749]).
If the values do not natch, an error response indicating

"invalid grant"” MJST be returned.

Jones, et al. Expires April 22, 2019 [Page 15]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

The " Sec- Token-Bi ndi ng" header contains sufficient information for
verification of the authorization code and its association to the
original authorization request. However, PKCE [RFC7636] requires
that a "code verifier" parameter be sent with the access token
request, so the static value "provided tb" is used to neet that
requi renent and indicate that the Provided Token Binding ID is used
for the verification.

5.1.2.1. Exanple Code Verifier

An exanpl e access token request, correlating to the authorization
request in the previous exanple, to the token endpoint over a TLS
connection for which Token Bi ndi ng has been negoti ated woul d | ook
like the following (with extra |ine breaks for display purposes
only). The base64url -encoded EKM from the TLS connecti on over which
the request was nade is

" pNVKt PUQFvyl NYNnOO0QowwW QKoeMke X9H32hVuU71Bs" .

POST /as/token. oauth2 HTTP/ 1.1

Host: server. exanpl e. com

Cont ent - Type: application/x-wwform url encoded

Sec- Token- Bi ndi ng: Al kAAgBBQEOO GRFP- LMDhoVW6- 2i 318BsuuUunbAL8bt 1sz
| r LEFf p5DMXM\MBOBW ¢l Xr 2DKJnl 4xnuGs E6 GywQd9RbDOAQI Db3xyo9PBxj 8MBY
j Lt - 60CaxgDkyoBoTkyr nNbLc8t JQO0Jt XonKzBbj 5gPt HDduXc6xz_| zvNpx SPxi 42
87wk AAA

grant _type=aut hori zati on_code&code=mJAReTVKX7z| 30HUNd403PeNgNgxKGp6
&code_verifier=provided tb&client id=exanple-native-client-id

Fi gure 15: Token Request with PKCE Verifier
5.2. Wb Server Cients

Thi s section describes a PKCE nethod suitable for web server clients,
whi ch cryptographi cally binds the authorization code to a Token

Bi nding key pair on the browser. The authorization code is bound to
the Token Binding ID that the browser uses to deliver the

aut hori zation code to a web server client, which is sent to the

aut hori zation server as the Referred Token Binding ID during the

aut hori zation request. The web server client conveys the Token
Binding IDto the authorization server when naking the access token
request containing the authorization code. This binding ensures that
the aut horization code cannot successfully be played or replayed to
the web server client froma different browser than the one that nmade
the aut horization request.

Jones, et al. Expires April 22, 2019 [Page 16]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

5.2.1. Code Chall enge

As defined in Proof Key for Code Exchange [RFC7636], the client sends
the code challenge as part of the QAuth 2.0 Authorization Request
with the two additional paraneters: "code_chall enge" and
"code_chal | enge_net hod".

The client nust send the authorization request through the browser
such that the Token Binding ID established between the browser and
itself is revealed to the authorization server’s authorization
endpoint as the Referred Token Binding ID. Typically, this is done
with an HTTP redirection response and the "I ncl ude- Ref err ed- Token-
Bi ndi ng-1 D' header, as defined in Token Bi nding over HTTP [RFC8473],
Section 5. 3.

For this Token Binding nethod of PKCE, "referred tb" is used for the
val ue of the "code _chal |l enge_net hod" paraneter.

The val ue of the "code_chall enge" parameter is "referred_tb". The
static value for the required PKCE paraneter indicates that the

aut hori zation code is to be bound to the Referred Token Binding ID
fromthe Token Binding Message sent in the "Sec-Token-Bi ndi ng" header
of the authorization request.

When the authorization server issues the authorization code in the
aut hori zati on response, it associates the Token Binding ID (or hash
thereof) and code chall enge nmethod with the authorization code so
they can be verified |ater when the authorization code is presented
in the access token request.

5.2.1.1. Exanple Code Chall enge

For exanple, the web server client sends the authorization request by
redirecting the browser to the authorization endpoint. That HTTP
redirection response | ooks like the following (with extra |ine breaks
for display purposes only).

HTTP/ 1.1 302 Found

Location: https://server.exanpl e.con?response_t ype=code
&cl i ent i d=exanpl e-web-client-id&st at e=P4FUFqYzslij 3f f sYCP34d3
& edi rect _uri=https¥BAYRFY2Fcl i ent ¥%2Eexanpl e%2Eor g%2Fcb
&code_chal | enge=referred_t b&code chal |l enge_net hod=referred _tb

I ncl ude- Ref err ed- Token- Bi ndi ng-1 D: true

Figure 16: Redirect the Browser

The redirect includes the "Include-Referred-Token-Bi ndi ng-1D"
response header field that signals to the user-agent that it should

Jones, et al. Expires April 22, 2019 [Page 17]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

reveal, to the authorization server, the Token Binding |ID used on the
connection to the web server client. The resulting HTTP request to
the aut horization server |ooks something like the following (with
extra line breaks for display purposes only). The base64url-encoded
EKM from the TLS connection over which the request was nade is

" 7g0dRzMnPeO 1YWZGmVHy ReNsvd2CxcsRBN69Ue4cl

GET /as/ aut hori zati on. oaut h2?r esponse_t ype=code
&cl i ent _i d=exanpl e-web-cl i ent-i d&st at e=dr yo8YFpWacbUPj hBf 4Nvt 51
& edi rect _uri=https¥BAYRFY2Fcl i ent ¥%2Eexanpl e%2Eor g%2Fcb
&code_chal | enge=referred_th
&code_chal | enge_nethod=referred tb HITP/ 1.1

Host: server. exanpl e.com

Sec- Token- Bi ndi ng: ARl AAgBBQB- XOPf 5ePI f 7i kATi AFEGOS503I1 PnRf kyy e dWv
HCxI Onj j xC3DOE_OVf BNgr | Qxz | f kF7t Woy 2Zf yaE6XpwTs AQBYghFX78vMOgDX_F
d_b2dl HyH Mkl z8i MVBY_r eMd8QUaJFz51 B7PGANZ11j 58LoG5ChmQol INXYKt KZ
RXxr YAAAECAEFAdUFTnf QADkn1uDbQnvJEKk60@38L92¢gv- KO gl YadLoDl Ke2h53
hSi KWl P98i Rj _unedkNkAMyg9e2nmy4CGp7VWvBAe DUONaSXNz 1e6gKohwiN4A SAZ5e Ny x
45Mh8VI 4woL 1Bi pLoqgr JRoK6dx FKWJHRMUBROC LG 5Pi CoxybQH_TonBgAA

Figure 17: Authorization Request
5.2.2. Code Verifier

The web server client receives the authorization code fromthe
browser and extracts the Provi ded Token Binding ID fromthe "Sec-
Token- Bi ndi ng" header of the request. The client sends the
base64url| -encoded (per Section 5 of [RFC4648] with all trailing
padding ('=") characters onmtted and without the inclusion of any

I ine breaks or whitespace) Provided Token Binding ID as the val ue of
the "code_verifier" paraneter in the access token request to the

aut hori zati on server’s token endpoint. The authorization server
compares the value of the "code_verifier" paraneter to the Token

Bi nding 1D val ue previously associated with the authorization code.
If the values match, the token endpoint continues processing as
normal (as defined by QAuth 2.0 [RFC6749]). |If the val ues do not
mat ch, an error response indicating "invalid_grant” MJST be returned.

5.2.2.1. Exanple Code Verifier

Continuing the exanple fromthe previous section, the authorization
server sends the code to the web server client by redirecting the
browser to the client’s "redirect_uri", which results in the browser
maki ng a request like the following (wth extra line breaks for

di spl ay purposes only) to the web server client over a TLS channe
for which Token Bi ndi ng has been established. The base64url -encoded
EKM from the TLS connection over which the request was nade is
"EzWs0vyl Nosb_t aj t 8i j 3t V6cwy2KH i 8BAEMYXcNnO"

Jones, et al. Expires April 22, 2019 [Page 18]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

GET /cb?st at e=dr yo8YFpWacbUPj hBf 4Nvt 51&code=j wbD30Ca5cQvvLc81lbwe4CMvv

Host: client.exanple.org

Sec- Token- Bi ndi ng: Al kAAgBBQHVBU530AA5J9bg20J7yRICJELN_C doL_ij vqpW
GnS6AyCnt oed4Uoi sCD f 1 kY_7p3nZDZADMoPXt pnmOBgels AQEwWgC9Zpg7QFCDBI b
6d Zki 3VhH32KNf Lef LIc1vRIXE8I 70M PLZHP2Woxh6r Et ngBc AABUbEb Tz 7nmuN
Ln8uoAAA

Figure 18: Authorization Response to Wb Server Cient

The web server client takes the Provided Token Binding ID fromthe
above request fromthe browser and sends it, base64url encoded, to
the aut hori zation server in the "code_verifier" parameter of the
aut hori zati on code grant type request. Extra line breaks in the
exanpl e request are for display purposes only.

POST /as/token. oauth2 HTTP/ 1.1

Host: server.exanpl e.com

Cont ent - Type: application/ x-ww«+form url encoded

Aut hori zation: Basic b3JnLmVAYWLwbGUuY2xpZWs00m | dGY50CGNoaVWhZ28=

grant _type=aut hori zati on_code&code=j wbD300a5cQvvLc81lbwc4CMn
& edi rect _uri=https¥BAYRFY2Fcl i ent ¥%2Eexanpl e%2Eor g%2Fcb
&client id=exanpl e-web-client-id
&code_veri fi er =AgBBQHVBU530AA5J9bg20J7yRIOCJELN_C dolL_ijvVv
gqpVGenS6Ay Cnt oed4Uoi sCD_f | kY_7p3nZDZADMbPXt pnOBgels

Fi gure 19: Exchange Authorizati on Code
6. Token Binding JW Authorization Grants and Client Authentication

The JWI Profile for QAuth 2.0 Client Authentication and Authori zation
G ants [RFC7523] defines the use of bearer JW's as a nmeans for
requesting an QAuth 2.0 access token as well as for client

aut hentication. This section describes extensions to that
specification enabling the application of Token Binding to JW client
aut henti cation and JWI aut horization grants.

6.1. JWI Format and Processing Requirenents

In addition the requirenents set forth in Section 3 of RFC 7523
[RFC7523], the following criteria nust also be net for token bound
JWI's used as authorization grants or for client authentication

o The JWI MUST contain a "cnf" (confirmation) claimwith a "tbh"
(token bi ndi ng hash) menber identifying the Token Binding |ID of
the Provided Token Bi nding used by the client on the TLS
connection to the authorization server. The authorization server
MUST reject any JW that has a token binding hash confirmation

Jones, et al. Expires April 22, 2019 [Page 19]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

that does not match the correspondi ng hash of the Provided Token
Binding ID fromthe "Sec-Token-Bi ndi ng" header of the request.

6.2. Token Bound JWIs for Cient Authentication

To use a token bound JWI for client authentication, the client uses
the paraneter values and encodi ngs from Section 2.2 of RFC 7523

[RFC7523] with one exception: the value of the
"client_assertion_type" is "urn:ietf:parans:oauth:client-assertion-
type:jwt-token-bound".

The "QAut h Token Endpoi nt Aut hentication Methods" registry

[1 ANA. QAut h. Par anet ers] contains val ues, each of which specify a

met hod of authenticating a client to the authorization server. The
val ues are used to indicated supported and utilized client

aut hentication methods in authorization server metadata, such as

[Openl D. Di scovery] and [RFC8414], and in QAuth 2.0 Dynanic dient
Regi stration Protocol [RFC7591]. The values "private key jw" and
"client_secret_jw" are designated by Openl D Connect [OpenlD. Core] as
aut henti cation nmethod val ues for bearer JW client authentication
using asymetric and symmetric JW5 [RFC7515] al gorithnms respectively.
For Token Bound JWI for client authentication, this specification
defines and registers the follow ng authentication nethod val ues.

private_key_token_bound_jwt
Indicates that client authentication to the authorization server
will occur with a Token Bound JWI, which is signed with a client’s
private key.

client_secret token_bound jwt
Indicates that client authentication to the authorization server
will occur with a Token Bound JWI, which is integrity protected
with a MAC using the octets of the UTF-8 representation of the
client secret as the shared key.

Note that just as with the "private key jw" and "client_secret jwt"
aut henti cati on met hods, the "token_endpoi nt_auth_signing_alg" client
registration paraneter nmay be used to indicate the JW5 al gorithm used
for signing the client authentication JW for the authentication

net hods defined above.

6.3. Token Bound JWs for as Authorization Gants
To use a token bound JWI for an authorization grant, the client uses
the paraneter values and encodings from Section 2.1 of RFC 7523

[RFC7523] with one exception: the value of the "grant type" is
"urn:ietf:parans: oaut h: grant-type:jwt-token-bound"

Jones, et al. Expires April 22, 2019 [Page 20]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

7. Security Considerations
7.1. Phasing in Token Bi nding

Many QAut h inplenentations will be deployed in situations in which
not all participants support Token Binding. Any of conbination of
the client, the authorization server, the protected resource, and the
user agent may not yet support Token Binding, in which case it wll
not work end-t o-end.

It is a context-dependent depl oynent choice whether to all ow
interactions to proceed in which Token Binding is not supported or
whether to treat the om ssion of Token Binding at any step as a fata
error. Particularly in dynam c depl oynent environnents in which End
Users have choices of clients, authorization servers, protected
resources, and/or user agents, it is recommended that, for sone
reasonabl e period of tine during which Token Binding technology is
bei ng adopted, authorizations using one or nore conponents that do
not inplement Token Binding be allowed to successfully proceed. This
enabl es different conponents to be upgraded to supporting Token
Binding at different tines, providing a snooth transition path for
phasing in Token Bi nding. However, when Token Bi ndi ng has been
perfornmed, any Token Bi nding key m snatches MJST be treated as fata
errors.

In nore controll ed depl oynment environnments where the participants in
an authorization interaction are known or expected to support Token
Bi nding and yet one or nore of them does not use it, the

aut hori zati on SHOULD be aborted with an error. For instance, an

aut hori zati on server should reject a token request that does not

i nclude the "Sec- Token-Bi ndi ng" header, if the request is froma
client known to support Token Binding (via configuration or the
"client_access_t oken_t oken_bi ndi ng_supported” netadata paraneter).

7.2. Binding of Refresh Tokens

Section 6 of RFC 6749 [RFC6749] requires that a refresh token be
bound to the client to which it was issued and that, if the client
type is confidential or the client was issued client credentials (or
assi gned other authentication requirenents), the client nust
authenticate with the authorization server when presenting the
refresh token. As a result, for non-public clients, refresh tokens
are indirectly bound to the client’s credentials and cannot be used
wi t hout the associated client authentication. Non-public clients
then are afforded protections (equivalent to the strength of their
aut hentication credential s) agai nst unauthorized replay of refresh
tokens and it is reasonable to not Token Bind refresh tokens for such
clients while still Toking Binding the issued access tokens. Refresh

Jones, et al. Expires April 22, 2019 [Page 21]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

tokens issued to public clients, however, do not have the benefit of
such protections and authorization servers MAY el ect to disall ow
public clients fromregistering or establishing configuration that
woul d al |l ow Token Bound access tokens but unbound refresh tokens.

Sone web-based confidential clients inplenented as distributed nodes
may be perfectly capable of inplenenting access token binding (if the
access token remains on the node it was bound to, the token binding
keys woul d be locally available for that node to prove possession),
but may struggle with refresh token binding due to an inability to
share token binding key material between nodes. As confidentia
clients already have credentials which are required to use the
refresh token, and those credentials should only ever be sent over
TLS server-to-server between the client and the Token Endpoint, there
is still value in token binding access tokens w thout token binding
refresh tokens. Authorization servers SHOULD consi der supporting
access token binding without refresh token binding for confidenti al
web clients as there are still security benefits to do so.

