
OAuth Working Group B. Campbell
Internet-Draft J. Bradley
Intended status: Standards Track Ping Identity
Expires: October 1, 2017 N. Sakimura
 Nomura Research Institute
 T. Lodderstedt
 YES Europe AG
 March 30, 2017

 Mutual TLS Profiles for OAuth Clients
 draft-campbell-oauth-mtls-00

Abstract

 This document describes Transport Layer Security (TLS) mutual
 authentication using X.509 certificates as a mechanism for both OAuth
 client authentication to the token endpoint as well as for sender
 constrained access to OAuth protected resources.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 1, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Campbell, et al. Expires October 1, 2017 [Page 1]

Internet-Draft MTLSPOC March 2017

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Notation and Conventions 3
 2. Mutual TLS for Client Authentication 3
 2.1. Mutual TLS Client Authentication to the Token Endpoint . 3
 2.2. Authorization Server Metadata 4
 2.3. Dynamic Client Registration 4
 3. Mutual TLS Sender Constrained Resources Access 4
 3.1. X.509 Certificate SHA-256 Thumbprint Confirmation Method
 for JWT . 5
 4. IANA Considerations . 6
 4.1. JWT Confirmation Methods Registration 6
 4.1.1. Registry Contents 6
 4.2. Token Endpoint Authentication Method Registration 6
 4.2.1. Registry Contents 6
 4.3. OAuth Dynamic Client Registration Metadata Registration . 6
 4.3.1. Registry Contents 6
 5. Security Considerations 7
 5.1. TLS Versions and Best Practices 7
 5.2. Client Identity Binding 7
 6. References . 7
 6.1. Normative References 7
 6.2. Informative References 8
 Appendix A. Acknowledgements 9
 Appendix B. Document(s) History 9
 Authors’ Addresses . 10

1. Introduction

 This document describes Transport Layer Security (TLS) mutual
 authentication using X.509 certificates as a mechanism for both OAuth
 client authentication to the token endpoint as well as for sender
 constrained access to OAuth protected resources.

 The OAuth 2.0 Authorization Framework [RFC6749] defines a shared
 secret method of client authentication but also allows for the
 definition and use of additional client authentication mechanisms
 when interacting with the authorization server’s token endpoint.
 This document describes an additional mechanism of client
 authentication utilizing mutual TLS [RFC5246] certificate-based
 authentication, which provides better security characteristics than
 shared secrets.

Campbell, et al. Expires October 1, 2017 [Page 2]

Internet-Draft MTLSPOC March 2017

 Mutual TLS sender constrained access to protected resources ensures
 that only the party in possession of the private key corresponding to
 the certificate can utilize the access token to get access to the
 associated resources. Such a constraint is unlike the case of the
 basic bearer token described in [RFC6750], where any party in
 possession of the access token can use it to access the associated
 resources. Mutual TLS sender constrained access prevents the use of
 stolen access tokens by binding the access token to the client’s
 certificate.

 Mutual TLS sender constrained access tokens and mutual TLS client
 authentication are distinct mechanisms that can don’t necessarily
 need to be deployed together.

1.1. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

2. Mutual TLS for Client Authentication

2.1. Mutual TLS Client Authentication to the Token Endpoint

 The following section defines, as an extension of OAuth 2.0,
 Section 2.3 [RFC6749], the use of mutual TLS as client credentials.
 The requirement of mutual TLS for client authentications is
 determined by the authorization server based on policy or
 configuration for the given client (regardless of whether the client
 was dynamically registered or statically configured or otherwise
 established). OAuth 2.0 requires that access token requests by the
 client to the token endpoint use TLS. In order to utilize TLS for
 client authentication, the TLS connection MUST have been established
 or reestablished with mutual X.509 certificate authentication (i.e.
 the Client Certificate and Certificate Verify messages are sent
 during the TLS Handshake [RFC5246]).

 For all access token requests to the token endpoint, regardless of
 the grant type used, the client MUST include the "client_id"
 parameter, described in OAuth 2.0, Section 2.2 [RFC6749]. The
 presence of the "client_id" parameter enables the authorization
 server to easily identify the client independently from the content
 of the certificate and allows for trust models to vary as appropriate
 for a given deployment. The authorization server can locate the
 client configuration by the client identifier and check the
 certificate presented in the TLS Handshake against the expected
 credentials for that client. As described in Section 5.2, the

Campbell, et al. Expires October 1, 2017 [Page 3]

Internet-Draft MTLSPOC March 2017

 authorization server MUST enforce some method of binding a
 certificate to a client.

2.2. Authorization Server Metadata

 "tls_client_auth" is used as a new value of the
 "token_endpoint_auth_methods_supported" metadata parameter to
 indicate server support for mutual TLS as a client authentication
 method in authorization server metadata such as [OpenID.Discovery]
 and [I-D.ietf-oauth-discovery].

2.3. Dynamic Client Registration

 This draft adds the following values and metadata parameters to the
 OAuth 2.0 Dynamic Client Registration [RFC7591].

 The value "tls_client_auth" is used to indicate the client’s
 intention to use mutual TLS as an authentication method to the token
 endpoint for the "token_endpoint_auth_method" client metadata field.

 For authorization servers that associate certificates with clients
 using subject information in the certificate, the following two new
 string metadata parameters can be used:

 tls_client_auth_subject_dn The expected subject distinguished name
 of the client certificate can be represented using
 "tls_client_auth_subject_dn".

 tls_client_auth_issuer_dn The metadata parameter
 "tls_client_auth_issuer_dn" can optionally be used to constrain
 the expected distinguished name of the root issuer of the client
 certificate.

 For authorization servers that use the key or full certificate to
 associate clients with certificate, the existing "jwks_uri" or "jwks"
 metadata parameters from [RFC7591] shall be used.

3. Mutual TLS Sender Constrained Resources Access

 When mutual TLS X.509 client certificate authentication is used at
 the token endpoint, the authorization server is able to bind the
 issued access token to the client certificate. Such a binding is
 accomplished by associating a hash of the certificate with the token
 in a way that can be accessed by the protected resource, such as
 embedding the certificate hash in the issued access token directly,
 using the syntax described in Section 3.1, or through token
 introspection [RFC7662]. The specific method for associating the
 certificate with the access token is determined by the authorization

Campbell, et al. Expires October 1, 2017 [Page 4]

Internet-Draft MTLSPOC March 2017

 server and the protected resource, and is beyond the scope for this
 specification.

 The client makes protected resource requests as described in
 [RFC6750], however, those requests MUST be made over a mutually
 authenticated TLS connection using the same certificate that was used
 to authenticate to the token endpoint.

 The protected resource MUST obtain the client certificate used for
 TLS authentication and MUST verify that the hash of that certificate
 exactly matches the hash of the certificate associated with the
 access token. If the hash values do not match, the resource access
 attempt MUST be rejected with an error.

3.1. X.509 Certificate SHA-256 Thumbprint Confirmation Method for JWT

 When access tokens are represented as a JSON Web Tokens
 (JWT)[RFC7519], the certificate hash information SHOULD be
 represented using the "x5t#S256" confirmation method member defined
 herein.

 To represent the hash of a certificate in a JWT, this specification
 defines the new JWT Confirmation Method RFC 7800 [RFC7800] member
 "x5t#S256" for the X.509 Certificate SHA-256 Thumbprint. The value
 of the "x5t#S256" member is a base64url-encoded SHA-256[SHS] hash
 (a.k.a. thumbprint or digest) of the DER encoding of the X.509
 certificate[RFC5280] (note that certificate thumbprints are also
 sometimes also known as certificate fingerprints).

 The following is an example of a JWT payload containing an "x5t#S256"
 certificate thumbprint confirmation method.

 {
 "iss": "https://server.example.com",
 "aud": "https://resource.example.org",
 "sub": "ty.webb@example.com",
 "exp": "1493726400",
 "nbf": "1493722800",
 "cnf":{
 "x5t#s256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }

 Figure 1: Example claims of a Certificate Thumbprint Constrained JWT.

Campbell, et al. Expires October 1, 2017 [Page 5]

Internet-Draft MTLSPOC March 2017

4. IANA Considerations

4.1. JWT Confirmation Methods Registration

 This specification requests registration of the following value in
 the IANA "JWT Confirmation Methods" registry [IANA.JWT.Claims] for
 JWT "cnf" member values established by [RFC7800].

4.1.1. Registry Contents

 o Confirmation Method Value: "x5t#S256"
 o Confirmation Method Description: X.509 Certificate SHA-256
 Thumbprint
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this specification]]

4.2. Token Endpoint Authentication Method Registration

 This specification requests registration of the following value in
 the IANA "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] established by [RFC7591].

4.2.1. Registry Contents

 o Token Endpoint Authentication Method Name: "tls_client_auth"
 o Change Controller: IESG
 o Specification Document(s): Section 2.2 of [[this specification]]

4.3. OAuth Dynamic Client Registration Metadata Registration

 This specification requests registration of the following client
 metadata definitions in the IANA "OAuth Dynamic Client Registration
 Metadata" registry [IANA.OAuth.Parameters] established by [RFC7591]:

4.3.1. Registry Contents

 o Client Metadata Name: "tls_client_auth_subject_dn"
 o Client Metadata Description: String value specifying the expected
 subject distinguished name of the client certificate.
 o Change Controller: IESG
 o Specification Document(s): Section 2.3 of [[this specification]]

 o Client Metadata Name: "tls_client_auth_issuer_dn"
 o Client Metadata Description: String value specifying the expected
 distinguished name of the root issuer of the client certificate
 o Change Controller: IESG
 o Specification Document(s): Section 2.3 of [[this specification]]

Campbell, et al. Expires October 1, 2017 [Page 6]

Internet-Draft MTLSPOC March 2017

5. Security Considerations

5.1. TLS Versions and Best Practices

 TLS 1.2 [RFC5246] is cited in this document because, at the time of
 writing, it is latest version that is widely deployed. However, this
 document is applicable with other TLS versions supporting
 certificate-based client authentication. Implementation security
 considerations for TLS, including version recommendations, can be
 found in Recommendations for Secure Use of Transport Layer Security
 (TLS) and Datagram Transport Layer Security (DTLS) [BCP195].

5.2. Client Identity Binding

 No specific method of binding a certificate to a client identifier at
 the token endoint is prescribed by this document. However, some
 method MUST be employed so that, in addition to proving possession of
 the private key corresponding to the certificate, the client identity
 is also bound to the certificate. One such binding would be to
 configure for the client a value that the certificate must contain in
 the subject field or the subjectAltName extension and possibly a
 restricted set of trust anchors. An alternative method would be to
 configure a public key for the client directly that would have to
 match the subject public key info of the certificate.

6. References

6.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/bcp195>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

Campbell, et al. Expires October 1, 2017 [Page 7]

Internet-Draft MTLSPOC March 2017

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <http://www.rfc-editor.org/info/rfc7800>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/
 fips-180-4.pdf>.

6.2. Informative References

 [I-D.ietf-oauth-discovery]
 Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", draft-ietf-oauth-
 discovery-04 (work in progress), August 2016.

 [IANA.JWT.Claims]
 IANA, "JSON Web Token Claims",
 <http://www.iana.org/assignments/jwt>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0", February 2014.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

Campbell, et al. Expires October 1, 2017 [Page 8]

Internet-Draft MTLSPOC March 2017

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <http://www.rfc-editor.org/info/rfc7591>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <http://www.rfc-editor.org/info/rfc7662>.

Appendix A. Acknowledgements

 Scott "not Tomlinson" Tomilson and Matt Peterson were involved in the
 original design and development work on a mutual TLS client
 authentication implementation that informed some of the content of
 this document.

 Additionally, the authors would like to thank the following people
 for their input and contributions to the specification: Sergey
 Beryozkin, Vladimir Dzhuvinov, Samuel Erdtman, Phil Hunt, Sean
 Leonard, Jim Manico, Sascha Preibisch, Justin Richer, and Hannes
 Tschofenig.

Appendix B. Document(s) History

 [[to be removed by the RFC Editor before publication as an RFC]]

 draft-campbell-oauth-mtls-00

 o Add a Mutual TLS sender constrained protected resource access
 method and a x5t#s256 cnf method for JWT access tokens (concepts
 taken in part from draft-sakimura-oauth-jpop-04).
 o Fixed "token_endpoint_auth_methods_supported" to
 "token_endpoint_auth_method" for client metadata.
 o Add "tls_client_auth_subject_dn" and "tls_client_auth_issuer_dn"
 client metadata parameters and mention using "jwks_uri" or "jwks".
 o Say that the authentication method is determined by client policy
 regardless of whether the client was dynamically registered or
 statically configured.
 o Expand acknowledgements to those that participated in discussions
 around draft-campbell-oauth-tls-client-auth-00
 o Add Nat Sakimura and Torsten Lodderstedt to the author list.

 draft-campbell-oauth-tls-client-auth-00

 o Initial draft.

Campbell, et al. Expires October 1, 2017 [Page 9]

Internet-Draft MTLSPOC March 2017

Authors’ Addresses

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Nat Sakimura
 Nomura Research Institute

 Email: n-sakimura@nri.co.jp
 URI: https://nat.sakimura.org/

 Torsten Lodderstedt
 YES Europe AG

 Email: torsten@lodderstedt.net

Campbell, et al. Expires October 1, 2017 [Page 10]

OAuth W. Denniss
Internet-Draft Google
Intended status: Standards Track J. Bradley
Expires: July 20, 2019 Ping Identity
 M. Jones
 Microsoft
 H. Tschofenig
 ARM Limited
 January 16, 2019

 OAuth 2.0 Device Flow for Browserless and Input Constrained Devices
 draft-ietf-oauth-device-flow-14

Abstract

 This OAuth 2.0 authorization flow is designed for devices that either
 lack a browser to perform a user-agent based OAuth flow, or are
 input-constrained to the extent that requiring the user to input a
 lot of text (like their credentials to authenticate with the
 authorization server) is impractical. It enables OAuth clients on
 such devices (like smart TVs, media consoles, digital picture frames,
 and printers) to obtain user authorization to access protected
 resources without using an on-device user-agent, provided that they
 have an Internet connection.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 20, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Denniss, et al. Expires July 20, 2019 [Page 1]

Internet-Draft OAuth 2.0 Device Flow January 2019

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Protocol . 5
 3.1. Device Authorization Request 5
 3.2. Device Authorization Response 6
 3.3. User Interaction . 7
 3.3.1. Non-textual Verification URI Optimization 9
 3.4. Device Access Token Request 9
 3.5. Device Access Token Response 10
 4. Discovery Metadata . 12
 5. Security Considerations 12
 5.1. User Code Brute Forcing 12
 5.2. Device Code Brute Forcing 13
 5.3. Device Trustworthiness 13
 5.4. Remote Phishing . 13
 5.5. Session Spying . 14
 5.6. Non-confidential Clients 14
 5.7. Non-Visual Code Transmission 15
 6. Usability Considerations 15
 6.1. User Code Recommendations 15
 6.2. Non-Browser User Interaction 16
 7. IANA Considerations . 16
 7.1. OAuth Parameters Registration 16
 7.1.1. Registry Contents 16
 7.2. OAuth URI Registration 17
 7.2.1. Registry Contents 17
 7.3. OAuth Extensions Error Registration 17
 7.3.1. Registry Contents 17
 7.4. OAuth 2.0 Authorization Server Metadata 18
 7.4.1. Registry Contents 18
 8. Normative References . 18
 Appendix A. Acknowledgements 19
 Appendix B. Document History 19
 Authors’ Addresses . 21

Denniss, et al. Expires July 20, 2019 [Page 2]

Internet-Draft OAuth 2.0 Device Flow January 2019

1. Introduction

 This OAuth 2.0 [RFC6749] protocol extension known as the "device
 flow" enables OAuth clients to request user authorization from
 applications on devices that have limited input capabilities or lack
 a suitable browser. Such devices include those smart TVs, media
 console, picture frames and printers which lack an easy input method
 or suitable browser required for a more traditional OAuth flow. This
 authorization flow instructs the user to perform the authorization
 request on a secondary device, such as a smartphone which does have
 the requisite input and browser capabilities for an OAuth flow.

 The device flow is not intended to replace browser-based OAuth in
 native apps on capable devices (like smartphones). Those apps should
 follow the practices specified in OAuth 2.0 for Native Apps
 [RFC8252].

 The operating requirements to be able to use this authorization flow
 are:

 (1) The device is already connected to the Internet.

 (2) The device is able to make outbound HTTPS requests.

 (3) The device is able to display or otherwise communicate a URI and
 code sequence to the user.

 (4) The user has a secondary device (e.g., personal computer or
 smartphone) from which they can process the request.

 As the device flow does not require two-way communication between the
 OAuth client and the user-agent (unlike other OAuth 2 flows), it
 supports several use cases that cannot be served by those other
 approaches.

 Instead of interacting with the end user’s user agent, the client
 instructs the end user to use another computer or device and connect
 to the authorization server to approve the access request. Since the
 client cannot receive incoming requests, it polls the authorization
 server repeatedly until the end user completes the approval process.

 The device typically chooses the set of authorization servers to
 support (i.e., its own authorization server, or those by providers it
 has relationships with). It is not uncommon for the device
 application to support only a single authorization server, such as
 with a TV application for a specific media provider that supports
 only that media provider’s authorization server. The user may not
 have an established relationship yet with that authorization

Denniss, et al. Expires July 20, 2019 [Page 3]

Internet-Draft OAuth 2.0 Device Flow January 2019

 provider, though one can potentially be set up during the
 authorization flow.

 +----------+ +----------------+
 | |>---(A)-- Client Identifier --->| |
 | | | |
 | |<---(B)-- Verification Code, --<| |
 | | User Code, | |
 | | & Verification URI | |
 | Device | | |
 | Client | Client Identifier & | |
 | |>---(E)-- Verification Code --->| |
 | | polling... | |
 | |>---(E)-- Verification Code --->| |
 | | | Authorization |
 | |<---(F)-- Access Token --------<| Server |
 +----------+ (w/ Optional Refresh Token) | |
 v | |
 : | |
 (C) User Code & Verification URI | |
 : | |
 v | |
 +----------+ | |
 | End user | | |
 | at |<---(D)-- User authenticates -->| |
 | Browser | | |
 +----------+ +----------------+

 Figure 1: Device Flow.

 The device flow illustrated in Figure 1 includes the following steps:

 (A) The client requests access from the authorization server and
 includes its client identifier in the request.

 (B) The authorization server issues a verification code, an end-
 user code, and provides the end-user verification URI.

 (C) The client instructs the end user to use its user agent
 (elsewhere) and visit the provided end-user verification URI. The
 client provides the user with the end-user code to enter in order
 to grant access.

 (D) The authorization server authenticates the end user (via the
 user agent) and prompts the user to grant the client’s access
 request. If the user agrees to the client’s access request, the
 user enters the user code provided by the client. The
 authorization server validates the user code provided by the user.

Denniss, et al. Expires July 20, 2019 [Page 4]

Internet-Draft OAuth 2.0 Device Flow January 2019

 (E) While the end user authorizes (or denies) the client’s request
 (step D), the client repeatedly polls the authorization server to
 find out if the user completed the user authorization step. The
 client includes the verification code and its client identifier.

 (F) Assuming the end user granted access, the authorization server
 validates the verification code provided by the client and
 responds back with the access token.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Device Authorization Endpoint:
 The authorization server’s endpoint capable of issuing device
 verification codes, user codes, and verification URLs.

 Device Verification Code:
 A short-lived token representing an authorization session.

 End-User Verification Code:
 A short-lived token which the device displays to the end user, is
 entered by the user on the authorization server, and is thus used
 to bind the device to the user.

3. Protocol

3.1. Device Authorization Request

 This specification defines a new OAuth endpoint, the device
 authorization endpoint. This is separate from the OAuth
 authorization endpoint defined in [RFC6749] with which the user
 interacts with via a user-agent (i.e., a browser). By comparison,
 when using the device authorization endpoint, the OAuth client on the
 device interacts with the authorization server directly without
 presenting the request in a user-agent, and the end user authorizes
 the request on a separate device. This interaction is defined as
 follows.

 The client initiates the authorization flow by requesting a set of
 verification codes from the authorization server by making an HTTP
 "POST" request to the device authorization endpoint.

Denniss, et al. Expires July 20, 2019 [Page 5]

Internet-Draft OAuth 2.0 Device Flow January 2019

 The client constructs the request with the following parameters, sent
 as the body of the request, encoded with the "application/x-www-form-
 urlencoded" encoding algorithm defined by Section 4.10.22.6 of
 [HTML5]:

 client_id
 REQUIRED. The client identifier as described in Section 2.2 of
 [RFC6749].

 scope
 OPTIONAL. The scope of the access request as described by
 Section 3.3 of [RFC6749].

 For example, the client makes the following HTTPS request:

 POST /device_authorization HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 client_id=459691054427

 All requests from the device MUST use the Transport Layer Security
 (TLS) [RFC8446] protocol and implement the best practices of BCP 195
 [RFC7525].

 Parameters sent without a value MUST be treated as if they were
 omitted from the request. The authorization server MUST ignore
 unrecognized request parameters. Request and response parameters
 MUST NOT be included more than once.

 Due to the polling nature of this protocol, care is needed to avoid
 overloading the capacity of the token endpoint. To avoid unneeded
 requests on the token endpoint, the client SHOULD only commence a
 device authorization request when prompted by the user, and not
 automatically such as when the app starts or when the previous
 authorization session expires or fails.

3.2. Device Authorization Response

 In response, the authorization server generates a unique device
 verification code and an end-user code that are valid for a limited
 time and includes them in the HTTP response body using the
 "application/json" format [RFC8259] with a 200 (OK) status code. The
 response contains the following parameters:

 device_code
 REQUIRED. The device verification code.

Denniss, et al. Expires July 20, 2019 [Page 6]

Internet-Draft OAuth 2.0 Device Flow January 2019

 user_code
 REQUIRED. The end-user verification code.

 verification_uri
 REQUIRED. The end-user verification URI on the authorization
 server. The URI should be short and easy to remember as end users
 will be asked to manually type it into their user-agent.

 verification_uri_complete
 OPTIONAL. A verification URI that includes the "user_code" (or
 other information with the same function as the "user_code"),
 designed for non-textual transmission.

 expires_in
 REQUIRED. The lifetime in seconds of the "device_code" and
 "user_code".

 interval
 OPTIONAL. The minimum amount of time in seconds that the client
 SHOULD wait between polling requests to the token endpoint. If no
 value is provided, clients MUST use 5 as the default.

 For example:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "device_code": "GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS",
 "user_code": "WDJB-MJHT",
 "verification_uri": "https://example.com/device",
 "verification_uri_complete":
 "https://example.com/device?user_code=WDJB-MJHT",
 "expires_in": 1800,
 "interval": 5
 }

3.3. User Interaction

 After receiving a successful Authorization Response, the client
 displays or otherwise communicates the "user_code" and the
 "verification_uri" to the end user and instructs them to visit the
 URI in a user agent on a secondary device (for example, in a browser
 on their mobile phone), and enter the user code.

Denniss, et al. Expires July 20, 2019 [Page 7]

Internet-Draft OAuth 2.0 Device Flow January 2019

 +---+
 | |
 | Using a browser on another device, visit: |
 | https://example.com/device |
 | |
 | And enter the code: |
 | WDJB-MJHT |
 | |
 +---+

 Figure 2: Example User Instruction

 The authorizing user navigates to the "verification_uri" and
 authenticates with the authorization server in a secure TLS-protected
 ([RFC8446]) session. The authorization server prompts the end user
 to identify the device authorization session by entering the
 "user_code" provided by the client. The authorization server should
 then inform the user about the action they are undertaking and ask
 them to approve or deny the request. Once the user interaction is
 complete, the server MAY inform the user to return to their device.

 During the user interaction, the device continuously polls the token
 endpoint with the "device_code", as detailed in Section 3.4, until
 the user completes the interaction, the code expires, or another
 error occurs. The "device_code" is not intended for the end user
 directly, and thus should not be displayed during the interaction to
 avoid confusing the end user.

 Authorization servers supporting this specification MUST implement a
 user interaction sequence that starts with the user navigating to
 "verification_uri" and continues with them supplying the "user_code"
 at some stage during the interaction. Other than that, the exact
 sequence and implementation of the user interaction is up to the
 authorization server, for example, the authorization server may
 enable new users to sign up for an account during the authorization
 flow, or add additional security verification steps.

 It is NOT RECOMMENDED for authorization servers to include the user
 code in the verification URI ("verification_uri"), as this increases
 the length and complexity of the URI that the user must type. While
 the user must still type the same number of characters with the
 user_code separated, once they successfully navigate to the
 verification_uri, any errors in entering the code can be highlighted
 by the authorization server to improve the user experience. The next
 section documents user interaction with "verification_uri_complete",
 which is designed to carry both pieces of information.

Denniss, et al. Expires July 20, 2019 [Page 8]

Internet-Draft OAuth 2.0 Device Flow January 2019

3.3.1. Non-textual Verification URI Optimization

 When "verification_uri_complete" is included in the Authorization
 Response (Section 3.2), clients MAY present this URI in a non-textual
 manner using any method that results in the browser being opened with
 the URI, such as with QR (Quick Response) codes or NFC (Near Field
 Communication), to save the user typing the URI.

 For usability reasons, it is RECOMMENDED for clients to still display
 the textual verification URI ("verification_uri") for users not able
 to use such a shortcut. Clients MUST still display the "user_code",
 as the authorization server will require the user to confirm it to
 disambiguate devices, or as a remote phishing mitigation (See
 Section 5.4).

 If the user starts the user interaction by browsing to
 "verification_uri_complete", then the user interaction described in
 Section 3.3 is still followed, but with the optimization that the
 user does not need to type the "user_code". The server SHOULD
 display the "user_code" to the user and ask them to verify that it
 matches the "user_code" being displayed on the device, to confirm
 they are authorizing the correct device. As before, in addition to
 taking steps to confirm the identity of the device, the user should
 also be afforded the choice to approve or deny the authorization
 request.

 +---+
 | |
 | Scan the QR code, or using +------------+ |
 | a browser on another device, |[_].. . [_]| |
 | visit: || |
 | https://example.com/device || |
 | |. . . . | |
 | And enter the code: |[_]. | |
 | WDJB-MJHT +------------+ |
 | |
 +---+

 Figure 3: Example User Instruction with QR Code Representation of the
 Complete Verification URI

3.4. Device Access Token Request

 After displaying instructions to the user, the client makes an Access
 Token Request to the token endpoint (as defined by Section 3.2 of
 [RFC6749]) with a "grant_type" of

Denniss, et al. Expires July 20, 2019 [Page 9]

Internet-Draft OAuth 2.0 Device Flow January 2019

 "urn:ietf:params:oauth:grant-type:device_code". This is an extension
 grant type (as defined by Section 4.5 of [RFC6749]) created by this
 specification, with the following parameters:

 grant_type
 REQUIRED. Value MUST be set to
 "urn:ietf:params:oauth:grant-type:device_code".

 device_code
 REQUIRED. The device verification code, "device_code" from the
 Device Authorization Response, defined in Section 3.2.

 client_id
 REQUIRED, if the client is not authenticating with the
 authorization server as described in Section 3.2.1. of [RFC6749].

 For example, the client makes the following HTTPS request (line
 breaks are for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Adevice_code
 &device_code=GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS
 &client_id=459691054427

 If the client was issued client credentials (or assigned other
 authentication requirements), the client MUST authenticate with the
 authorization server as described in Section 3.2.1 of [RFC6749].
 Note that there are security implications of statically distributed
 client credentials, see Section 5.6.

 The response to this request is defined in Section 3.5. Unlike other
 OAuth grant types, it is expected for the client to try the Access
 Token Request repeatedly in a polling fashion, based on the error
 code in the response.

3.5. Device Access Token Response

 If the user has approved the grant, the token endpoint responds with
 a success response defined in Section 5.1 of [RFC6749]; otherwise it
 responds with an error, as defined in Section 5.2 of [RFC6749].

Denniss, et al. Expires July 20, 2019 [Page 10]

Internet-Draft OAuth 2.0 Device Flow January 2019

 In addition to the error codes defined in Section 5.2 of [RFC6749],
 the following error codes are specified by the device flow for use in
 token endpoint responses:

 authorization_pending
 The authorization request is still pending as the end user hasn’t
 yet completed the user interaction steps (Section 3.3). The
 client SHOULD repeat the Access Token Request to the token
 endpoint (a process known as polling). Before each new request
 the client MUST wait at least the number of seconds specified by
 the "interval" parameter of the Device Authorization Response (see
 Section 3.2), or 5 seconds if none was provided, and respect any
 increase in the polling interval required by the "slow_down"
 error.

 slow_down
 A variant of "authorization_pending", the authorization request is
 still pending and polling should continue, but the interval MUST
 be increased by 5 seconds for this and all subsequent requests.

 access_denied
 The end user denied the authorization request.

 expired_token
 The "device_code" has expired and the device flow authorization
 session has concluded. The client MAY commence a new Device
 Authorization Request but SHOULD wait for user interaction before
 restarting to avoid unnecessary polling.

 A client receiving an error response as defined in Section 5.2 of
 [RFC6749] MUST stop polling and SHOULD react accordingly, for
 example, by displaying an error to the user, except for the error
 codes "authorization_pending" and "slow_down" which are processed as
 described above.

 On encountering a connection timeout, clients MUST unilaterally
 reduce their polling frequency before retrying. The use of an
 exponential backoff algorithm to achieve this, such as by doubling
 the polling interval on each such connection timeout, is RECOMMENDED.

 The assumption of this specification is that the secondary device the
 user is authorizing the request on does not have a way to communicate
 back to the OAuth client. Only a one-way channel is required to make
 this flow useful in many scenarios. For example, an HTML application
 on a TV that can only make outbound requests. If a return channel
 were to exist for the chosen user interaction interface, then the
 device MAY wait until notified on that channel that the user has
 completed the action before initiating the token request (as an

Denniss, et al. Expires July 20, 2019 [Page 11]

Internet-Draft OAuth 2.0 Device Flow January 2019

 alternative to polling). Such behavior is, however, outside the
 scope of this specification.

4. Discovery Metadata

 Support for the device flow MAY be declared in the OAuth 2.0
 Authorization Server Metadata [RFC8414] with the following metadata:

 device_authorization_endpoint
 OPTIONAL. URL of the authorization server’s device authorization
 endpoint defined in Section 3.1.

5. Security Considerations

5.1. User Code Brute Forcing

 Since the user code is typed by the user, shorter codes are more
 desirable for usability reasons. This means the entropy is typically
 less than would be used for the device code or other OAuth bearer
 token types where the code length does not impact usability. It is
 therefore recommended that the server rate-limit user code attempts.

 The user code SHOULD have enough entropy that when combined with rate
 limiting and other mitigations makes a brute-force attack infeasible.
 For example, it’s generally held that 128-bit symmetric keys for
 encryption are seen as good enough today because an attacker has to
 put in 2^96 work to have a 2^-32 chance of guessing correctly via
 brute force. The rate limiting and finite lifetime on the user code
 places an artificial limit on the amount of work an attacker can
 "do", so if, for instance, one uses a 8-character base-20 user code
 (with roughly 34.5 bits of entropy), the rate-limiting interval and
 validity period would need to only allow 5 attempts in order to get
 the same 2^-32 probability of success by random guessing.

 A successful brute forcing of the user code would enable the attacker
 to authenticate with their own credentials and make an authorization
 grant to the device. This is the opposite scenario to an OAuth
 bearer token being brute forced, whereby the attacker gains control
 of the victim’s authorization grant. Such attacks may not always
 make economic sense, for example for a video app the device owner may
 then be able to purchase movies using the attacker’s account, though
 a privacy risk would still remain and thus is important to protect
 against. Furthermore, some uses of the device flow give the granting
 account the ability to perform actions such as controlling the
 device, which needs to be protected.

 The precise length of the user code and the entropy contained within
 is at the discretion of the authorization server, which needs to

Denniss, et al. Expires July 20, 2019 [Page 12]

Internet-Draft OAuth 2.0 Device Flow January 2019

 consider the sensitivity of their specific protected resources, the
 practicality of the code length from a usability standpoint, and any
 mitigations that are in place such as rate-limiting, when determining
 the user code format.

5.2. Device Code Brute Forcing

 An attacker who guesses the device code would be able to potentially
 obtain the authorization code once the user completes the flow. As
 the device code is not displayed to the user and thus there are
 usability considerations on the length, a very high entropy code
 SHOULD be used.

5.3. Device Trustworthiness

 Unlike other native application OAuth 2.0 flows, the device
 requesting the authorization is not the same as the device that the
 user grants access from. Thus, signals from the approving user’s
 session and device are not relevant to the trustworthiness of the
 client device.

 Note that if an authorization server used with this flow is
 malicious, then it could man-in-the-middle the backchannel flow to
 another authorization server. In this scenario, the man-in-the-
 middle is not completely hidden from sight, as the end user would end
 up on the authorization page of the wrong service, giving them an
 opportunity to notice that the URL in the browser’s address bar is
 wrong. For this to be possible, the device manufacturer must either
 directly be the attacker, shipping a device intended to perform the
 man-in-the-middle attack, or be using an authorization server that is
 controlled by an attacker, possibly because the attacker compromised
 the authorization server used by the device. In part, the person
 purchasing the device is counting on it and its business partners to
 be trustworthy.

5.4. Remote Phishing

 It is possible for the device flow to be initiated on a device in an
 attacker’s possession. For example, an attacker might send an email
 instructing the target user to visit the verification URL and enter
 the user code. To mitigate such an attack, it is RECOMMENDED to
 inform the user that they are authorizing a device during the user
 interaction step (see Section 3.3), and to confirm that the device is
 in their possession. The authorization server SHOULD display
 information about the device so that the person can notice if a
 software client was attempting to impersonating a hardware device.

Denniss, et al. Expires July 20, 2019 [Page 13]

Internet-Draft OAuth 2.0 Device Flow January 2019

 For authorization servers that support the option specified in
 Section 3.3.1 for the client to append the user code to the
 authorization URI, it is particularly important to confirm that the
 device is in the user’s possession, as the user no longer has to type
 the code manually. One possibility is to display the code during the
 authorization flow and asking the user to verify that the same code
 is being displayed on the device they are setting up.

 The user code needs to have a long enough lifetime to be useable
 (allowing the user to retrieve their secondary device, navigate to
 the verification URI, login, etc.), but should be sufficiently short
 to limit the usability of a code obtained for phishing. This doesn’t
 prevent a phisher presenting a fresh token, particularly in the case
 they are interacting with the user in real time, but it does limit
 the viability of codes sent over email or SMS.

5.5. Session Spying

 While the device is pending authorization, it may be possible for a
 malicious user to physically spy on the device user interface (by
 viewing the screen on which it’s displayed, for example) and hijack
 the session by completing the authorization faster than the user that
 initiated it. Devices SHOULD take into account the operating
 environment when considering how to communicate the code to the user
 to reduce the chances it will be observed by a malicious user.

5.6. Non-confidential Clients

 Device clients are generally incapable of maintaining the
 confidentiality of their credentials, as users in possession of the
 device can reverse engineer it and extract the credentials.
 Therefore, unless additional measures are taken, they should be
 treated as public clients (as defined by Section 2.1 of OAuth 2.0)
 susceptible to impersonation. The security considerations of
 Section 5.3.1 of [RFC6819] and Sections 8.5 and 8.6 of [RFC8252]
 apply to such clients.

 The user may also be able to obtain the device_code and/or other
 OAuth bearer tokens issued to their client, which would allow them to
 use their own authorization grant directly by impersonating the
 client. Given that the user in possession of the client credentials
 can already impersonate the client and create a new authorization
 grant (with a new device_code), this doesn’t represent a separate
 impersonation vector.

Denniss, et al. Expires July 20, 2019 [Page 14]

Internet-Draft OAuth 2.0 Device Flow January 2019

5.7. Non-Visual Code Transmission

 There is no requirement that the user code be displayed by the device
 visually. Other methods of one-way communication can potentially be
 used, such as text-to-speech audio, or Bluetooth Low Energy. To
 mitigate an attack in which a malicious user can bootstrap their
 credentials on a device not in their control, it is RECOMMENDED that
 any chosen communication channel only be accessible by people in
 close proximity. E.g., users who can see, or hear the device.

6. Usability Considerations

 This section is a non-normative discussion of usability
 considerations.

6.1. User Code Recommendations

 For many users, their nearest Internet-connected device will be their
 mobile phone, and typically these devices offer input methods that
 are more time consuming than a computer keyboard to change the case
 or input numbers. To improve usability (improving entry speed, and
 reducing retries), these limitations should be taken into account
 when selecting the user-code character set.

 One way to improve input speed is to restrict the character set to
 case-insensitive A-Z characters, with no digits. These characters
 can typically be entered on a mobile keyboard without using modifier
 keys. Further removing vowels to avoid randomly creating words
 results in the base-20 character set: "BCDFGHJKLMNPQRSTVWXZ". Dashes
 or other punctuation may be included for readability.

 An example user code following this guideline containing 8
 significant characters and dashes added for end-user readability,
 with a resulting entropy of 20^8: "WDJB-MJHT".

 Pure numeric codes are also a good choice for usability, especially
 for clients targeting locales where A-Z character keyboards are not
 used, though their length needs to be longer to maintain a high
 entropy.

 An example numeric user code containing 9 significant digits and
 dashes added for end-user readability, with an entropy of 10^9:
 "019-450-730".

 When processing the inputted user code, the server should strip
 dashes and other punctuation it added for readability (making the
 inclusion of that punctuation by the user optional). For codes using
 only characters in the A-Z range as with the base-20 charset defined

Denniss, et al. Expires July 20, 2019 [Page 15]

Internet-Draft OAuth 2.0 Device Flow January 2019

 above, the user’s input should be upper-cased before comparison to
 account for the fact that the user may input the equivalent lower-
 case characters. Further stripping of all characters outside the
 user_code charset is recommended to reduce instances where an
 errantly typed character (like a space character) invalidates
 otherwise valid input.

 It is RECOMMENDED to avoid character sets that contain two or more
 characters that can easily be confused with each other like "0" and
 "O", or "1", "l" and "I". Furthermore, the extent practical, where a
 character set contains one character that may be confused with
 characters outside the character set the character outside the set
 MAY be substituted with the one in the character set that it is
 commonly confused with (for example, "O" for "0" when using a
 numerical 0-9 character set).

6.2. Non-Browser User Interaction

 Devices and authorization servers MAY negotiate an alternative code
 transmission and user interaction method in addition to the one
 described in Section 3.3. Such an alternative user interaction flow
 could obviate the need for a browser and manual input of the code,
 for example, by using Bluetooth to transmit the code to the
 authorization server’s companion app. Such interaction methods can
 utilize this protocol, as ultimately, the user just needs to identify
 the authorization session to the authorization server; however, user
 interaction other than via the verification URI is outside the scope
 of this specification.

7. IANA Considerations

7.1. OAuth Parameters Registration

 This specification registers the following values in the IANA "OAuth
 Parameters" registry [IANA.OAuth.Parameters] established by
 [RFC6749].

7.1.1. Registry Contents

 o Parameter name: device_code
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification Document: Section 3.1 of [[this specification]]

Denniss, et al. Expires July 20, 2019 [Page 16]

Internet-Draft OAuth 2.0 Device Flow January 2019

7.2. OAuth URI Registration

 This specification registers the following values in the IANA "OAuth
 URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

7.2.1. Registry Contents

 o URN: urn:ietf:params:oauth:grant-type:device_code
 o Common Name: Device flow grant type for OAuth 2.0
 o Change controller: IESG
 o Specification Document: Section 3.1 of [[this specification]]

7.3. OAuth Extensions Error Registration

 This specification registers the following values in the IANA "OAuth
 Extensions Error Registry" registry [IANA.OAuth.Parameters]
 established by [RFC6749].

7.3.1. Registry Contents

 o Error name: authorization_pending
 o Error usage location: Token endpoint response
 o Related protocol extension: [[this specification]]
 o Change controller: IETF
 o Specification Document: Section 3.5 of [[this specification]]

 o Error name: access_denied
 o Error usage location: Token endpoint response
 o Related protocol extension: [[this specification]]
 o Change controller: IETF
 o Specification Document: Section 3.5 of [[this specification]]

 o Error name: slow_down
 o Error usage location: Token endpoint response
 o Related protocol extension: [[this specification]]
 o Change controller: IETF
 o Specification Document: Section 3.5 of [[this specification]]

 o Error name: expired_token
 o Error usage location: Token endpoint response
 o Related protocol extension: [[this specification]]
 o Change controller: IETF
 o Specification Document: Section 3.5 of [[this specification]]

Denniss, et al. Expires July 20, 2019 [Page 17]

Internet-Draft OAuth 2.0 Device Flow January 2019

7.4. OAuth 2.0 Authorization Server Metadata

 This specification registers the following values in the IANA "OAuth
 2.0 Authorization Server Metadata" registry [IANA.OAuth.Parameters]
 established by [RFC8414].

7.4.1. Registry Contents

 o Metadata name: device_authorization_endpoint
 o Metadata Description: The Device Authorization Endpoint.
 o Change controller: IESG
 o Specification Document: Section 4 of [[this specification]]

8. Normative References

 [HTML5] IANA, "HTML5",
 <https://www.w3.org/TR/2014/REC-html5-20141028/>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
 <https://www.rfc-editor.org/info/rfc6755>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
 BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
 <https://www.rfc-editor.org/info/rfc8252>.

Denniss, et al. Expires July 20, 2019 [Page 18]

Internet-Draft OAuth 2.0 Device Flow January 2019

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Acknowledgements

 The starting point for this document was the Internet-Draft draft-
 recordon-oauth-v2-device, authored by David Recordon and Brent
 Goldman, which itself was based on content in draft versions of the
 OAuth 2.0 protocol specification removed prior to publication due to
 a then lack of sufficient deployment expertise. Thank you to the
 OAuth working group members who contributed to those earlier drafts.

 This document was produced in the OAuth working group under the
 chairpersonship of Rifaat Shekh-Yusef and Hannes Tschofenig with
 Benjamin Kaduk, Kathleen Moriarty, and Eric Rescorla serving as
 Security Area Directors.

 The following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Adam Roach, Alissa Cooper, Ben Campbell, Brian Campbell, Benjamin
 Kaduk, Roshni Chandrashekhar, Eric Fazendin, Torsten Lodderstedt,
 James Manger, Breno de Medeiros, Simon Moffatt, Stein Myrseth, Justin
 Richer, Nat Sakimura, Andrew Sciberras, Marius Scurtescu, Ken Wang,
 and Steven E. Wright.

Appendix B. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -14

 o Added more normative text on polling behavior.
 o Added discussion on risk of user retrieving their own device_code.
 o Editorial improvements.

 -13

Denniss, et al. Expires July 20, 2019 [Page 19]

Internet-Draft OAuth 2.0 Device Flow January 2019

 o Added a longer discussion about entropy, proposed by Benjamin
 Kaduk.
 o Added device_code to OAuth IANA registry.
 o Expanded explanation of "case insensitive".
 o Added security section on Device Code Brute Forcing.
 o application/x-www-form-urlencoded normativly referenced.
 o Editorial improvements.

 -12

 o Set a default polling interval to 5s explicitly.
 o Defined the slow_down behavior that it should increase the current
 interval by 5s.
 o expires_in now REQUIRED
 o Other changes in response to review feedback.

 -11

 o Updated reference to OAuth 2.0 Authorization Server Metadata.

 -10

 o Added a missing definition of access_denied for use on the token
 endpoint.
 o Corrected text documenting which error code should be returned for
 expired tokens (it’s "expired_token", not "invalid_grant").
 o Corrected section reference to RFC 8252 (the section numbers had
 changed after the initial reference was made).
 o Fixed line length of one diagram (was causing xml2rfc warnings).
 o Added line breaks so the URN grant_type is presented on an
 unbroken line.
 o Typos fixed and other stylistic improvements.

 -09

 o Addressed review comments by Security Area Director Eric Rescorla
 about the potential of a confused deputy attack.

 -08

 o Expanded the User Code Brute Forcing section to include more
 detail on this attack.

 -07

 o Replaced the "user_code" URI parameter optimization with
 verification_uri_complete following the IETF99 working group
 discussion.

Denniss, et al. Expires July 20, 2019 [Page 20]

Internet-Draft OAuth 2.0 Device Flow January 2019

 o Added security consideration about spying.
 o Required that device_code not be shown.
 o Added text regarding a minimum polling interval.

 -06

 o Clarified usage of the "user_code" URI parameter optimization
 following the IETF98 working group discussion.

 -05

 o response_type parameter removed from authorization request.
 o Added option for clients to include the user_code on the
 verification URI.
 o Clarified token expiry, and other nits.

 -04

 o Security & Usability sections. OAuth Discovery Metadata.

 -03

 o device_code is now a URN. Added IANA Considerations

 -02

 o Added token request & response specification.

 -01

 o Applied spelling and grammar corrections and added the Document
 History appendix.

 -00

 o Initial working group draft based on draft-recordon-oauth-
 v2-device.

Authors’ Addresses

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Email: wdenniss@google.com
 URI: http://wdenniss.com/device-flow

Denniss, et al. Expires July 20, 2019 [Page 21]

Internet-Draft OAuth 2.0 Device Flow January 2019

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Denniss, et al. Expires July 20, 2019 [Page 22]

OAuth Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track N. Sakimura
Expires: September 5, 2018 NRI
 J. Bradley
 Ping Identity
 March 4, 2018

 OAuth 2.0 Authorization Server Metadata
 draft-ietf-oauth-discovery-10

Abstract

 This specification defines a metadata format that an OAuth 2.0 client
 can use to obtain the information needed to interact with an OAuth
 2.0 authorization server, including its endpoint locations and
 authorization server capabilities.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 5, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Jones, et al. Expires September 5, 2018 [Page 1]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Notation and Conventions 3
 1.2. Terminology . 3
 2. Authorization Server Metadata 4
 2.1. Signed Authorization Server Metadata 7
 3. Obtaining Authorization Server Metadata 8
 3.1. Authorization Server Metadata Request 9
 3.2. Authorization Server Metadata Response 9
 3.3. Authorization Server Metadata Validation 10
 4. String Operations . 11
 5. Compatibility Notes . 11
 6. Security Considerations 12
 6.1. TLS Requirements . 12
 6.2. Impersonation Attacks 12
 6.3. Publishing Metadata in a Standard Format 13
 6.4. Protected Resources 13
 7. IANA Considerations . 13
 7.1. OAuth Authorization Server Metadata Registry 14
 7.1.1. Registration Template 15
 7.1.2. Initial Registry Contents 15
 7.2. Updated Registration Instructions 18
 7.3. Well-Known URI Registry 19
 7.3.1. Registry Contents 19
 8. References . 19
 8.1. Normative References 19
 8.2. Informative References 21
 Appendix A. Acknowledgements 22
 Appendix B. Document History 22
 Authors’ Addresses . 25

1. Introduction

 This specification generalizes the metadata format defined by "OpenID
 Connect Discovery 1.0" [OpenID.Discovery] in a way that is compatible
 with OpenID Connect Discovery, while being applicable to a wider set
 of OAuth 2.0 use cases. This is intentionally parallel to the way
 that the "OAuth 2.0 Dynamic Client Registration Protocol" [RFC7591]
 specification generalized the dynamic client registration mechanisms
 defined by "OpenID Connect Dynamic Client Registration 1.0"
 [OpenID.Registration] in a way that was compatible with it.

 The metadata for an authorization server is retrieved from a well-
 known location as a JSON [RFC7159] document, which declares its

Jones, et al. Expires September 5, 2018 [Page 2]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 endpoint locations and authorization server capabilities. This
 process is described in Section 3.

 This metadata can either be communicated in a self-asserted fashion
 by the server origin via HTTPS or as a set of signed metadata values
 represented as claims in a JSON Web Token (JWT) [JWT]. In the JWT
 case, the issuer is vouching for the validity of the data about the
 authorization server. This is analogous to the role that the
 Software Statement plays in OAuth Dynamic Client Registration
 [RFC7591].

 The means by which the client chooses an authorization server is out
 of scope. In some cases, its issuer identifier may be manually
 configured into the client. In other cases, it may be dynamically
 discovered, for instance, through the use of WebFinger [RFC7033], as
 described in Section 2 of "OpenID Connect Discovery 1.0"
 [OpenID.Discovery].

1.1. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 All uses of JSON Web Signature (JWS) [JWS] and JSON Web Encryption
 (JWE) [JWE] data structures in this specification utilize the JWS
 Compact Serialization or the JWE Compact Serialization; the JWS JSON
 Serialization and the JWE JSON Serialization are not used.

1.2. Terminology

 This specification uses the terms "Access Token", "Authorization
 Code", "Authorization Endpoint", "Authorization Grant",
 "Authorization Server", "Client", "Client Authentication", "Client
 Identifier", "Client Secret", "Grant Type", "Protected Resource",
 "Redirection URI", "Refresh Token", "Resource Owner", "Resource
 Server", "Response Type", and "Token Endpoint" defined by OAuth 2.0
 [RFC6749], the terms "Claim Name", "Claim Value", and "JSON Web Token
 (JWT)" defined by JSON Web Token (JWT) [JWT], and the term "Response
 Mode" defined by OAuth 2.0 Multiple Response Type Encoding Practices
 [OAuth.Responses].

Jones, et al. Expires September 5, 2018 [Page 3]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

2. Authorization Server Metadata

 Authorization servers can have metadata describing their
 configuration. The following authorization server metadata values
 are used by this specification and are registered in the IANA "OAuth
 Authorization Server Metadata" registry established in Section 7.1:

 issuer
 REQUIRED. The authorization server’s issuer identifier, which is
 a URL that uses the "https" scheme and has no query or fragment
 components. Authorization server metadata is published at a
 ".well-known" RFC 5785 [RFC5785] location derived from this issuer
 identifier, as described in Section 3. The issuer identifier is
 used to prevent authorization server mix-up attacks, as described
 in "OAuth 2.0 Mix-Up Mitigation"
 [I-D.ietf-oauth-mix-up-mitigation].

 authorization_endpoint
 URL of the authorization server’s authorization endpoint
 [RFC6749]. This is REQUIRED unless no grant types are supported
 that use the authorization endpoint.

 token_endpoint
 URL of the authorization server’s token endpoint [RFC6749]. This
 is REQUIRED unless only the implicit grant type is supported.

 jwks_uri
 OPTIONAL. URL of the authorization server’s JWK Set [JWK]
 document. The referenced document contains the signing key(s) the
 client uses to validate signatures from the authorization server.
 This URL MUST use the "https" scheme. The JWK Set MAY also
 contain the server’s encryption key(s), which are used by clients
 to encrypt requests to the server. When both signing and
 encryption keys are made available, a "use" (public key use)
 parameter value is REQUIRED for all keys in the referenced JWK Set
 to indicate each key’s intended usage.

 registration_endpoint
 OPTIONAL. URL of the authorization server’s OAuth 2.0 Dynamic
 Client Registration endpoint [RFC7591].

 scopes_supported
 RECOMMENDED. JSON array containing a list of the OAuth 2.0
 [RFC6749] "scope" values that this authorization server supports.
 Servers MAY choose not to advertise some supported scope values
 even when this parameter is used.

 response_types_supported

Jones, et al. Expires September 5, 2018 [Page 4]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 REQUIRED. JSON array containing a list of the OAuth 2.0
 "response_type" values that this authorization server supports.
 The array values used are the same as those used with the
 "response_types" parameter defined by "OAuth 2.0 Dynamic Client
 Registration Protocol" [RFC7591].

 response_modes_supported
 OPTIONAL. JSON array containing a list of the OAuth 2.0
 "response_mode" values that this authorization server supports, as
 specified in OAuth 2.0 Multiple Response Type Encoding Practices
 [OAuth.Responses]. If omitted, the default is "["query",
 "fragment"]". The response mode value "form_post" is also defined
 in OAuth 2.0 Form Post Response Mode [OAuth.Post].

 grant_types_supported
 OPTIONAL. JSON array containing a list of the OAuth 2.0 grant
 type values that this authorization server supports. The array
 values used are the same as those used with the "grant_types"
 parameter defined by "OAuth 2.0 Dynamic Client Registration
 Protocol" [RFC7591]. If omitted, the default value is
 "["authorization_code", "implicit"]".

 token_endpoint_auth_methods_supported
 OPTIONAL. JSON array containing a list of client authentication
 methods supported by this token endpoint. Client authentication
 method values are used in the "token_endpoint_auth_method"
 parameter defined in Section 2 of [RFC7591]. If omitted, the
 default is "client_secret_basic" -- the HTTP Basic Authentication
 Scheme specified in Section 2.3.1 of OAuth 2.0 [RFC6749].

 token_endpoint_auth_signing_alg_values_supported
 OPTIONAL. JSON array containing a list of the JWS signing
 algorithms ("alg" values) supported by the token endpoint for the
 signature on the JWT [JWT] used to authenticate the client at the
 token endpoint for the "private_key_jwt" and "client_secret_jwt"
 authentication methods. This metadata entry MUST be present if
 either of these authentication methods are specified in the
 "token_endpoint_auth_methods_supported" entry. No default
 algorithms are implied if this entry is omitted. Servers SHOULD
 support "RS256". The value "none" MUST NOT be used.

 service_documentation
 OPTIONAL. URL of a page containing human-readable information
 that developers might want or need to know when using the
 authorization server. In particular, if the authorization server
 does not support Dynamic Client Registration, then information on
 how to register clients needs to be provided in this
 documentation.