Clients MJST declare through dynam c (Section 4.1) or static
registration informati on what types of token bound tokens they
support to enable the server to bind tokens accordingly, taking into
account any phase-in policies. Authorization servers MAY reject
requests fromany client who does not support token binding (by
returning an QAuth error response) per their own security policies.

8. | ANA Consi derations
8.1. (QAuth Dynamic Client Registration Metadata Registration

This specification registers the following client netadata
definitions in the | ANA "QAuth Dynami c Cient Registration Mtadata"
registry [I ANA QAut h. Par aneters] established by [RFC7591]:

8.1.1. Registry Contents

o Cient Metadata Nane:
"client_access_t oken_t oken_bi ndi ng_supported”

o Cdient Metadata Description: Bool ean val ue specifying whether the
client supports Token Bi nding of access tokens

0 Change Controller: |ESG

0 Specification Docunment(s): Section 4.1 of [[this specification]]

o Cient Mtadata Nane:
"client_refresh_token_token_bi ndi ng_supported”

0o Cdient Metadata Description: Bool ean val ue specifying whether the
client supports Token Bi nding of refresh tokens

o Change Controller: |IESG

Jones, et al. Expires April 22, 2019 [Page 22]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

0 Specification Docunment(s): Section 4.1 of [[this specification]]
8.2. (QAuth Authorization Server Metadata Regi stration

This specification registers the follow ng netadata definitions in
the 1 ANA "QAuth Authorization Server Metadata" registry
[ANA. QAut h. Par anmet ers] established by [RFC8414]:

8.2.1. Registry Contents

o0 Metadata Nane: "as_access_t oken_token_bi ndi ng_supported”
0 Metadata Description: Bool ean val ue specifying whether the
aut hori zati on server supports Token Bi nding of access tokens
0 Change Controller: |IESG
0 Specification Docunent(s): Section 4.2 of [[this specification]]

0 Metadata Nane: "as_refresh_token_t oken_bindi ng_supported"
0 Metadata Description: Bool ean val ue specifying whether the
aut hori zati on server supports Token Binding of refresh tokens
0 Change Controller: |IESG
0 Specification Docunent(s): Section 4.2 of [[this specification]]

8.3. PKCE Code Chall enge Met hod Regi stration

This specification requests registration of the follow ng Code
Chal | enge Met hod Parameter Names in the | ANA "PKCE Code Chall enge
Met hods” registry [1ANA. QAut h. Paraneters] established by [RFC7636].

8.3.1. Registry Contents

0 Code Chal |l enge Met hod Paraneter Nane: TB-S256
Change controller: |ESG
0 Specification docunent(s): Section 5.1.1 of [[this specification

1]

0 Code Chall enge Method Paraneter Nanme: referred tb
Change controller: |ESG
0 Specification docunment(s): Section 5.2.1 of [[this specification

1]

9. Token Endpoint Authentication Method Registration

o

o

This specification requests registration of the followi ng values in
the 1 ANA "QAut h Token Endpoi nt Aut hentication Methods" registry
[ANA. QAut h. Par amet ers] established by [RFC7591].

Jones, et al. Expires April 22, 2019 [Page 23]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

9.1. Registry Contents

o Token Endpoi nt Authentication Method Nane:
"client_secret_token _bound jw"
0 Change Controller: |IESG
0 Specification Document(s): Section 6 of [[this specification]]

0 Token Endpoi nt Authentication Method Nane:
"private_key token_bound_jw"
0 Change Controller: |ESG
o0 Specification Docunent(s): Section 6 of [[this specification]]

10. Sub- Namespace Registrations
This specification requests registration of the follow ng values in
the 1ANA "QAuth URI" registry [IANA QAut h. Paranmeters] established in
An | ETF URN Sub- Nanmespace for QAuth [RFC6755].

10.1. Registry Contents

0o URN wurn:ietf:parans: oauth: grant-type:jw -token-bound

0 Common Nane: Token Bound JWI Grant Type for QAuth 2.0

0 Change controller: |ESG

0 Specification Document: Section 6 of [[this specification]]

0o URN wurn:ietf:paranms: oauth:client-assertion-type:jw-token-bound
0 Comon Nanme: Token Bound JWI for QAuth 2.0 Client Authentication
0 Change controller: |ESG

0 Specification Docunent: Section 6 of [[this specification]]

11. Ref er ences
11. 1. Nor mat i ve Ref erences

[I ANA. QAut h. Par anet er s]
| ANA, "QAuth Paraneters”,
<http://ww. i ana. or g/ assi gnnment s/ oaut h- par anet er s>.

[Jwr] Jones, M, Bradley, J., and N. Sakimura, "JSON Wb Token
(JWNn ", RFC 7519, DO 10.17487/RFC7519, My 2015,
<http://tools.ietf.org/htm /rfc7519>.

[Openl D. TokenBi ndi ng]
Jones, M, Bradley, J., and B. Canpbell, "OpenlD Connect
Token Bound Aut hentication 1.0", Cctober 2017,
<http://openid. net/specs/
openi d- connect -t oken- bound- aut henti cati on-1_0-03. ht ni >.

Jones, et al. Expires April 22, 2019 [Page 24]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<https://www. rfc-editor.org/info/rfc2119>.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10.17487/ RFC4648, Cctober 2006,
<https://www. rfc-editor.org/info/rfc4648>.

[RFC6749] Hardt, D., Ed., "The QAuth 2.0 Authorization Franmework",
RFC 6749, DO 10.17487/ RFC6749, Cctober 2012,
<https://ww. rfc-editor.org/info/rfc6749>.

[RFC7230] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
RFC 7230, DA 10. 17487/ RFC7230, June 2014,
<https://www. rfc-editor.org/info/rfc7230>.

[RFC7523] Jones, M, Campbell, B., and C. Mrtinore, "JSON Web Token
(JWI) Profile for QAuth 2.0 Cient Authentication and
Aut hori zation Grants", RFC 7523, DA 10.17487/ RFC7523, May
2015, <https://ww.rfc-editor.org/info/rfc7523>.

[RFC7591] Richer, J., Ed., Jones, M, Bradley, J., Machulak, M, and
P. Hunt, "QAuth 2.0 Dynanmic dient Registration Protocol",
RFC 7591, DA 10. 17487/ RFC7591, July 2015,
<https://www. rfc-editor.org/info/rfc7591>.

[RFC7636] Sakinura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
for Code Exchange by QAuth Public dients", RFC 7636,
DA 10. 17487/ RFC7636, Septenber 2015,
<https://www. rfc-editor.org/info/rfc7636>.

[RFC7662] Richer, J., Ed., "QAuth 2.0 Token Introspection",
RFC 7662, DO 10.17487/ RFC7662, Cctober 2015,
<https://ww. rfc-editor.org/info/rfc7662>.

[RFC7800] Jones, M, Bradley, J., and H Tschofenig, "Proof-of-
Possessi on Key Semantics for JSON Wb Tokens (JWIs)",
RFC 7800, DA 10.17487/ RFC7800, April 2016,
<https://ww.rfc-editor.org/info/rfc7800>.

[RFC8174] Leiba, B., "Anbiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DA 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.

Jones, et al. Expires April 22, 2019 [Page 25]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

[RFC8414] Jones, M, Sakimura, N., and J. Bradley, "QAuth 2.0
Aut hori zation Server Metadata", RFC 8414,
DO 10.17487/ RFC8414, June 2018,
<https://ww. rfc-editor.org/info/rfc8414>.

[RFC8471] Popov, A, Ed., Nystroem M, Balfanz, D., and J. Hodges,
"The Token Binding Protocol Version 1.0", RFC 8471,
DO 10.17487/ RFC8471, Cctober 2018,
<https://www. rfc-editor.org/info/rfc8471>.

[RFC8472] Popov, A, Ed., Nystroem M, and D. Bal fanz, "Transport
Layer Security (TLS) Extension for Token Bindi ng Protocol
Negoti ation", RFC 8472, DO 10.17487/ RFC8472, Cctober
2018, <https://www. rfc-editor.org/info/rfc8472>.

[RFC8473] Popov, A, Nystroem M, Balfanz, D., Ed., Harper, N, and
J. Hodges, "Token Binding over HTTP", RFC 8473,
DA 10.17487/ RFC8473, Cctober 2018,
<https://ww. rfc-editor.org/info/rfc8473>.

[SHS] National Institute of Standards and Technol ogy, "Secure
Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
<http://csrc.nist.gov/publications/fips/fipsl80-4/
fips-180-4. pdf >.

11. 2. I nformati ve References

[BCP212] Denniss, W and J. Bradley, "QAuth 2.0 for Native Apps",
BCP 212, RFC 8252, DO 10.17487/ RFC8252, Cctober 2017,
<https://ww. rfc-editor.org/info/rfc8252>.

[Openl D. Cor €]
Saki nura, N., Bradley, J., Jones, M, de Medeiros, B., and
C. Mortinore, "Openl D Connect Core 1.0", August 2015,
<http://openid. net/specs/ openi d-connect-core-1_0. htm >,

[Openl D. Di scovery]
Sakinmura, N., Bradley, J., Jones, M, and E. Jay, "OpenlD
Connect Discovery 1.0", August 2015,
<http://openid. net/specs/
openi d- connect -di scovery-1 0. htni >,

[RFC6755] Canpbell, B. and H Tschofenig, "An | ETF URN Sub- Namespace

for QAuth", RFC 6755, DO 10.17487/RFC6755, Cctober 2012,
<https://www. rfc-editor.org/info/rfc6755>.

Jones, et al. Expires April 22, 2019 [Page 26]

Intern

[RF

Append

Thi
t he
Kat
Sec
con
spe
Sak

Append

[l
-08

(0]

0
0
-07

(0]

-06

Jones,

et-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

C7515] Jones, M, Bradley, J., and N. Sakinura, "JSON Wb
Signature (JW5)", RFC 7515, DA 10.17487/ RFC7515, May
2015, <https://ww.rfc-editor.org/info/rfc7515>.

i x A. Acknow edgenents

s specification was devel oped within the QAuth Worki ng G oup under
chai rmanshi p of Hannes Tschofenig and Rifaat Shekh-Yusef wth

hl een Moriarty, Eric Rescorla, and Benjam n Kaduk serving as

urity Area Directors. Additionally, the follow ng individuals

tributed ideas, feedback, and wordi ng that hel ped shape this

cification: Dirk Bal fanz, Andrei Popov, Justin Richer, and Nat

i mur a.

i x B. Docunment History

to be renoved by the RFC Editor before publication as an RFC]]

Update reference to -03 of openid-connect-token-bound-
aut henti cati on.

Update the references to the core token binding specs, which are
now RFCs 8471, 8472, and 8473.

Update reference to AS netadata, which is now RFC 8414.

Add chairs and ADs to the Acknow edgenents.

Explicitly state that the base64url encodi ng of the tbh val ue
doesn’t include any trailing pad characters, |ine breaks,
whi t espace, etc.

Update to | atest references for tokbind drafts and draft-ietf-
oaut h-di scovery.

Update reference to Inplenentation Considerations in draft-ietf-
t okbi nd-https, which is section 6 rather than 5.

Try to tweak text that references specific sections in other
docunents so that the HTM. generated by the ietf tools doesn't
link to the current docunment (based on old suggestion fromBarry
https://ww.ietf.org/ mail-archive/web/josel/current/nsg04571. htnl).

et al. Expires April 22, 2019 [Page 27]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

0 Use the boilerplate from RFC 8174.

0 Update reference for draft-ietf-tokbind-https to -12 and draft-
i etf-oauth-discovery to -09.

o Mnor editorial fixes.
-05

0 State that authorization servers should not token bind refresh
tokens issued to a client that doesn't support bound refresh
t okens, which can be indicated by the
"client_refresh_token_token_bi ndi ng_supported” client netadata
par anet er .

0 Add Token Binding for JW Authorization Gants and JW dient
Aut henti cation

0 Adjust the | anguage around aborting authorizations in Phasing in
Token Binding to be somewhat nore general and not only about
downgr ades.

0 Renove reference to, and usage of, 'QAuth 2.0 Protected Resource
Met adata’, which is no |onger a going concern

o Mved "Token Bindi ng Metadata" section before "Token Bi nding for
Aut hori zation Codes" to be closer to the "Token Binding for Access
Tokens" and "Token Binding for Refresh Tokens", to which it is
nore cl osely rel ated.

0 Update references for draft-ietf-tokbind- negotiation(-10),
protocol (-16), and https(-10), as well as draft-ietf-oauth-
di scovery(-07), and BCP212/ RFC8252 QAuth 2.0 for Native Apps.

- 04

o Define how to convey token binding information of an access token
via RFC 7662 QAuth 2.0 Token Introspection (note that the
I ntrospecti on Response Registration request for cnf/Confirmation
isin https://tools.ietf.org/htm/draft-ietf-oauth-ntls-
02#section-4.3 which will likely be published and registered prior
to this docunent).

o Mnor editorial fixes.
0 Added an open issue about needing to allow for web server clients

to opt-out of having refresh tokens bound while still allow ng for
bi ndi ng of access tokens (following frommention of the problemon

Jones, et al. Expires April 22, 2019 [Page 28]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

slide 16 of the presentation from Chi cago
https://ww.ietf.org/proceedi ngs/98/slides/slides-98-o0aut h-sessb-
t oken- bi ndi ng- 00. pdf).

-03

o Fix a few nistakes in and around the exanples that were noticed
preparing the slides for | ETF 98 Chi cago.

-02

0 Added a section on Token Binding for authorization codes with one
variation for native clients and one for web server clients.

0 Updated | anguage to reflect that the binding is to the token
bi ndi ng key pair and that proof-of-possession of that key is done
on the TLS connection

0 Added a bunch of exanpl es.

0 Added a few Qpen Issues so they are tracked in the docunent.

0 Updated the Token Binding and QAuth Met adata references.

0 Added WIIliam Denniss as an aut hor

-01

0 Changed Token Binding for access tokens to use the Referred Token
Binding I D, now that the Inplenentation Considerations in the
Token Bi ndi ng HTTPS specification make it clear that
i mpl ementations will enable using the Referred Token Binding | D.

o Defined Protected Resource Metadata val ue.

0 Changed to use the nore specific term"protected resource" instead
of "resource server".

-00

0 Created the initial working group version fromdraft-jones-oauth-
t oken- bi ndi ng- 00.

Aut hors’ Addresses

Jones, et al. Expires April 22, 2019 [Page 29]

Internet-Draft QAuth 2.0 Token Bi ndi ng Cct ober 2018

M chael B. Jones
M crosof t

Enmai | : nbj @n crosoft.com
URI : http://self-issued.infol/

Bri an Canpbel |
Ping Identity

Enmai | : brian. d. canpbel | @nail . com

John Bradl ey
Yubi co

Enmail: ve7jtb@e7jth.com
URI : http://ww.t hread-safe. conf

W 1iam Denni ss

Googl e

1600 Amphitheatre Pkwy
Mountain View, CA 94043

USA
Emai | : wdenni ss@oogl e. com
URI : http://wdenni ss. cont

Jones, et al. Expires April 22, 2019 [Page 30]

QAut h Wor ki ng G oup M Jones

I nternet-Draft A. Nadal i n
I nt ended status: Standards Track M crosof t
Expires: April 22, 2019 B. Canpbel |, Ed.

J. Bradl ey

Ping ldentity

C. Murtinore

Sal esf orce
Cctober 19, 2018

QAut h 2.0 Token Exchange
draft-ietf-oauth-token-exchange-16

Abstract

This specification defines a protocol for an HITP- and JSON based
Security Token Service (STS) by defining how to request and obtain
security tokens from QAuth 2.0 authorization servers, including
security tokens enpl oying inpersonation and del egati on

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on April 22, 2019.
Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect

Jones, et al. Expires April 22, 2019 [Page 1]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction C e e e 3
1.1. Delegation vs. Inpersonation Semantics 4
1.2. Requirenents Notation and Conventions . 5
1.3. Ternminology . . . 6

2. Token Exchange Request and Response . 6
2.1. Request e 6

2.1.1. Relatlonshlp Betmeen Resource Audience and Scope . 8
2.2. Response . . 9
2.2.1. Successful Response . e e e e e 9
2.2.2. FError Response 10
2.3. Exanple Token Exchange 11

3. Token Type ldentifiers . . .13

4. JSCN Web Token d ai ns and Introspectlon Response Paraneters .14
4.1. "act" (Actor) Caim. 14
4. 2. "scope" (Scopes) Caim . . . e 16
4.3. "client_id" (dient Identlfler) G alm T 4
4.4. "may_act" (May Act For) Claim. 17

5. Security Considerations 18

6. Privacy Considerations 19

7. 1 ANA Considerations . . . Y £
7.1. QAuth URI Reglstrat|on]

7.1.1. Registry Contents . . . e A
7.2. CQAuth Parameters Reglstratlon A 0
7.2.1. Registry Contents . . . A O
7.3. CQAuth Access Token Type Reglstratlon -
7.3.1. Registry Contents . . . -
7.4. JSON Wb Token C ains Reglstrat|on 2 |
7.4.1. Registry Contents21
7.5. CQAuth Token Introspection Response Reg|strat|on ... 22
7.5.1. Registry Contents . . . e e 22
7.6. CQAuth Extensions Error Registration e e e e e .22
7.6.1. Registry Contents 22

8. References . . . C e s 22
8.1. Normative References e e e e s 22
8.2. Informative References . . X

Appendi x A. Additional Token Exchange Exanples e e oo, 24
A. 1. Inpersonation Token Exchange Exanple e e e e e 24

A.1.1. Token Exchange Request . . . e e e e e .. 24
A 1.2. Subject Token Clains 25
A.1.3. Token Exchange Response 25
A 1.4, |Issued Token dainms 26

Jones, et al. Expires April 22, 2019 [Page 2]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

A. 2. Del egation Token Exchange Example 26
A.2.1. Token Exchange Request 26

A .2.2. Subject Token Clains 27

A 2.3. Actor Token aims 28

A. 2.4. Token Exchange Response 28

A. 2.5 Issued Token dainms 28
Appendi x B. Acknow edgenents 29
Appendi x C. Document History 29
Authors’ Addresses ... 33

1. Introduction

A security token is a set of information that facilitates the sharing
of identity and security information in heterogeneous environnents or
across security domains. Exanples of security tokens include JSON
Web Tokens (JWIs) [JWI] and SAML 2.0 Assertions

[OASI S. sam -core-2.0-0s]. Security tokens are typically signed to
achieve integrity and sonetinmes al so encrypted to achi eve
confidentiality. Security tokens are also sonetines described as
Assertions, such as in [RFC7521].

A Security Token Service (STS) is a service capable of validating and
i ssuing security tokens, which enables clients to obtain appropriate
access credentials for resources in heterogeneous environments or
across security domains. Wb Service clients have used W5- Trust
[Ws-Trust] as the protocol to interact with an STS for token
exchange. VWhile W5 Trust uses XML and SQAP, the trend in nodern Wb
devel opnment has been towards RESTful patterns and JSON. The QAuth
2.0 Authorization Framework [RFC6749] and QAuth 2.0 Bearer Tokens

[RFC6750] have energed as popul ar standards for authorizing third-
party applications access to HITP and RESTful resources. The
conventional QAuth 2.0 interaction involves the exchange of some
representation of resource owner authorization for an access token
whi ch has proven to be an extrenely useful pattern in practice,
however, its input and output are sonewhat too constrained as is to
fully accormpdate a security token exchange frameworKk.

This specification defines a protocol extending QAuth 2.0 that
enables clients to request and obtain security tokens from

aut hori zation servers acting in the role of an STS. Similar to QAuth
2.0, this specification focuses on client devel oper sinplicity and
requires only an HTTP client and JSON parser, which are nearly

uni versal ly avail able in nodern devel opnent environnents. The STS
protocol defined in this specification is not itself RESTful (an STS
doesn’'t lend itself particularly well to a REST approach) but does
utilize conmunication patterns and data formats that should be

fam liar to devel opers accustonmed to working with RESTful systens.

Jones, et al. Expires April 22, 2019 [Page 3]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

A new grant type for a token exchange request and the associated
specific paranmeters for such a request to the token endpoint are
defined by this specification. A token exchange response is a nornal
QAuth 2.0 response fromthe token endpoint with a few additional
paraneters defined herein to provide information to the client.

The entity that nakes the request to exchange tokens is considered
the client in the context of the token exchange interaction

However, that does not restrict usage of this profile to traditiona
QAuth clients. An QAuth resource server, for exanple, mght assune
the role of the client during token exchange in order to trade an
access token, which it received in a protected resource request, for
a new token that is appropriate to include in a call to a backend
service. The new token mi ght be an access token that is nore
narrow y scoped for the downstream service or it could be an entirely
different kind of token

The scope of this specification is Iimted to the definition of a
basi ¢ request and response protocol for an STS-style token exchange
utilizing QAuth 2.0. Although a few new JW clains are defined that
enabl e del egati on semantics to be expressed, the specific syntax,
semantics and security characteristics of the tokens thenselves (both
those presented to the authorization server and t hose obtained by the
client) are explicitly out of scope and no requirenents are placed on
the trust nodel in which an inplenentation nmght be depl oyed.
Additional profiles may provide nore detail ed requirenents around the
specific nature of the parties and trust involved, such as whether

si gning and/ or encryption of tokens is needed or if proof-of-
possession style tokens will be required or issued; however, such
details will often be policy decisions nade with respect to the

speci fic needs of individual deploynents and will be configured or

i mpl ement ed accordingly.

The security tokens obtained may be used in a nunber of contexts, the
specifics of which are al so beyond the scope of this specification

1.1. Delegation vs. |npersonation Semantics

When principal A inpersonates principal B, Ais given all the rights
that B has within sone defined rights context and is

i ndi stinguishable fromB in that context. Thus, when principal A

i npersonates principal B, then in so far as any entity receiving such
a token is concerned, they are actually dealing with B. It is true
that some nenbers of the identity system mi ght have awareness that

i npersonation is going on, but it is not a requirement. For al
intents and purposes, when A is inpersonating B, Ais B

Jones, et al. Expires April 22, 2019 [Page 4]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

Del egati on semantics are different than inpersonation senmantics,
though the two are closely related. Wth del egati on senanti cs,
principal Astill has its own identity separate fromB and it is
explicitly understood that while B may have del egated sone of its
rights to A, any actions taken are being taken by A representing B
In a sense, Ais an agent for B

Del egati on and i npersonation are not inclusive of all situations.
When a principal is acting directly on its own behal f, for exanple,
nei t her del egation nor inpersonation are in play. They are, however,
the nore common semantics operating for token exchange and, as such
are given nore direct treatnment in this specification.

Del egation senmantics are typically expressed in a token by including
i nformati on about both the primary subject of the token as well as
the actor to whomthat subject has del egated sone of its rights

Such a token is sonetinmes referred to as a conposite token because it
i s conposed of information about multiple subjects. Typically, in
the request, the "subject_token" represents the identity of the party
on behal f of whomthe token is being requested while the
"actor_token" represents the identity of the party to whomthe access
rights of the issued token are being del egated. A conposite token

i ssued by the authorization server will contain information about
both parties. Wen and if a conposite token is issued is at the

di scretion of the authorization server and applicable policy and
confi guration.

The specifics of representing a conposite token and even whet her or
not such a token will be issued depend on the details of the

i mpl ementation and the kind of token. The representations of
conmposite tokens that are not JWs are beyond the scope of this
specification. The "actor_token" request paraneter, however, does
provide a neans for providing information about the desired actor and
the JWI "act" claimcan provide a representation of a chain of

del egati on.

1.2. Requirements Notation and Conventi ons

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14 [RFC2119] [RFCB174] when, and only when, they appear in al
capital s, as shown here

Jones, et al. Expires April 22, 2019 [Page 5]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

1.3. Terminol ogy

2

2

This specification uses the ternms "access token type", "authorization
server", "client", "client identifier", "resource server", "token
endpoint", "token request", and "token response" defined by QAuth 2.0

[RFC6749], and the terms "Base64url Encoding", "daini, and "JW
Clainms Set" defined by JSON Wb Token (JWI) [JW].

Token Exchange Request and Response
1. Request

A client requests a security token by making a token request to the
aut hori zati on server’s token endpoint using the extension grant type
mechani sm defined in Section 4.5 of QAuth 2.0 [RFC6749].

Client authentication to the authorization server is done using the
normal nechani sns provided by QAuth 2.0. Section 2.3.1 of The QAuth
2.0 Authorization Framework [RFC6749] defines password-based

aut hentication of the client, however, client authentication is

ext ensi bl e and ot her nmechani sns are possible. For example, [RFC7523]
defines client authentication using JSON Wb Tokens (JWIs) [JW].

The supported nethods of client authentication and whether or not to
al | ow unaut henti cated or unidentified clients are depl oynent
decisions that are at the discretion of the authorization server

The client nakes a token exchange request to the token endpoint wth
an extension grant type by including the follow ng paraneters using
the "application/x-ww-formurl encoded" format with a character
encodi ng of UTF-8 in the HTTP request entity-body:

grant _type
REQUI RED. The val ue "urn:ietf:parans: oaut h: grant-type:token-
exchange" indicates that a token exchange is being perforned.

resource
OPTIONAL. Indicates the location of the target service or
resource where the client intends to use the requested security
token. This enabl es the authorization server to apply policy as
appropriate for the target, such as deternining the type and
content of the token to be issued or if and how the token is to be

encrypted. |In many cases, a client will not have know edge of the
| ogi cal organization of the systems with which it interacts and
will only know the location of the service where it intends to use

the token. The "resource" paraneter allows the client to indicate
to the authorization server where it intends to use the issued
token by providing the location, typically as an https URL, in the
t oken exchange request in the same formthat will be used to

Jones, et al. Expires April 22, 2019 [Page 6]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

access that resource. The authorization server will typically
have the capability to map froma resource URI value to an
appropriate policy. The value of the "resource" paraneter MJST be
an absolute URI, as specified by Section 4.3 of [RFC3986], which
MAY i nclude a query conponent and MUST NOT include a fragnent
component. Muiltiple "resource" parameters nay be used to indicate
that the issued token is intended to be used at the multiple
resources |isted.

audi ence
OPTIONAL. The | ogi cal nane of the target service where the client
intends to use the requested security token. This serves a
purpose sinilar to the "resource" paraneter, but with the client
providing a |l ogical name rather than a location. Interpretation
of the nane requires that the value be something that both the
client and the authorization server understand. An QAuth client
identifier, a SAML entity identifier [QASIS. sanl -core-2.0-0s], an
Openl D Connect |ssuer Identifier [OQpenlD. Core], or a URl are
exanpl es of things that m ght be used as "audi ence" paraneter
values. Miltiple "audience" parameters nmay be used to indicate
that the issued token is intended to be used at the multiple
audi ences listed. The "audi ence" and "resource" paraneters nay be
used together to indicate nultiple target services with a mx of
| ogi cal nanes and | ocati ons.

scope
OPTIONAL. A list of space-delimted, case-sensitive strings, as
defined in Section 3.3 of [RFC6749], that allowthe client to
specify the desired scope of the requested security token in the
context of the service or resource where the token will be used.
The val ues and associ ated semantics of scope are service specific
and expected to be described in the rel evant service
docunent at i on.

request ed_t oken_type
OPTIONAL. An identifier, as described in Section 3, for the type
of the requested security token. |f the requested type is
unspecified, the issued token type is at the discretion of the
aut hori zati on server and may be dictated by know edge of the
requirenents of the service or resource indicated by the
"resource" or "audi ence" paraneter.

subj ect _t oken
REQUI RED. A security token that represents the identity of the
party on behalf of whomthe request is being made. Typically, the
subject of this token will be the subject of the security token
i ssued in response to this request.

Jones, et al. Expires April 22, 2019 [Page 7]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

subj ect _t oken_type
REQUI RED. An identifier, as described in Section 3, that
i ndicates the type of the security token in the "subject_token"
par amet er .

act or _token
OPTI ONAL. A security token that represents the identity of the
acting party. Typically, this will be the party that is
aut horized to use the requested security token and act on behal f
of the subject.

act or _token_type
An identifier, as described in Section 3, that indicates the type
of the security token in the "actor_token" paranmeter. This is
REQUI RED when the "actor_token" paraneter is present in the
request but MJUST NOT be included otherwi se.

In processing the request, the authorization sever MJST validate the

subj ect token as appropriate for the indicated token type and, if the
actor token is present, also validate it according to its token type.
The validity criteria and details of any particular token are beyond

the scope of this docunent and are specific to the respective type of
token and its content.

In the absence of one-tine-use or other senmantics specific to the
token type, the act of perform ng a token exchange has no inpact on
the validity of the subject token or actor token. Furthernore, the
validity of the subject token or actor token have no inpact on the
validity of the issued token after the exchange has occurred.

2.1.1. Relationship Between Resource, Audi ence and Scope

When requesting a token, the client can indicate the desired target
service(s) where it intends to use that token by way of the

"audi ence" and "resource" paraneters, as well as indicating the
desired scope of the requested token using the "scope" paraneter.
The semantics of such a request are that the client is asking for a
token with the requested scope that is usable at all the requested
target services. Effectively, the requested access rights of the
token are the cartesian product of all the scopes at all the target
services

An aut horization server may be unwilling or unable to fulfill any

t oken request but the likelihood of an unfulfillable request is
significantly higher when very broad access rights are being
solicited. As such, in the absence of specific know edge about the
rel ati onship of systens in a deploynent, clients should exercise

di scretion in the breadth of the access requested, particularly the

Jones, et al. Expires April 22, 2019 [Page 8]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

number of target services. An authorization server can use the
"invalid_ target" error code, defined in Section 2.2.2, to informa
client that it requested access to too many target services

si mul t aneousl y.

2.2. Response

The aut horization server responds to a token exchange request with a
normal QAuth 2.0 response fromthe token endpoint, as specified in
Section 5 of [RFC6749]. Additional details and explanation are
provided in the foll ow ng subsections.