Jones, et al. Expires September 5, 2018 [Page 5]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 ui_locales_supported
 OPTIONAL. Languages and scripts supported for the user interface,
 represented as a JSON array of BCP47 [RFC5646] language tag
 values. If omitted, the set of supported languages and scripts is
 unspecified.

 op_policy_uri
 OPTIONAL. URL that the authorization server provides to the
 person registering the client to read about the authorization
 server’s requirements on how the client can use the data provided
 by the authorization server. The registration process SHOULD
 display this URL to the person registering the client if it is
 given. As described in Section 5, despite the identifier
 "op_policy_uri", appearing to be OpenID-specific, its usage in
 this specification is actually referring to a general OAuth 2.0
 feature that is not specific to OpenID Connect.

 op_tos_uri
 OPTIONAL. URL that the authorization server provides to the
 person registering the client to read about the authorization
 server’s terms of service. The registration process SHOULD
 display this URL to the person registering the client if it is
 given. As described in Section 5, despite the identifier
 "op_tos_uri", appearing to be OpenID-specific, its usage in this
 specification is actually referring to a general OAuth 2.0 feature
 that is not specific to OpenID Connect.

 revocation_endpoint
 OPTIONAL. URL of the authorization server’s OAuth 2.0 revocation
 endpoint [RFC7009].

 revocation_endpoint_auth_methods_supported
 OPTIONAL. JSON array containing a list of client authentication
 methods supported by this revocation endpoint. The valid client
 authentication method values are those registered in the IANA
 "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters]. If omitted, the default is
 "client_secret_basic" -- the HTTP Basic Authentication Scheme
 specified in Section 2.3.1 of OAuth 2.0 [RFC6749].

 revocation_endpoint_auth_signing_alg_values_supported
 OPTIONAL. JSON array containing a list of the JWS signing
 algorithms ("alg" values) supported by the revocation endpoint for
 the signature on the JWT [JWT] used to authenticate the client at
 the revocation endpoint for the "private_key_jwt" and
 "client_secret_jwt" authentication methods. This metadata entry
 MUST be present if either of these authentication methods are
 specified in the "revocation_endpoint_auth_methods_supported"

Jones, et al. Expires September 5, 2018 [Page 6]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 entry. No default algorithms are implied if this entry is
 omitted. The value "none" MUST NOT be used.

 introspection_endpoint
 OPTIONAL. URL of the authorization server’s OAuth 2.0
 introspection endpoint [RFC7662].

 introspection_endpoint_auth_methods_supported
 OPTIONAL. JSON array containing a list of client authentication
 methods supported by this introspection endpoint. The valid
 client authentication method values are those registered in the
 IANA "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] or those registered in the IANA "OAuth
 Access Token Types" registry [IANA.OAuth.Parameters]. (These
 values are and will remain distinct, due to Section 7.2.) If
 omitted, the set of supported authentication methods MUST be
 determined by other means.

 introspection_endpoint_auth_signing_alg_values_supported
 OPTIONAL. JSON array containing a list of the JWS signing
 algorithms ("alg" values) supported by the introspection endpoint
 for the signature on the JWT [JWT] used to authenticate the client
 at the introspection endpoint for the "private_key_jwt" and
 "client_secret_jwt" authentication methods. This metadata entry
 MUST be present if either of these authentication methods are
 specified in the "introspection_endpoint_auth_methods_supported"
 entry. No default algorithms are implied if this entry is
 omitted. The value "none" MUST NOT be used.

 code_challenge_methods_supported
 OPTIONAL. JSON array containing a list of PKCE [RFC7636] code
 challenge methods supported by this authorization server. Code
 challenge method values are used in the "code_challenge_method"
 parameter defined in Section 4.3 of [RFC7636]. The valid code
 challenge method values are those registered in the IANA "PKCE
 Code Challenge Methods" registry [IANA.OAuth.Parameters]. If
 omitted, the authorization server does not support PKCE.

 Additional authorization server metadata parameters MAY also be used.
 Some are defined by other specifications, such as OpenID Connect
 Discovery 1.0 [OpenID.Discovery].

2.1. Signed Authorization Server Metadata

 In addition to JSON elements, metadata values MAY also be provided as
 a "signed_metadata" value, which is a JSON Web Token (JWT) [JWT] that
 asserts metadata values about the authorization server as a bundle.
 A set of claims that can be used in signed metadata are defined in

Jones, et al. Expires September 5, 2018 [Page 7]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 Section 2. The signed metadata MUST be digitally signed or MACed
 using JSON Web Signature (JWS) [JWS] and MUST contain an "iss"
 (issuer) claim denoting the party attesting to the claims in the
 signed metadata. Consumers of the metadata MAY ignore the signed
 metadata if they do not support this feature. If the consumer of the
 metadata supports signed metadata, metadata values conveyed in the
 signed metadata MUST take precedence over the corresponding values
 conveyed using plain JSON elements.

 Signed metadata is included in the authorization server metadata JSON
 object using this OPTIONAL member:

 signed_metadata
 A JWT containing metadata values about the authorization server as
 claims. This is a string value consisting of the entire signed
 JWT. A "signed_metadata" metadata value SHOULD NOT appear as a
 claim in the JWT.

3. Obtaining Authorization Server Metadata

 Authorization servers supporting metadata MUST make a JSON document
 containing metadata as specified in Section 2 available at a path
 formed by inserting a well-known URI string into the authorization
 server’s issuer identifier between the host component and the path
 component, if any. By default, the well-known URI string used is
 "/.well-known/oauth-authorization-server". This path MUST use the
 "https" scheme. The syntax and semantics of ".well-known" are
 defined in RFC 5785 [RFC5785]. The well-known URI suffix used MUST
 be registered in the IANA "Well-Known URIs" registry
 [IANA.well-known].

 Different applications utilizing OAuth authorization servers in
 application-specific ways may define and register different well-
 known URI suffixes used to publish authorization server metadata as
 used by those applications. For instance, if the Example application
 uses an OAuth authorization server in an Example-specific way, and
 there are Example-specific metadata values that it needs to publish,
 then it might register and use the "example-configuration" URI suffix
 and publish the metadata document at the path formed by inserting
 "/.well-known/example-configuration" between the host and path
 components of the authorization server’s issuer identifier.
 Alternatively, many such applications will use the default well-known
 URI string "/.well-known/oauth-authorization-server", which is the
 right choice for general-purpose OAuth authorization servers, and not
 register an application-specific one.

 An OAuth 2.0 application using this specification MUST specify what
 well-known URI suffix it will use for this purpose. The same

Jones, et al. Expires September 5, 2018 [Page 8]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 authorization server MAY choose to publish its metadata at multiple
 well-known locations derived from its issuer identifier, for example,
 publishing metadata at both "/.well-known/example-configuration" and
 "/.well-known/oauth-authorization-server".

 Some OAuth applications will choose to use the well-known URI suffix
 "openid-configuration". As described in Section 5, despite the
 identifier "/.well-known/openid-configuration", appearing to be
 OpenID-specific, its usage in this specification is actually
 referring to a general OAuth 2.0 feature that is not specific to
 OpenID Connect.

3.1. Authorization Server Metadata Request

 An authorization server metadata document MUST be queried using an
 HTTP "GET" request at the previously specified path.

 The client would make the following request when the issuer
 identifier is "https://example.com" and the well-known URI suffix is
 "oauth-authorization-server" to obtain the metadata, since the issuer
 identifier contains no path component:

 GET /.well-known/oauth-authorization-server HTTP/1.1
 Host: example.com

 If the issuer identifier value contains a path component, any
 terminating "/" MUST be removed before inserting "/.well-known/" and
 the well-known URI suffix between the host component and the path
 component. The client would make the following request when the
 issuer identifier is "https://example.com/issuer1" and the well-known
 URI suffix is "oauth-authorization-server" to obtain the metadata,
 since the issuer identifier contains a path component:

 GET /.well-known/oauth-authorization-server/issuer1 HTTP/1.1
 Host: example.com

 Using path components enables supporting multiple issuers per host.
 This is required in some multi-tenant hosting configurations. This
 use of ".well-known" is for supporting multiple issuers per host;
 unlike its use in RFC 5785 [RFC5785], it does not provide general
 information about the host.

3.2. Authorization Server Metadata Response

 The response is a set of claims about the authorization server’s
 configuration, including all necessary endpoints and public key
 location information. A successful response MUST use the 200 OK HTTP
 status code and return a JSON object using the "application/json"

Jones, et al. Expires September 5, 2018 [Page 9]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 content type that contains a set of claims as its members that are a
 subset of the metadata values defined in Section 2. Other claims MAY
 also be returned.

 Claims that return multiple values are represented as JSON arrays.
 Claims with zero elements MUST be omitted from the response.

 An error response uses the applicable HTTP status code value.

 The following is a non-normative example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "issuer":
 "https://server.example.com",
 "authorization_endpoint":
 "https://server.example.com/authorize",
 "token_endpoint":
 "https://server.example.com/token",
 "token_endpoint_auth_methods_supported":
 ["client_secret_basic", "private_key_jwt"],
 "token_endpoint_auth_signing_alg_values_supported":
 ["RS256", "ES256"],
 "userinfo_endpoint":
 "https://server.example.com/userinfo",
 "jwks_uri":
 "https://server.example.com/jwks.json",
 "registration_endpoint":
 "https://server.example.com/register",
 "scopes_supported":
 ["openid", "profile", "email", "address",
 "phone", "offline_access"],
 "response_types_supported":
 ["code", "code token"],
 "service_documentation":
 "http://server.example.com/service_documentation.html",
 "ui_locales_supported":
 ["en-US", "en-GB", "en-CA", "fr-FR", "fr-CA"]
 }

3.3. Authorization Server Metadata Validation

 The "issuer" value returned MUST be identical to the authorization
 server’s issuer identifier value into which the well-known URI string
 was inserted to create the URL used to retrieve the metadata. If

Jones, et al. Expires September 5, 2018 [Page 10]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 these values are not identical, the data contained in the response
 MUST NOT be used.

4. String Operations

 Processing some OAuth 2.0 messages requires comparing values in the
 messages to known values. For example, the member names in the
 metadata response might be compared to specific member names such as
 "issuer". Comparing Unicode [UNICODE] strings, however, has
 significant security implications.

 Therefore, comparisons between JSON strings and other Unicode strings
 MUST be performed as specified below:

 1. Remove any JSON applied escaping to produce an array of Unicode
 code points.

 2. Unicode Normalization [USA15] MUST NOT be applied at any point to
 either the JSON string or to the string it is to be compared
 against.

 3. Comparisons between the two strings MUST be performed as a
 Unicode code point to code point equality comparison.

 Note that this is the same equality comparison procedure described in
 Section 8.3 of [RFC7159].

5. Compatibility Notes

 The identifiers "/.well-known/openid-configuration", "op_policy_uri",
 and "op_tos_uri" contain strings referring to the OpenID Connect
 [OpenID.Core] family of specifications that were originally defined
 by "OpenID Connect Discovery 1.0" [OpenID.Discovery]. Despite the
 reuse of these identifiers that appear to be OpenID-specific, their
 usage in this specification is actually referring to general OAuth
 2.0 features that are not specific to OpenID Connect.

 The algorithm for transforming the issuer identifier to an
 authorization server metadata location defined in Section 3 is
 equivalent to the corresponding transformation defined in Section 4
 of "OpenID Connect Discovery 1.0" [OpenID.Discovery], provided that
 the issuer identifier contains no path component. However, they are
 different when there is a path component, because OpenID Connect
 Discovery 1.0 specifies that the well-known URI string is appended to
 the issuer identifier (e.g., "https://example.com/issuer1/.well-
 known/openid-configuration"), whereas this specification specifies
 that the well-known URI string is inserted before the path component

Jones, et al. Expires September 5, 2018 [Page 11]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 of the issuer identifier (e.g., "https://example.com/.well-known/
 openid-configuration/issuer1").

 Going forward, OAuth authorization server metadata locations should
 use the transformation defined in this specification. However, when
 deployed in legacy environments in which the OpenID Connect Discovery
 1.0 transformation is already used, it may be necessary during a
 transition period to publish metadata for issuer identifiers
 containing a path component at both locations. During this
 transition period, applications should first apply the transformation
 defined in this specification and attempt to retrieve the
 authorization server metadata from the resulting location; only if
 the retrieval from that location fails should they fall back to
 attempting to retrive it from the alternate location obtained using
 the transformation defined by OpenID Connect Discovery 1.0. This
 backwards-compatibility behavior should only be necessary when the
 well-known URI suffix employed by the application is "openid-
 configuration".

6. Security Considerations

6.1. TLS Requirements

 Implementations MUST support TLS. Which version(s) ought to be
 implemented will vary over time and depend on the widespread
 deployment and known security vulnerabilities at the time of
 implementation. The authorization server MUST support TLS version
 1.2 [RFC5246] and MAY support additional transport-layer security
 mechanisms meeting its security requirements. When using TLS, the
 client MUST perform a TLS/SSL server certificate check, per RFC 6125
 [RFC6125]. Implementation security considerations can be found in
 Recommendations for Secure Use of TLS and DTLS [BCP195].

 To protect against information disclosure and tampering,
 confidentiality protection MUST be applied using TLS with a
 ciphersuite that provides confidentiality and integrity protection.

6.2. Impersonation Attacks

 TLS certificate checking MUST be performed by the client, as
 described in Section 6.1, when making an authorization server
 metadata request. Checking that the server certificate is valid for
 the issuer identifier URL prevents man-in-middle and DNS-based
 attacks. These attacks could cause a client to be tricked into using
 an attacker’s keys and endpoints, which would enable impersonation of
 the legitimate authorization server. If an attacker can accomplish
 this, they can access the resources that the affected client has
 access to using the authorization server that they are impersonating.

Jones, et al. Expires September 5, 2018 [Page 12]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 An attacker may also attempt to impersonate an authorization server
 by publishing a metadata document that contains an "issuer" claim
 using the issuer identifier URL of the authorization server being
 impersonated, but with its own endpoints and signing keys. This
 would enable it to impersonate that authorization server, if accepted
 by the client. To prevent this, the client MUST ensure that the
 issuer identifier URL it is using as the prefix for the metadata
 request exactly matches the value of the "issuer" metadata value in
 the authorization server metadata document received by the client.

6.3. Publishing Metadata in a Standard Format

 Publishing information about the authorization server in a standard
 format makes it easier for both legitimate clients and attackers to
 use the authorization server. Whether an authorization server
 publishes its metadata in an ad-hoc manner or in the standard format
 defined by this specification, the same defenses against attacks that
 might be mounted that use this information should be applied.

6.4. Protected Resources

 Secure determination of appropriate protected resources to use with
 an authorization server for all use cases is out of scope of this
 specification. This specification assumes that the client has a
 means of determining appropriate protected resources to use with an
 authorization server and that the client is using the correct
 metadata for each authorization server. Implementers need to be
 aware that if an inappropriate protected resource is used by the
 client, that an attacker may be able to act as a man-in-the-middle
 proxy to a valid protected resource without it being detected by the
 authorization server or the client.

 The ways to determine the appropriate protected resources to use with
 an authorization server are in general, application-dependent. For
 instance, some authorization servers are used with a fixed protected
 resource or set of protected resources, the locations of which may be
 well known, or which could be published as metadata values by the
 authorization server. In other cases, the set of resources that can
 be used with an authorization server can by dynamically changed by
 administrative actions. Many other means of determining appropriate
 associations between authorization servers and protected resources
 are also possible.

7. IANA Considerations

 The following registration procedure is used for the registry
 established by this specification.

Jones, et al. Expires September 5, 2018 [Page 13]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 Values are registered on a Specification Required [RFC8126] basis
 after a two-week review period on the oauth-ext-review@ietf.org
 mailing list, on the advice of one or more Designated Experts.
 However, to allow for the allocation of values prior to publication,
 the Designated Experts may approve registration once they are
 satisfied that such a specification will be published.

 Registration requests sent to the mailing list for review should use
 an appropriate subject (e.g., "Request to register OAuth
 Authorization Server Metadata: example").

 Within the review period, the Designated Experts will either approve
 or deny the registration request, communicating this decision to the
 review list and IANA. Denials should include an explanation and, if
 applicable, suggestions as to how to make the request successful.
 Registration requests that are undetermined for a period longer than
 21 days can be brought to the IESG’s attention (using the
 iesg@ietf.org mailing list) for resolution.

 Criteria that should be applied by the Designated Experts includes
 determining whether the proposed registration duplicates existing
 functionality, determining whether it is likely to be of general
 applicability or whether it is useful only for a single application,
 and whether the registration makes sense.

 IANA must only accept registry updates from the Designated Experts
 and should direct all requests for registration to the review mailing
 list.

 It is suggested that multiple Designated Experts be appointed who are
 able to represent the perspectives of different applications using
 this specification, in order to enable broadly-informed review of
 registration decisions. In cases where a registration decision could
 be perceived as creating a conflict of interest for a particular
 Expert, that Expert should defer to the judgment of the other
 Experts.

7.1. OAuth Authorization Server Metadata Registry

 This specification establishes the IANA "OAuth Authorization Server
 Metadata" registry for OAuth 2.0 authorization server metadata names.
 The registry records the authorization server metadata member and a
 reference to the specification that defines it.

 The Designated Experts must either:

 (a) require that metadata names and values being registered use only
 printable ASCII characters excluding double quote (’"’) and backslash

Jones, et al. Expires September 5, 2018 [Page 14]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 (’\’) (the Unicode characters with code points U+0021, U+0023 through
 U+005B, and U+005D through U+007E), or

 (b) if new metadata members or values are defined that use other code
 points, require that their definitions specify the exact Unicode code
 point sequences used to represent them. Furthermore, proposed
 registrations that use Unicode code points that can only be
 represented in JSON strings as escaped characters must not be
 accepted.

7.1.1. Registration Template

 Metadata Name:
 The name requested (e.g., "issuer"). This name is case-sensitive.
 Names may not match other registered names in a case-insensitive
 manner (one that would cause a match if the Unicode toLowerCase()
 operation were applied to both strings) unless the Designated
 Experts state that there is a compelling reason to allow an
 exception.

 Metadata Description:
 Brief description of the metadata (e.g., "Issuer identifier URL").

 Change Controller:
 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.

 Specification Document(s):
 Reference to the document or documents that specify the parameter,
 preferably including URIs that can be used to retrieve copies of
 the documents. An indication of the relevant sections may also be
 included but is not required.

7.1.2. Initial Registry Contents

 o Metadata Name: "issuer"
 o Metadata Description: Authorization server’s issuer identifier URL
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "authorization_endpoint"
 o Metadata Description: URL of the authorization server’s
 authorization endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "token_endpoint"

Jones, et al. Expires September 5, 2018 [Page 15]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 o Metadata Description: URL of the authorization server’s token
 endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "jwks_uri"
 o Metadata Description: URL of the authorization server’s JWK Set
 document
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "registration_endpoint"
 o Metadata Description: URL of the authorization server’s OAuth 2.0
 Dynamic Client Registration Endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "scopes_supported"
 o Metadata Description: JSON array containing a list of the OAuth
 2.0 "scope" values that this authorization server supports
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "response_types_supported"
 o Metadata Description: JSON array containing a list of the OAuth
 2.0 "response_type" values that this authorization server supports
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "response_modes_supported"
 o Metadata Description: JSON array containing a list of the OAuth
 2.0 "response_mode" values that this authorization server supports
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "grant_types_supported"
 o Metadata Description: JSON array containing a list of the OAuth
 2.0 grant type values that this authorization server supports
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "token_endpoint_auth_methods_supported"
 o Metadata Description: JSON array containing a list of client
 authentication methods supported by this token endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "token_endpoint_auth_signing_alg_values_supported"

Jones, et al. Expires September 5, 2018 [Page 16]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 o Metadata Description: JSON array containing a list of the JWS
 signing algorithms supported by the token endpoint for the
 signature on the JWT used to authenticate the client at the token
 endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "service_documentation"
 o Metadata Description: URL of a page containing human-readable
 information that developers might want or need to know when using
 the authorization server
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "ui_locales_supported"
 o Metadata Description: Languages and scripts supported for the user
 interface, represented as a JSON array of BCP47 language tag
 values
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "op_policy_uri"
 o Metadata Description: URL that the authorization server provides
 to the person registering the client to read about the
 authorization server’s requirements on how the client can use the
 data provided by the authorization server
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "op_tos_uri"
 o Metadata Description: URL that the authorization server provides
 to the person registering the client to read about the
 authorization server’s terms of service
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "revocation_endpoint"
 o Metadata Description: URL of the authorization server’s OAuth 2.0
 revocation endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "revocation_endpoint_auth_methods_supported"
 o Metadata Description: JSON array containing a list of client
 authentication methods supported by this revocation endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

Jones, et al. Expires September 5, 2018 [Page 17]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 o Metadata Name:
 "revocation_endpoint_auth_signing_alg_values_supported"
 o Metadata Description: JSON array containing a list of the JWS
 signing algorithms supported by the revocation endpoint for the
 signature on the JWT used to authenticate the client at the
 revocation endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "introspection_endpoint"
 o Metadata Description: URL of the authorization server’s OAuth 2.0
 introspection endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "introspection_endpoint_auth_methods_supported"
 o Metadata Description: JSON array containing a list of client
 authentication methods supported by this introspection endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name:
 "introspection_endpoint_auth_signing_alg_values_supported"
 o Metadata Description: JSON array containing a list of the JWS
 signing algorithms supported by the introspection endpoint for the
 signature on the JWT used to authenticate the client at the
 introspection endpoint
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

 o Metadata Name: "code_challenge_methods_supported"
 o Metadata Description: PKCE code challenge methods supported by
 this authorization server
 o Change Controller: IESG
 o Specification Document(s): Section 2 of [[this specification]]

7.2. Updated Registration Instructions

 This specification adds to the instructions for the Designated
 Experts of the following IANA registries, both of which are in the
 "OAuth Parameters" registry [IANA.OAuth.Parameters]:

 o OAuth Access Token Types
 o OAuth Token Endpoint Authentication Methods

 IANA has added a link to this specification in the Reference sections
 of these registries. [[RFC Editor: The above sentence is written in
 the past tense as it would appear in the final specification, even

Jones, et al. Expires September 5, 2018 [Page 18]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 though these links won’t actually be created until after the IESG has
 requested publication of the specification. Please delete this note
 after the links are in place.]]

 For these registries, the designated experts must reject registration
 requests in one registry for values already occurring in the other
 registry. This is necessary because the
 "introspection_endpoint_auth_methods_supported" parameter allows for
 the use of values from either registry. That way, because the values
 in the two registries will continue to be mutually exclusive, no
 ambiguities will arise.

7.3. Well-Known URI Registry

 This specification registers the well-known URI defined in Section 3
 in the IANA "Well-Known URIs" registry [IANA.well-known] established
 by RFC 5785 [RFC5785].

7.3.1. Registry Contents

 o URI suffix: "oauth-authorization-server"
 o Change controller: IESG
 o Specification document: Section 3 of [[this specification]]
 o Related information: (none)

8. References

8.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/bcp195>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <http://tools.ietf.org/html/rfc7516>.

 [JWK] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://tools.ietf.org/html/rfc7517>.

Jones, et al. Expires September 5, 2018 [Page 19]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://tools.ietf.org/html/rfc7515>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://tools.ietf.org/html/rfc7519>.

 [OAuth.Post]
 Jones, M. and B. Campbell, "OAuth 2.0 Form Post Response
 Mode", April 2015, <http://openid.net/specs/
 oauth-v2-form-post-response-mode-1_0.html>.

 [OAuth.Responses]
 de Medeiros, B., Ed., Scurtescu, M., Tarjan, P., and M.
 Jones, "OAuth 2.0 Multiple Response Type Encoding
 Practices", February 2014, <http://openid.net/specs/
 oauth-v2-multiple-response-types-1_0.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

Jones, et al. Expires September 5, 2018 [Page 20]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

 [RFC7033] Jones, P., Salgueiro, G., Jones, M., and J. Smarr,
 "WebFinger", RFC 7033, DOI 10.17487/RFC7033, September
 2013, <https://www.rfc-editor.org/info/rfc7033>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
 <http://www.unicode.org/versions/latest/>.

 [USA15] Davis, M. and K. Whistler, "Unicode Normalization Forms",
 Unicode Standard Annex 15, June 2015,
 <http://www.unicode.org/reports/tr15/>.

8.2. Informative References

 [I-D.ietf-oauth-mix-up-mitigation]
 Jones, M., Bradley, J., and N. Sakimura, "OAuth 2.0 Mix-Up
 Mitigation", draft-ietf-oauth-mix-up-mitigation-01 (work
 in progress), July 2016.

Jones, et al. Expires September 5, 2018 [Page 21]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 [IANA.well-known]
 IANA, "Well-Known URIs",
 <http://www.iana.org/assignments/well-known-uris>.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", November 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0", November 2014,
 <http://openid.net/specs/
 openid-connect-discovery-1_0.html>.

 [OpenID.Registration]
 Sakimura, N., Bradley, J., and M. Jones, "OpenID Connect
 Dynamic Client Registration 1.0", November 2014,
 <http://openid.net/specs/
 openid-connect-registration-1_0.html>.

Appendix A. Acknowledgements

 This specification is based on the OpenID Connect Discovery 1.0
 specification, which was produced by the OpenID Connect working group
 of the OpenID Foundation. This specification standardizes the de
 facto usage of the metadata format defined by OpenID Connect
 Discovery to publish OAuth authorization server metadata.

 The authors would like to thank the following people for their
 reviews of this specification: Shwetha Bhandari, Ben Campbell, Brian
 Campbell, Brian Carpenter, William Denniss, Vladimir Dzhuvinov,
 Donald Eastlake, Samuel Erdtman, George Fletcher, Dick Hardt, Phil
 Hunt, Alexey Melnikov, Tony Nadalin, Mark Nottingham, Eric Rescorla,
 Justin Richer, Adam Roach, Hannes Tschofenig, and Hans Zandbelt.

Appendix B. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -10

 o Clarified the meaning of "case-insensitive", as suggested by
 Alexey Melnikov.

 -09

Jones, et al. Expires September 5, 2018 [Page 22]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 o Revised the transformation between the issuer identifier and the
 authorization server metadata location to conform to BCP 190, as
 suggested by Adam Roach.

 o Defined the characters allowed in registered metadata names and
 values, as suggested by Alexey Melnikov.

 o Changed to using the RFC 8174 boilerplate instead of the RFC 2119
 boilerplate, as suggested by Ben Campbell.

 o Acknowledged additional reviewers.

 -08

 o Changed the "authorization_endpoint" to be REQUIRED only when
 grant types are supported that use the authorization endpoint.

 o Added the statement, to provide historical context, that this
 specification standardizes the de facto usage of the metadata
 format defined by OpenID Connect Discovery to publish OAuth
 authorization server metadata.

 o Applied clarifications suggested by Mark Nottingham about when
 application-specific well-known suffixes are and are not
 appropriate.

 o Acknowledged additional reviewers.

 -07

 o Applied clarifications suggested by EKR.