2.2.1. Successful Response

If the request is valid and neets all policy and other criteria of
the aut horization server, a successful token response is constructed
by adding the followi ng paraneters to the entity-body of the HTTP
response using the "application/json" nedia type, as specified by

[RFC7159], and an HTTP 200 status code. The paraneters are
serialized into a JavaScript Cbject Notation (JSON) structure by
addi ng each paraneter at the top level. Paraneter nanes and string
val ues are included as JSON strings. Nunerical values are included
as JSON nunbers. The order of paraneters does not natter and can
vary.

access_token
REQUI RED. The security token issued by the authorization server
in response to the token exchange request. The "access_token"
paraneter from Section 5.1 of [RFC6749] is used here to carry the
requested token, which allows this token exchange protocol to use
the existing QAuth 2.0 request and response constructs defined for
the token endpoint. The identifier "access_token" is used for
hi storical reasons and the issued token need not be an QAuth
access token.

i ssued_t oken_type
REQUI RED. An identifier, as described in Section 3, for the
representation of the issued security token

t oken_type
REQUI RED. A case-insensitive value specifying the nethod of using
the access token issued, as specified in Section 7.1 of [RFC6749].
It provides the client with information about how to utilize the
access token to access protected resources. For exanple, a value
of "Bearer", as specified in [RFC6750], indicates that the
security token is a bearer token and the client can sinply present
it as is without any additional proof of eligibility beyond the
contents of the token itself. Note that the nmeaning of this

Jones, et al. Expires April 22, 2019 [Page 9]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

paraneter is different fromthe nmeaning of the "issued_token_type"
paraneter, which declares the representation of the issued
security token; the term"token type" is typically used with this
meaning, as it is in all "* token_type" paranmeters in this
specification. |f the issued token is not an access token or
usabl e as an access token, then the "token_type" value "N A" is

used to indicate that an QAuth 2.0 "token_type" identifier is not
applicable in that context.

expires_in
RECOMVENDED. The validity lifetinme, in seconds, of the token
i ssued by the authorization server. Otentines the client will
not have the inclination or capability to inspect the content of
the token and this paraneter provides a consistent and token type
agnostic indication of how |long the token can be expected to be
valid. For exanple, the value 1800 denotes that the token wll
expire in thirty mnutes fromthe tinme the response was gener at ed.

scope
OPTIONAL, if the scope of the issued security token is identica
to the scope requested by the client; otherw se, REQU RED.

refresh_t oken
OPTIONAL. A refresh token will typically not be issued when the
exchange is of one tenporary credential (the subject_token) for a
different tenporary credential (the issued token) for use in some
other context. A refresh token can be issued in cases where the
client of the token exchange needs the ability to access a
resource even when the original credential is no longer valid
(e.g., user-not-present or offline scenarios where there is no
| onger any user entertaining an active session with the client).
Profiles or deploynents of this specification should clearly
docunent the conditions under which a client should expect a
refresh token in response to "urn:ietf:parans: oaut h: grant -
t ype: t oken- exchange" grant type requests.

2.2.2. FError Response

If the request itself is not valid or if either the "subject_token"
or "actor_token" are invalid for any reason, or are unacceptable
based on policy, the authorization server MJST construct an error
response, as specified in Section 5.2 of [RFC6749]. The value of the
"error" paraneter MJST be the "invalid_request" error code.

If the authorization server is unwilling or unable to issue a token
for all the target services indicated by the "resource" or "audi ence"
paraneters, the "invalid target" error code SHOULD be used in the
error response.

Jones, et al. Expires April 22, 2019 [Page 10]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

The aut hori zation server MAY include additional information regarding
the reasons for the error using the "error_description" and/or
"error_uri" paraneters.

O her error codes nmay al so be used, as appropriate.
2.3. Exanple Token Exchange

The foll owi ng exanpl e denonstrates a hypot hetical token exchange in

whi ch an QAuth resource server assunes the role of the client during
token exchange in order to trade an access token that it received in
a protected resource request for a token that it will use to call to
a backend service (extra line breaks and indentation in the exanples
are for display purposes only).

The resource server receives the follow ng request containing an
QAut h access token in the Authorization request header, as specified
in Section 2.1 of [RFC6750].

GET /resource HITP/ 1.1
Host: frontend. exanpl e. com
Aut hori zation: Bearer accVKjcJyb4BWCxGsndESCICQhdFMogUC5PbRDgcelL TC

Figure 1: Protected Resource Request

The resource server assunes the role of the client for the token
exchange and the access token fromthe request above is sent to the
aut hori zati on server using a request as specified in Section 2.1

The val ue of the "subject token" paraneter carries the access token
and the value of the "subject token type" paraneter indicates that it
is an QAuth 2.0 access token. The resource server, acting in the
role of the client, uses its identifier and secret to authenticate to
the aut horization server using the HITP Basic authentication schene.
The "resource" paraneter indicates the |ocation of the backend
service, https://backend. exanpl e. confapi, where the issued token wll
be used.

Jones, et al. Expires April 22, 2019 [Page 11]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

POST /as/token. oauth2 HTTP/ 1.1

Host: as. exanpl e.com

Aut hori zation: Basic cnMvODpsb25nLXN Y3VyZS1ly YWbkb20t c2Vj cnVO
Cont ent - Type: application/ x-ww-form url encoded

grant _type=urn%BAi et f ¥8Apar ans¥8Aoaut h¥BAgr ant -t ype¥3At oken- exchange
&r esour ce=ht t ps¥BAYRFI2Fbackend. exanpl e. con¥2Fapi %20

&subj ect _t oken=accVKkj cJyb4BWCx GsndESCIQbdFMbgUC5PbRDgcelL TC

&subj ect _t oken_t ype=

ur n9BAI et f ¥BApar ans%3Aocaut h%BAt oken-t ype%3Aaccess_t oken

Fi gure 2: Token Exchange Request

The aut hori zation server validates the client credentials and the
"subj ect _token" presented in the token exchange request. Fromthe
"resource" paranmeter, the authorization server is able to determ ne
the appropriate policy to apply to the request and issues a token
suitable for use at https://backend. exanpl e.com The "access_t oken"
paraneter of the response contains the new token, which is itself a
bearer QAuth access token that is valid for one mnute. The token
happens to be a JW; however, its structure and format are opaque to
the client so the "issued token type" indicates only that it is an
access token.

HTTP/ 1.1 200 K
Cont ent - Type: application/json
Cache-Control : no-cache, no-store

{

"access_token":"eyJhbCci G JFUzI INi I sl mt pZCl 61jl11ciJ9. eyJhdWQ G Jo
dHRweczovL2JhY2t | bmQuZXhhbXBsZS5j b20i LCIpc3M O JodHRwezovL2FzLnV
AYWIwbGUUY29t | i wi ZXhwi j oxNDQXOTE3NTkzLCIpYXQ G EONDESMIc1MzMsI n
NLYi | 61 mJj QGVAYWLwWbGUUY29t | i wi c2NvcGUI O JheCki f Q K4l k-1 gqOKi _4C
nBu4dG3- gGUbf gv- r Jhg XVDNOWV_ MHgVwWddhgVLLGY _bnBx| pQvbwHr LbMazZCA
Li csQC23g",

"i ssued_t oken_type":

"urn:ietf:parans: oaut h: t oken-type: access_t oken"

"token_type":"Bearer",

"expires_in":60

}
Fi gure 3: Token Exchange Response

The resource server can then use the newy acquired access token in
maki ng a request to the backend server

Jones, et al. Expires April 22, 2019 [Page 12]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

GET /api HITP/1.1

Host: backend. exanpl e. com

Aut hori zation: Bearer eyJhbGci O JFUzI INi I sl ntpzCl6ljllciJd9. eyJhdWQ
i O JodHRwczovL2JhY2t | bnmQuZXhhbXBsZS5j b20i LCIpc3M G JodHRwezovL2
FzLnmvV4AYWLwbGUUY29t 1§ wi ZXhwl j oxNDQXOTE3NTKkzLCIpYXQ G EONDESMTc1M
ZMsI NNLYi | 61 mJj QGVAYWIwWbGUUY29t | i wi c2NW j pbl nFwaSJdf Q MXgnpvPMb
OnhcePwnCounD2gw_pDy CFA- Saobl 6gyLAdyPbaALFUACy Fc4XTVWAPENHV_LGTX
kl STpz0OyC7hl SQ

Fi gure 4: Backend Protected Resource Request
Addi tional exanples can be found in Appendi x A
3. Token Type ldentifiers

Several paraneters in this specification utilize an identifier as the
val ue to describe the token in question. Specifically, they are the
"request ed_token_type", "subject token type", "actor_token_type"
paraneters of the request and the "issued_token_type" nenber of the
response. Token type identifiers are URIs. Token Exchange can work
with both tokens issued by other parties and tokens fromthe given
aut hori zation server. For the former the token type identifier

i ndi cates the syntax (e.g., JW or SAML 2.0) so the authorization
server can parse it; for the latter it indicates what the given

aut hori zation server issued it for (e.g., access_token or

refresh_t oken).

The followi ng token type identifiers are defined by this
specification. Qher URIs MAY be used to indicate other token types.

urn:ietf:parans: oaut h:token-type: access_t oken
Indicates that the token is an QAuth 2.0 access token issued by
the given authorization server

urn:ietf:parans: oaut h:token-type: refresh_t oken
I ndicates that the token is an QAuth 2.0 refreshe token issued by
the given authorization server

urn:ietf:parans: oaut h:token-type:id_token
Indicates that the token is an ID Token, as defined in Section 2
of [Openl D. Core].
urn:ietf:parans: oaut h:token-type: sam 1
Indicates that the token is a base64url-encoded SAM. 1.1
[OASI S. saml -core-1.1] assertion

urn:ietf:parans: oaut h: token-type: sam 2

Jones, et al. Expires April 22, 2019 [Page 13]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

I ndicates that the token is a base64url-encoded SAM. 2.0
[OASI S. saml - core-2.0-0s] assertion

The value "urn:ietf:parans:oauth:token-type:jw", which is defined in
Section 9 of [JWI], indicates that the token is a JW.

The distinction between an access token and a JWI is subtle. An
access token represents a del egated authorization deci sion, whereas
JW is a token format. An access token can be formatted as a JWI but
doesn’t necessarily have to be. And a JW night well be an access
token but not all JW's are access tokens. The intent of this
specification is that "urn:ietf:parans: oaut h:t oken-type: access_t oken"
be an indicator that the token is a typical OQAuth access token issued
by the authorization server in question, opaque to the client, and
usabl e the same manner as any ot her access token obtained fromthat
aut hori zation server. (It could well be a JWI, but the client isn't
and needn’t be aware of that fact.) Wereas,

"urn:ietf:parans: oauth:token-type:jwt" is to indicate specifically
that a JW is being requested or sent (perhaps in a cross-domain use-
case where the JW is used as an authorization grant to obtain an
access token froma different authorization server as is facilitated
by [RFC7523]).

4. JSON Wb Token Clainms and I ntrospection Response Paraneters

It is useful to have defined nechanisns to express del egation within
a token as well as to express authorization to del egate or

i npersonate. Although the token exchange protocol described herein
can be used with any type of token, this section defines clains to
express such semantics specifically for JWIs and in an QAuth 2.0
Token Introspection [RFC7662] response. Sinilar definitions for
other types of tokens are possible but beyond the scope of this
speci fication.

Note that the clains not established herein but used in exanpl es and
descriptions, such as "iss", "sub", "exp", etc., are defined by
[Jwr].

4.1. "act" (Actor) Caim

The "act" (actor) claimprovides a nmeans within a JW to express that
del egation has occurred and identify the acting party to whom
authority has been del egated. The "act" claimvalue is a JSON obj ect
and nenbers in the JSON object are clains that identify the actor.
The clains that nake up the "act” claimidentify and possibly provide
additional information about the actor. For exanple, the conbination
of the two clains "iss" and "sub" might be necessary to uniquely
identify an actor.

Jones, et al. Expires April 22, 2019 [Page 14]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

However, clains within the "act" claimpertain only to the identity
of the actor and are not relevant to the validity of the containing
JWI in the same manner as the top-level clainms. Consequently, non-
identity clains (e.g., "exp", "nbf", and "aud") are not neaningfu
when used within an "act" claim and therefore nust not be used.

The followi ng exanple illustrates the "act" (actor) claimwthin a
JWF Clains Set. The clainms of the token itself are about

user @xanple.comwhile the "act" claimindicates that

adm n@xanpl e.comis the current actor

{
"aud":"https://consumner. exanpl e. conf,
"iss":"https://issuer.exanpl e.cont,
"exp": 1443904177,

"nbf": 1443904077,
"sub": "user @xanpl e. cont',
"act":
{
"sub":"adm n@xanpl e. cont
}
}

Figure 5: Actor Claim

A chain of del egation can be expressed by nesting one "act" claim
within another. The outernost "act" claimrepresents the current
actor while nested "act" clains represent prior actors. The |east
recent actor is the nost deeply nested.

For the purpose of applying access control policy, the consuner of a
token MUST only consider the token’s top-level clains and the party
identified as the current actor by the "act” claim Prior actors
identified by any nested "act" clains are informational only and are
not to be considered in access control decisions.

Jones, et al. Expires April 22, 2019 [Page 15]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

The following exanple illustrates nested "act" (actor) clains within
a JW Cainms Set. The clains of the token itself are about

user @xanmple.comwhile the "act" claimindicates that the system
https://servicel6. exanple.comis the current actor and
https://service77. exanpl e.comwas a prior actor. Such a token night
cone about as the result of servicel6 receiving a token in a cal
from service77 and exchanging it for a token suitable to cal
service26 while the authorization server notes the situation in the
newly issued token

{

"aud":"https://service26. exanpl e. coni,

"iss":"https://issuer.exanpl e.cont,

"exp": 1443904100,

"nbf": 1443904000,

"sub": "user @xanpl e. cont,

"act":
"sub":"https://servicel6. exanpl e. cont,
"act":

"sub":"https://service77. exanpl e. cont,
}
}
}

Figure 6: Nested Actor Caim
When included as a top-level nenber of an QAuth token introspection
response, "act" has the same semantics and fornmat as the claimof the
same nane.
4.2. "scope" (Scopes) O aim
The val ue of the "scope" claimis a JSON string containing a space-

separated |list of scopes associated with the token, in the format
described in Section 3.3 of QAuth 2.0 [RFC6749].

Jones, et al. Expires April 22, 2019 [Page 16]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

The followi ng exanple illustrates the "scope" claimwithin a JW
Clainms Set.
{

"aud":"https://consuner. exanpl e. cont',
"iss":"https://issuer.exanpl e.cont,
"exp": 1443904177,

"nbf": 1443904077,

"sub": "dgaf 4nvf s75Fci _FL3heQA",
"scope":"emmil profile phone address"

Figure 7: Scopes Caim

QAuth 2.0 Token Introspection [RFC7662] al ready defines the "scope”
paraneter to convey the scopes associated with the token.

4.3. "client_id" (Cient Identifier) Claim

The "client _id" claimcarries the client identifier of the QAuth 2.0
[RFC6749] client that requested the token.

The following exanple illustrates the "client_id" claimwithin a JW
Clainms Set indicating an QAuth 2.0 client with "s6BhdRkqt3" as its
identifier.

{

"aud":"https://consuner. exanpl e. cont,
"iss":"https://issuer.exanpl e.cont,
"exp":1443904177,

"sub": "user @xanpl e. cont',

"client _id":"s6BhdRkqt 3"

Figure 8 dient ldentifier aim

QAuth 2.0 Token Introspection [RFC7662] al ready defines the
"“client _id" parameter as the client identifier for the QAuth 2.0
client that requested the token.

4.4, "may_act" (May Act For) Claim

The "may_act" claimmakes a statenent that one party is authorized to
becone the actor and act on behal f of another party. The cl ai mval ue
is a JSON object and menbers in the JSON object are clainms that
identify the party that is asserted as being eligible to act for the
party identified by the JWI containing the claim The clains that
make up the "may_act" claimidentify and possibly provide additiona

Jones, et al. Expires April 22, 2019 [Page 17]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

i nformati on about the authorized actor. For exanple, the conbination
of the two clainms "iss" and "sub" are sonetinmes necessary to uniquely
identify an authorized actor, while the "email" claimm ght be used
to provide additional useful information about that party.

However, clainms within the "may_act" claimpertain only to the
identity of that party and are not relevant to the validity of the
containing JW in the same manner as top-level clains. Consequently,
clainms such as "exp", "nbf", and "aud" are not mneani ngful when used
within a "may_act"” claim and therefore should not be used.

The followi ng exanple illustrates the "may_act" claimwithin a JW
Clains Set. The clains of the token itself are about

user @xanpl e.comwhile the "may_act" claimindicates that

adm n@xanpl e.comis authorized to act on behal f of user @xanpl e.com

{

"aud":"https://consumer. exanpl e. coni,
"iss":"https://issuer.exanpl e.cont,
"exp": 1443904177,

"nbf": 1443904077,

"sub": "user @xanpl e. cont',

"may_act":

"sub": "adm n@xanpl e. cont

}
}

Figure 9: May Act For daim

When included as a top-1level nenber of an QAuth token introspection
response, "may_act" has the sanme semantics and format as the cl ai mof
t he same nane.

5. Security Considerations

Al'l of the normal security issues that are discussed in [JW],
especially in relationship to conparing URIs and dealing with
unr ecogni zed val ues, al so apply here.

In addition, both delegation and inpersonation introduce uni que
security issues. Any tine one principal is delegated the rights of
anot her principal, the potential for abuse is a concern. The use of
the "scope" claimis suggested to mitigate potential for such abuse,
as it restricts the contexts in which the del egated rights can be
exer ci sed.

Jones, et al. Expires April 22, 2019 [Page 18]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

6

7

7

7

Privacy Considerations

Tokens enployed in the context of the functionality described herein
may contain privacy-sensitive information and, to prevent disclosure
of such information to unintended parties, should only be transmitted
over encrypted channels, such as Transport Layer Security (TLS). In
cases where it is desirable to prevent disclosure of certain
information to the client, the token should be encrypted to its

i ntended recipient. Deploynents should determine the mnimally
necessary anount of data and only include such information in issued
tokens. In sone cases, data mninization may include representing
only an anonynous or pseudonynous user

| ANA Consi der ati ons
1. QAuth URI Registration

This specification registers the following values in the | ANA "QAuth
URI" registry [|ANA. QAut h. Paraneters] established by [RFC6755].

1.1. Registry Contents

o URN: wurn:ietf:parans: oaut h: grant-type:token-exchange

0 Common Nane: Token exchange grant type for QAuth 2.0

o Change controller: |IESG

0o Specification Docunment: Section 2.1 of [[this specification]]

0 URN: wurn:ietf:parans: oaut h: token-type: access_token

0 Common Nane: Token type URI for an QAuth 2.0 access token

o Change controller: |IESG

0 Specification Document: Section 3 of [[this specification]]

0 URN: wurn:ietf:parans: oaut h:token-type:refresh_t oken

0 Common Nane: Token type URI for an QAuth 2.0 refresh token

0 Change controller: |IESG

0 Specification Document: Section 3 of [[this specification]]

0o URN: wurn:ietf:parans: oaut h:t oken-type:id_t oken

o0 Common Nane: Token type URI for an I D Token

0 Change controller: |ESG

o0 Specification Docunent: Section 3 of [[this specification]]

0o URN: wurn:ietf:parans: oaut h: token-type: sam 1

o Common Nane: Token type URI for a base64url-encoded SAM. 1.1
assertion

0 Change Controller: |ESG

o0 Specification Docunment: Section 3 of [[this specification]]

Jones, et al. Expires April 22, 2019 [Page 19]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

0 URN: wurn:ietf:parans: oaut h: t oken-type: sam 2
o Common Nane: Token type URI for a base64url-encoded SAM. 2.0
assertion
0 Change Controller: |ESG
0 Specification Docunment: Section 3 of [[this specification]]
7.2. CQAuth Parameters Registration
This specification registers the following values in the I ANA "QAuth
Par anet ers" registry [l ANA QAut h. Paranet ers] established by
[RFC6749] .
7.2.1. Registry Contents
0 Parameter name: resource
o Paranmeter usage |ocation: token request
0 Change controller: |ESG
0 Specification docunment(s): Section 2.1 of [[this specification]]
0 Paraneter nanme: audi ence
o Parameter usage |ocation: token request
0 Change controller: |ESG
0 Specification docunent(s): Section 2.1 of [[this specification]]
o Paraneter name: requested_token_type
o Paraneter usage |ocation: token request
0o Change controller: |ESG
0 Specification docunent(s): Section 2.1 of [[this specification]]
0 Parameter name: subject_token
o Paraneter usage |ocation: token request
o Change controller: |ESG
0 Specification docunent(s): Section 2.1 of [[this specification]]
o Parameter name: subject_token_type
o Paraneter usage |ocation: token request
o Change controller: |IESG
0 Specification docunent(s): Section 2.1 of [[this specification]]
o Paranmeter name: actor_token
o Paraneter usage |ocation: token request
o Change controller: |ESG
0 Specification docunment(s): Section 2.1 of [[this specification]]
o Parameter name: actor_token_type
o Paraneter usage |ocation: token request
0 Change controller: |ESG
0 Specification document(s): Section 2.1 of [[this specification]]
Jones, et al. Expires April 22, 2019 [Page 20]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

Par anmet er name: issued_token_type

Par armet er usage | ocation: token response

Change controller: |ESG

Speci fication docunent(s): Section 2.2.1 of [[this specification

1]
7.3. CQAuth Access Token Type Registration

O O0OO0Oo

This specification registers the follow ng access token type in the
I ANA "QAuth Access Token Types" registry [ANA QAut h. Par anet er s]
establ i shed by [RFC6749].

7.3.1. Registry Contents

Type name: N_A

Addi tional Token Endpoi nt Response Paraneters: (none)

HTTP Aut hentication Schenme(s): (none)

Change controller: | ESG

Speci fication docunment(s): Section 2.2.1 of [[this specification

1]
7.4. JSON Web Token O ains Registration

Oo0oo0oo0oo

This specification registers the following Clainms in the | ANA "JSON
Wb Token C ains" registry [I ANA. JWI. d ai ns] established by [JW].

7.4.1. Registry Contents

o CaimNane: "act"

0 CaimDescription: Actor

o Change Controller: |IESG

0 Specification Docunment(s): Section 4.1 of [[this specification]]
0 CaimNane: "scope"

0 CaimDescription: Scope Val ues

o Change Controller: |IESG

0 Specification Docunment(s): Section 4.2 of [[this specification]]
o ClaimName: "client _id"

0 CaimbDescription: dient ldentifier

0 Change Controller: |ESG

0 Specification Docunment(s): Section 4.3 of [[this specification]]
0o CdaimNane: "may_act"

0 CaimDescription: May Act For

0 Change Controller: |ESG

0 Specification Docunent(s): Section 4.4 of [[this specification]]

Jones, et al. Expires April 22, 2019 [Page 21]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

7.5. CQAuth Token Introspection Response Registration
This specification registers the following values in the I ANA "QAuth
Token I ntrospection Response” registry [| ANA QAut h. Par anet er s]
establ i shed by [RFC7662].

7.5.1. Registry Contents

o CaimNanme: "act”

0 CaimDescription: Actor

0 Change Controller: |IESG

0 Specification Docunment(s): Section 4.1 of [[this specification]]
0o CdaimNane: "may_act"

o0 CaimDescription: May Act For

0 Change Controller: |ESG

0 Specification Docunent(s): Section 4.4 of [[this specification]]

7.6. CQAuth Extensions Error Registration

This specification registers the following values in the I ANA "QAuth
Extensions Error" registry [|IANA QAut h. Paraneters] established by
[RFC6749] .

7.6.1. Registry Contents

Error Nane: "invalid_target”

Error Usage Location: token error response

Rel ated Protocol Extension: QAuth 2.0 Token Exchange

Change Controller: |ETF

Speci fication Docunment(s): Section 2.2.2 of [[this specification

1]

8. References

Oo0oo0oo0oo

8.1. Normative References

[ANA. JWI. Cl ai 8]
I ANA, "JSON Web Token d ains",
<http://ww.iana. org/assi gnnents/jw >.

[1 ANA. QAut h. Par anet er s]
| ANA, " QAut h Par aneters”,
<http://ww. i ana. or g/ assi gnnment s/ oaut h- par anet er s>.

[JWI] Jones, M, Bradley, J., and N. Sakinmura, "JSON Wb Token

(JWr)", RFC 7519, DA 10.17487/RFC7519, May 2015,
<http://tools.ietf.org/htm /rfc7519>.

Jones, et al. Expires April 22, 2019 [Page 22]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<https://www. rfc-editor.org/info/rfc2119>.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Ceneric Syntax", STD 66,
RFC 3986, DO 10.17487/ RFC3986, January 2005,
<https://www. rfc-editor.org/info/rfc3986>.

[RFC6749] Hardt, D., Ed., "The QAuth 2.0 Authorization Franework",
RFC 6749, DO 10.17487/ RFC6749, Cctober 2012,
<https://ww. rfc-editor.org/info/rfc6749>.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, DO 10.17487/ RFC7159, March
2014, <https://ww.rfc-editor.org/info/rfc7159>.

[RFC7662] Richer, J., Ed., "QAuth 2.0 Token Introspection",
RFC 7662, DA 10.17487/ RFC7662, Cctober 2015,
<https://www. rfc-editor.org/info/rfc7662>.

8.2. Informative References

[OASI S. sam -core-1. 1]
Maler, E., Mshra, P., and R Philpott, "Assertions and
Protocol for the QASIS Security Assertion Markup Language
(SAML) V1.1", QASIS Standard oasis-sstc-sanl-core-1.1,
Sept enber 2003.

[QASI S. saml - core- 2. 0- 0s]
Cantor, S., Kenp, J., Philpott, R, and E. Maler,
"Assertions and Protocol for the OASIS Security Assertion
Mar kup Language (SAM.) V2.0", QASIS Standard sanl -core-
2. 0-0s, March 2005.

[Openl D. Cor €]
Sakinmura, N., Bradley, J., Jones, M, de Medeiros, B., and
C. Mortinmore, "Openl D Connect Core 1.0", August 2015,
<http://openid. net/specs/ openi d-connect-core-1_0. htm >,

[RFC6750] Jones, M and D. Hardt, "The QAuth 2.0 Authori zation
Framewor k: Bearer Token Usage", RFC 6750,
DO 10.17487/ RFC6750, Cctober 2012,
<https://www. rfc-editor.org/info/rfc6750>.

Jones, et al. Expires April 22, 2019 [Page 23]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

[RFC6755]

[RFC7521]

[RFC7523]

[RFC8174]

[W5- Trust]

Appendi x A

Canpbel |, B. and H. Tschofenig, "An | ETF URN Sub- Nanespace
for QAuth", RFC 6755, DO 10.17487/RFC6755, Cctober 2012
<https://www. rfc-editor.org/info/rfc6755>

Canpbell, B., Mrtinore, C, Jones, M, and Y. Gol and,
"Assertion Franmework for QAuth 2.0 dient Authentication
and Aut horization Gants", RFC 7521, DO 10.17487/ RFC7521
May 2015, <https://ww.rfc-editor.org/info/rfc7521>

Jones, M, Canpbell, B., and C. Mrtinore, "JSON Wb Token
(JWI) Profile for QAuth 2.0 Cient Authentication and

Aut hori zation Grants", RFC 7523, DO 10.17487/ RFC7523, My
2015, <https://ww.rfc-editor.org/info/rfc7523>

Lei ba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Wrds", BCP 14, RFC 8174, DO 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>

Nadalin, A., Goodner, M, GQudgin, M, Barbir, A, and H
G anqvist, "W5-Trust 1.4", February 2012
<http://docs. oasi s-open. org/ ws-sx/ws-trust/vl. 4/
ws-trust. htm >,

Addi ti onal Token Exchange Exanpl es

Two exanpl e token exchanges are provided in the foll owi ng sections
illustrating inpersonation and del egation, respectively (with extra
line breaks and indentation for display purposes only).

A 1.

A1l 1

| mper sonati on Token Exchange Exanpl e

Token Exchange Request

In the followi ng token exchange request, a client is requesting a
token with inpersonation semantics. The client tells the

aut hori zation server that it needs a token for use at the target
service with the | ogical nane "urn: exanpl e: cooperation-context".

Jones,

et al.

Expires April 22, 2019 [Page 24]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

POST /as/token. oauth2 HTTP/ 1.1
Host: as. exanpl e.com
Cont ent - Type: application/x-wwform url encoded

grant _type=ur n%BAi et f ¥8Apar ans¥8Aoaut h¥BAgr ant -t ype¥BAt oken- exchange

&audi ence=ur n¥B8Aexanpl e¥8Acooper at i on- cont ext

&subj ect _t oken=eyJhbGci G JFUzIl 1N | sl nt pZCl 61 j E2I n0. eyJhdWQ G JodHRwc
ZoVL2FzZLmVAYWIwWbGUuUY29t i wi aXNzl j oi aHROcHMBLY9vem naWbhbClpc3N1ZXI
uZXhhbXBsZS5uZXQ LCJI eHAI G EONDE5SMIA2MDAs| nbi Zi | 6 MIQOMIkwOTAMMOW ¢
3Vi | j oi YMNAZXhhbXBsZS5uzZXQ LCIzY29wZSI 61 mByZGvycyBwemBmaWkl | Ghpc3R
venki f Q uOsl gvbnqU43Ev] it GAFJ11St r AwXl xcz Yf MysaR5p4J_gBp019nx| j Sx
xmD3Ff brj TGyZ4eDh1JKJVpsnnPg

&subj ect _t oken_t ype=ur n%BAi et f ¥8Apar ans¥8Aoaut h¥BAt oken-t ype¥BAj wt

Fi gure 10: Token Exchange Request
A.1.2. Subject Token Cains

The "subject_token" in the prior request is a JW and the decoded JWI
Clains Set is shown here. The JW is intended for consunption by the
aut hori zation server within a specific time w ndow. The subject of
the JWI ("bc@xanple.net") is the party on behal f of whomthe new
token is being requested.

{
"aud":"https://as. exanpl e. cont',
"iss":"https://original-issuer.exanple.net",
"exp": 1441910600,
"nbf": 1441909000,
"sub": "bc@xanpl e. net",
"scope":"orders profile history"

}

Figure 11: Subject Token d ains
A.1.3. Token Exchange Response
The "access_t oken" paraneter of the token exchange response shown
bel ow contains the new token that the client requested. The other

paraneters of the response indicate that the token is a bearer access
token that expires in an hour.

Jones, et al. Expires April 22, 2019 [Page 25]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

HTTP/ 1.1 200 K
Cont ent - Type: application/json
Cache-Control : no-cache, no-store

{

"access_t oken": "eyJhbCci G JFUzI 1N | sl nt pZCl 61 j cyl n0. eyJhdWQ O Jlcn#
6ZXhhbXBsZTpj b29wZXJhdd vbi 1j b250ZXh0l i wi aXNz! j oi aHROcHMBLY9hcy5
eCGFt cGxl Lm\vbSI sl mv4cCl 6MIQOMIkx Mz YxMOwi ¢3Vi |] oi YMNAZXhhbXBsZS5uZ
XQ LCIzY29wZSI 61 mBy ZGvycyBwemdmaWkl | Ghpc3Rvenki f Q _OnHOoHT2cdO- Sz
O Br NkVYI Rdn48X8kl 4_| s3LHeQnt kd- nDdR631 uuQ_Gezd7Uaf M3bk8j qUDgi - |
r Tf SwA" ,

"i ssued_t oken_type":

"urn:ietf:parans: oaut h: t oken-type: access_t oken"

"token_type":"Bearer",

"expires_in":3600

}

Fi gure 12: Token Exchange Response
A 1.4. Issued Token d ains

The decoded JWI C ainms Set of the issued token is shown below. The
new JWI is issued by the authorization server and intended for
consunption by a systementity known by the |ogical name

"urn: exanpl e: cooperation-context” any tine before its expiration
The subject ("sub") of the JW is the sane as the subject the token
used to make the request, which effectively enables the client to

i npersonate that subject at the systementity known by the | ogica
nane of "urn:exanpl e: cooperation-context" by using the token

{
"aud": "urn: exanpl e: cooperati on-cont ext",
"iss":"https://as. exanpl e.cont,
"exp": 1441913610,
"sub": "bc@xanpl e. net",
"scope":"orders profile history"
}

Figure 13: Issued Token C ains
A. 2. Del egation Token Exchange Exanpl e
A.2.1. Token Exchange Request
In the foll owi ng token exchange request, a client is requesting a
token and providing both a "subject token" and an "actor_token". The

client tells the authorization server that it needs a token for use
at the target service with the | ogical name "urn: exanpl e: cooperati on-

Jones, et al. Expires April 22, 2019 [Page 26]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

context". Policy at the authorization server dictates that the
i ssued token be a conposite.