 -06

 o Incorporated resolutions to working group last call comments.

 -05

 o Removed the "protected_resources" element and the reference to
 draft-jones-oauth-resource-metadata.

 -04

 o Added the ability to list protected resources with the
 "protected_resources" element.

 o Added ability to provide signed metadata with the
 "signed_metadata" element.

Jones, et al. Expires September 5, 2018 [Page 23]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

 o Removed "Discovery" from the name, since this is now just about
 authorization server metadata.

 -03

 o Changed term "issuer URL" to "issuer identifier" for terminology
 consistency, paralleling the same terminology consistency change
 in the mix-up mitigation spec.

 -02

 o Changed the title to OAuth 2.0 Authorization Server Discovery
 Metadata.

 o Made "jwks_uri" and "registration_endpoint" OPTIONAL.

 o Defined the well-known URI string "/.well-known/oauth-
 authorization-server".

 o Added security considerations about publishing authorization
 server discovery metadata in a standard format.

 o Added security considerations about protected resources.

 o Added more information to the "grant_types_supported" and
 "response_types_supported" definitions.

 o Referenced the working group Mix-Up Mitigation draft.

 o Changed some example metadata values.

 o Acknowledged individuals for their contributions to the
 specification.

 -01

 o Removed WebFinger discovery.

 o Clarified the relationship between the issuer identifier URL and
 the well-known URI path relative to it at which the discovery
 metadata document is located.

 -00

 o Created the initial working group version based on draft-jones-
 oauth-discovery-01, with no normative changes.

Jones, et al. Expires September 5, 2018 [Page 24]

Internet-Draft OAuth 2.0 Authorization Server Metadata March 2018

Authors’ Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Nat Sakimura
 Nomura Research Institute, Ltd.

 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

Jones, et al. Expires September 5, 2018 [Page 25]

Network Working Group J. Bradley
Internet-Draft Ping Identity
Intended status: Standards Track P. Hunt
Expires: August 28, 2017 Oracle Corporation
 M. Jones
 Microsoft
 H. Tschofenig
 ARM Limited
 February 24, 2017

 OAuth 2.0 Proof-of-Possession: Authorization Server to Client Key
 Distribution
 draft-ietf-oauth-pop-key-distribution-03

Abstract

 RFC 6750 specified the bearer token concept for securing access to
 protected resources. Bearer tokens need to be protected in transit
 as well as at rest. When a client requests access to a protected
 resource it hands-over the bearer token to the resource server.

 The OAuth 2.0 Proof-of-Possession security concept extends bearer
 token security and requires the client to demonstrate possession of a
 key when accessing a protected resource.

 This document describes how the client obtains this keying material
 from the authorization server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 28, 2017.

Bradley, et al. Expires August 28, 2017 [Page 1]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 4
 3. Audience . 4
 3.1. Audience Parameter 5
 3.2. Processing Instructions 5
 4. Symmetric Key Transport 6
 4.1. Client-to-AS Request 6
 4.2. Client-to-AS Response 7
 5. Asymmetric Key Transport 9
 5.1. Client-to-AS Request 9
 5.2. Client-to-AS Response 11
 6. Token Types and Algorithms 12
 7. Security Considerations 13
 8. IANA Considerations . 14
 9. Acknowledgements . 15
 10. References . 15
 10.1. Normative References 15
 10.2. Informative References 16
 Appendix A. Augmented Backus-Naur Form (ABNF) Syntax 17
 A.1. ’aud’ Syntax . 17
 A.2. ’key’ Syntax . 18
 A.3. ’alg’ Syntax . 18
 Authors’ Addresses . 18

1. Introduction

 The work on additional security mechanisms beyond OAuth 2.0 bearer
 tokens [12] is motivated in [17], which also outlines use cases,
 requirements and an architecture. This document defines the ability
 for the client indicate support for this functionality and to obtain
 keying material from the authorization server. As an outcome of the

Bradley, et al. Expires August 28, 2017 [Page 2]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 exchange between the client and the authorization server is an access
 token that is bound to keying material. Clients that access
 protected resources then need to demonstrate knowledge of the secret
 key that is bound to the access token.

 To best describe the scope of this specification, the OAuth 2.0
 protocol exchange sequence is shown in Figure 1. The extension
 defined in this document piggybacks on the message exchange marked
 with (C) and (D).

 +--------+ +---------------+
 | |--(A)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(B)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(C)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(D)----- Access Token -------| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(E)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(F)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 1: Abstract OAuth 2.0 Protocol Flow

 In OAuth 2.0 [2] access tokens can be obtained via authorization
 grants and using refresh tokens. The core OAuth specification
 defines four authorization grants, see Section 1.3 of [2], and [14]
 adds an assertion-based authorization grant to that list. The token
 endpoint, which is described in Section 3.2 of [2], is used with
 every authorization grant except for the implicit grant type. In the
 implicit grant type the access token is issued directly.

 This document extends the functionality of the token endpoint, i.e.,
 the protocol exchange between the client and the authorization
 server, to allow keying material to be bound to an access token. Two
 types of keying material can be bound to an access token, namely
 symmetric keys and asymmetric keys. Conveying symmetric keys from
 the authorization server to the client is described in Section 4 and
 the procedure for dealing with asymmetric keys is described in
 Section 5.

Bradley, et al. Expires August 28, 2017 [Page 3]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

2. Terminology

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 specification are to be interpreted as described in [1].

 Session Key:

 The term session key refers to fresh and unique keying material
 established between the client and the resource server. This
 session key has a lifetime that corresponds to the lifetime of the
 access token, is generated by the authorization server and bound
 to the access token.

 This document uses the following abbreviations:

 JWA: JSON Web Algorithms (JWA) [7]

 JWT: JSON Web Token (JWT) [9]

 JWS: JSON Web Signature (JWS) [6]

 JWK: JSON Web Key (JWK) [5]

 JWE: JSON Web Encryption (JWE) [8]

3. Audience

 When an authorization server creates an access token, according to
 the PoP security architecture [17], it may need to know which
 resource server will process it. This information is necessary when
 the authorization server applies integrity protection to the JWT
 using a symmetric key and has to selected the key of the resource
 server that has to verify it. The authorization server also requires
 this audience information if it has to encrypt a symmetric session
 key inside the access token using a long-term symmetric key.

 This section defines a new header that is used by the client to
 indicate what protected resource at which resource server it wants to
 access. This information may subsequently also communicated by the
 authorization server securely to the resource server, for example
 within the audience field of the access token.

 QUESTION: A benefit of asymmetric cryptography is to allow clients to
 request a PoP token for use with multiple resource servers. The
 downside of that approach is linkability since different resource
 servers will be able to link individual requests to the same client.

Bradley, et al. Expires August 28, 2017 [Page 4]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 (The same is true if the a single public key is linked with PoP
 tokens used with different resource servers.) Nevertheless, to
 support the functionality the audience parameter could carry an array
 of values. Is this desirable?

3.1. Audience Parameter

 The client constructs the access token request to the token endpoint
 by adding the ’aud’ parameter using the "application/x-www-form-
 urlencoded" format with a character encoding of UTF-8 in the HTTP
 request entity-body.

 The URI included in the aud parameter MUST be an absolute URI as
 defined by Section 4.3 of [3]. It MAY include an "application/x-www-
 form-urlencoded" formatted query component (Section 3.4 of [3]).
 The URI MUST NOT include a fragment component.

 The ABNF syntax for the ’aud’ element is defined in Appendix A.

3.2. Processing Instructions

 Step (0): As an initial step the client typically determines the
 resource server it wants to interact with. This may, for example,
 happen as part of a discovery procedure or via manual
 configuration.

 Step (1): The client starts the OAuth 2.0 protocol interaction
 based on the selected grant type.

 Step (2): When the client interacts with the token endpoint to
 obtain an access token it MUST populate the newly defined
 ’audience’ parameter with the information obtained in step (0).

 Step (2): The authorization server who obtains the request from
 the client needs to parse it to determine whether the provided
 audience value matches any of the resource servers it has a
 relationship with. If the authorization server fails to parse the
 provided value it MUST reject the request using an error response
 with the error code "invalid_request". If the authorization
 server does not consider the resource server acceptable it MUST
 return an error response with the error code "access_denied". In
 both cases additional error information may be provided via the
 error_description, and the error_uri parameters. If the request
 has, however, been verified successfully then the authorization
 server MUST include the audience claim into the access token with
 the value copied from the audience field provided by the client.
 In case the access token is encoded using the JSON Web Token
 format [9] the "aud" claim MUST be used. The access token, if

Bradley, et al. Expires August 28, 2017 [Page 5]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 passed per value, MUST be protected against modification by either
 using a digital signature or a keyed message digest. Access
 tokens can also be passed by reference, which then requires the
 token introspection endpoint (or a similiar, proprietary protocol
 mechanism) to be used. The authorization server returns the
 access token to the client, as specified in [2].

 Subsequent steps for the interaction between the client and the
 resource server are beyond the scope of this document.

4. Symmetric Key Transport

4.1. Client-to-AS Request

 In case a symmetric key shall be bound to an PoP token the following
 procedure is applicable. In the request message from the OAuth
 client to the OAuth authorization server the following parameters MAY
 be included:

 token_type: OPTIONAL. See Section 6 for more details.

 alg: OPTIONAL. See Section 6 for more details.

 These two new parameters are optional in the case where the
 authorization server has prior knowledge of the capabilities of the
 client otherwise these two parameters are required. This prior
 knowledge may, for example, be set by the use of a dynamic client
 registration protocol exchange.

 QUESTION: Should we register these two parameters for use with the
 dynamic client registration protocol?

 For example, the client makes the following HTTP request using TLS
 (extra line breaks are for display purposes only).

Bradley, et al. Expires August 28, 2017 [Page 6]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &token_type=pop
 &alg=HS256

 Example Request to the Authorization Server

4.2. Client-to-AS Response

 If the access token request has been successfully verified by the
 authorization server and the client is authorized to obtain a PoP
 token for the indicated resource server, the authorization server
 issues an access token and optionally a refresh token. If client
 authentication failed or is invalid, the authorization server returns
 an error response as described in Section 5.2 of [2].

 The authorization server MUST include an access token and a ’key’
 element in a successful response. The ’key’ parameter either
 contains a plain JWK structure or a JWK encrypted with a JWE. The
 difference between the two approaches is the following:

 Plain JWK: If the JWK container is placed in the ’key’ element then
 the security of the overall PoP architecture relies on Transport
 Layer Security (TLS) between the authorization server and the
 client. Figure 2 illustrates an example response using a plain
 JWK for key transport from the authorization server to the client.

 JWK protected by a JWE: If the JWK container is protected by a JWE
 then additional security protection at the application layer is
 provided between the authorization server and the client beyond
 the use of TLS. This approach is a reasonable choice, for
 example, when a hardware security module is available on the
 client device and confidentiality protection can be offered
 directly to this hardware security module.

 Note that there are potentially two JSON-encoded structures in the
 response, namely the access token (with the recommended JWT encoding)
 and the actual key transport mechanism itself. Note, however, that
 the two structures serve a different purpose and are consumed by
 different parites. The access token is created by the authorization
 server and processed by the resource server (and opaque to the

Bradley, et al. Expires August 28, 2017 [Page 7]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 client) whereas the key transport payload is created by the
 authorization server and processed by the client; it is never
 forwarded to the resource server.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":"SlAV32hkKG ...
 (remainder of JWT omitted for brevity;
 JWT contains JWK in the cnf claim)",
 "token_type":"pop",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "key":"eyJhbGciOiJSU0ExXzUi ...
 (remainder of plain JWK omitted for brevity)"
 }

 Figure 2: Example: Response from the Authorization Server (Symmetric
 Variant)

 The content of the key parameter, which is a JWK in our example, is
 shown in Figure 3.

 {
 "kty":"oct",
 "kid":"id123",
 "alg":"HS256",
 "k":"ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE"
 }

 Figure 3: Example: Key Transport to Client via a JWK

 The content of the ’access_token’ in JWT format contains the ’cnf’
 (confirmation) claim, as shown in Figure 4. The confirmation claim
 is defined in [10]. The digital signature or the keyed message
 digest offering integrity protection is not shown in this example but
 MUST be present in a real deployment to mitigate a number of security
 threats. Those security threats are described in [17].

 The JWK in the key element of the response from the authorization
 server, as shown in Figure 2, contains the same session key as the
 JWK inside the access token, as shown in Figure 4. It is, in this

Bradley, et al. Expires August 28, 2017 [Page 8]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 example, protected by TLS and transmitted from the authorization
 server to the client (for processing by the client).

 {
 "iss": "https://server.example.com",
 "sub": "24400320",
 "aud": "s6BhdRkqt3",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "cnf":{
 "jwk":
 "JDLUhTMjU2IiwiY3R5Ijoi ...
 (remainder of JWK protected by JWE omitted for brevity)"
 }
 }

 Figure 4: Example: Access Token in JWT Format

 Note: When the JWK inside the access token contains a symmetric key
 it MUST be confidentiality protected using a JWE to maintain the
 security goals of the PoP architecture, as described in [17] since
 content is meant for consumption by the selected resource server
 only.

 Note: This document does not impose requirements on the encoding of
 the access token. The examples used in this document make use of the
 JWT structure since this is the only standardized format.

 If the access token is only a reference then a look-up by the
 resource server is needed, as described in the token introspection
 specification [18].

5. Asymmetric Key Transport

5.1. Client-to-AS Request

 In case an asymmetric key shall be bound to an access token then the
 following procedure is applicable. In the request message from the
 OAuth client to the OAuth authorization server the request MAY
 include the following parameters:

 token_type: OPTIONAL. See Section 6 for more details.

 alg: OPTIONAL. See Section 6 for more details.

Bradley, et al. Expires August 28, 2017 [Page 9]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 key: OPTIONAL. This field contains information about the public key
 the client would like to bind to the access token in the JWK
 format. If the client does not provide a public key then the
 authorization server MUST create an ephemeral key pair
 (considering the information provided by the client) or
 alternatively respond with an error message. The client may
 also convey the fingerprint of the public key to the
 authorization server instead of passing the entire public key
 along (to conserve bandwidth). [11] defines a way to compute a
 thumbprint for a JWK and to embedd it within the JWK format.

 The ’token_type’ and the ’alg’ parameters are optional in the case
 where the authorization server has prior knowledge of the
 capabilities of the client otherwise these two parameters are
 required.

 For example, the client makes the following HTTP request using TLS
 (extra line breaks are for display purposes only) shown in Figure 5.

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &token_type=pop
 &alg=RS256
 &key=eyJhbGciOiJSU0ExXzUi ...
 (remainder of JWK omitted for brevity)

 Figure 5: Example Request to the Authorization Server (Asymmetric Key
 Variant)

 As shown in Figure 6 the content of the ’key’ parameter contains the
 RSA public key the client would like to associate with the access
 token.

Bradley, et al. Expires August 28, 2017 [Page 10]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 {"kty":"RSA",
 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "e":"AQAB",
 "alg":"RS256",
 "kid":"id123"}

 Figure 6: Client Providing Public Key to Authorization Server

5.2. Client-to-AS Response

 If the access token request is valid and authorized, the
 authorization server issues an access token and optionally a refresh
 token. If the request client authentication failed or is invalid,
 the authorization server returns an error response as described in
 Section 5.2 of [2].

 The authorization server also places information about the public key
 used by the client into the access token to create the binding
 between the two. The new token type "public_key" is placed into the
 ’token_type’ parameter.

 An example of a successful response is shown in Figure 7.

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFE....jr1zCsicMWpAA",
 "token_type":"pop",
 "alg":"RS256",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"
 }

 Figure 7: Example: Response from the Authorization Server (Asymmetric
 Variant)

 The content of the ’access_token’ field contains an encoded JWT with
 the following structure, as shown in Figure 8. The digital signature

Bradley, et al. Expires August 28, 2017 [Page 11]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 or the keyed message digest offering integrity protection is not
 shown (but must be present).

 {
 "iss":"xas.example.com",
 "aud":"http://auth.example.com",
 "exp":"1361398824",
 "nbf":"1360189224",
 "cnf":{
 "jwk":{"kty":"RSA",
 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "e":"AQAB",
 "alg":"RS256",
 "kid":"id123"}
 }
 }

 Figure 8: Example: Access Token Structure (Asymmetric Variant)

 Note: In this example there is no need for the authorization server
 to convey further keying material to the client since the client is
 already in possession of the private RSA key.

6. Token Types and Algorithms

 To allow clients to indicate support for specific token types and
 respective algorithms they need to interact with authorization
 servers. They can either provide this information out-of-band, for
 example, via pre-configuration or up-front via the dynamic client
 registration protocol [16].

 The value in the ’alg’ parameter together with value from the
 ’token_type’ parameter allow the client to indicate the supported
 algorithms for a given token type. The token type refers to the
 specification used by the client to interact with the resource server
 to demonstrate possession of the key. The ’alg’ parameter provides
 further information about the algorithm, such as whether a symmetric
 or an asymmetric crypto-system is used. Hence, a client supporting a
 specific token type also knows how to populate the values to the
 ’alg’ parameter.

Bradley, et al. Expires August 28, 2017 [Page 12]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 The value for the ’token_type’ MUST be taken from the ’OAuth Access
 Token Types’ registry created by [2].

 This document does not register a new value for the OAuth Access
 Token Types registry nor does it define values to be used for the
 ’alg’ parameter since this is the responsibility of specifications
 defining the mechanism for clients interacting with resource servers.
 An example of such specification can be found in [19].

 The values in the ’alg’ parameter are case-sensitive. If the client
 supports more than one algorithm then each individual value MUST be
 separated by a space.

7. Security Considerations

 [17] describes the architecture for the OAuth 2.0 proof-of-possession
 security architecture, including use cases, threats, and
 requirements. This requirements describes one solution component of
 that architecture, namely the mechanism for the client to interact
 with the authorization server to either obtain a symmetric key from
 the authorization server, to obtain an asymmetric key pair, or to
 offer a public key to the authorization. In any case, these keys are
 then bound to the access token by the authorization server.

 To summarize the main security recommendations: A large range of
 threats can be mitigated by protecting the contents of the access
 token by using a digital signature or a keyed message digest.
 Consequently, the token integrity protection MUST be applied to
 prevent the token from being modified, particularly since it contains
 a reference to the symmetric key or the asymmetric key. If the
 access token contains the symmetric key (see Section 2.2 of [10] for
 a description about how symmetric keys can be securely conveyed
 within the access token) this symmetric key MUST be encrypted by the
 authorization server with a long-term key shared with the resource
 server.

 To deal with token redirect, it is important for the authorization
 server to include the identity of the intended recipient (the
 audience), typically a single resource server (or a list of resource
 servers), in the token. Using a single shared secret with multiple
 authorization server to simplify key management is NOT RECOMMENDED
 since the benefit from using the proof-of-possession concept is
 significantly reduced.

 Token replay is also not possible since an eavesdropper will also
 have to obtain the corresponding private key or shared secret that is
 bound to the access token. Nevertheless, it is good practice to

Bradley, et al. Expires August 28, 2017 [Page 13]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 limit the lifetime of the access token and therefore the lifetime of
 associated key.

 The authorization server MUST offer confidentiality protection for
 any interactions with the client. This step is extremely important
 since the client will obtain the session key from the authorization
 server for use with a specific access token. Not using
 confidentiality protection exposes this secret (and the access token)
 to an eavesdropper thereby making the OAuth 2.0 proof-of-possession
 security model completely insecure. OAuth 2.0 [2] relies on TLS to
 offer confidentiality protection and additional protection can be
 applied using the JWK [5] offered security mechanism, which would add
 an additional layer of protection on top of TLS for cases where the
 keying material is conveyed, for example, to a hardware security
 module. Which version(s) of TLS ought to be implemented will vary
 over time, and depend on the widespread deployment and known security
 vulnerabilities at the time of implementation. At the time of this
 writing, TLS version 1.2 [4] is the most recent version. The client
 MUST validate the TLS certificate chain when making requests to
 protected resources, including checking the validity of the
 certificate.

 Similarly to the security recommendations for the bearer token
 specification [12] developers MUST ensure that the ephemeral
 credentials (i.e., the private key or the session key) is not leaked
 to third parties. An adversary in possession of the ephemeral
 credentials bound to the access token will be able to impersonate the
 client. Be aware that this is a real risk with many smart phone app
 and Web development environments.

 Clients can at any time request a new proof-of-possession capable
 access token. Using a refresh token to regularly request new access
 tokens that are bound to fresh and unique keys is important. Keeping
 the lifetime of the access token short allows the authorization
 server to use shorter key sizes, which translate to a performance
 benefit for the client and for the resource server. Shorter keys
 also lead to shorter messages (particularly with asymmetric keying
 material).

 When authorization servers bind symmetric keys to access tokens then
 they SHOULD scope these access tokens to a specific permissions.

8. IANA Considerations

 This specification registers the following parameters in the OAuth
 Parameters Registry established by [2].

 Parameter name: alg

Bradley, et al. Expires August 28, 2017 [Page 14]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 Parameter usage location: token request, token response,
 authorization response

 Change controller: IETF

 Specification document(s): [[this document]]

 Related information: None

 Parameter name: key

 Parameter usage location: token request, token response,
 authorization response

 Change controller: IETF

 Specification document(s): [[this document]]

 Related information: None

 Parameter name: aud

 Parameter usage location: token request

 Change controller: IETF

 Specification document(s): [[This document.]

 Related information: None

9. Acknowledgements

 We would like to thank Chuck Mortimore for his review comments.

10. References

10.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [2] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

Bradley, et al. Expires August 28, 2017 [Page 15]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 [3] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [4] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [5] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

 [6] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [7] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

 [8] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <http://www.rfc-editor.org/info/rfc7516>.

 [9] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [10] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <http://www.rfc-editor.org/info/rfc7800>.

 [11] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <http://www.rfc-editor.org/info/rfc7638>.

10.2. Informative References

 [12] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

Bradley, et al. Expires August 28, 2017 [Page 16]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

 [13] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [14] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <http://www.rfc-editor.org/info/rfc7521>.

 [15] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <http://www.rfc-editor.org/info/rfc7636>.

 [16] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <http://www.rfc-editor.org/info/rfc7591>.

 [17] Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-08 (work
 in progress), July 2016.

 [18] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <http://www.rfc-editor.org/info/rfc7662>.

 [19] Richer, J., Bradley, J., and H. Tschofenig, "A Method for
 Signing HTTP Requests for OAuth", draft-ietf-oauth-signed-
 http-request-03 (work in progress), August 2016.

Appendix A. Augmented Backus-Naur Form (ABNF) Syntax

 This section provides Augmented Backus-Naur Form (ABNF) syntax
 descriptions for the elements defined in this specification using the
 notation of [13].

A.1. ’aud’ Syntax

 The ABNF syntax is defined as follows where by the "URI-reference"
 definition is taken from [3]:

 aud = URI-reference

Bradley, et al. Expires August 28, 2017 [Page 17]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution February 2017

A.2. ’key’ Syntax

 The "key" element is defined in Section 4 and Section 5:

 key = 1*VSCHAR

A.3. ’alg’ Syntax

 The "alg" element is defined in Section 6:

 alg = alg-token *(SP alg-token)

 alg-token = 1*NQCHAR

Authors’ Addresses

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Phil Hunt
 Oracle Corporation

 Email: phil.hunt@yahoo.com
 URI: http://www.indepdentid.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Bradley, et al. Expires August 28, 2017 [Page 18]

OAuth Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track B. Campbell
Expires: April 22, 2019 Ping Identity
 J. Bradley
 Yubico
 W. Denniss
 Google
 October 19, 2018

 OAuth 2.0 Token Binding
 draft-ietf-oauth-token-binding-08

Abstract

 This specification enables OAuth 2.0 implementations to apply Token
 Binding to Access Tokens, Authorization Codes, Refresh Tokens, JWT
 Authorization Grants, and JWT Client Authentication. This
 cryptographically binds these tokens to a client’s Token Binding key
 pair, possession of which is proven on the TLS connections over which
 the tokens are intended to be used. This use of Token Binding
 protects these tokens from man-in-the-middle and token export and
 replay attacks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Jones, et al. Expires April 22, 2019 [Page 1]

Internet-Draft OAuth 2.0 Token Binding October 2018

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Notation and Conventions 3
 1.2. Terminology . 3
 2. Token Binding for Refresh Tokens 4
 2.1. Example Token Binding for Refresh Tokens 4
 3. Token Binding for Access Tokens 6
 3.1. Access Tokens Issued from the Authorization Endpoint . . 7
 3.1.1. Example Access Token Issued from the Authorization
 Endpoint . 8
 3.2. Access Tokens Issued from the Token Endpoint 9
 3.2.1. Example Access Token Issued from the Token Endpoint . 9
 3.3. Protected Resource Token Binding Validation 11
 3.3.1. Example Protected Resource Request 11
 3.4. Representing Token Binding in JWT Access Tokens 11
 3.5. Representing Token Binding in Introspection Responses . . 12
 4. Token Binding Metadata 13
 4.1. Token Binding Client Metadata 13
 4.2. Token Binding Authorization Server Metadata 13
 5. Token Binding for Authorization Codes 14
 5.1. Native Application Clients 14
 5.1.1. Code Challenge 14
 5.1.1.1. Example Code Challenge 15
 5.1.2. Code Verifier . 15
 5.1.2.1. Example Code Verifier 16
 5.2. Web Server Clients 16
 5.2.1. Code Challenge 17
 5.2.1.1. Example Code Challenge 17
 5.2.2. Code Verifier . 18
 5.2.2.1. Example Code Verifier 18
 6. Token Binding JWT Authorization Grants and Client
 Authentication . 19
 6.1. JWT Format and Processing Requirements 19
 6.2. Token Bound JWTs for Client Authentication 20
 6.3. Token Bound JWTs for as Authorization Grants 20
 7. Security Considerations 21
 7.1. Phasing in Token Binding 21

Jones, et al. Expires April 22, 2019 [Page 2]

Internet-Draft OAuth 2.0 Token Binding October 2018

 7.2. Binding of Refresh Tokens 21
 8. IANA Considerations . 22
 8.1. OAuth Dynamic Client Registration Metadata Registration . 22
 8.1.1. Registry Contents 22
 8.2. OAuth Authorization Server Metadata Registration 23
 8.2.1. Registry Contents 23
 8.3. PKCE Code Challenge Method Registration 23
 8.3.1. Registry Contents 23
 9. Token Endpoint Authentication Method Registration 23
 9.1. Registry Contents . 24
 10. Sub-Namespace Registrations 24
 10.1. Registry Contents 24
 11. References . 24
 11.1. Normative References 24
 11.2. Informative References 26
 Appendix A. Acknowledgements 27
 Appendix B. Document History 27
 Authors’ Addresses . 29

1. Introduction

 This specification enables OAuth 2.0 [RFC6749] implementations to
 apply Token Binding (TLS Extension for Token Binding Protocol
 Negotiation [RFC8472], The Token Binding Protocol Version 1.0
 [RFC8471] and Token Binding over HTTP [RFC8473]) to Access Tokens,
 Authorization Codes, Refresh Tokens, JWT Authorization Grants, and
 JWT Client Authentication. This cryptographically binds these tokens
 to a client’s Token Binding key pair, possession of which is proven
 on the TLS connections over which the tokens are intended to be used.
 This use of Token Binding protects these tokens from man-in-the-
 middle and token export and replay attacks.