POST /as/token. ocauth2 HTTP/ 1.1
Host: as. exanpl e.com
Cont ent - Type: application/ x-ww«+form url encoded

grant _type=ur n%BAi et f ¥8Apar ans¥8Aoaut h¥BAgr ant -t ype¥3At oken- exchange

&audi ence=ur n¥3Aexanpl e¥8Acooper at i on- cont ext

&subj ect _t oken=eyJhbGci O JFUzIl 1IN | sl nt pZCl 61 j E2I n0. eyJhdWQ G JodHRwc
ZoVL2FzLmVAYWIwbGUUY29t | i wi aXNzl j oi aHROcHVBLY9vem naWbhbClpc3N1ZXI
uZXhhbXBsZS5uZXQ LCJI eHAi O EONDESMTAWNj Asl nNj b3BlI | j oi c3RhdHVzI GZI Z
WO LCIzdWi G J1c2VyQGVAYWLWbGUubnVOI i wi bWF5X2Fj dCl 6eyJzdW i O JhZGlL
pbkBl eGFt cGxl Libl dCJI9f Q. 4r PRSW hCQbpM gAmAogaloj Axj - p2X8_f At AGTXr vM
XU eEZHnXqY0_AQZgLdxws5DylLzua8H | 10MCcckF- Q g

&subj ect _token_t ype=ur n%BAi et f ¥8Apar ans¥8Aoaut h¥BAt oken-t ype¥BAj wt

&act or _t oken=eyJhbGci O JFUzI 1N | sl nt pZCl 61 j E2I n0. eyJhdWQ O JodHRwczo
VL2FZLnVAYWLWOGUUY29t | i wi aXNzl j oi aHROcHVBLY9vem naWbhbClpc3N1LZXI uZ
XhhbXBsZS5uzXQ LCJI eHAi G EONDESMITAWMN] As| nN1Yi | 61 nFkbW uQGV4YWLwb GU
ubmV0l n0. 7YQ 3zPf hUvzj e50qwB8COCYN5uP6NsKi k9CVWECcAOF 4QKgM t Kf i OncgZ
oUuDL2t Es6t Pl cBl M i SzEj nB8yBg

&act or _t oken_t ype=ur n%3Ai et f ¥8Apar ans%BAoaut h%BAt oken-t ype¥%3A wt

Fi gure 14: Token Exchange Request
A . 2.2. Subject Token C ains

The "subject _token" in the prior request is a JW and the decoded JWI
Clains Set is shown here. The JW is intended for consunption by the
aut hori zati on server before a specific expiration tinme. The subject
of the JWI ("user@xanple.net") is the party on behalf of whomthe
new t oken is being requested.

{
"aud":"https://as. exanpl e. cont',
"iss":"https://original-issuer.exanple.net",
"exp": 1441910060,
"scope":"status feed",
"sub": "user @xanpl e. net",
"may_act":
{

"sub":"adm n@xanpl e. net"

}

}

Fi gure 15: Subject Token d ains

Jones, et al. Expires April 22, 2019 [Page 27]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

A.2.3. Actor Token C ains

The "actor_token" in the prior request is a JW and the decoded JWI
Clains Set is shown here. This JW is also intended for consunption
by the authorization server before a specific expiration tine. The
subj ect of the JWI ("adm n@xanple.net") is the actor that will weld
the security token being requested.

{
"aud":"https://as. exanpl e. cont',
"iss":"https://original-issuer.exanple.net",
"exp": 1441910060,
"sub":"adm n@xanpl e. net"

}

Figure 16: Actor Token d ai ns
A. 2.4. Token Exchange Response

The "access_t oken" paraneter of the token exchange response shown
bel ow contains the new token that the client requested. The other
paraneters of the response indicate that the token is a JW that
expires in an hour and that the access token type is not applicable
since the issued token is not an access token

HTTP/ 1.1 200 OK
Cont ent - Type: application/json
Cache-Control : no-cache, no-store

{

"access_t oken":"eyJhbCci G JFUzI 1N | sl nt pZCl 61 j cyl n0. eyJhdWQ O Jlcn#
6ZXhhbXBsZTpj b29wZXJhdd vbi 1j b250ZXh0l i wi aXNzl j oi aHROcHWBLY9hcy5
eCGFt cGxl Lm\vbSI sl mv4cCl 6MIQOMIkx Mz YxMOwi c2NveGUI O JzdGFOdXMgZnvl Z
Cl sl nNLYi | 61 nVzZXJAZXhhbXBsZS5uZXQ LCIhY3Q Onsi c3Vi | j oi YWRt aWbAZX
hhbXBsZS5uzXQ f X0. 3paKl 9Uy SKYB5ng6_cUt Q2ql GBRc_y7Mea7l wEXTc YbNdwG
9- GLEKCFe5f WBHOhwX- M5Z49Whcb1Si AZaOQBt w'

"issued_token_type":"urn:ietf:parans: oaut h: t oken-type:jw",

"token_type":"N_A",

"expires_in":3600

}

Figure 17: Token Exchange Response
A 2.5. | ssued Token Cl ai ns
The decoded JWI Cl ains Set of the issued token is shown below. The

new JWI is issued by the authorization server and intended for
consunption by a systementity known by the |ogical name

Jones, et al. Expires April 22, 2019 [Page 28]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

"urn: exanpl e: cooperation-context" any tine before its expiration.
The subject ("sub") of the JWI is the same as the subject of the
"subj ect _token" used to make the request. The actor ("act") of the
JWI is the sane as the subject of the "actor_token" used to nmake the
request. This indicates delegation and identifies

"adnmi n@xanpl e.net" as the current actor to whom authority has been
del egated to act on behal f of "user @xanple.net".

{
"aud": "urn: exanpl e: cooperati on-cont ext",
"iss":"https://as. exanpl e.cont,
"exp":1441913610,
"scope":"status feed",
"sub": "user @xanpl e. net",
"act":
{

"sub":"adm n@xanpl e. net"

}

}

Figure 18: Issued Token C ains
Appendi x B. Acknow edgenent s

This specification was devel oped within the QAuth Wbrki ng G oup,

whi ch includes dozens of active and dedicated participants. It was
produced under the chairmanshi p of Hannes Tschofeni g, Derek Atkins,
and Ri faat Shekh-Yusef with Kathleen Mriarty, Stephen Farrell, Eric
Rescorl a, and Benjam n Kaduk serving as Security Area Directors. The
followi ng individuals contributed ideas, feedback, and wording to
this specification:

Cal eb Baker, Vittorio Bertocci, Thomas Broyer, WIIiam Denniss,

VI adi mi r Dzhuvi nov, Phil Hunt, Benjam n Kaduk, Jason Kegl ovitz,

Torsten Lodderstedt, Adam Lewi s, Janmes Manger, Nov Matake, Matt

MIller, Hlarie Onman, Mtthew Perry, Eric Rescorla, Justin Richer,

Ri f aat Shekh- Yusef, Scott Tomi |l son, and Hannes Tschof eni g.
Appendi x C. Document Hi story

[[to be renoved by the RFC Editor before publication as an RFC]]

-16

o Fixed typo and added an AD to Acknow edgemnents.

-15

Jones, et al. Expires April 22, 2019 [Page 29]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

0 Updated the nested actor claimexanple to (hopefully) be nore
straightforward

0 Reworked Privacy Considerations to say to use TLS in transit,
m nimze the amount of information in the token, and encrypt the
token if disclosure of its information to the client is a concern
per https://mailarchive.ietf.org/arch/ msg/secdir/
KJhx4aq_Usuk3k6zpYP- CEHbpVM

o0 Mved the Security and Privacy Considerations sections to before
the 1 ANA Consi derati ons.

-14

0 Added text in Section 4.1 about the "act" claimstating that only
the top-level claims and the current actor are to be considered in
appl yi ng access control deci sions.

-13

o Updated the claimnanme and val ue syntax for scope to be consistent
with the treatnent of scope in RFC 7662 QAuth 2.0 Token
I ntrospection.

0 Updated the client identifier claimname to be consistent with the
treatment of client id in RFC 7662 QAuth 2.0 Token | ntrospection

-12

0 Updated to use the boilerplate from RFC 8174.

-11

0 Added new WG chair and AD to the Acknow edgements

o Applied clarifications suggested during AD revi ew by EKR

-10

o Defined token type URIs for base64url-encoded SAML 1.1 and SAM.
2.0 assertions.

o Applied editorial fixes.

-09

0 Changed "security tokens obtained could be used in a nunber of
contexts" to "security tokens obtained may be used in a nunmber of
contexts" per a WA.C suggestion

o Carified that the validity of the subject or actor token have no
impact on the validity of the issued token after the exchange has
occurred per a WG.C conment.

Jones, et al. Expires April 22, 2019 [Page 30]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

0 Changed use of invalid_target error code to a SHOULD per a WELC
conmment .

o Cdarified text about non-identity clainms within the "act" claim
bei ng neani ngl ess per a WA.C conment .

0 Added brief Privacy Considerations section per WALC conment s.

-08

0 Use the bibxm reference for OpenlD.Core rather than defining it
i nline.

0 Added editor role for Canpbell.

o Mnor clarification of the text for actor_token

-07

o Fixed typo (desecration -> discretion).

0 Added an expl anation of the relationship between scope, audience
and resource in the request and added an "invalid_target" error
code enabling the ASto tell the client that the requested
audi ences/ resources were too broad.

- 06

o Drop "An STS for the REST of Us" fromthe title.
o Drop "heavyweight" and "lightweight" fromthe abstract and
i nt roducti on.
o Cdarifications on the | anguage around xxxxxx_token_type.
Renove the want _conposite paraneter
0 Add a short nmention of proof-of-possession style tokens to the
i ntroduction and renove the respective open issue.

o

-05

0 Defined the JWI claim"cid" to express the QAuth 2.0 client
identifier of the client that requested the token

o Defined and requested registration for "act" and "may_act" as
Token introspection response paranmeters (in addition to being JW
cl ai ns) .

0 Loosen up the | anguage about refresh_token in the response to
OPTI ONAL from NOT RECOMVENDED based on feedback formreal world
depl oynent experi ence.

0 Add clarifying text about the distinction between JW and access
t oken URIs.

0 Cose out (renmove) sone of the Open Issues bullets that have been
resol ved.

- 04

Jones, et al. Expires April 22, 2019 [Page 31]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

(o]

Jones,

Clarified that the "resource" and "audi ence" request paraneters
can be used at the sanme tinme (via http://ww.ietf.org/ mail -

ar chi ve/ web/ oaut h/ current/ nmsg15335. htnl).

Clarified subject/actor token validity after token exchange and
expl ained a bit nore about the recomendation to not issue refresh
tokens (via http://ww.ietf.org/ mail-archive/web/oauth/current/
nsg15318. html).

Updat ed t he exanpl es appendi x to use an issuer value that doesn’t
inply that the client issued and signed the tokens and used
"Bearer" and "urn:ietf:parans: oaut h:token-type: access_token" in
one of the responses (via http://ww.ietf.org/mail -

ar chi ve/ web/ oaut h/ current/ nmsgl15335. htm).

Defined and registered urn:ietf:parans: oaut h: t oken-type:id_t oken
since sonme use cases performtoken exchanges for |1 D Tokens and no
URI to indicate that a token is an I D Token had previously been
def i ned.

Updat ed t he docunent editors (addi ng Canpbell, Bradley, and
Mortinore).

Added to the title.

Added to the abstract and introduction.

Updated the format of the request to use application/x-ww-form
url encoded request paraneters and the response to use the existing
t oken endpoint JSON paraneters defined in QAuth 2.0.

Changed the grant type identifier to urn:ietf:paramns: oauth: grant-
type: t oken- exchange

Added RFC 6755 registration requests for
urn:ietf:paramnms: oaut h:t oken-type: refresh_t oken
urn:ietf:parans: oaut h:t oken-type: access_t oken, and
urn:ietf:parans: oaut h: grant-type:token-exchange.

Added RFC 6749 registration requests for request/response

par amet ers

Renoved t he | npl enentation Considerations and the requirenent to
support JWs.

Clarified many aspects of the text.

Changed "on_behal f _of" to "subject_token",
"on_behal f _of token_type" to "subject_token_type", "act_as" to
"actor_token", and "act_as_token_type" to "actor_token_type"
Added an "audi ence" request paraneter used to indicate the |ogica
names of the target services at which the client intends to use
the requested security token

Added a "want_conposite" request paraneter used to indicate the
desire for a conmposite token rather than trying to infer it from
the presence/ absence of token(s) in the request.

et al. Expires April 22, 2019 [Page 32]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018

0 Added a "resource" request paraneter used to indicate the URLs of
resources at which the client intends to use the requested
security token.

0 Specified that nmultiple "audi ence" and "resource" request
paraneter val ues may be used.

o0 Defined the JWI claim"act" (actor) to express the current actor
or del egation princi pal

0 Defined the JWI claim"nmay_act" to express that one party is
aut horized to act on behalf of another party.

0 Defined the JWI claim"scp" (scopes) to express QAuth 2.0 scope-
t oken val ues.

0 Added the "N A" (not applicable) QAuth Access Token Type
definition for use in contexts in which the token exchange syntax
requires a "token_type" value, but in which the token being issued
is not an access token

0 Added exanpl es.

-02

o Enabl ed use of Security Token types other than JWIs for "act_as"
and "on_behal f _of" request val ues.

0 Referenced the JW and QAuth Assertions RFCs.

-01

o Updated references.

-00

0 Created initial working group draft fromdraft-jones-oauth-token-
exchange- 01.

Aut hors’ Addresses

M chael B. Jones
M crosof t

Emai | : nbj @i crosoft. com
URI : http://self-issued.info/
Ant hony Nadal in

M crosof t

Emai | : tonynad@ri crosoft.com

Jones, et al. Expires April 22, 2019 [Page 33]

Internet-Draft QAuth 2.0 Token Exchange Cct ober 2018
Bri an Canpbel | (editor)
Ping Identity
Enmai | : brian. d. canpbel | @nail . com
John Bradl ey
Ping Identity
Email: ve7jtb@e7jth.com
Chuck Mortinore
Sal esforce

Email: cnortinore@al esforce. com

Jones, et al. Expires April 22, 2019 [Page 34]

QAut h Wor ki ng G oup N. Saki mura

I nternet-Draft Nonmura Research Institute
I nt ended status: Standards Track K. Li
Expi res: Septenber 12, 2017 Al i baba G oup

J. Bradl ey

Ping ldentity
March 11, 2017

The QAuth 2.0 Authorization Framework: JW Pop Token Usage
dr af t - saki mur a- oaut h-j pop-01

Abst ract

This specification describes howto use JW POP (Jpop) tokens that
were obtained through [POPKD] in HTTP requests to access QAuth 2.0
protected resources. Only the party in possession of a correspondi ng
cryptographic key with the Jpop token can use it to get access to the
associ ated resources unlike in the case of the bearer token described
in [RFC6750] where any party in posession of the access token can
access the resource.

Requi renents Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute

wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 12, 2017.

Saki nura, et al. Expi res Septenber 12, 2017 [Page 1]

Internet-Draft JPCP

Copyright Notice

March 2017

Copyright (c) 2017 |IETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this docunent.

is subject to BCP 78 and the | ETF Trust’s Legal
Provisions Relating to | ETF Docunents

in effect on the date of

Pl ease revi ew t hese documents
as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust

include Sinplified BSD Li cense text as described in Section 4.e of
Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

t he

Tabl e of Contents

1.

Pwn

0o 0

© O OO

10.
11.

I nt roducti on

.1. Notational Conventions

Terns and definitions .
JWI POP Token . ..
Sender Constrai ned Token

.1. CN Constrained Token .o
.2. Cdient ID Constrai ned Token .

Key Constrai ned Token .
Resource access net hod

.1. Miutual TLS acess net hod
.2. Signature nethod

Aut hori zation Error .
| ANA Consi derations .

.1. Jpop Authentication :Sche.ma.
.2, JW Confirmation Methods

Security Considerations .

.1. Certificate validation
.2. Key protection

.3. Audiance Restriction Ce
.4. Dynanmic client registration elenents

Acknowl edgenent s
Ref er ences

11.1. Normative References .

11.2. Informmtive References .
Appendi x A. Document History .
Aut hors’ Addr esses .o

Saki mura, et al.

Expi res Sept enber

12, 2017

OCONNOUOORAPRRWWWW

[Page 2]

Internet-Draft JPCP March 2017

1. Introduction
Thi s docunment specifies the method for the client to use a proof-of-
possestion token against a protected resource. The format of such
token is defined in section 3 of [RFC7800].

1.1. Notational Conventions
The key words "MJST", "MJST NOT', "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in RFC
2119 [RFC2119].

Unl ess ot herwi se noted, all the protocol paraneter names and val ues
are case sensitive.

2. Terns and definitions

For the purpose of this docunent, the ternms defined in [RFC6749] and
[RFC7800] are used.

3. JW POP Token

JWI' PoP token is a JW5 signed JWI whose payload is a JW O ains Set.
The JWI clainms set MJST include the follow ng:

iss The issuer identifier of the auhtorization server.
aud The identifier of the resource server.

iat The issuance tine of this token.

exp The expiry tinme of this token.

cnf The confirmation nethod.

Their semantics are defined in [RFC7519] and [RFC7800].

Saki nura, et al. Expi res Septenber 12, 2017 [Page 3]

Internet-Draft JPCP March 2017

Followi ng is an exanple of such

{

"iss": "https://server.exanple.cont,
"aud": "https://resource. exanple.org"
"iat": "1360189224",

"exp": "1361398868",

"enf":{...}

Figure 1. Exanple of JW PoP Token
4. Sender Constrained Token
There are several varieties of sender constrained token. Nanely:
1. CN Constrained Token
2. Cient ID Constrained Token
4.1. CN Constrai ned Token
CN constrained token is typically used when X 509 client certificate
authentication is used at the token endpoint. |In this case, the
constraint is expressed by including the foll owing nenber at the top

| evel of cnf claim

cn The Commopn Nane of the client certificate that the client used in
the aut horization request.

The aut horization server finds the relevant CN fromthe X 509 client
certificate authentication that is performed at the token endpoint.

{

"iss": "https://server.exanple.cont,
"sub": "joe@xanple.cont,
"aud": "https://resource. exanmpl e.org"

"exp": "1361398824",
"nbf": "1360189224",
"enf":{
"cn": "client.exanple.cont
}

Fi gure 2: Exanple of CN Constrained JWI.

Saki nura, et al. Expi res Septenber 12, 2017 [Page 4]

Internet-Draft JPCP March 2017

4.2. Cient |ID Constrai ned Token

The constraint in the Client ID constrained token is expressed by
including the follow ng nenber at the top level of cnf claim

cid The client_id of the client that the client used in the
aut hori zati on request. The conbination of the "iss" of the access
token and this value forns a globally unique identifier for the
client.

The aut horization server finds the client IDfromthe client |ID used
in the client authentication at the token endpoint.

5. Key Constrai ned Token
Met hods to express key constraints are extensively described in the
section 3 of [RFC7800]. Such cnf claimis used in the access token
described in section 3 to forma key constrai ned token. [RFC7800]
defines 4 confirmation methods.
jwk JSON Wb Key Representing a Public Key
jwe Encrypted JSON Wb Key

j Wkt #5256 [RFC7638] Thunbprint of a JWK using the SHA-256 hash
function.

x5t #s256 [RFC7515] X. 509 Certificate SHA-256 Thunbprint
jku JWK Set URL

Following is an exanmple of a JW payload containing a JWK with a raw
key.

Saki nura, et al. Expi res Septenber 12, 2017 [Page 5]

Internet-Draft JPCP March 2017

{
"iss": "https://server.exanple.cont,
"sub": "joe@xanpl e.cont,
"aud": "https://resource. exanpl e. org",

"exp": "1361398824",
"nbf": "1360189224",

" Cn.-f " : {
"jwk"
"kty": "EC',
"use": "sig",
"crv': "P-256",
"x": "18wHLel gVOWWNGVDLTxgpgy2LszYkM 6J8nj VA bvhM',
"y" "-V4dS4UaLMgP_4f Y4 8i r 7cl 1TXI FdAgcx5507Tkc SA"
}
}

Figure 3: Exanmple of a JWK Key Constrai ned JWI.

Following is an exanmple of a JW payload containing a jku URI.

{
"iss": "https://server.exanple.cont,
"sub": "joe@xanple.cont,
"aud": "https://resource. exanpl e. org",

"exp": "1361398824",
"nbf": "1360189224",
"enf":{
"jfku": "https://client.exanple.conlkeys/client123-jwks"

Figure 4: Exanple of a jku Constrained JWI.

Followi ng is an example of a JW payl oad contai ning a x5t#s256
Certificate Thunmbprint of a x509 certificate.

Saki nura, et al. Expi res Septenber 12, 2017 [Page 6]

Internet-Draft JPCP March 2017

{
"iss": "https://server.exanple.cont,
"sub": "joe@xanpl e.cont,
"aud": "https://resource. exanple.org"

"exp": "1361398824",
"nbf": "1360189224",

"cnf":{
" x5t #s256": " wbcKOebwrCZUYDB2Y5SI ESs XE809yZg05089j dNi dgl "
}
}

Figure 5: Exanple of a x5t#s256 Certificate Thunbprint Constrained
JWI.

6. Resource access nethod

The resource server that supports this specification MJST
authenticate the Client by having it denonstrate that it is the

hol der of the key associated with the access token being used. The
confirmation nethod can be broadly categorized in two forns.

Mutual TLS method A nmethod | everaging on the X 509 client
certificate authentication of the TLS connection. cn, x5t#s256,
and jku confirmation methods can be used with this access method.
(The JVKS referenced by the jku MIST contain JWK with x5c
certificate elenments for this access nethod)

Signature nethod A nethod |everaging the signature on the nonce.
cid, jku, jwk, jwe, and, jwkt#S256 confirmation nethods can be
used with this access method.

6.1. Miutual TLS acess nethod

CN cnf nethod Under this method, X 509 client certificate
aut hentication at the resource endpoint is being | everaged. The
resource endpoint MJST obtain the CN of the client certificate
used for the authentication and MIST verify that the value of the
cn menber in the cnf nenber matches with it.

If it does not match, the process stops here and the resource
access MJST be deni ed.

If it is valid, then the resource server MIST verify the access

token. If it is valid, the resource SHOULD be returned as HTTP
response.

Saki nura, et al. Expi res Septenber 12, 2017 [Page 7]

Internet-Draft JPCP March 2017

6

2

x5t #s256 cnf nethod Under this method, X 509 client certificate
aut hentication at the resource endpoint is being | everaged. The
resource endpoint MJUST obtain the client certificate used for the
aut hentication and MJST verify that the base64url -encoded SHA- 256
thunprint of the DER encoded X. 509 client certificate. The
x5t #5256 menber in the cnf menmber MJUST exactly match the
cal cul ated t hunbprint.

If it does not match, the process stops here and the resource
access MUST be deni ed.

If it is valid, then the resource server MJST verify the access
token. If it is valid, the resource SHOULD be returned as HTTP
response.

j ku cnf nmethod Under this nethod, X 509 client certificate
aut hentication at the resource endpoint is being | everaged. The
resource endpoint MJST obtain the client certificate used for the
aut hentication and MJST verify that the certificate matches one of
the x5c elenents retrieved fromthe [RFC7517] JWKS. Each x5c
el ement may contain a chain of base64-encoded certificates. The
client certificate MIST only be conpared with the last certificate
in the chain.

If it does not match, the process stops here and the resource
access MJST be deni ed.

If it is valid, then the resource server MJST verify the access
token. If it is valid, the resource SHOULD be returned as HITP
response.

Si gnat ure met hod

For this, the follow ng steps are taken

1. The client prepares a nonce.

2. The client creates JW5 compact serialization over the nonce.

To obtain it, first create a JSON with a nanme "nonce" and the val ue
bei ng what was received in the previous step. The JWS MJST contain a

kid header elenment if the client has nore than one signing key
published via JWKS URI e.g.

{
}

"nonce": "dcd98b7102dd2f 0e8b11d0f 600bf bOc093"

Saki nura, et al. Expi res Septenber 12, 2017 [Page 8]

Internet-Draft JPCP March 2017

Then, "jws-on-nonce" is obtained by creating a conpact serialization
of JW5 on this JSON

3. The client sends the request to the resource server, this tine
wi th Aut horization Request Header as defined in section 4.2 of
[RFC7235] with the credential as foll ows:

credential s "Jpop" j pop-response

j pop-response at-response "," s-response
at -response "at" "=" access-token; As specified by [POPKD]
S-response "s" "=" jws-on-nonce; Created in the step 3

access-token
j Ws- on- nonce

guot ed-string
guot ed-string

In the foll owi ng exanple, the access token and the jws-on-nonce are
represented as access.token.jw and jws.of.nonce for the sake of
brevity.

GET /resource/ 1234 HTTP/ 1.0
Host: server. exanpl e. com
Aut hori zation: Jpop at="access.token.jw", s="jws.of.nonce"

Fi gure 6: Exanpl e resouce request

4. The resource server finds the client’'s public key formthe access
token t hrough the methods described in [RFC7800].

5. The resource server MJST verify the value of "s" of the
Aut hori zation header. |If it fails, the process stops here and the
resource access MJST be deni ed.

6. The resource server MJST verify the access token. If it is
valid, the resource SHOULD be returned as HITP response.

7. Authorization Error

If the client requests the resource wi thout the proper authoization
header, the resource server returns a HTTP 401 response with "WW
Aut henti cate" header as defined in section 4.1 of [RFC7235] with the
chal I enge as foll ows:

chal | enge
j pop-chal | enge
nonce-val ue

"Jpop" | pop-chall enge
"nonce" "=" nonce-val ue
quot ed-string

Fol | owi ng exanpl e depicts what the response would | ook Iike.

Saki nura, et al. Expi res Septenber 12, 2017 [Page 9]

Internet-Draft JPCP March 2017

HTTP/ 1. 0 401 Unaut hori zed
Server: HITPd/ 0.9
Date: Wed, 14 March 2017 09: 26: 53 GMI
WAV Aut henti cat e: Jpop nonce="dcd98b7102dd2f 0e8b11d0f 600bf b0c093"
Figure 7: Exanple error response
8. | ANA Consi derations
8.1. Jpop Authentication Schene

A new schenme has been registered in the HTTP Authentication Schene
Regi stry as foll ows:

Aut henti cati on Schene Nane: Jpop
Ref erence: Section 3 of this specification
Notes (optional): The Named Authentication schene is intended to be
used only with QAuth Resource Access, and thus does not support proxy
aut henti cati on.

8.2. JWI Confirmation Mt hods

o Confirmation Method Val ue: "cn"

o Confirmation Method Description: CN match with the TLS client
aut h.

o Change Controller: |IESG
o Specification Docunment(s): This docunent.
o Confirmation Method Value: "cid"
0o Confirmation Method Description: Client 1D Confirmation
o Change Controller: |IESG
o Specification Docunent(s): This docunent.
9. Security Considerations
9.1. Certificate validation
The "cn" JWI confirmation nethod relies its security property on the

X.509 client certificate authentication. |In particular, the validity
of the certificate needs to be verified properly. It involves the

Saki nura, et al. Expi res Septenber 12, 2017 [Page 10]

Internet-Draft JPCP March 2017

traversal of all the certificate chain and the certificate validation
(e.g., with OCSP)

9.2. Key protection

The client’s secret key nust be kept securely. Oherw se, the notion
of PoP breaks down.

It should be noted that JWE confirmation nethod is significantly
weaker form of the PoP, as the resource server and the authorization
server can nmasquerade as the client.

9. 3. Audi ance Restriction

When using the signature method the client nust specify to the AS the
aud it intends to send the token to, so that it can be included in
t he AT.

A malicious RS could receive a AT with no aud or a | ogical audience
and then replay the AT and jws-on-nonce to the actual server.

NOTE anot her approach would be to include the resource in the jws-on-
nonce

9.4. Dynanic client registration elenents

When a AS uses dynanmic client registration it nmay accept software
statenents supplied by a federation operator. Those software
statenents can contain a JWKS-URI that is hosted by the federation
operator or protected by a certificate provisioned froma trusted
root. These nmethods would allow the federation operator to

adm nistratively revoke the keys at the JWKS-URI wi thout requiring
the JWKS to contain x5c elenments with CA issued certificates and
having to have the RS performfull certificate validation for each
request.

10. Acknow edgenent s

The aut hors thank the foll owi ng people for providing val uabl e
feedback to this docunent. Nov Matake (YAuth).

11. Ref er ences

11.1. Nor mat i ve Ref erences

Saki nura, et al. Expi res Septenber 12, 2017 [Page 11]

Internet-Draft JPCP March 2017

[POPKD]

[RFC2119]

[RFC2617]

[REC6749]

[RFC6750]

[RFC7235]

[RFC7515]

[REC7517]

[RFC7519]

[RFC7638]

Saki mura, et

Bradl ey, J., Hunt, P., Jones, M, and H Tschofenig,
"QAuth 2.0 Proof-of-Possession: Authorization Server to
Client Key Distribution”, March 2017,
<https://tools.ietf.org/htm/draft-ietf-oauth-pop-key-
di stribution-03>.

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,

DA 10.17487/ RFC2119, March 1997,
<http://ww.rfc-editor.org/info/rfc2119>.

Franks, J., Hallam Baker, P., Hostetler, J., Lawence, S.,
Leach, P., Luotonen, A, and L. Stewart, "HITP

Aut henti cation: Basic and Di gest Access Authentication",
RFC 2617, DO 10. 17487/ RFC2617, June 1999,
<http://ww.rfc-editor.org/info/rfc2617>.

Hardt, D., Ed., "The QAuth 2.0 Authorization Franmework",
RFC 6749, DO 10. 17487/ RFC6749, Cctober 2012,
<http://ww. rfc-editor.org/info/rfc6749>.

Jones, M and D. Hardt, "The QAuth 2.0 Authorization
Framewor k: Bear er Token Usage", RFC 6750,

DO 10.17487/ RFC6750, Cctober 2012,

<http://wwmv. rfc-editor.org/info/rfc6750>.

Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Authentication", RFC 7235,

DO 10. 17487/ RFC7235, June 2014,

<http://wwv. rfc-editor.org/info/rfc7235>.

Jones, M, Bradley, J., and N. Sakimura, "JSON Wb
Signature (JWs)", RFC 7515, DO 10.17487/ RFC7515, My
2015, <http://ww.rfc-editor.org/info/rfc7515>.

Jones, M, "JSON Wb Key (JWK)", RFC 7517,
DO 10.17487/ RFC7517, May 2015,
<http://ww. rfc-editor.org/info/rfc7517>.