1.1. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 This specification uses the terms "Access Token", "Authorization
 Code", "Authorization Endpoint", "Authorization Server", "Client",
 "Protected Resource", "Refresh Token", and "Token Endpoint" defined
 by OAuth 2.0 [RFC6749], the terms "Claim" and "JSON Web Token (JWT)"
 defined by JSON Web Token (JWT) [JWT], the term "User Agent" defined
 by RFC 7230 [RFC7230], and the terms "Provided", "Referred", "Token

Jones, et al. Expires April 22, 2019 [Page 3]

Internet-Draft OAuth 2.0 Token Binding October 2018

 Binding" and "Token Binding ID" defined by Token Binding over HTTP
 [RFC8473].

2. Token Binding for Refresh Tokens

 Token Binding of refresh tokens is a straightforward first-party
 scenario, applying term "first-party" as used in Token Binding over
 HTTP [RFC8473]. It cryptographically binds the refresh token to the
 client’s Token Binding key pair, possession of which is proven on the
 TLS connections between the client and the token endpoint. This case
 is straightforward because the refresh token is both retrieved by the
 client from the token endpoint and sent by the client to the token
 endpoint. Unlike the federation use cases described in Token Binding
 over HTTP [RFC8473], Section 4, and the access token case described
 in the next section, only a single TLS connection is involved in the
 refresh token case.

 Token Binding a refresh token requires that the authorization server
 do two things. First, when refresh token is sent to the client, the
 authorization server needs to remember the Provided Token Binding ID
 and remember its association with the issued refresh token. Second,
 when a token request containing a refresh token is received at the
 token endpoint, the authorization server needs to verify that the
 Provided Token Binding ID for the request matches the remembered
 Token Binding ID associated with the refresh token. If the Token
 Binding IDs do not match, the authorization server should return an
 error in response to the request.

 How the authorization server remembers the association between the
 refresh token and the Token Binding ID is an implementation detail
 that beyond the scope of this specification. Some authorization
 servers will choose to store the Token Binding ID (or a cryptographic
 hash of it, such a SHA-256 hash [SHS]) in the refresh token itself,
 provided it is integrity-protected, thus reducing the amount of state
 to be kept by the server. Other authorization servers will add the
 Token Binding ID value (or a hash of it) to an internal data
 structure also containing other information about the refresh token,
 such as grant type information. These choices make no difference to
 the client, since the refresh token is opaque to it.

2.1. Example Token Binding for Refresh Tokens

 This section provides an example of what the interactions around a
 Token Bound refresh token might look like, along with some details of
 the involved processing. Token Binding of refresh tokens is most
 useful for native application clients so the example has protocol
 elements typical of a native client flow. Extra line breaks in all
 examples are for display purposes only.

Jones, et al. Expires April 22, 2019 [Page 4]

Internet-Draft OAuth 2.0 Token Binding October 2018

 A native application client makes the following access token request
 with an authorization code using a TLS connection where Token Binding
 has been negotiated. A PKCE "code_verifier" is included because use
 of PKCE is considered best practice for native application clients
 [BCP212]. The base64url-encoded representation of the exported
 keying material (EKM) from that TLS connection is
 "p6ZuSwfl6pIe8es5KyeV76T4swZmQp0_awd27jHfrbo", which is needed to
 validate the Token Binding Message.

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Sec-Token-Binding: AIkAAgBBQGto7hHRR0Y5nkOWqc9KNfwW95dEFmSI_tCZ_Cbl
 7LWlt6Xjp3DbjiDJavGFiKP2HV_2JSE42VzmKOVVV8m7eqAAQOKiDK1Oi0z6v4X5B
 P7uc0pFestVZ42TTOdJmoHpji06Qq3jsCiCRSJx9ck2fWJYx8tLVXRZPATB3x6c24
 aY0ZEAAA

 grant_type=authorization_code&code=4bwcZesc7Xacc330ltc66Wxk8EAfP9j2
 &code_verifier=2x6_ylS390-8V7jaT9wj.8qP9nKmYCf.V-rD9O4r_1
 &client_id=example-native-client-id

 Figure 1: Initial Request with Code

 A refresh token is issued in response to the prior request. Although
 it looks like a typical response to the client, the authorization
 server has bound the refresh token to the Provided Token Binding ID
 from the encoded Token Binding message in the "Sec-Token-Binding"
 header of the request. In this example, that binding is done by
 saving the Token Binding ID alongside other information about the
 refresh token in some server side persistent storage. The base64url-
 encoded representation of that Token Binding ID is "AgBBQGto7hHRR0Y5n
 kOWqc9KNfwW95dEFmSI_tCZ_Cbl7LWlt6Xjp3DbjiDJavGFiKP2HV_2JSE42VzmKOVVV8
 m7eqA".

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"EdRs7qMrLb167Z9fV2dcwoLTC",
 "refresh_token":"ACClZEIQTjW9arT9GOJGGd7QNwqOMmUYfsJTiv8his4",
 "token_type":"Bearer",
 "expires_in":3600
 }

 Figure 2: Successful Response

Jones, et al. Expires April 22, 2019 [Page 5]

Internet-Draft OAuth 2.0 Token Binding October 2018

 When the access token expires, the client requests a new one with a
 refresh request to the token endpoint. In this example, the request
 is made on a new TLS connection so the EKM (base64url-encoded: "va-
 84Ukw4Zqfd7uWOtFrAJda96WwgbdaPDX2knoOiAE") and signature in the Token
 Binding Message are different than in the initial request.

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Sec-Token-Binding: AIkAAgBBQGto7hHRR0Y5nkOWqc9KNfwW95dEFmSI_tCZ_Cbl
 7LWlt6Xjp3DbjiDJavGFiKP2HV_2JSE42VzmKOVVV8m7eqAAQCpGbaG_YRf27qOra
 L0UT4fsKKjL6PukuOT00qzamoAXxOq7m_id7O3mLpnb_sM7kwSxLi7iNHzzDgCAkP
 t3lHwAAA

 refresh_token=ACClZEIQTjW9arT9GOJGGd7QNwqOMmUYfsJTiv8his4
 &grant_type=refresh_token&client_id=example-native-client-id

 Figure 3: Refresh Request

 However, because the Token Binding ID is long-lived and may span
 multiple TLS sessions and connections, it is the same as in the
 initial request. That Token Binding ID is what the refresh token is
 bound to, so the authorization server is able to verify it and issue
 a new access token.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"bwcESCwC4yOCQ8iPsgcn117k7",
 "token_type":"Bearer",
 "expires_in":3600
 }

 Figure 4: Successful Response

3. Token Binding for Access Tokens

 Token Binding for access tokens cryptographically binds the access
 token to the client’s Token Binding key pair, possession of which is
 proven on the TLS connections between the client and the protected
 resource. Token Binding is applied to access tokens in a similar
 manner to that described in Token Binding over HTTP [RFC8473],
 Section 4 (Federation Use Cases). It also builds upon the mechanisms
 for Token Binding of ID Tokens defined in OpenID Connect Token Bound
 Authentication 1.0 [OpenID.TokenBinding].

Jones, et al. Expires April 22, 2019 [Page 6]

Internet-Draft OAuth 2.0 Token Binding October 2018

 In the OpenID Connect [OpenID.Core] use case, HTTP redirects are used
 to pass information between the identity provider and the relying
 party; this HTTP redirect makes the Token Binding ID of the relying
 party available to the identity provider as the Referred Token
 Binding ID, information about which is then added to the ID Token.
 No such redirect occurs between the authorization server and the
 protected resource in the access token case; therefore, information
 about the Token Binding ID for the TLS connection between the client
 and the protected resource needs to be explicitly communicated by the
 client to the authorization server to achieve Token Binding of the
 access token.

 This information is passed to the authorization server using the
 Referred Token Binding ID, just as in the ID Token case. The only
 difference is that the client needs to explicitly communicate the
 Token Binding ID of the TLS connection between the client and the
 protected resource to the Token Binding implementation so that it is
 sent as the Referred Token Binding ID in the request to the
 authorization server. This functionality provided by Token Binding
 implementations is described in Implementation Considerations of
 Token Binding over HTTP [RFC8473], Section 6.

 Note that to obtain this Token Binding ID, the client may need to
 establish a TLS connection between itself and the protected resource
 prior to making the request to the authorization server so that the
 Provided Token Binding ID for the TLS connection to the protected
 resource can be obtained. How the client retrieves this Token
 Binding ID from the underlying Token Binding API is implementation
 and operating system specific. An alternative, if supported, is for
 the client to generate a Token Binding key to use for the protected
 resource, use the Token Binding ID for that key, and then later use
 that key when the TLS connection to the protected resource is
 established.

3.1. Access Tokens Issued from the Authorization Endpoint

 For access tokens returned directly from the authorization endpoint,
 such as with the implicit grant defined in OAuth 2.0 [RFC6749],
 Section 4.2, the Token Binding ID of the client’s TLS channel to the
 protected resource is sent with the authorization request as the
 Referred Token Binding ID in the "Sec-Token-Binding" header, and is
 used to Token Bind the access token.

 Upon receiving the Referred Token Binding ID in an authorization
 request, the authorization server associates (Token Binds) the ID
 with the access token in a way that can be accessed by the protected
 resource. Such methods include embedding the Referred Token Binding
 ID (or a cryptographic hash of it) in the issued access token itself,

Jones, et al. Expires April 22, 2019 [Page 7]

Internet-Draft OAuth 2.0 Token Binding October 2018

 possibly using the syntax described in Section 3.4, or through token
 introspection as described in Section 3.5. The method for
 associating the referred token binding ID with the access token is
 determined by the authorization server and the protected resource,
 and is beyond the scope for this specification.

3.1.1. Example Access Token Issued from the Authorization Endpoint

 This section provides an example of what the interactions around a
 Token Bound access token issued from the authorization endpoint might
 look like, along with some details of the involved processing. Extra
 line breaks in all examples are for display purposes only.

 The client directs the user-agent to make the following HTTP request
 to the authorization endpoint. It is a typical authorization request
 that, because Token Binding was negotiated on the underlying TLS
 connection and the user-agent was signaled to reveal the Referred
 Token Binding, also includes the "Sec-Token-Binding" header with a
 Token Binding Message that contains both a Provided and Referred
 Token Binding. The base64url-encoded EKM from the TLS connection
 over which the request was made is
 "jI5UAyjs5XCPISUGQIwgcSrOiVIWq4fhLVIFTQ4nLxc".

 GET /as/authorization.oauth2?response_type=token
 &client_id=example-client-id&state=rM8pZxG1c3gKy6rEbsD8s
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb HTTP/1.1
 Host: server.example.com
 Sec-Token-Binding: ARIAAgBBQIEE8mSMtDy2dj9EEBdXaQT9W3Rq1NS-jW8ebPoF
 6FyL0jIfATVE55zlircgOTZmEg1xeIrC3DsGegwjs4bhw14AQGKDlAXFFMyQkZegC
 wlbTlqX3F9HTt-lJxFU_pi16ezka7qVRCpSF0BQLfSqlsxMbYfSSCJX1BDtrIL7PX
 j__fUAAAECAEFA1BNUnP3te5WrwlEwiejEz0OpesmC5PElWc7kZ5nlLSqQTj1ciIp
 5vQ30LLUCyM_a2BYTUPKtd5EdS-PalT4t6ABADgeizRa5NkTMuX4zOdC-R4cLNWVV
 O8lLu2Psko-UJLR_XAH4Q0H7-m0_nQR1zBN78nYMKPvHsz8L3zWKRVyXEgAA

 Figure 5: Authorization Request

 The authorization server issues an access token and delivers it to
 the client by redirecting the user-agent with the following HTTP
 response:

 HTTP/1.1 302 Found
 Location: https://client.example.org/cb#state=rM8pZxG1c3gKy6rEbsD8s
 &expires_in=3600&token_type=Bearer
 &access_token=eyJhbGciOiJFUzI[...omitted for brevity...]8xy5W5sQ

 Figure 6: Authorization Response

Jones, et al. Expires April 22, 2019 [Page 8]

Internet-Draft OAuth 2.0 Token Binding October 2018

 The access token is bound to the Referred Token Binding ID from the
 authorization request, which when represented as a JWT, as described
 in Section 3.4, contains the SHA-256 hash of the Token Binding ID as
 the value of the "tbh" (token binding hash) member of the "cnf"
 (confirmation) claim. The confirmation claim portion of the JWT
 Claims Set is shown in the following figure.

 {
 ...other claims omitted for brevity...
 "cnf":{
 "tbh": "vowQESa_MgbGJwIXaFm_BTN2QDPwh8PhuBm-EtUAqxc"
 }
 }

 Figure 7: Confirmation Claim

3.2. Access Tokens Issued from the Token Endpoint

 For access tokens returned from the token endpoint, the Token Binding
 ID of the client’s TLS channel to the protected resource is sent as
 the Referred Token Binding ID in the "Sec-Token-Binding" header, and
 is used to Token Bind the access token. This applies to all the
 grant types from OAuth 2.0 [RFC6749] using the token endpoint,
 including, but not limited to the refresh and authorization code
 token requests, as well as some extension grants, such as JWT
 assertion authorization grants [RFC7523].

 Upon receiving the Referred Token Binding ID in a token request, the
 authorization server associates (Token Binds) the ID with the access
 token in a way that can be accessed by the protected resource. Such
 methods include embedding the Referred Token Binding ID (or a
 cryptographic hash of it) in the issued access token itself, possibly
 using the syntax described in Section 3.4, or through token
 introspection as described in Section 3.5. The method for
 associating the referred token binding ID with the access token is
 determined by the authorization server and the protected resource,
 and is beyond the scope for this specification.

 Note that if the request results in a new refresh token being
 generated, it can be Token bound using the Provided Token Binding ID,
 per Section 2.

3.2.1. Example Access Token Issued from the Token Endpoint

 This section provides an example of what the interactions around a
 Token Bound access token issued from the token endpoint might look
 like, along with some details of the involved processing. Extra line
 breaks in all examples are for display purposes only.

Jones, et al. Expires April 22, 2019 [Page 9]

Internet-Draft OAuth 2.0 Token Binding October 2018

 The client makes an access token request to the token endpoint and
 includes the "Sec-Token-Binding" header with a Token Binding Message
 that contains both Provided and Referred Token Binding IDs. The
 Provided Token Binding ID is used to validate the token binding of
 the refresh token in the request (and to Token Bind a new refresh
 token, if one is issued), and the Referred Token Binding ID is used
 to Token Bind the access token that is generated. The base64url-
 encoded EKM from the TLS connection over which the access token
 request was made is "4jTc5e1QpocqPTZ5l6jsb6pRP18IFKdwwPvasYjn1-E".

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Sec-Token-Binding: ARIAAgBBQJFXJir2w4gbJ7grBx9uTYWIrs9V50-PW4ZijegQ
 0LUM-_bGnGT6DizxUK-m5n3dQUIkeH7ybn6wb1C5dGyV_IAAQDDFToFrHt41Zppq7
 u_SEMF_E-KimAB-HewWl2MvZzAQ9QKoWiJCLFiCkjgtr1RrA2-jaJvoB8o51DTGXQ
 ydWYkAAAECAEFAuC1GlYU83rqTGHEau1oqvNwy0fDsdXzIyT_4x1FcldsMxjFkJac
 IBJFGuYcccvnCak_duFi3QKFENuwxql-H9ABAMcU7IjJOUA4IyE6YoEcfz9BMPQqw
 M5M6hw4RZNQd58fsTCCslQE_NmNCl9JXy4NkdkEZBxqvZGPr0y8QZ_bmAwAA

 refresh_token=gZR_ZI8EAhLgWR-gWxBimbgZRZi_8EAhLgWRgWxBimbf
 &grant_type=refresh_token&client_id=example-client-id

 Figure 8: Access Token Request

 The authorization server issues an access token bound to the Referred
 Token Binding ID and delivers it in a response the client.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtp[...omitted...]1cs29j5c3",
 "token_type":"Bearer",
 "expires_in":3600
 }

 Figure 9: Response

 The access token is bound to the Referred Token Binding ID of the
 access token request, which when represented as a JWT, as described
 in Section 3.4, contains the SHA-256 hash of the Token Binding ID as
 the value of the "tbh" (token binding hash) member of the "cnf"
 (confirmation) claim. The confirmation claim portion of the JWT
 Claims Set of the access token is shown in the following figure.

Jones, et al. Expires April 22, 2019 [Page 10]

Internet-Draft OAuth 2.0 Token Binding October 2018

 {
 ...other claims omitted for brevity...
 "cnf":{
 "tbh": "7NRBu9iDdJlYCTOqyeYuLxXv0blEA-yTpmGIrAwKAws"
 }
 }

 Figure 10: Confirmation Claim

3.3. Protected Resource Token Binding Validation

 Upon receiving a token bound access token, the protected resource
 validates the binding by comparing the Provided Token Binding ID to
 the Token Binding ID for the access token. Alternatively,
 cryptographic hashes of these Token Binding ID values can be
 compared. If the values do not match, the resource access attempt
 MUST be rejected with an error.

3.3.1. Example Protected Resource Request

 For example, a protected resource request using the access token from
 Section 3.2.1 would look something like the following. The
 base64url-encoded EKM from the TLS connection over which the request
 was made is "7LsNP3BT1aHHdXdk6meEWjtSkiPVLb7YS6iHp-JXmuE". The
 protected resource validates the binding by comparing the Provided
 Token Binding ID from the "Sec-Token-Binding" header to the token
 binding hash confirmation of the access token. Extra line breaks in
 the example are for display purposes only.

 GET /api/stuff HTTP/1.1
 Host: resource.example.org
 Authorization: Bearer eyJhbGciOiJFUzI1NiIsI[...omitted...]1cs29j5c3
 Sec-Token-Binding: AIkAAgBBQLgtRpWFPN66kxhxGrtaKrzcMtHw7HV8yMk_-MdR
 XJXbDMYxZCWnCASRRrmHHHL5wmpP3bhYt0ChRDbsMapfh_QAQN1He3Ftj4Wa_S_fz
 ZVns4saLfj6aBoMSQW6rLs19IIvHze7LrGjKyCfPTKXjajebxp-TLPFZCc0JTqTY5
 _0MBAAAA

 Figure 11: Protected Resource Request

3.4. Representing Token Binding in JWT Access Tokens

 If the access token is represented as a JWT, the token binding
 information SHOULD be represented in the same way that it is in token
 bound OpenID Connect ID Tokens [OpenID.TokenBinding]. That
 specification defines the new JWT Confirmation Method RFC 7800
 [RFC7800] member "tbh" (token binding hash) to represent the SHA-256
 hash of a Token Binding ID in an ID Token. The value of the "tbh"
 member is the base64url encoding of the SHA-256 hash of the Token

Jones, et al. Expires April 22, 2019 [Page 11]

Internet-Draft OAuth 2.0 Token Binding October 2018

 Binding ID. All trailing pad ’=’ characters are omitted from the
 encoded value and no line breaks, whitespace, or other additional
 characters are included.

 The following example demonstrates the JWT Claims Set of an access
 token containing the base64url encoding of the SHA-256 hash of a
 Token Binding ID as the value of the "tbh" (token binding hash)
 element in the "cnf" (confirmation) claim:

 {
 "iss": "https://server.example.com",
 "aud": "https://resource.example.org",
 "sub": "brian@example.com"
 "iat": 1467324320,
 "exp": 1467324920,
 "cnf":{
 "tbh": "7NRBu9iDdJlYCTOqyeYuLxXv0blEA-yTpmGIrAwKAws"
 }
 }

 Figure 12: JWT with Token Binding Hash Confirmation Claim

3.5. Representing Token Binding in Introspection Responses

 OAuth 2.0 Token Introspection [RFC7662] defines a method for a
 protected resource to query an authorization server about the active
 state of an access token as well as to determine meta-information
 about the token.

 For a token bound access token, the hash of the Token Binding ID to
 which the token is bound is conveyed to the protected resource as
 meta-information in a token introspection response. The hash is
 conveyed using same structure as the token binding hash confirmation
 method, described in Section 3.4, as a top-level member of the
 introspection response JSON. The protected resource compares that
 token binding hash to a hash of the provided Token Binding ID and
 rejects the request, if they do not match.

 The following is an example of an introspection response for an
 active token bound access token with a "tbh" token binding hash
 confirmation method.

Jones, et al. Expires April 22, 2019 [Page 12]

Internet-Draft OAuth 2.0 Token Binding October 2018

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "active": true,
 "iss": "https://server.example.com",
 "aud": "https://resource.example.org",
 "sub": "brian@example.com"
 "iat": 1467324320,
 "exp": 1467324920,
 "cnf":{
 "tbh": "7NRBu9iDdJlYCTOqyeYuLxXv0blEA-yTpmGIrAwKAws"
 }
 }

 Figure 13: Example Introspection Response for a Token Bound Access
 Token

4. Token Binding Metadata

4.1. Token Binding Client Metadata

 Clients supporting Token Binding that also support the OAuth 2.0
 Dynamic Client Registration Protocol [RFC7591] use these metadata
 values to declare their support for Token Binding of access tokens
 and refresh tokens:

 client_access_token_token_binding_supported
 OPTIONAL. Boolean value specifying whether the client supports
 Token Binding of access tokens. If omitted, the default value is
 "false".

 client_refresh_token_token_binding_supported
 OPTIONAL. Boolean value specifying whether the client supports
 Token Binding of refresh tokens. If omitted, the default value is
 "false". Authorization servers MUST NOT Token Bind refresh tokens
 issued to a client that does not support Token Binding of refresh
 tokens, but MAY reject requests completely from such clients if
 token binding is required by authorization server policy by
 returning an OAuth error response.

4.2. Token Binding Authorization Server Metadata

 Authorization servers supporting Token Binding that also support
 OAuth 2.0 Authorization Server Metadata [RFC8414] use these metadata
 values to declare their support for Token Binding of access tokens
 and refresh tokens:

Jones, et al. Expires April 22, 2019 [Page 13]

Internet-Draft OAuth 2.0 Token Binding October 2018

 as_access_token_token_binding_supported
 OPTIONAL. Boolean value specifying whether the authorization
 server supports Token Binding of access tokens. If omitted, the
 default value is "false".

 as_refresh_token_token_binding_supported
 OPTIONAL. Boolean value specifying whether the authorization
 server supports Token Binding of refresh tokens. If omitted, the
 default value is "false".

5. Token Binding for Authorization Codes

 There are two variations for Token Binding of an authorization code.
 One is appropriate for native application clients and the other for
 web server clients. The nature of where the various components
 reside for the different client types demands different methods of
 Token Binding the authorization code so that it is bound to a Token
 Binding key on the end user’s device. This ensures that a lost or
 stolen authorization code cannot be successfully utilized from a
 different device. For native application clients, the code is bound
 to a Token Binding key pair that the native client itself possesses.
 For web server clients, the code is bound to a Token Binding key pair
 on the end user’s browser. Both variations utilize the extensible
 framework of Proof Key for Code Exchange (PKCE) [RFC7636], which
 enables the client to show possession of a certain key when
 exchanging the authorization code for tokens. The following
 subsections individually describe each of the two PKCE methods
 respectively.

5.1. Native Application Clients

 This section describes a PKCE method suitable for native application
 clients that cryptographically binds the authorization code to a
 Token Binding key pair on the client, which the client proves
 possession of on the TLS connection during the access token request
 containing the authorization code. The authorization code is bound
 to the Token Binding ID that the native application client uses to
 resolve the authorization code at the token endpoint. This binding
 ensures that the client that made the authorization request is the
 same client that is presenting the authorization code.

5.1.1. Code Challenge

 As defined in Proof Key for Code Exchange [RFC7636], the client sends
 the code challenge as part of the OAuth 2.0 authorization request
 with the two additional parameters: "code_challenge" and
 "code_challenge_method".

Jones, et al. Expires April 22, 2019 [Page 14]

Internet-Draft OAuth 2.0 Token Binding October 2018

 For this Token Binding method of PKCE, "TB-S256" is used as the value
 of the "code_challenge_method" parameter.

 The value of the "code_challenge" parameter is the base64url encoding
 (per Section 5 of [RFC4648] with all trailing padding (’=’)
 characters omitted and without the inclusion of any line breaks or
 whitespace) of the SHA-256 hash of the Provided Token Binding ID that
 the client will use when calling the authorization server’s token
 endpoint. Note that, prior to making the authorization request, the
 client may need to establish a TLS connection between itself and the
 authorization server’s token endpoint in order to establish the
 appropriate Token Binding ID.

 When the authorization server issues the authorization code in the
 authorization response, it associates the code challenge and method
 values with the authorization code so they can be verified later when
 the authorization code is presented in the access token request.

5.1.1.1. Example Code Challenge

 For example, a native application client sends an authorization
 request by sending the user’s browser to the authorization endpoint.
 The resulting HTTP request looks something like the following (with
 extra line breaks for display purposes only).

 GET /as/authorization.oauth2?response_type=code
 &client_id=example-native-client-id&state=oUC2jyYtzRCrMyWrVnGj
 &code_challenge=rBlgOyMY4teiuJMDgOwkrpsAjPyI07D2WsEM-dnq6eE
 &code_challenge_method=TB-S256 HTTP/1.1
 Host: server.example.com

 Figure 14: Authorization Request with PKCE Challenge

5.1.2. Code Verifier

 Upon receipt of the authorization code, the client sends the access
 token request to the token endpoint. The Token Binding Protocol
 [RFC8471] is negotiated on the TLS connection between the client and
 the authorization server and the "Sec-Token-Binding" header, as
 defined in Token Binding over HTTP [RFC8473], is included in the
 access token request. The authorization server extracts the Provided
 Token Binding ID from the header value, hashes it with SHA-256, and
 compares it to the "code_challenge" value previously associated with
 the authorization code. If the values match, the token endpoint
 continues processing as normal (as defined by OAuth 2.0 [RFC6749]).
 If the values do not match, an error response indicating
 "invalid_grant" MUST be returned.

Jones, et al. Expires April 22, 2019 [Page 15]

Internet-Draft OAuth 2.0 Token Binding October 2018

 The "Sec-Token-Binding" header contains sufficient information for
 verification of the authorization code and its association to the
 original authorization request. However, PKCE [RFC7636] requires
 that a "code_verifier" parameter be sent with the access token
 request, so the static value "provided_tb" is used to meet that
 requirement and indicate that the Provided Token Binding ID is used
 for the verification.

5.1.2.1. Example Code Verifier

 An example access token request, correlating to the authorization
 request in the previous example, to the token endpoint over a TLS
 connection for which Token Binding has been negotiated would look
 like the following (with extra line breaks for display purposes
 only). The base64url-encoded EKM from the TLS connection over which
 the request was made is
 "pNVKtPuQFvylNYn000QowWrQKoeMkeX9H32hVuU71Bs".

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Sec-Token-Binding: AIkAAgBBQEOO9GRFP-LM0hoWw6-2i318BsuuUum5AL8bt1sz
 lr1EFfp5DMXMNW3O8WjcIXr2DKJnI4xnuGsE6GywQd9RbD0AQJDb3xyo9PBxj8M6Y
 jLt-6OaxgDkyoBoTkyrnNbLc8tJQ0JtXomKzBbj5qPtHDduXc6xz_lzvNpxSPxi42
 8m7wkAAA

 grant_type=authorization_code&code=mJAReTWKX7zI3oHUNd4o3PeNqNqxKGp6
 &code_verifier=provided_tb&client_id=example-native-client-id

 Figure 15: Token Request with PKCE Verifier

5.2. Web Server Clients

 This section describes a PKCE method suitable for web server clients,
 which cryptographically binds the authorization code to a Token
 Binding key pair on the browser. The authorization code is bound to
 the Token Binding ID that the browser uses to deliver the
 authorization code to a web server client, which is sent to the
 authorization server as the Referred Token Binding ID during the
 authorization request. The web server client conveys the Token
 Binding ID to the authorization server when making the access token
 request containing the authorization code. This binding ensures that
 the authorization code cannot successfully be played or replayed to
 the web server client from a different browser than the one that made
 the authorization request.

Jones, et al. Expires April 22, 2019 [Page 16]

Internet-Draft OAuth 2.0 Token Binding October 2018

5.2.1. Code Challenge

 As defined in Proof Key for Code Exchange [RFC7636], the client sends
 the code challenge as part of the OAuth 2.0 Authorization Request
 with the two additional parameters: "code_challenge" and
 "code_challenge_method".

 The client must send the authorization request through the browser
 such that the Token Binding ID established between the browser and
 itself is revealed to the authorization server’s authorization
 endpoint as the Referred Token Binding ID. Typically, this is done
 with an HTTP redirection response and the "Include-Referred-Token-
 Binding-ID" header, as defined in Token Binding over HTTP [RFC8473],
 Section 5.3.

 For this Token Binding method of PKCE, "referred_tb" is used for the
 value of the "code_challenge_method" parameter.

 The value of the "code_challenge" parameter is "referred_tb". The
 static value for the required PKCE parameter indicates that the
 authorization code is to be bound to the Referred Token Binding ID
 from the Token Binding Message sent in the "Sec-Token-Binding" header
 of the authorization request.

 When the authorization server issues the authorization code in the
 authorization response, it associates the Token Binding ID (or hash
 thereof) and code challenge method with the authorization code so
 they can be verified later when the authorization code is presented
 in the access token request.

5.2.1.1. Example Code Challenge

 For example, the web server client sends the authorization request by
 redirecting the browser to the authorization endpoint. That HTTP
 redirection response looks like the following (with extra line breaks
 for display purposes only).

 HTTP/1.1 302 Found
 Location: https://server.example.com?response_type=code
 &client_id=example-web-client-id&state=P4FUFqYzs1ij3ffsYCP34d3
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb
 &code_challenge=referred_tb&code_challenge_method=referred_tb
 Include-Referred-Token-Binding-ID: true

 Figure 16: Redirect the Browser

 The redirect includes the "Include-Referred-Token-Binding-ID"
 response header field that signals to the user-agent that it should

Jones, et al. Expires April 22, 2019 [Page 17]

Internet-Draft OAuth 2.0 Token Binding October 2018

 reveal, to the authorization server, the Token Binding ID used on the
 connection to the web server client. The resulting HTTP request to
 the authorization server looks something like the following (with
 extra line breaks for display purposes only). The base64url-encoded
 EKM from the TLS connection over which the request was made is
 "7gOdRzMhPeO-1YwZGmnVHyReN5vd2CxcsRBN69Ue4cI".

 GET /as/authorization.oauth2?response_type=code
 &client_id=example-web-client-id&state=dryo8YFpWacbUPjhBf4Nvt51
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb
 &code_challenge=referred_tb
 &code_challenge_method=referred_tb HTTP/1.1
 Host: server.example.com
 Sec-Token-Binding: ARIAAgBBQB-XOPf5ePlf7ikATiAFEGOS503lPmRfkyymzdWw
 HCxl0njjxC3D0E_OVfBNqrIQxzIfkF7tWby2ZfyaE6XpwTsAQBYqhFX78vMOgDX_F
 d_b2dlHyHlMmkIz8iMVBY_reM98OUaJFz5IB7PG9nZ11j58LoG5QhmQoI9NXYktKZ
 RXxrYAAAECAEFAdUFTnfQADkn1uDbQnvJEk6oQs38L92gv-KO-qlYadLoDIKe2h53
 hSiKwIP98iRj_unedkNkAMyg9e2mY4Gp7WwBAeDUOwaSXNz1e6gKohwN4SAZ5eNyx
 45Mh8VI4woL1BipLoqrJRoK6dxFkWgHRMuBROcLGUj5PiOoxybQH_Tom3gAA

 Figure 17: Authorization Request

5.2.2. Code Verifier

 The web server client receives the authorization code from the
 browser and extracts the Provided Token Binding ID from the "Sec-
 Token-Binding" header of the request. The client sends the
 base64url-encoded (per Section 5 of [RFC4648] with all trailing
 padding (’=’) characters omitted and without the inclusion of any
 line breaks or whitespace) Provided Token Binding ID as the value of
 the "code_verifier" parameter in the access token request to the
 authorization server’s token endpoint. The authorization server
 compares the value of the "code_verifier" parameter to the Token
 Binding ID value previously associated with the authorization code.
 If the values match, the token endpoint continues processing as
 normal (as defined by OAuth 2.0 [RFC6749]). If the values do not
 match, an error response indicating "invalid_grant" MUST be returned.

5.2.2.1. Example Code Verifier

 Continuing the example from the previous section, the authorization
 server sends the code to the web server client by redirecting the
 browser to the client’s "redirect_uri", which results in the browser
 making a request like the following (with extra line breaks for
 display purposes only) to the web server client over a TLS channel
 for which Token Binding has been established. The base64url-encoded
 EKM from the TLS connection over which the request was made is
 "EzW60vyINbsb_tajt8ij3tV6cwy2KH-i8BdEMYXcNn0".

Jones, et al. Expires April 22, 2019 [Page 18]

Internet-Draft OAuth 2.0 Token Binding October 2018

 GET /cb?state=dryo8YFpWacbUPjhBf4Nvt51&code=jwD3oOa5cQvvLc81bwc4CMw
 Host: client.example.org
 Sec-Token-Binding: AIkAAgBBQHVBU530AA5J9bg20J7yRJOqELN_C_doL_ijvqpW
 GnS6AyCntoed4UoisCD_fIkY_7p3nZDZADMoPXtpmOBqe1sAQEwgC9Zpg7QFCDBib
 6GlZki3MhH32KNfLefLJc1vR1xE8l7OMfPLZHP2Woxh6rEtmgBcAABubEbTz7muNl
 Ln8uoAAA

 Figure 18: Authorization Response to Web Server Client

 The web server client takes the Provided Token Binding ID from the
 above request from the browser and sends it, base64url encoded, to
 the authorization server in the "code_verifier" parameter of the
 authorization code grant type request. Extra line breaks in the
 example request are for display purposes only.

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic b3JnLmV4YW1wbGUuY2xpZW50OmlldGY5OGNoaWNhZ28=

 grant_type=authorization_code&code=jwD3oOa5cQvvLc81bwc4CMw
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb
 &client_id=example-web-client-id
 &code_verifier=AgBBQHVBU530AA5J9bg20J7yRJOqELN_C_doL_ijv
 qpWGnS6AyCntoed4UoisCD_fIkY_7p3nZDZADMoPXtpmOBqe1s

 Figure 19: Exchange Authorization Code

6. Token Binding JWT Authorization Grants and Client Authentication

 The JWT Profile for OAuth 2.0 Client Authentication and Authorization
 Grants [RFC7523] defines the use of bearer JWTs as a means for
 requesting an OAuth 2.0 access token as well as for client
 authentication. This section describes extensions to that
 specification enabling the application of Token Binding to JWT client
 authentication and JWT authorization grants.

6.1. JWT Format and Processing Requirements

 In addition the requirements set forth in Section 3 of RFC 7523
 [RFC7523], the following criteria must also be met for token bound
 JWTs used as authorization grants or for client authentication.

 o The JWT MUST contain a "cnf" (confirmation) claim with a "tbh"
 (token binding hash) member identifying the Token Binding ID of
 the Provided Token Binding used by the client on the TLS
 connection to the authorization server. The authorization server
 MUST reject any JWT that has a token binding hash confirmation

Jones, et al. Expires April 22, 2019 [Page 19]

Internet-Draft OAuth 2.0 Token Binding October 2018

 that does not match the corresponding hash of the Provided Token
 Binding ID from the "Sec-Token-Binding" header of the request.

6.2. Token Bound JWTs for Client Authentication

 To use a token bound JWT for client authentication, the client uses
 the parameter values and encodings from Section 2.2 of RFC 7523
 [RFC7523] with one exception: the value of the
 "client_assertion_type" is "urn:ietf:params:oauth:client-assertion-
 type:jwt-token-bound".

 The "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] contains values, each of which specify a
 method of authenticating a client to the authorization server. The
 values are used to indicated supported and utilized client
 authentication methods in authorization server metadata, such as
 [OpenID.Discovery] and [RFC8414], and in OAuth 2.0 Dynamic Client
 Registration Protocol [RFC7591]. The values "private_key_jwt" and
 "client_secret_jwt" are designated by OpenID Connect [OpenID.Core] as
 authentication method values for bearer JWT client authentication
 using asymmetric and symmetric JWS [RFC7515] algorithms respectively.
 For Token Bound JWT for client authentication, this specification
 defines and registers the following authentication method values.

 private_key_token_bound_jwt
 Indicates that client authentication to the authorization server
 will occur with a Token Bound JWT, which is signed with a client’s
 private key.

 client_secret_token_bound_jwt
 Indicates that client authentication to the authorization server
 will occur with a Token Bound JWT, which is integrity protected
 with a MAC using the octets of the UTF-8 representation of the
 client secret as the shared key.

 Note that just as with the "private_key_jwt" and "client_secret_jwt"
 authentication methods, the "token_endpoint_auth_signing_alg" client
 registration parameter may be used to indicate the JWS algorithm used
 for signing the client authentication JWT for the authentication
 methods defined above.

6.3. Token Bound JWTs for as Authorization Grants

 To use a token bound JWT for an authorization grant, the client uses
 the parameter values and encodings from Section 2.1 of RFC 7523
 [RFC7523] with one exception: the value of the "grant_type" is
 "urn:ietf:params:oauth:grant-type:jwt-token-bound".

Jones, et al. Expires April 22, 2019 [Page 20]

Internet-Draft OAuth 2.0 Token Binding October 2018

7. Security Considerations

7.1. Phasing in Token Binding

 Many OAuth implementations will be deployed in situations in which
 not all participants support Token Binding. Any of combination of
 the client, the authorization server, the protected resource, and the
 user agent may not yet support Token Binding, in which case it will
 not work end-to-end.

 It is a context-dependent deployment choice whether to allow
 interactions to proceed in which Token Binding is not supported or
 whether to treat the omission of Token Binding at any step as a fatal
 error. Particularly in dynamic deployment environments in which End
 Users have choices of clients, authorization servers, protected
 resources, and/or user agents, it is recommended that, for some
 reasonable period of time during which Token Binding technology is
 being adopted, authorizations using one or more components that do
 not implement Token Binding be allowed to successfully proceed. This
 enables different components to be upgraded to supporting Token
 Binding at different times, providing a smooth transition path for
 phasing in Token Binding. However, when Token Binding has been
 performed, any Token Binding key mismatches MUST be treated as fatal
 errors.

 In more controlled deployment environments where the participants in
 an authorization interaction are known or expected to support Token
 Binding and yet one or more of them does not use it, the
 authorization SHOULD be aborted with an error. For instance, an
 authorization server should reject a token request that does not
 include the "Sec-Token-Binding" header, if the request is from a
 client known to support Token Binding (via configuration or the
 "client_access_token_token_binding_supported" metadata parameter).

7.2. Binding of Refresh Tokens

 Section 6 of RFC 6749 [RFC6749] requires that a refresh token be
 bound to the client to which it was issued and that, if the client
 type is confidential or the client was issued client credentials (or
 assigned other authentication requirements), the client must
 authenticate with the authorization server when presenting the
 refresh token. As a result, for non-public clients, refresh tokens
 are indirectly bound to the client’s credentials and cannot be used
 without the associated client authentication. Non-public clients
 then are afforded protections (equivalent to the strength of their
 authentication credentials) against unauthorized replay of refresh
 tokens and it is reasonable to not Token Bind refresh tokens for such
 clients while still Toking Binding the issued access tokens. Refresh

Jones, et al. Expires April 22, 2019 [Page 21]

Internet-Draft OAuth 2.0 Token Binding October 2018

 tokens issued to public clients, however, do not have the benefit of
 such protections and authorization servers MAY elect to disallow
 public clients from registering or establishing configuration that
 would allow Token Bound access tokens but unbound refresh tokens.

 Some web-based confidential clients implemented as distributed nodes
 may be perfectly capable of implementing access token binding (if the
 access token remains on the node it was bound to, the token binding
 keys would be locally available for that node to prove possession),
 but may struggle with refresh token binding due to an inability to
 share token binding key material between nodes. As confidential
 clients already have credentials which are required to use the
 refresh token, and those credentials should only ever be sent over
 TLS server-to-server between the client and the Token Endpoint, there
 is still value in token binding access tokens without token binding
 refresh tokens. Authorization servers SHOULD consider supporting
 access token binding without refresh token binding for confidential
 web clients as there are still security benefits to do so.

 Clients MUST declare through dynamic (Section 4.1) or static
 registration information what types of token bound tokens they
 support to enable the server to bind tokens accordingly, taking into
 account any phase-in policies. Authorization servers MAY reject
 requests from any client who does not support token binding (by
 returning an OAuth error response) per their own security policies.

8. IANA Considerations

8.1. OAuth Dynamic Client Registration Metadata Registration

 This specification registers the following client metadata
 definitions in the IANA "OAuth Dynamic Client Registration Metadata"
 registry [IANA.OAuth.Parameters] established by [RFC7591]:

8.1.1. Registry Contents

 o Client Metadata Name:
 "client_access_token_token_binding_supported"
 o Client Metadata Description: Boolean value specifying whether the
 client supports Token Binding of access tokens
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this specification]]

 o Client Metadata Name:
 "client_refresh_token_token_binding_supported"
 o Client Metadata Description: Boolean value specifying whether the
 client supports Token Binding of refresh tokens
 o Change Controller: IESG

Jones, et al. Expires April 22, 2019 [Page 22]

Internet-Draft OAuth 2.0 Token Binding October 2018

 o Specification Document(s): Section 4.1 of [[this specification]]

8.2. OAuth Authorization Server Metadata Registration

 This specification registers the following metadata definitions in
 the IANA "OAuth Authorization Server Metadata" registry
 [IANA.OAuth.Parameters] established by [RFC8414]:

8.2.1. Registry Contents

 o Metadata Name: "as_access_token_token_binding_supported"
 o Metadata Description: Boolean value specifying whether the
 authorization server supports Token Binding of access tokens
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of [[this specification]]

 o Metadata Name: "as_refresh_token_token_binding_supported"
 o Metadata Description: Boolean value specifying whether the
 authorization server supports Token Binding of refresh tokens
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of [[this specification]]

8.3. PKCE Code Challenge Method Registration

 This specification requests registration of the following Code
 Challenge Method Parameter Names in the IANA "PKCE Code Challenge
 Methods" registry [IANA.OAuth.Parameters] established by [RFC7636].

8.3.1. Registry Contents

 o Code Challenge Method Parameter Name: TB-S256
 o Change controller: IESG
 o Specification document(s): Section 5.1.1 of [[this specification
]]

 o Code Challenge Method Parameter Name: referred_tb
 o Change controller: IESG
 o Specification document(s): Section 5.2.1 of [[this specification
]]

9. Token Endpoint Authentication Method Registration

 This specification requests registration of the following values in
 the IANA "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] established by [RFC7591].

Jones, et al. Expires April 22, 2019 [Page 23]

Internet-Draft OAuth 2.0 Token Binding October 2018

9.1. Registry Contents

 o Token Endpoint Authentication Method Name:
 "client_secret_token_bound_jwt"
 o Change Controller: IESG
 o Specification Document(s): Section 6 of [[this specification]]

 o Token Endpoint Authentication Method Name:
 "private_key_token_bound_jwt"
 o Change Controller: IESG
 o Specification Document(s): Section 6 of [[this specification]]

10. Sub-Namespace Registrations

 This specification requests registration of the following values in
 the IANA "OAuth URI" registry [IANA.OAuth.Parameters] established in
 An IETF URN Sub-Namespace for OAuth [RFC6755].

10.1. Registry Contents

 o URN: urn:ietf:params:oauth:grant-type:jwt-token-bound
 o Common Name: Token Bound JWT Grant Type for OAuth 2.0
 o Change controller: IESG
 o Specification Document: Section 6 of [[this specification]]

 o URN: urn:ietf:params:oauth:client-assertion-type:jwt-token-bound
 o Common Name: Token Bound JWT for OAuth 2.0 Client Authentication
 o Change controller: IESG
 o Specification Document: Section 6 of [[this specification]]

11. References

11.1. Normative References

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://tools.ietf.org/html/rfc7519>.

 [OpenID.TokenBinding]
 Jones, M., Bradley, J., and B. Campbell, "OpenID Connect
 Token Bound Authentication 1.0", October 2017,
 <http://openid.net/specs/
 openid-connect-token-bound-authentication-1_0-03.html>.

Jones, et al. Expires April 22, 2019 [Page 24]

Internet-Draft OAuth 2.0 Token Binding October 2018

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <https://www.rfc-editor.org/info/rfc7523>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jones, et al. Expires April 22, 2019 [Page 25]

Internet-Draft OAuth 2.0 Token Binding October 2018

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

 [RFC8471] Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges,
 "The Token Binding Protocol Version 1.0", RFC 8471,
 DOI 10.17487/RFC8471, October 2018,
 <https://www.rfc-editor.org/info/rfc8471>.

 [RFC8472] Popov, A., Ed., Nystroem, M., and D. Balfanz, "Transport
 Layer Security (TLS) Extension for Token Binding Protocol
 Negotiation", RFC 8472, DOI 10.17487/RFC8472, October
 2018, <https://www.rfc-editor.org/info/rfc8472>.

 [RFC8473] Popov, A., Nystroem, M., Balfanz, D., Ed., Harper, N., and
 J. Hodges, "Token Binding over HTTP", RFC 8473,
 DOI 10.17487/RFC8473, October 2018,
 <https://www.rfc-editor.org/info/rfc8473>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/
 fips-180-4.pdf>.

11.2. Informative References

 [BCP212] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
 BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
 <https://www.rfc-editor.org/info/rfc8252>.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", August 2015,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0", August 2015,
 <http://openid.net/specs/
 openid-connect-discovery-1_0.html>.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
 <https://www.rfc-editor.org/info/rfc6755>.

Jones, et al. Expires April 22, 2019 [Page 26]

Internet-Draft OAuth 2.0 Token Binding October 2018

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

Appendix A. Acknowledgements

 This specification was developed within the OAuth Working Group under
 the chairmanship of Hannes Tschofenig and Rifaat Shekh-Yusef with
 Kathleen Moriarty, Eric Rescorla, and Benjamin Kaduk serving as
 Security Area Directors. Additionally, the following individuals
 contributed ideas, feedback, and wording that helped shape this
 specification: Dirk Balfanz, Andrei Popov, Justin Richer, and Nat
 Sakimura.

Appendix B. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -08

 o Update reference to -03 of openid-connect-token-bound-
 authentication.

 o Update the references to the core token binding specs, which are
 now RFCs 8471, 8472, and 8473.

 o Update reference to AS metadata, which is now RFC 8414.

 o Add chairs and ADs to the Acknowledgements.

 -07

 o Explicitly state that the base64url encoding of the tbh value
 doesn’t include any trailing pad characters, line breaks,
 whitespace, etc.

 o Update to latest references for tokbind drafts and draft-ietf-
 oauth-discovery.

 o Update reference to Implementation Considerations in draft-ietf-
 tokbind-https, which is section 6 rather than 5.

 o Try to tweak text that references specific sections in other
 documents so that the HTML generated by the ietf tools doesn’t
 link to the current document (based on old suggestion from Barry
 https://www.ietf.org/mail-archive/web/jose/current/msg04571.html).

 -06

Jones, et al. Expires April 22, 2019 [Page 27]

Internet-Draft OAuth 2.0 Token Binding October 2018

 o Use the boilerplate from RFC 8174.

 o Update reference for draft-ietf-tokbind-https to -12 and draft-
 ietf-oauth-discovery to -09.

 o Minor editorial fixes.

 -05

 o State that authorization servers should not token bind refresh
 tokens issued to a client that doesn’t support bound refresh
 tokens, which can be indicated by the
 "client_refresh_token_token_binding_supported" client metadata
 parameter.

 o Add Token Binding for JWT Authorization Grants and JWT Client
 Authentication.

 o Adjust the language around aborting authorizations in Phasing in
 Token Binding to be somewhat more general and not only about
 downgrades.

 o Remove reference to, and usage of, ’OAuth 2.0 Protected Resource
 Metadata’, which is no longer a going concern.

 o Moved "Token Binding Metadata" section before "Token Binding for
 Authorization Codes" to be closer to the "Token Binding for Access
 Tokens" and "Token Binding for Refresh Tokens", to which it is
 more closely related.

 o Update references for draft-ietf-tokbind- negotiation(-10),
 protocol(-16), and https(-10), as well as draft-ietf-oauth-
 discovery(-07), and BCP212/RFC8252 OAuth 2.0 for Native Apps.

 -04

 o Define how to convey token binding information of an access token
 via RFC 7662 OAuth 2.0 Token Introspection (note that the
 Introspection Response Registration request for cnf/Confirmation
 is in https://tools.ietf.org/html/draft-ietf-oauth-mtls-
 02#section-4.3 which will likely be published and registered prior
 to this document).

 o Minor editorial fixes.

 o Added an open issue about needing to allow for web server clients
 to opt-out of having refresh tokens bound while still allowing for
 binding of access tokens (following from mention of the problem on

Jones, et al. Expires April 22, 2019 [Page 28]

Internet-Draft OAuth 2.0 Token Binding October 2018

 slide 16 of the presentation from Chicago
 https://www.ietf.org/proceedings/98/slides/slides-98-oauth-sessb-
 token-binding-00.pdf).

 -03

 o Fix a few mistakes in and around the examples that were noticed
 preparing the slides for IETF 98 Chicago.

 -02

 o Added a section on Token Binding for authorization codes with one
 variation for native clients and one for web server clients.

 o Updated language to reflect that the binding is to the token
 binding key pair and that proof-of-possession of that key is done
 on the TLS connection.

 o Added a bunch of examples.

 o Added a few Open Issues so they are tracked in the document.

 o Updated the Token Binding and OAuth Metadata references.

 o Added William Denniss as an author.

 -01

 o Changed Token Binding for access tokens to use the Referred Token
 Binding ID, now that the Implementation Considerations in the
 Token Binding HTTPS specification make it clear that
 implementations will enable using the Referred Token Binding ID.

 o Defined Protected Resource Metadata value.

 o Changed to use the more specific term "protected resource" instead
 of "resource server".

 -00

 o Created the initial working group version from draft-jones-oauth-
 token-binding-00.

Authors’ Addresses

Jones, et al. Expires April 22, 2019 [Page 29]

Internet-Draft OAuth 2.0 Token Binding October 2018

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 John Bradley
 Yubico

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Email: wdenniss@google.com
 URI: http://wdenniss.com/

Jones, et al. Expires April 22, 2019 [Page 30]

OAuth Working Group M. Jones
Internet-Draft A. Nadalin
Intended status: Standards Track Microsoft
Expires: April 22, 2019 B. Campbell, Ed.
 J. Bradley
 Ping Identity
 C. Mortimore
 Salesforce
 October 19, 2018

 OAuth 2.0 Token Exchange
 draft-ietf-oauth-token-exchange-16

Abstract

 This specification defines a protocol for an HTTP- and JSON- based
 Security Token Service (STS) by defining how to request and obtain
 security tokens from OAuth 2.0 authorization servers, including
 security tokens employing impersonation and delegation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Jones, et al. Expires April 22, 2019 [Page 1]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Delegation vs. Impersonation Semantics 4
 1.2. Requirements Notation and Conventions 5
 1.3. Terminology . 6
 2. Token Exchange Request and Response 6
 2.1. Request . 6
 2.1.1. Relationship Between Resource, Audience and Scope . . 8
 2.2. Response . 9
 2.2.1. Successful Response 9
 2.2.2. Error Response 10
 2.3. Example Token Exchange 11
 3. Token Type Identifiers 13
 4. JSON Web Token Claims and Introspection Response Parameters . 14
 4.1. "act" (Actor) Claim 14
 4.2. "scope" (Scopes) Claim 16
 4.3. "client_id" (Client Identifier) Claim 17
 4.4. "may_act" (May Act For) Claim 17
 5. Security Considerations 18
 6. Privacy Considerations 19
 7. IANA Considerations . 19
 7.1. OAuth URI Registration 19
 7.1.1. Registry Contents 19
 7.2. OAuth Parameters Registration 20
 7.2.1. Registry Contents 20
 7.3. OAuth Access Token Type Registration 21
 7.3.1. Registry Contents 21
 7.4. JSON Web Token Claims Registration 21
 7.4.1. Registry Contents 21
 7.5. OAuth Token Introspection Response Registration 22
 7.5.1. Registry Contents 22
 7.6. OAuth Extensions Error Registration 22
 7.6.1. Registry Contents 22
 8. References . 22
 8.1. Normative References 22
 8.2. Informative References 23
 Appendix A. Additional Token Exchange Examples 24
 A.1. Impersonation Token Exchange Example 24
 A.1.1. Token Exchange Request 24
 A.1.2. Subject Token Claims 25
 A.1.3. Token Exchange Response 25
 A.1.4. Issued Token Claims 26

Jones, et al. Expires April 22, 2019 [Page 2]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 A.2. Delegation Token Exchange Example 26
 A.2.1. Token Exchange Request 26
 A.2.2. Subject Token Claims 27
 A.2.3. Actor Token Claims 28
 A.2.4. Token Exchange Response 28
 A.2.5. Issued Token Claims 28
 Appendix B. Acknowledgements 29
 Appendix C. Document History 29
 Authors’ Addresses . 33

1. Introduction

 A security token is a set of information that facilitates the sharing
 of identity and security information in heterogeneous environments or
 across security domains. Examples of security tokens include JSON
 Web Tokens (JWTs) [JWT] and SAML 2.0 Assertions
 [OASIS.saml-core-2.0-os]. Security tokens are typically signed to
 achieve integrity and sometimes also encrypted to achieve
 confidentiality. Security tokens are also sometimes described as
 Assertions, such as in [RFC7521].