Jones, M, Bradley, J., and N. Sakinmura, "JSON Wb Token
(Jwn)", RFC 7519, DA 10.17487/ RFC7519, May 2015,
<http://wwv. rfc-editor.org/info/rfc7519>.

Jones, M and N. Sakinura, "JSON Wb Key (JVK)

Thunbprint”, RFC 7638, DO 10.17487/RFC7638, Septenber
2015, <http://ww.rfc-editor.org/info/rfc7638>.

al . Expi res Septenber 12, 2017 [Page 12]

Internet-Draft JPCP

[RFC7800] Jones, M, Bradley, J., and H Tschofenig,

March 2017

" Pr oof - of -

Possessi on Key Semantics for JSON Wb Tokens (JWIs)",

RFC 7800, DO 10. 17487/ RFC7800, April 2016,

<http://ww.rfc-editor.org/info/rfc7800>.

11.2. Infornmtive References

[PKCE] Sakinmura, N., "Proof Key for Code Exchange by QAuth Public

Cients", July 2015.

[POPA] Hunt, P., Ed., "QAuth 2.0 Proof-of-Possession (PoP)

Security Architecture", March 2015,

<https://tools.ietf.org/htm /draft-ietf-oauth-pop-

archi tecture-08>.

[TINTRQ Richer, J., "QAuth 2.0 Token Introspection”,

Appendi x A. Docunment Hi story
-00 Initial Version.
Aut hors’ Addresses
Nat Saki nmura
Nonmura Research Institute
O emachi Financial Gty Gand Cube, 1-9-2 O emachi
Chi yoda- ku, Tokyo 100-0004
Japan

Phone: +81-3-5533-2111

Emai | : n-sakinura@ri.co.jp
URI : htt ps://nat. saki rnura. or g/
Kepeng Li

Ali baba G oup

Emai | : kepeng. | kp@l i baba-inc. com
John Bradl ey

Ping ldentity

Email: ve7jtb@e7jtb.com
URI : http://ww.thread-safe.com

Saki nura, et al. Expi res Septenber 12, 2017

July 2015.

[Page 13]

QAut h Wor ki ng G oup W Denni ss
I nternet-Draft Googl e
I ntended status: Standards Track March 11, 2017
Expi res: Septenber 12, 2017

QAuth 2.0 Device Posture Signals
dr aft - wdenni ss- oaut h- devi ce- post ur e- 00

Abst r act

Enterprise and security focused QAuth providers typically want
additional signals to confirmuser presence when users return to
previously authorized apps. Rather than requiring a ful

reaut hentication, or require enrollnment in a nobile device managenent
solution, sone authorization servers may be willing to accept device
posture signals fromthe app, like the fact that device has a | ock
screen, as confirmation of user presence. This docunent details how
QAut h native app clients can comuni cate device posture signals to
QAut h providers

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on Septenber 12, 2017
Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect

Denni ss Expi res Septenber 12, 2017 [Page 1]

Internet-Draft QAuth 2.0 Device Posture Signals March 2017

to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

I ntroduction
Not at i onal Convent| ons
Devi ce Posture Signal Dicti onary
Aut hori zati on Request Device Posture H| nt
Token Endpoi nt Device Posture Enforcenent
Security Considerations .

.1. Device Posture Scope

. 2. Spoofed Devices .

.3. App Trustworthiness .

7. |1 ANA Considerations .

ook wNE

[e2e))]

7.1. CQAuth Paraneters Regi stratlon .
7.1.1. Registry Contents . . .

7.2. (QAuth Extensions Error Regi stration .
7.2.1. Registry Contents .

7.3. Device Posture Keys Regi stry
7.3.1. Registration Tenplate .
7.3.2. Initial Reg|stry Contents .

8. References . .
8.1. Normative References
8.2. Informative References

OO N~NOOOOOOOUIOITUNUITOTUTA, WWWN

Appendi x A. Acknow edgenents .
Aut hor’ s Address .o

1. Introduction

Users who follow strong security practices on their devices - such as
configuring screen | ocks, and not enabling adm n privil eges (comonly
known as "rooting" or "jailbreaking") - shouldn't need to

reaut henticate frequently to the individual apps on their device.

This specification details how apps can send devi ce posture signals
to the QAuth Token Endpoint, enabling it to enforce device policy
conmpliance, and avoid the need for reauthentication in sone cases.

It is designed to provide a nechanismfor honest apps to comunicate
device posture. By itself it doesn't protect against nalicious
users, dishonest apps, or conprom sed devices, but the signal format
described could carry signals that do.

Denni ss Expi res Septenber 12, 2017 [Page 2]

Internet-Draft QAuth 2.0 Device Posture Signals March 2017

2

Not at i onal Conventi ons

The key words "MJST", "MJST NOT"', "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in Key
words for use in RFCs to Indicate Requirenent Levels [RFC2119]. |If
these words are used without being spelled in uppercase then they are
to be interpreted with their normal natural |anguage neani ngs.

Devi ce Posture Signal Dictionary

The device posture is a dictionary of signals asserted by the app
about the device. The structure is send as an added paraneter in
several places during the QAuth flow, as docunented in the subsequent
secti ons.

Al'l device posture keys are OPTI ONAL and MJST only be set when the
attribute can be obtained by the app. The standard attribute keys
are as follows:

screen_| ock
Boolean. True if the user has a screen | ock, such as a pin,
pattern bionetric, etc.

root _privil eges
Bool ean. True if user apps can access root device privileges.
For nobile operating systens, known as "jail breaking" on i GS and
"rooting" on Android.

device_attestation
Dictionary. An attestation fromthe operating system containing
a signed-statenent about the device and/or the app. The format is
a dictionary, the specifics of which depends on the operating
system

An exanpl e devi ce posture dictionary:

{

"screen_l ock": true,
"root _privileges": fal se

Aut hori zation Request Device Posture Hint

Clients MAY send the device posture signal dictionary to the

aut hori zation server in the authorization request. These signals,
except for those that are signed and bound to the device are
susceptible to client-side nodification by end-users. Wile
untrusted, such signals can still be used as hints by the

Denni ss Expi res Septenber 12, 2017 [Page 3]

Internet-Draft QAuth 2.0 Device Posture Signals March 2017

aut hori zation server to present a better user experience, |ike
inform ng the user they need a | ock screen

Error encountered during authorization can be displayed to the user
in the browser naking this a nore user friendly way to instruct the
user on how to nove their device into conformance. The token
endpoi nt (on which errors are less user-friendly as there’'s no user
agent), can then enforce the restrictions per Section 5.

The follow ng paraneters are added to the QAuth 2.0 Authorization
Request :

devi ce_posture_hint
JSON String. URL-encoded JSON dictionary, contains the Device
Posture Signals defined in Section 3.

5. Token Endpoi nt Devi ce Posture Enforcenent

Clients that follow this specification MJST send the device posture
signals on every request to the token endpoint.

Token Endpoints SHOULD verify that the posture conforns to their
requi renents and act accordingly.

The followi ng parameters are added to all requests to the Token
Endpoi nt :

devi ce_posture
JSON String. URL-encoded JSON dictionary, contains the Device
Posture Signals defined in Section 3.

The app MUST obtain fresh device posture informati on before every
request to the Token Endpoint, and MJST NOT include stale information
(rather, it should drop any signals it cannot freshly obtain).

For token refresh requests, where the device posture has been
previously communicated, if an attribute is nissing, the Token
Endpoi nt may choose to use the previous value, based on it’s own
policy and freshness requirenents.

If the policy does not neet requirenents, the Token Endpoi nt SHOULD
return the follow ng error code

devi ce_posture_invalid
Error indicating that the device posture does not neet
requirenents. The error description SHOULD contain details on why
this is is the case

Denni ss Expi res Septenber 12, 2017 [Page 4]

Internet-Draft QAuth 2.0 Device Posture Signals March 2017

6

6

6

6

7

7

Security Considerations
1. Device Posture Scope

This specification is designed to help authorization servers enforce
security policy (like requiring a |l ock screen) on end-users. The
intent is to enforce restrictions on honest users, to force themto
foll ow security practices set out by the authorization server. By
itself, it offers no protection against malicious users, dishonest
apps, or conprom sed devi ces.

Conbi ned with ot her technol ogies |ike device-based attestations and
t oken bi nding may enabl e such protection, and this specification
could be used to transmt secure signals, but that topic is out of
scope for this specification

2. Spoofed Devices

It is possible to at a device level conpletely spoof the device
posture. Even statenents signed by the operating systemare

vul nerabl e to spoofing, as it’s possible a statenent fromthe rea
devi ce can be replayed on a spoofed device, unless such statenents
include a binding to the device itself. Per Section 6.1, this topic
is out of scope for this specification

3. App Trustworthi ness

This specification is designed to allow trusted apps to report device
posture to the authorization server to help the server enforce
security policy on end-users. |t does not by itself force apps to be
honest, or genuine. Genuine apps (i.e. apps not |lying about their
client 1D) mght be dishonest about the device posture, and apps that
are normal ly honest, could be spoofed, unless anti-spoofing

count ernmeasures that are out of scope of this specification are

enpl oyed.

| ANA Consi derations
1. CQAuth Parameters Registration
This specification registers the following value in the I ANA "QAuth

Par anet ers" registry [| ANA QAut h. Paranet ers] established by
[RFC6749] .

Denni ss Expi res Septenber 12, 2017 [Page 5]

Internet-Draft QAuth 2.0 Device Posture Signals March 2017

7

7

7

.1

2

2

3.

1. Registry Contents

o Paranmeter name: device_posture_hint

o Paraneter usage |ocation: authorization request

0 Change controller: |ESG

0 Specification document(s): Section 4 of [[this specification]]
o Paranmeter name: device_posture

o Parameter usage |ocation: token request

0 Change controller: |ESG

0 Specification docunent(s): Section 5 of [[this specification]]

QAut h Extensions Error Registration

This specification registers the following error in the I ANA "QAuth
Extensi ons Error Registry" [IANA QAuth. Paraneters] established by
[RFC6749] .

1. Registry Contents

Error nane: device_posture_invalid

Error usage |l ocation: authorization response, token error response
Rel at ed protocol extension: resource paraneter

Change controller: |ESG

Speci fication docunent(s): Section 5 of [[this specification]]

Oo0oo0oo0oo

Devi ce Posture Keys Registry

This specification establishes the | ANA "Device Posture Keys"
registry for Device Posture Dictionary keys. The registry records
the Device Posture key and a reference to the specification that
defines it. This specification registers the Device Posture keys
defined in Section 3.

Keys are registered on an Expert Revi ew [RFC5226] basis after a
t hr ee-week review period on the oauth-reg-review@etf.org mailing
list, on the advice of one or nore Designated Experts.

Regi stration requests sent to the mailing list for review should use
an appropriate subject (e.g., "Request to register Device Posture
Key: screen_l ock").

Wthin the review period, the Designated Experts will either approve
or deny the registration request, communicating this decision to the
review list and 1 ANA. Denials should include an explanation and, if
appl i cabl e, suggestions as to how to make the request successful

Regi stration requests that are undeternmined for a period | onger than

Denni ss Expi res Septenber 12, 2017 [Page 6]

Internet-Draft QAuth 2.0 Device Posture Signals March 2017

7

7

3.

3.

21 days can be brought to the ESG s attention (using the
iesg@etf.org mailing list) for resolution

Criteria that should be applied by the Designated Experts includes
det ermi ni ng whether the proposed registration duplicates existing
functionality, whether it is likely to be of general applicability or
whether it is useful only for a single application, whether the val ue
is actually being used, and whether the registration description is
cl ear.

| ANA nust only accept registry updates fromthe Designated Experts
and should direct all requests for registration to the review mailing
list.

It is suggested that the same Designated Experts eval uate these
regi stration requests as those who evaluate registration requests for
the 1 ANA "QAuth Paraneters” registry [|ANA QAuth. Paranet ers].

1. Registration Tenplate

Devi ce Posture Signal Key:
The key nane requested (e.g., "screen_lock"”). Nanes nay not natch
other registered nanes in a case-insensitive manner unless the
Desi gnat ed Experts state that there is a conpelling reason to
al | ow an excepti on.

Devi ce Posture Signal Key Description:
Bri ef description of the device posture signal (e.g., "Screen |ock
active").

Change Controller:
For Standards Track RFCs, state "IESG'. For others, give the nane
of the responsible party. Oher details (e.g., postal address,
emai | address, hone page URI) nay al so be incl uded.

Speci ficati on Docunent (s):
Ref erence to the docunent or docunents that specify the paraneter,
preferably including URIs that can be used to retrieve copi es of
the docunents. An indication of the relevant sections may al so be
i ncluded but is not required.

2. Initial Registry Contents

0 Device Posture Signal Key: "screen_| ock"”

0 Device Posture Signal Key Description: Boolean. 'true’ when the
devi ce has a screen | ock enabl ed.

o Change Controller: |IESG

o Specification Docunment(s): Section 3 of [[this specification]]

0 Device Posture Signal Key: "root _privil eges"

Denni ss Expi res Septenber 12, 2017 [Page 7]

Internet-Draft QAuth 2.0 Device Posture Signals March 2017

8.

8.

8.

1.

2.

Devi ce Posture Signhal Key Description: Boolean. True if user apps
can access root device privil eges.

Change Controller: |ESG

Speci fication Docunent(s): Section 3 of [[this specification]]

Devi ce Posture Signal Key: "device attestation”

Devi ce Posture Signal Key Description: Dictionary. An attestation
fromthe operating system containing a signed-statenment about the
devi ce and/or the app.

Change Controller: |ESG

Speci fication Docunent(s): Section 3 of [[this specification]]

Ref er ences

Nor mati ve Ref erences

[I ANA. QAut h. Par anet er s]

| ANA, "QAut h Paraneters”,
<http://ww. i ana. or g/ assi gnment s/ oaut h- par anet er s>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

Requi renent Level s", BCP 14, RFC 2119,
DA 10. 17487/ RFC2119, March 1997,
<http://wwv. rfc-editor.org/info/rfc2119>.

[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an

| ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
DA 10.17487/ RFC5226, May 2008,
<http://ww.rfc-editor.org/info/rfc5226>.

[RFC6749] Hardt, D., Ed., "The QAuth 2.0 Authorization Franework",

RFC 6749, DA 10.17487/ RFC6749, Cctober 2012,
<http://ww. rfc-editor.org/info/rfc6749>.

Informati ve References

[RFC6819] Lodderstedt, T., Ed., Mdoin, M, and P. Hunt, "QAuth 2.0

Threat Mdel and Security Considerations", RFC 6819,
DO 10.17487/ RFC6819, January 2013,
<http://ww.rfc-editor.org/info/rfc6819>.

Appendi x A, Acknow edgenent s

The follow ng individuals contributed ideas, feedback, and wording
that shaped and forned the final specification:

Eri c Sachs, John Bradl ey, and Andy Znol ek.

Denni ss Expi res Septenber 12, 2017 [Page 8]

Internet-Draft QAuth 2.0 Device Posture Signals March 2017

Aut hor’ s Addr ess

W 1liam Denni ss

Googl e

1600 Amphitheatre Pkwy
Mountain View, CA 94043

USA

Phone: +1 650-253-0000

Enmai | : wdenni ss@oogl e. com
URI : http://google. com

Denni ss Expi res Septenber 12, 2017 [Page 9]

	draft-campbell-oauth-mtls-00
	draft-ietf-oauth-device-flow-14
	draft-ietf-oauth-discovery-10
	draft-ietf-oauth-pop-key-distribution-03
	draft-ietf-oauth-token-binding-08
	draft-ietf-oauth-token-exchange-16
	draft-sakimura-oauth-jpop-01
	draft-wdenniss-oauth-device-posture-00