 A Security Token Service (STS) is a service capable of validating and
 issuing security tokens, which enables clients to obtain appropriate
 access credentials for resources in heterogeneous environments or
 across security domains. Web Service clients have used WS-Trust
 [WS-Trust] as the protocol to interact with an STS for token
 exchange. While WS-Trust uses XML and SOAP, the trend in modern Web
 development has been towards RESTful patterns and JSON. The OAuth
 2.0 Authorization Framework [RFC6749] and OAuth 2.0 Bearer Tokens
 [RFC6750] have emerged as popular standards for authorizing third-
 party applications access to HTTP and RESTful resources. The
 conventional OAuth 2.0 interaction involves the exchange of some
 representation of resource owner authorization for an access token,
 which has proven to be an extremely useful pattern in practice,
 however, its input and output are somewhat too constrained as is to
 fully accommodate a security token exchange framework.

 This specification defines a protocol extending OAuth 2.0 that
 enables clients to request and obtain security tokens from
 authorization servers acting in the role of an STS. Similar to OAuth
 2.0, this specification focuses on client developer simplicity and
 requires only an HTTP client and JSON parser, which are nearly
 universally available in modern development environments. The STS
 protocol defined in this specification is not itself RESTful (an STS
 doesn’t lend itself particularly well to a REST approach) but does
 utilize communication patterns and data formats that should be
 familiar to developers accustomed to working with RESTful systems.

Jones, et al. Expires April 22, 2019 [Page 3]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 A new grant type for a token exchange request and the associated
 specific parameters for such a request to the token endpoint are
 defined by this specification. A token exchange response is a normal
 OAuth 2.0 response from the token endpoint with a few additional
 parameters defined herein to provide information to the client.

 The entity that makes the request to exchange tokens is considered
 the client in the context of the token exchange interaction.
 However, that does not restrict usage of this profile to traditional
 OAuth clients. An OAuth resource server, for example, might assume
 the role of the client during token exchange in order to trade an
 access token, which it received in a protected resource request, for
 a new token that is appropriate to include in a call to a backend
 service. The new token might be an access token that is more
 narrowly scoped for the downstream service or it could be an entirely
 different kind of token.

 The scope of this specification is limited to the definition of a
 basic request and response protocol for an STS-style token exchange
 utilizing OAuth 2.0. Although a few new JWT claims are defined that
 enable delegation semantics to be expressed, the specific syntax,
 semantics and security characteristics of the tokens themselves (both
 those presented to the authorization server and those obtained by the
 client) are explicitly out of scope and no requirements are placed on
 the trust model in which an implementation might be deployed.
 Additional profiles may provide more detailed requirements around the
 specific nature of the parties and trust involved, such as whether
 signing and/or encryption of tokens is needed or if proof-of-
 possession style tokens will be required or issued; however, such
 details will often be policy decisions made with respect to the
 specific needs of individual deployments and will be configured or
 implemented accordingly.

 The security tokens obtained may be used in a number of contexts, the
 specifics of which are also beyond the scope of this specification.

1.1. Delegation vs. Impersonation Semantics

 When principal A impersonates principal B, A is given all the rights
 that B has within some defined rights context and is
 indistinguishable from B in that context. Thus, when principal A
 impersonates principal B, then in so far as any entity receiving such
 a token is concerned, they are actually dealing with B. It is true
 that some members of the identity system might have awareness that
 impersonation is going on, but it is not a requirement. For all
 intents and purposes, when A is impersonating B, A is B.

Jones, et al. Expires April 22, 2019 [Page 4]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 Delegation semantics are different than impersonation semantics,
 though the two are closely related. With delegation semantics,
 principal A still has its own identity separate from B and it is
 explicitly understood that while B may have delegated some of its
 rights to A, any actions taken are being taken by A representing B.
 In a sense, A is an agent for B.

 Delegation and impersonation are not inclusive of all situations.
 When a principal is acting directly on its own behalf, for example,
 neither delegation nor impersonation are in play. They are, however,
 the more common semantics operating for token exchange and, as such,
 are given more direct treatment in this specification.

 Delegation semantics are typically expressed in a token by including
 information about both the primary subject of the token as well as
 the actor to whom that subject has delegated some of its rights.
 Such a token is sometimes referred to as a composite token because it
 is composed of information about multiple subjects. Typically, in
 the request, the "subject_token" represents the identity of the party
 on behalf of whom the token is being requested while the
 "actor_token" represents the identity of the party to whom the access
 rights of the issued token are being delegated. A composite token
 issued by the authorization server will contain information about
 both parties. When and if a composite token is issued is at the
 discretion of the authorization server and applicable policy and
 configuration.

 The specifics of representing a composite token and even whether or
 not such a token will be issued depend on the details of the
 implementation and the kind of token. The representations of
 composite tokens that are not JWTs are beyond the scope of this
 specification. The "actor_token" request parameter, however, does
 provide a means for providing information about the desired actor and
 the JWT "act" claim can provide a representation of a chain of
 delegation.

1.2. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Jones, et al. Expires April 22, 2019 [Page 5]

Internet-Draft OAuth 2.0 Token Exchange October 2018

1.3. Terminology

 This specification uses the terms "access token type", "authorization
 server", "client", "client identifier", "resource server", "token
 endpoint", "token request", and "token response" defined by OAuth 2.0
 [RFC6749], and the terms "Base64url Encoding", "Claim", and "JWT
 Claims Set" defined by JSON Web Token (JWT) [JWT].

2. Token Exchange Request and Response

2.1. Request

 A client requests a security token by making a token request to the
 authorization server’s token endpoint using the extension grant type
 mechanism defined in Section 4.5 of OAuth 2.0 [RFC6749].

 Client authentication to the authorization server is done using the
 normal mechanisms provided by OAuth 2.0. Section 2.3.1 of The OAuth
 2.0 Authorization Framework [RFC6749] defines password-based
 authentication of the client, however, client authentication is
 extensible and other mechanisms are possible. For example, [RFC7523]
 defines client authentication using JSON Web Tokens (JWTs) [JWT].
 The supported methods of client authentication and whether or not to
 allow unauthenticated or unidentified clients are deployment
 decisions that are at the discretion of the authorization server.

 The client makes a token exchange request to the token endpoint with
 an extension grant type by including the following parameters using
 the "application/x-www-form-urlencoded" format with a character
 encoding of UTF-8 in the HTTP request entity-body:

 grant_type
 REQUIRED. The value "urn:ietf:params:oauth:grant-type:token-
 exchange" indicates that a token exchange is being performed.

 resource
 OPTIONAL. Indicates the location of the target service or
 resource where the client intends to use the requested security
 token. This enables the authorization server to apply policy as
 appropriate for the target, such as determining the type and
 content of the token to be issued or if and how the token is to be
 encrypted. In many cases, a client will not have knowledge of the
 logical organization of the systems with which it interacts and
 will only know the location of the service where it intends to use
 the token. The "resource" parameter allows the client to indicate
 to the authorization server where it intends to use the issued
 token by providing the location, typically as an https URL, in the
 token exchange request in the same form that will be used to

Jones, et al. Expires April 22, 2019 [Page 6]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 access that resource. The authorization server will typically
 have the capability to map from a resource URI value to an
 appropriate policy. The value of the "resource" parameter MUST be
 an absolute URI, as specified by Section 4.3 of [RFC3986], which
 MAY include a query component and MUST NOT include a fragment
 component. Multiple "resource" parameters may be used to indicate
 that the issued token is intended to be used at the multiple
 resources listed.

 audience
 OPTIONAL. The logical name of the target service where the client
 intends to use the requested security token. This serves a
 purpose similar to the "resource" parameter, but with the client
 providing a logical name rather than a location. Interpretation
 of the name requires that the value be something that both the
 client and the authorization server understand. An OAuth client
 identifier, a SAML entity identifier [OASIS.saml-core-2.0-os], an
 OpenID Connect Issuer Identifier [OpenID.Core], or a URI are
 examples of things that might be used as "audience" parameter
 values. Multiple "audience" parameters may be used to indicate
 that the issued token is intended to be used at the multiple
 audiences listed. The "audience" and "resource" parameters may be
 used together to indicate multiple target services with a mix of
 logical names and locations.

 scope
 OPTIONAL. A list of space-delimited, case-sensitive strings, as
 defined in Section 3.3 of [RFC6749], that allow the client to
 specify the desired scope of the requested security token in the
 context of the service or resource where the token will be used.
 The values and associated semantics of scope are service specific
 and expected to be described in the relevant service
 documentation.

 requested_token_type
 OPTIONAL. An identifier, as described in Section 3, for the type
 of the requested security token. If the requested type is
 unspecified, the issued token type is at the discretion of the
 authorization server and may be dictated by knowledge of the
 requirements of the service or resource indicated by the
 "resource" or "audience" parameter.

 subject_token
 REQUIRED. A security token that represents the identity of the
 party on behalf of whom the request is being made. Typically, the
 subject of this token will be the subject of the security token
 issued in response to this request.

Jones, et al. Expires April 22, 2019 [Page 7]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 subject_token_type
 REQUIRED. An identifier, as described in Section 3, that
 indicates the type of the security token in the "subject_token"
 parameter.

 actor_token
 OPTIONAL. A security token that represents the identity of the
 acting party. Typically, this will be the party that is
 authorized to use the requested security token and act on behalf
 of the subject.

 actor_token_type
 An identifier, as described in Section 3, that indicates the type
 of the security token in the "actor_token" parameter. This is
 REQUIRED when the "actor_token" parameter is present in the
 request but MUST NOT be included otherwise.

 In processing the request, the authorization sever MUST validate the
 subject token as appropriate for the indicated token type and, if the
 actor token is present, also validate it according to its token type.
 The validity criteria and details of any particular token are beyond
 the scope of this document and are specific to the respective type of
 token and its content.

 In the absence of one-time-use or other semantics specific to the
 token type, the act of performing a token exchange has no impact on
 the validity of the subject token or actor token. Furthermore, the
 validity of the subject token or actor token have no impact on the
 validity of the issued token after the exchange has occurred.

2.1.1. Relationship Between Resource, Audience and Scope

 When requesting a token, the client can indicate the desired target
 service(s) where it intends to use that token by way of the
 "audience" and "resource" parameters, as well as indicating the
 desired scope of the requested token using the "scope" parameter.
 The semantics of such a request are that the client is asking for a
 token with the requested scope that is usable at all the requested
 target services. Effectively, the requested access rights of the
 token are the cartesian product of all the scopes at all the target
 services.

 An authorization server may be unwilling or unable to fulfill any
 token request but the likelihood of an unfulfillable request is
 significantly higher when very broad access rights are being
 solicited. As such, in the absence of specific knowledge about the
 relationship of systems in a deployment, clients should exercise
 discretion in the breadth of the access requested, particularly the

Jones, et al. Expires April 22, 2019 [Page 8]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 number of target services. An authorization server can use the
 "invalid_target" error code, defined in Section 2.2.2, to inform a
 client that it requested access to too many target services
 simultaneously.

2.2. Response

 The authorization server responds to a token exchange request with a
 normal OAuth 2.0 response from the token endpoint, as specified in
 Section 5 of [RFC6749]. Additional details and explanation are
 provided in the following subsections.

2.2.1. Successful Response

 If the request is valid and meets all policy and other criteria of
 the authorization server, a successful token response is constructed
 by adding the following parameters to the entity-body of the HTTP
 response using the "application/json" media type, as specified by
 [RFC7159], and an HTTP 200 status code. The parameters are
 serialized into a JavaScript Object Notation (JSON) structure by
 adding each parameter at the top level. Parameter names and string
 values are included as JSON strings. Numerical values are included
 as JSON numbers. The order of parameters does not matter and can
 vary.

 access_token
 REQUIRED. The security token issued by the authorization server
 in response to the token exchange request. The "access_token"
 parameter from Section 5.1 of [RFC6749] is used here to carry the
 requested token, which allows this token exchange protocol to use
 the existing OAuth 2.0 request and response constructs defined for
 the token endpoint. The identifier "access_token" is used for
 historical reasons and the issued token need not be an OAuth
 access token.

 issued_token_type
 REQUIRED. An identifier, as described in Section 3, for the
 representation of the issued security token.

 token_type
 REQUIRED. A case-insensitive value specifying the method of using
 the access token issued, as specified in Section 7.1 of [RFC6749].
 It provides the client with information about how to utilize the
 access token to access protected resources. For example, a value
 of "Bearer", as specified in [RFC6750], indicates that the
 security token is a bearer token and the client can simply present
 it as is without any additional proof of eligibility beyond the
 contents of the token itself. Note that the meaning of this

Jones, et al. Expires April 22, 2019 [Page 9]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 parameter is different from the meaning of the "issued_token_type"
 parameter, which declares the representation of the issued
 security token; the term "token type" is typically used with this
 meaning, as it is in all "*_token_type" parameters in this
 specification. If the issued token is not an access token or
 usable as an access token, then the "token_type" value "N_A" is
 used to indicate that an OAuth 2.0 "token_type" identifier is not
 applicable in that context.

 expires_in
 RECOMMENDED. The validity lifetime, in seconds, of the token
 issued by the authorization server. Oftentimes the client will
 not have the inclination or capability to inspect the content of
 the token and this parameter provides a consistent and token type
 agnostic indication of how long the token can be expected to be
 valid. For example, the value 1800 denotes that the token will
 expire in thirty minutes from the time the response was generated.

 scope
 OPTIONAL, if the scope of the issued security token is identical
 to the scope requested by the client; otherwise, REQUIRED.

 refresh_token
 OPTIONAL. A refresh token will typically not be issued when the
 exchange is of one temporary credential (the subject_token) for a
 different temporary credential (the issued token) for use in some
 other context. A refresh token can be issued in cases where the
 client of the token exchange needs the ability to access a
 resource even when the original credential is no longer valid
 (e.g., user-not-present or offline scenarios where there is no
 longer any user entertaining an active session with the client).
 Profiles or deployments of this specification should clearly
 document the conditions under which a client should expect a
 refresh token in response to "urn:ietf:params:oauth:grant-
 type:token-exchange" grant type requests.

2.2.2. Error Response

 If the request itself is not valid or if either the "subject_token"
 or "actor_token" are invalid for any reason, or are unacceptable
 based on policy, the authorization server MUST construct an error
 response, as specified in Section 5.2 of [RFC6749]. The value of the
 "error" parameter MUST be the "invalid_request" error code.

 If the authorization server is unwilling or unable to issue a token
 for all the target services indicated by the "resource" or "audience"
 parameters, the "invalid_target" error code SHOULD be used in the
 error response.

Jones, et al. Expires April 22, 2019 [Page 10]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 The authorization server MAY include additional information regarding
 the reasons for the error using the "error_description" and/or
 "error_uri" parameters.

 Other error codes may also be used, as appropriate.

2.3. Example Token Exchange

 The following example demonstrates a hypothetical token exchange in
 which an OAuth resource server assumes the role of the client during
 token exchange in order to trade an access token that it received in
 a protected resource request for a token that it will use to call to
 a backend service (extra line breaks and indentation in the examples
 are for display purposes only).

 The resource server receives the following request containing an
 OAuth access token in the Authorization request header, as specified
 in Section 2.1 of [RFC6750].

 GET /resource HTTP/1.1
 Host: frontend.example.com
 Authorization: Bearer accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC

 Figure 1: Protected Resource Request

 The resource server assumes the role of the client for the token
 exchange and the access token from the request above is sent to the
 authorization server using a request as specified in Section 2.1.
 The value of the "subject_token" parameter carries the access token
 and the value of the "subject_token_type" parameter indicates that it
 is an OAuth 2.0 access token. The resource server, acting in the
 role of the client, uses its identifier and secret to authenticate to
 the authorization server using the HTTP Basic authentication scheme.
 The "resource" parameter indicates the location of the backend
 service, https://backend.example.com/api, where the issued token will
 be used.

Jones, et al. Expires April 22, 2019 [Page 11]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 POST /as/token.oauth2 HTTP/1.1
 Host: as.example.com
 Authorization: Basic cnMwODpsb25nLXNlY3VyZS1yYW5kb20tc2VjcmV0
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange
 &resource=https%3A%2F%2Fbackend.example.com%2Fapi%20
 &subject_token=accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC
 &subject_token_type=
 urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Aaccess_token

 Figure 2: Token Exchange Request

 The authorization server validates the client credentials and the
 "subject_token" presented in the token exchange request. From the
 "resource" parameter, the authorization server is able to determine
 the appropriate policy to apply to the request and issues a token
 suitable for use at https://backend.example.com. The "access_token"
 parameter of the response contains the new token, which is itself a
 bearer OAuth access token that is valid for one minute. The token
 happens to be a JWT; however, its structure and format are opaque to
 the client so the "issued_token_type" indicates only that it is an
 access token.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IjllciJ9.eyJhdWQiOiJo
 dHRwczovL2JhY2tlbmQuZXhhbXBsZS5jb20iLCJpc3MiOiJodHRwczovL2FzLmV
 4YW1wbGUuY29tIiwiZXhwIjoxNDQxOTE3NTkzLCJpYXQiOjE0NDE5MTc1MzMsIn
 N1YiI6ImJjQGV4YW1wbGUuY29tIiwic2NvcGUiOiJhcGkifQ.K4Ik-igqOKi_4C
 nBu4dG3-gGUObfgv-rJhgXVDNOWW_MHgVwddhgVLLQf_bm3xlpQM6wHrLbMaZC4
 LicsQC23g",
 "issued_token_type":
 "urn:ietf:params:oauth:token-type:access_token",
 "token_type":"Bearer",
 "expires_in":60
 }

 Figure 3: Token Exchange Response

 The resource server can then use the newly acquired access token in
 making a request to the backend server.

Jones, et al. Expires April 22, 2019 [Page 12]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 GET /api HTTP/1.1
 Host: backend.example.com
 Authorization: Bearer eyJhbGciOiJFUzI1NiIsImtpZCI6IjllciJ9.eyJhdWQ
 iOiJodHRwczovL2JhY2tlbmQuZXhhbXBsZS5jb20iLCJpc3MiOiJodHRwczovL2
 FzLmV4YW1wbGUuY29tIiwiZXhwIjoxNDQxOTE3NTkzLCJpYXQiOjE0NDE5MTc1M
 zMsInN1YiI6ImJjQGV4YW1wbGUuY29tIiwic2NwIjpbImFwaSJdfQ.MXgnpvPMo
 0nhcePwnQbunD2gw_pDyCFA-Saobl6gyLAdyPbaALFuAOyFc4XTWaPEnHV_LGmX
 klSTpz0yC7hlSQ

 Figure 4: Backend Protected Resource Request

 Additional examples can be found in Appendix A.

3. Token Type Identifiers

 Several parameters in this specification utilize an identifier as the
 value to describe the token in question. Specifically, they are the
 "requested_token_type", "subject_token_type", "actor_token_type"
 parameters of the request and the "issued_token_type" member of the
 response. Token type identifiers are URIs. Token Exchange can work
 with both tokens issued by other parties and tokens from the given
 authorization server. For the former the token type identifier
 indicates the syntax (e.g., JWT or SAML 2.0) so the authorization
 server can parse it; for the latter it indicates what the given
 authorization server issued it for (e.g., access_token or
 refresh_token).

 The following token type identifiers are defined by this
 specification. Other URIs MAY be used to indicate other token types.

 urn:ietf:params:oauth:token-type:access_token
 Indicates that the token is an OAuth 2.0 access token issued by
 the given authorization server.

 urn:ietf:params:oauth:token-type:refresh_token
 Indicates that the token is an OAuth 2.0 refreshe token issued by
 the given authorization server.

 urn:ietf:params:oauth:token-type:id_token
 Indicates that the token is an ID Token, as defined in Section 2
 of [OpenID.Core].

 urn:ietf:params:oauth:token-type:saml1
 Indicates that the token is a base64url-encoded SAML 1.1
 [OASIS.saml-core-1.1] assertion.

 urn:ietf:params:oauth:token-type:saml2

Jones, et al. Expires April 22, 2019 [Page 13]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 Indicates that the token is a base64url-encoded SAML 2.0
 [OASIS.saml-core-2.0-os] assertion.

 The value "urn:ietf:params:oauth:token-type:jwt", which is defined in
 Section 9 of [JWT], indicates that the token is a JWT.

 The distinction between an access token and a JWT is subtle. An
 access token represents a delegated authorization decision, whereas
 JWT is a token format. An access token can be formatted as a JWT but
 doesn’t necessarily have to be. And a JWT might well be an access
 token but not all JWTs are access tokens. The intent of this
 specification is that "urn:ietf:params:oauth:token-type:access_token"
 be an indicator that the token is a typical OAuth access token issued
 by the authorization server in question, opaque to the client, and
 usable the same manner as any other access token obtained from that
 authorization server. (It could well be a JWT, but the client isn’t
 and needn’t be aware of that fact.) Whereas,
 "urn:ietf:params:oauth:token-type:jwt" is to indicate specifically
 that a JWT is being requested or sent (perhaps in a cross-domain use-
 case where the JWT is used as an authorization grant to obtain an
 access token from a different authorization server as is facilitated
 by [RFC7523]).

4. JSON Web Token Claims and Introspection Response Parameters

 It is useful to have defined mechanisms to express delegation within
 a token as well as to express authorization to delegate or
 impersonate. Although the token exchange protocol described herein
 can be used with any type of token, this section defines claims to
 express such semantics specifically for JWTs and in an OAuth 2.0
 Token Introspection [RFC7662] response. Similar definitions for
 other types of tokens are possible but beyond the scope of this
 specification.

 Note that the claims not established herein but used in examples and
 descriptions, such as "iss", "sub", "exp", etc., are defined by
 [JWT].

4.1. "act" (Actor) Claim

 The "act" (actor) claim provides a means within a JWT to express that
 delegation has occurred and identify the acting party to whom
 authority has been delegated. The "act" claim value is a JSON object
 and members in the JSON object are claims that identify the actor.
 The claims that make up the "act" claim identify and possibly provide
 additional information about the actor. For example, the combination
 of the two claims "iss" and "sub" might be necessary to uniquely
 identify an actor.

Jones, et al. Expires April 22, 2019 [Page 14]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 However, claims within the "act" claim pertain only to the identity
 of the actor and are not relevant to the validity of the containing
 JWT in the same manner as the top-level claims. Consequently, non-
 identity claims (e.g., "exp", "nbf", and "aud") are not meaningful
 when used within an "act" claim, and therefore must not be used.

 The following example illustrates the "act" (actor) claim within a
 JWT Claims Set. The claims of the token itself are about
 user@example.com while the "act" claim indicates that
 admin@example.com is the current actor.

 {
 "aud":"https://consumer.example.com",
 "iss":"https://issuer.example.com",
 "exp":1443904177,
 "nbf":1443904077,
 "sub":"user@example.com",
 "act":
 {
 "sub":"admin@example.com"
 }
 }

 Figure 5: Actor Claim

 A chain of delegation can be expressed by nesting one "act" claim
 within another. The outermost "act" claim represents the current
 actor while nested "act" claims represent prior actors. The least
 recent actor is the most deeply nested.

 For the purpose of applying access control policy, the consumer of a
 token MUST only consider the token’s top-level claims and the party
 identified as the current actor by the "act" claim. Prior actors
 identified by any nested "act" claims are informational only and are
 not to be considered in access control decisions.

Jones, et al. Expires April 22, 2019 [Page 15]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 The following example illustrates nested "act" (actor) claims within
 a JWT Claims Set. The claims of the token itself are about
 user@example.com while the "act" claim indicates that the system
 https://service16.example.com is the current actor and
 https://service77.example.com was a prior actor. Such a token might
 come about as the result of service16 receiving a token in a call
 from service77 and exchanging it for a token suitable to call
 service26 while the authorization server notes the situation in the
 newly issued token.

 {
 "aud":"https://service26.example.com",
 "iss":"https://issuer.example.com",
 "exp":1443904100,
 "nbf":1443904000,
 "sub":"user@example.com",
 "act":
 {
 "sub":"https://service16.example.com",
 "act":
 {
 "sub":"https://service77.example.com",
 }
 }
 }

 Figure 6: Nested Actor Claim

 When included as a top-level member of an OAuth token introspection
 response, "act" has the same semantics and format as the claim of the
 same name.

4.2. "scope" (Scopes) Claim

 The value of the "scope" claim is a JSON string containing a space-
 separated list of scopes associated with the token, in the format
 described in Section 3.3 of OAuth 2.0 [RFC6749].

Jones, et al. Expires April 22, 2019 [Page 16]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 The following example illustrates the "scope" claim within a JWT
 Claims Set.

 {
 "aud":"https://consumer.example.com",
 "iss":"https://issuer.example.com",
 "exp":1443904177,
 "nbf":1443904077,
 "sub":"dgaf4mvfs75Fci_FL3heQA",
 "scope":"email profile phone address"
 }

 Figure 7: Scopes Claim

 OAuth 2.0 Token Introspection [RFC7662] already defines the "scope"
 parameter to convey the scopes associated with the token.

4.3. "client_id" (Client Identifier) Claim

 The "client_id" claim carries the client identifier of the OAuth 2.0
 [RFC6749] client that requested the token.

 The following example illustrates the "client_id" claim within a JWT
 Claims Set indicating an OAuth 2.0 client with "s6BhdRkqt3" as its
 identifier.

 {
 "aud":"https://consumer.example.com",
 "iss":"https://issuer.example.com",
 "exp":1443904177,
 "sub":"user@example.com",
 "client_id":"s6BhdRkqt3"
 }

 Figure 8: Client Identifier Claim

 OAuth 2.0 Token Introspection [RFC7662] already defines the
 "client_id" parameter as the client identifier for the OAuth 2.0
 client that requested the token.

4.4. "may_act" (May Act For) Claim

 The "may_act" claim makes a statement that one party is authorized to
 become the actor and act on behalf of another party. The claim value
 is a JSON object and members in the JSON object are claims that
 identify the party that is asserted as being eligible to act for the
 party identified by the JWT containing the claim. The claims that
 make up the "may_act" claim identify and possibly provide additional

Jones, et al. Expires April 22, 2019 [Page 17]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 information about the authorized actor. For example, the combination
 of the two claims "iss" and "sub" are sometimes necessary to uniquely
 identify an authorized actor, while the "email" claim might be used
 to provide additional useful information about that party.

 However, claims within the "may_act" claim pertain only to the
 identity of that party and are not relevant to the validity of the
 containing JWT in the same manner as top-level claims. Consequently,
 claims such as "exp", "nbf", and "aud" are not meaningful when used
 within a "may_act" claim, and therefore should not be used.

 The following example illustrates the "may_act" claim within a JWT
 Claims Set. The claims of the token itself are about
 user@example.com while the "may_act" claim indicates that
 admin@example.com is authorized to act on behalf of user@example.com.

 {
 "aud":"https://consumer.example.com",
 "iss":"https://issuer.example.com",
 "exp":1443904177,
 "nbf":1443904077,
 "sub":"user@example.com",
 "may_act":
 {
 "sub":"admin@example.com"
 }
 }

 Figure 9: May Act For Claim

 When included as a top-level member of an OAuth token introspection
 response, "may_act" has the same semantics and format as the claim of
 the same name.

5. Security Considerations

 All of the normal security issues that are discussed in [JWT],
 especially in relationship to comparing URIs and dealing with
 unrecognized values, also apply here.

 In addition, both delegation and impersonation introduce unique
 security issues. Any time one principal is delegated the rights of
 another principal, the potential for abuse is a concern. The use of
 the "scope" claim is suggested to mitigate potential for such abuse,
 as it restricts the contexts in which the delegated rights can be
 exercised.

Jones, et al. Expires April 22, 2019 [Page 18]

Internet-Draft OAuth 2.0 Token Exchange October 2018

6. Privacy Considerations

 Tokens employed in the context of the functionality described herein
 may contain privacy-sensitive information and, to prevent disclosure
 of such information to unintended parties, should only be transmitted
 over encrypted channels, such as Transport Layer Security (TLS). In
 cases where it is desirable to prevent disclosure of certain
 information to the client, the token should be encrypted to its
 intended recipient. Deployments should determine the minimally
 necessary amount of data and only include such information in issued
 tokens. In some cases, data minimization may include representing
 only an anonymous or pseudonymous user.

7. IANA Considerations

7.1. OAuth URI Registration

 This specification registers the following values in the IANA "OAuth
 URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

7.1.1. Registry Contents

 o URN: urn:ietf:params:oauth:grant-type:token-exchange
 o Common Name: Token exchange grant type for OAuth 2.0
 o Change controller: IESG
 o Specification Document: Section 2.1 of [[this specification]]

 o URN: urn:ietf:params:oauth:token-type:access_token
 o Common Name: Token type URI for an OAuth 2.0 access token
 o Change controller: IESG
 o Specification Document: Section 3 of [[this specification]]

 o URN: urn:ietf:params:oauth:token-type:refresh_token
 o Common Name: Token type URI for an OAuth 2.0 refresh token
 o Change controller: IESG
 o Specification Document: Section 3 of [[this specification]]

 o URN: urn:ietf:params:oauth:token-type:id_token
 o Common Name: Token type URI for an ID Token
 o Change controller: IESG
 o Specification Document: Section 3 of [[this specification]]

 o URN: urn:ietf:params:oauth:token-type:saml1
 o Common Name: Token type URI for a base64url-encoded SAML 1.1
 assertion
 o Change Controller: IESG
 o Specification Document: Section 3 of [[this specification]]

Jones, et al. Expires April 22, 2019 [Page 19]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 o URN: urn:ietf:params:oauth:token-type:saml2
 o Common Name: Token type URI for a base64url-encoded SAML 2.0
 assertion
 o Change Controller: IESG
 o Specification Document: Section 3 of [[this specification]]

7.2. OAuth Parameters Registration

 This specification registers the following values in the IANA "OAuth
 Parameters" registry [IANA.OAuth.Parameters] established by
 [RFC6749].

7.2.1. Registry Contents

 o Parameter name: resource
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: audience
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: requested_token_type
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: subject_token
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: subject_token_type
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: actor_token
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): Section 2.1 of [[this specification]]

 o Parameter name: actor_token_type
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): Section 2.1 of [[this specification]]

Jones, et al. Expires April 22, 2019 [Page 20]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 o Parameter name: issued_token_type
 o Parameter usage location: token response
 o Change controller: IESG
 o Specification document(s): Section 2.2.1 of [[this specification
]]

7.3. OAuth Access Token Type Registration

 This specification registers the following access token type in the
 IANA "OAuth Access Token Types" registry [IANA.OAuth.Parameters]
 established by [RFC6749].

7.3.1. Registry Contents

 o Type name: N_A
 o Additional Token Endpoint Response Parameters: (none)
 o HTTP Authentication Scheme(s): (none)
 o Change controller: IESG
 o Specification document(s): Section 2.2.1 of [[this specification
]]

7.4. JSON Web Token Claims Registration

 This specification registers the following Claims in the IANA "JSON
 Web Token Claims" registry [IANA.JWT.Claims] established by [JWT].

7.4.1. Registry Contents

 o Claim Name: "act"
 o Claim Description: Actor
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this specification]]

 o Claim Name: "scope"
 o Claim Description: Scope Values
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of [[this specification]]

 o Claim Name: "client_id"
 o Claim Description: Client Identifier
 o Change Controller: IESG
 o Specification Document(s): Section 4.3 of [[this specification]]

 o Claim Name: "may_act"
 o Claim Description: May Act For
 o Change Controller: IESG
 o Specification Document(s): Section 4.4 of [[this specification]]

Jones, et al. Expires April 22, 2019 [Page 21]

Internet-Draft OAuth 2.0 Token Exchange October 2018

7.5. OAuth Token Introspection Response Registration

 This specification registers the following values in the IANA "OAuth
 Token Introspection Response" registry [IANA.OAuth.Parameters]
 established by [RFC7662].

7.5.1. Registry Contents

 o Claim Name: "act"
 o Claim Description: Actor
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this specification]]

 o Claim Name: "may_act"
 o Claim Description: May Act For
 o Change Controller: IESG
 o Specification Document(s): Section 4.4 of [[this specification]]

7.6. OAuth Extensions Error Registration

 This specification registers the following values in the IANA "OAuth
 Extensions Error" registry [IANA.OAuth.Parameters] established by
 [RFC6749].

7.6.1. Registry Contents

 o Error Name: "invalid_target"
 o Error Usage Location: token error response
 o Related Protocol Extension: OAuth 2.0 Token Exchange
 o Change Controller: IETF
 o Specification Document(s): Section 2.2.2 of [[this specification
]]

8. References

8.1. Normative References

 [IANA.JWT.Claims]
 IANA, "JSON Web Token Claims",
 <http://www.iana.org/assignments/jwt>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://tools.ietf.org/html/rfc7519>.

Jones, et al. Expires April 22, 2019 [Page 22]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

8.2. Informative References

 [OASIS.saml-core-1.1]
 Maler, E., Mishra, P., and R. Philpott, "Assertions and
 Protocol for the OASIS Security Assertion Markup Language
 (SAML) V1.1", OASIS Standard oasis-sstc-saml-core-1.1,
 September 2003.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", August 2015,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

Jones, et al. Expires April 22, 2019 [Page 23]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
 <https://www.rfc-editor.org/info/rfc6755>.

 [RFC7521] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <https://www.rfc-editor.org/info/rfc7523>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [WS-Trust]
 Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., and H.
 Granqvist, "WS-Trust 1.4", February 2012,
 <http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/
 ws-trust.html>.

Appendix A. Additional Token Exchange Examples

 Two example token exchanges are provided in the following sections
 illustrating impersonation and delegation, respectively (with extra
 line breaks and indentation for display purposes only).

A.1. Impersonation Token Exchange Example

A.1.1. Token Exchange Request

 In the following token exchange request, a client is requesting a
 token with impersonation semantics. The client tells the
 authorization server that it needs a token for use at the target
 service with the logical name "urn:example:cooperation-context".

Jones, et al. Expires April 22, 2019 [Page 24]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 POST /as/token.oauth2 HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange
 &audience=urn%3Aexample%3Acooperation-context
 &subject_token=eyJhbGciOiJFUzI1NiIsImtpZCI6IjE2In0.eyJhdWQiOiJodHRwc
 zovL2FzLmV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9vcmlnaW5hbC1pc3N1ZXI
 uZXhhbXBsZS5uZXQiLCJleHAiOjE0NDE5MTA2MDAsIm5iZiI6MTQ0MTkwOTAwMCwic
 3ViIjoiYmNAZXhhbXBsZS5uZXQiLCJzY29wZSI6Im9yZGVycyBwcm9maWxlIGhpc3R
 vcnkifQ.u0slqvbnqU43EvI_itGdFJ11StrAwXlxczYfMYsaR5p4J_gBp019mxljSx
 xmD3FfbrjTGyZ4eDh1JKJVpsnnPg
 &subject_token_type=urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Ajwt

 Figure 10: Token Exchange Request

A.1.2. Subject Token Claims

 The "subject_token" in the prior request is a JWT and the decoded JWT
 Claims Set is shown here. The JWT is intended for consumption by the
 authorization server within a specific time window. The subject of
 the JWT ("bc@example.net") is the party on behalf of whom the new
 token is being requested.

 {
 "aud":"https://as.example.com",
 "iss":"https://original-issuer.example.net",
 "exp":1441910600,
 "nbf":1441909000,
 "sub":"bc@example.net",
 "scope":"orders profile history"
 }

 Figure 11: Subject Token Claims

A.1.3. Token Exchange Response

 The "access_token" parameter of the token exchange response shown
 below contains the new token that the client requested. The other
 parameters of the response indicate that the token is a bearer access
 token that expires in an hour.

Jones, et al. Expires April 22, 2019 [Page 25]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IjcyIn0.eyJhdWQiOiJ1cm4
 6ZXhhbXBsZTpjb29wZXJhdGlvbi1jb250ZXh0IiwiaXNzIjoiaHR0cHM6Ly9hcy5l
 eGFtcGxlLmNvbSIsImV4cCI6MTQ0MTkxMzYxMCwic3ViIjoiYmNAZXhhbXBsZS5uZ
 XQiLCJzY29wZSI6Im9yZGVycyBwcm9maWxlIGhpc3RvcnkifQ._OnH9oHT2cd0-Sz
 OfBrNkVYlRdn48X8kI4_Is3LHeQmtkd-nDdR63IuuQ_GeZd7UafMV3bk8jqUDgi-l
 rTfSwA",
 "issued_token_type":
 "urn:ietf:params:oauth:token-type:access_token",
 "token_type":"Bearer",
 "expires_in":3600
 }

 Figure 12: Token Exchange Response

A.1.4. Issued Token Claims

 The decoded JWT Claims Set of the issued token is shown below. The
 new JWT is issued by the authorization server and intended for
 consumption by a system entity known by the logical name
 "urn:example:cooperation-context" any time before its expiration.
 The subject ("sub") of the JWT is the same as the subject the token
 used to make the request, which effectively enables the client to
 impersonate that subject at the system entity known by the logical
 name of "urn:example:cooperation-context" by using the token.

 {
 "aud":"urn:example:cooperation-context",
 "iss":"https://as.example.com",
 "exp":1441913610,
 "sub":"bc@example.net",
 "scope":"orders profile history"
 }

 Figure 13: Issued Token Claims

A.2. Delegation Token Exchange Example

A.2.1. Token Exchange Request

 In the following token exchange request, a client is requesting a
 token and providing both a "subject_token" and an "actor_token". The
 client tells the authorization server that it needs a token for use
 at the target service with the logical name "urn:example:cooperation-

Jones, et al. Expires April 22, 2019 [Page 26]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 context". Policy at the authorization server dictates that the
 issued token be a composite.

 POST /as/token.oauth2 HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange
 &audience=urn%3Aexample%3Acooperation-context
 &subject_token=eyJhbGciOiJFUzI1NiIsImtpZCI6IjE2In0.eyJhdWQiOiJodHRwc
 zovL2FzLmV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9vcmlnaW5hbC1pc3N1ZXI
 uZXhhbXBsZS5uZXQiLCJleHAiOjE0NDE5MTAwNjAsInNjb3BlIjoic3RhdHVzIGZlZ
 WQiLCJzdWIiOiJ1c2VyQGV4YW1wbGUubmV0IiwibWF5X2FjdCI6eyJzdWIiOiJhZG1
 pbkBleGFtcGxlLm5ldCJ9fQ.4rPRSWihQbpMIgAmAoqaJojAxj-p2X8_fAtAGTXrvM
 xU-eEZHnXqY0_AOZgLdxw5DyLzua8H_I10MCcckF-Q_g
 &subject_token_type=urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Ajwt
 &actor_token=eyJhbGciOiJFUzI1NiIsImtpZCI6IjE2In0.eyJhdWQiOiJodHRwczo
 vL2FzLmV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9vcmlnaW5hbC1pc3N1ZXIuZ
 XhhbXBsZS5uZXQiLCJleHAiOjE0NDE5MTAwNjAsInN1YiI6ImFkbWluQGV4YW1wbGU
 ubmV0In0.7YQ-3zPfhUvzje5oqw8COCvN5uP6NsKik9CVV6cAOf4QKgM-tKfiOwcgZ
 oUuDL2tEs6tqPlcBlMjiSzEjm3yBg
 &actor_token_type=urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Ajwt

 Figure 14: Token Exchange Request

A.2.2. Subject Token Claims

 The "subject_token" in the prior request is a JWT and the decoded JWT
 Claims Set is shown here. The JWT is intended for consumption by the
 authorization server before a specific expiration time. The subject
 of the JWT ("user@example.net") is the party on behalf of whom the
 new token is being requested.

 {
 "aud":"https://as.example.com",
 "iss":"https://original-issuer.example.net",
 "exp":1441910060,
 "scope":"status feed",
 "sub":"user@example.net",
 "may_act":
 {
 "sub":"admin@example.net"
 }
 }

 Figure 15: Subject Token Claims

Jones, et al. Expires April 22, 2019 [Page 27]

Internet-Draft OAuth 2.0 Token Exchange October 2018

A.2.3. Actor Token Claims

 The "actor_token" in the prior request is a JWT and the decoded JWT
 Claims Set is shown here. This JWT is also intended for consumption
 by the authorization server before a specific expiration time. The
 subject of the JWT ("admin@example.net") is the actor that will wield
 the security token being requested.

 {
 "aud":"https://as.example.com",
 "iss":"https://original-issuer.example.net",
 "exp":1441910060,
 "sub":"admin@example.net"
 }

 Figure 16: Actor Token Claims

A.2.4. Token Exchange Response

 The "access_token" parameter of the token exchange response shown
 below contains the new token that the client requested. The other
 parameters of the response indicate that the token is a JWT that
 expires in an hour and that the access token type is not applicable
 since the issued token is not an access token.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IjcyIn0.eyJhdWQiOiJ1cm4
 6ZXhhbXBsZTpjb29wZXJhdGlvbi1jb250ZXh0IiwiaXNzIjoiaHR0cHM6Ly9hcy5l
 eGFtcGxlLmNvbSIsImV4cCI6MTQ0MTkxMzYxMCwic2NvcGUiOiJzdGF0dXMgZmVlZ
 CIsInN1YiI6InVzZXJAZXhhbXBsZS5uZXQiLCJhY3QiOnsic3ViIjoiYWRtaW5AZX
 hhbXBsZS5uZXQifX0.3paKl9UySKYB5ng6_cUtQ2qlO8Rc_y7Mea7IwEXTcYbNdwG
 9-G1EKCFe5fW3H0hwX-MSZ49Wpcb1SiAZaOQBtw",
 "issued_token_type":"urn:ietf:params:oauth:token-type:jwt",
 "token_type":"N_A",
 "expires_in":3600
 }

 Figure 17: Token Exchange Response

A.2.5. Issued Token Claims

 The decoded JWT Claims Set of the issued token is shown below. The
 new JWT is issued by the authorization server and intended for
 consumption by a system entity known by the logical name

Jones, et al. Expires April 22, 2019 [Page 28]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 "urn:example:cooperation-context" any time before its expiration.
 The subject ("sub") of the JWT is the same as the subject of the
 "subject_token" used to make the request. The actor ("act") of the
 JWT is the same as the subject of the "actor_token" used to make the
 request. This indicates delegation and identifies
 "admin@example.net" as the current actor to whom authority has been
 delegated to act on behalf of "user@example.net".

 {
 "aud":"urn:example:cooperation-context",
 "iss":"https://as.example.com",
 "exp":1441913610,
 "scope":"status feed",
 "sub":"user@example.net",
 "act":
 {
 "sub":"admin@example.net"
 }
 }

 Figure 18: Issued Token Claims

Appendix B. Acknowledgements

 This specification was developed within the OAuth Working Group,
 which includes dozens of active and dedicated participants. It was
 produced under the chairmanship of Hannes Tschofenig, Derek Atkins,
 and Rifaat Shekh-Yusef with Kathleen Moriarty, Stephen Farrell, Eric
 Rescorla, and Benjamin Kaduk serving as Security Area Directors. The
 following individuals contributed ideas, feedback, and wording to
 this specification:

 Caleb Baker, Vittorio Bertocci, Thomas Broyer, William Denniss,
 Vladimir Dzhuvinov, Phil Hunt, Benjamin Kaduk, Jason Keglovitz,
 Torsten Lodderstedt, Adam Lewis, James Manger, Nov Matake, Matt
 Miller, Hilarie Orman, Matthew Perry, Eric Rescorla, Justin Richer,
 Rifaat Shekh-Yusef, Scott Tomilson, and Hannes Tschofenig.

Appendix C. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -16

 o Fixed typo and added an AD to Acknowledgements.

 -15

Jones, et al. Expires April 22, 2019 [Page 29]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 o Updated the nested actor claim example to (hopefully) be more
 straightforward.
 o Reworked Privacy Considerations to say to use TLS in transit,
 minimize the amount of information in the token, and encrypt the
 token if disclosure of its information to the client is a concern
 per https://mailarchive.ietf.org/arch/msg/secdir/
 KJhx4aq_U5uk3k6zpYP-CEHbpVM
 o Moved the Security and Privacy Considerations sections to before
 the IANA Considerations.

 -14

 o Added text in Section 4.1 about the "act" claim stating that only
 the top-level claims and the current actor are to be considered in
 applying access control decisions.

 -13

 o Updated the claim name and value syntax for scope to be consistent
 with the treatment of scope in RFC 7662 OAuth 2.0 Token
 Introspection.
 o Updated the client identifier claim name to be consistent with the
 treatment of client id in RFC 7662 OAuth 2.0 Token Introspection.

 -12

 o Updated to use the boilerplate from RFC 8174.

 -11

 o Added new WG chair and AD to the Acknowledgements.
 o Applied clarifications suggested during AD review by EKR.

 -10

 o Defined token type URIs for base64url-encoded SAML 1.1 and SAML
 2.0 assertions.
 o Applied editorial fixes.

 -09

 o Changed "security tokens obtained could be used in a number of
 contexts" to "security tokens obtained may be used in a number of
 contexts" per a WGLC suggestion.
 o Clarified that the validity of the subject or actor token have no
 impact on the validity of the issued token after the exchange has
 occurred per a WGLC comment.

Jones, et al. Expires April 22, 2019 [Page 30]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 o Changed use of invalid_target error code to a SHOULD per a WGLC
 comment.
 o Clarified text about non-identity claims within the "act" claim
 being meaningless per a WGLC comment.
 o Added brief Privacy Considerations section per WGLC comments.

 -08

 o Use the bibxml reference for OpenID.Core rather than defining it
 inline.
 o Added editor role for Campbell.
 o Minor clarification of the text for actor_token.

 -07

 o Fixed typo (desecration -> discretion).
 o Added an explanation of the relationship between scope, audience
 and resource in the request and added an "invalid_target" error
 code enabling the AS to tell the client that the requested
 audiences/resources were too broad.

 -06

 o Drop "An STS for the REST of Us" from the title.
 o Drop "heavyweight" and "lightweight" from the abstract and
 introduction.
 o Clarifications on the language around xxxxxx_token_type.
 o Remove the want_composite parameter.
 o Add a short mention of proof-of-possession style tokens to the
 introduction and remove the respective open issue.

 -05

 o Defined the JWT claim "cid" to express the OAuth 2.0 client
 identifier of the client that requested the token.
 o Defined and requested registration for "act" and "may_act" as
 Token introspection response parameters (in addition to being JWT
 claims).
 o Loosen up the language about refresh_token in the response to
 OPTIONAL from NOT RECOMMENDED based on feedback form real world
 deployment experience.
 o Add clarifying text about the distinction between JWT and access
 token URIs.
 o Close out (remove) some of the Open Issues bullets that have been
 resolved.

 -04

Jones, et al. Expires April 22, 2019 [Page 31]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 o Clarified that the "resource" and "audience" request parameters
 can be used at the same time (via http://www.ietf.org/mail-
 archive/web/oauth/current/msg15335.html).
 o Clarified subject/actor token validity after token exchange and
 explained a bit more about the recommendation to not issue refresh
 tokens (via http://www.ietf.org/mail-archive/web/oauth/current/
 msg15318.html).
 o Updated the examples appendix to use an issuer value that doesn’t
 imply that the client issued and signed the tokens and used
 "Bearer" and "urn:ietf:params:oauth:token-type:access_token" in
 one of the responses (via http://www.ietf.org/mail-
 archive/web/oauth/current/msg15335.html).
 o Defined and registered urn:ietf:params:oauth:token-type:id_token,
 since some use cases perform token exchanges for ID Tokens and no
 URI to indicate that a token is an ID Token had previously been
 defined.

 -03

 o Updated the document editors (adding Campbell, Bradley, and
 Mortimore).
 o Added to the title.
 o Added to the abstract and introduction.
 o Updated the format of the request to use application/x-www-form-
 urlencoded request parameters and the response to use the existing
 token endpoint JSON parameters defined in OAuth 2.0.
 o Changed the grant type identifier to urn:ietf:params:oauth:grant-
 type:token-exchange.
 o Added RFC 6755 registration requests for
 urn:ietf:params:oauth:token-type:refresh_token,
 urn:ietf:params:oauth:token-type:access_token, and
 urn:ietf:params:oauth:grant-type:token-exchange.
 o Added RFC 6749 registration requests for request/response
 parameters.
 o Removed the Implementation Considerations and the requirement to
 support JWTs.
 o Clarified many aspects of the text.
 o Changed "on_behalf_of" to "subject_token",
 "on_behalf_of_token_type" to "subject_token_type", "act_as" to
 "actor_token", and "act_as_token_type" to "actor_token_type".
 o Added an "audience" request parameter used to indicate the logical
 names of the target services at which the client intends to use
 the requested security token.
 o Added a "want_composite" request parameter used to indicate the
 desire for a composite token rather than trying to infer it from
 the presence/absence of token(s) in the request.

Jones, et al. Expires April 22, 2019 [Page 32]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 o Added a "resource" request parameter used to indicate the URLs of
 resources at which the client intends to use the requested
 security token.
 o Specified that multiple "audience" and "resource" request
 parameter values may be used.
 o Defined the JWT claim "act" (actor) to express the current actor
 or delegation principal.
 o Defined the JWT claim "may_act" to express that one party is
 authorized to act on behalf of another party.
 o Defined the JWT claim "scp" (scopes) to express OAuth 2.0 scope-
 token values.
 o Added the "N_A" (not applicable) OAuth Access Token Type
 definition for use in contexts in which the token exchange syntax
 requires a "token_type" value, but in which the token being issued
 is not an access token.
 o Added examples.

 -02

 o Enabled use of Security Token types other than JWTs for "act_as"
 and "on_behalf_of" request values.
 o Referenced the JWT and OAuth Assertions RFCs.

 -01

 o Updated references.

 -00

 o Created initial working group draft from draft-jones-oauth-token-
 exchange-01.

Authors’ Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Anthony Nadalin
 Microsoft

 Email: tonynad@microsoft.com

Jones, et al. Expires April 22, 2019 [Page 33]

Internet-Draft OAuth 2.0 Token Exchange October 2018

 Brian Campbell (editor)
 Ping Identity

 Email: brian.d.campbell@gmail.com

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

 Chuck Mortimore
 Salesforce

 Email: cmortimore@salesforce.com

Jones, et al. Expires April 22, 2019 [Page 34]

OAuth Working Group N. Sakimura
Internet-Draft Nomura Research Institute
Intended status: Standards Track K. Li
Expires: September 12, 2017 Alibaba Group
 J. Bradley
 Ping Identity
 March 11, 2017

 The OAuth 2.0 Authorization Framework: JWT Pop Token Usage
 draft-sakimura-oauth-jpop-01

Abstract

 This specification describes how to use JWT POP (Jpop) tokens that
 were obtained through [POPKD] in HTTP requests to access OAuth 2.0
 protected resources. Only the party in possession of a corresponding
 cryptographic key with the Jpop token can use it to get access to the
 associated resources unlike in the case of the bearer token described
 in [RFC6750] where any party in posession of the access token can
 access the resource.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2017.

Sakimura, et al. Expires September 12, 2017 [Page 1]

Internet-Draft JPOP March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Notational Conventions 3
 2. Terms and definitions . 3
 3. JWT POP Token . 3
 4. Sender Constrained Token 4
 4.1. CN Constrained Token 4
 4.2. Client ID Constrained Token 5
 5. Key Constrained Token . 5
 6. Resource access method 7
 6.1. Mutual TLS acess method 7
 6.2. Signature method . 8
 7. Authorization Error . 9
 8. IANA Considerations . 10
 8.1. Jpop Authentication Scheme 10
 8.2. JWT Confirmation Methods 10
 9. Security Considerations 10
 9.1. Certificate validation 10
 9.2. Key protection . 11
 9.3. Audiance Restriction 11
 9.4. Dynamic client registration elements 11
 10. Acknowledgements . 11
 11. References . 11
 11.1. Normative References 11
 11.2. Informative References 13
 Appendix A. Document History 13
 Authors’ Addresses . 13

Sakimura, et al. Expires September 12, 2017 [Page 2]

Internet-Draft JPOP March 2017

1. Introduction

 This document specifies the method for the client to use a proof-of-
 possestion token against a protected resource. The format of such
 token is defined in section 3 of [RFC7800].

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

2. Terms and definitions

 For the purpose of this document, the terms defined in [RFC6749] and
 [RFC7800] are used.

3. JWT POP Token

 JWT PoP token is a JWS signed JWT whose payload is a JWT Claims Set.
 The JWT claims set MUST include the following:

 iss The issuer identifier of the auhtorization server.

 aud The identifier of the resource server.

 iat The issuance time of this token.

 exp The expiry time of this token.

 cnf The confirmation method.

 Their semantics are defined in [RFC7519] and [RFC7800].

Sakimura, et al. Expires September 12, 2017 [Page 3]

Internet-Draft JPOP March 2017

 Following is an example of such.

 {
 "iss": "https://server.example.com",
 "aud": "https://resource.example.org",
 "iat": "1360189224",
 "exp": "1361398868",
 "cnf":{...}
 }

 Figure 1: Example of JWT PoP Token.

4. Sender Constrained Token

 There are several varieties of sender constrained token. Namely:

 1. CN Constrained Token

 2. Client ID Constrained Token

4.1. CN Constrained Token

 CN constrained token is typically used when X.509 client certificate
 authentication is used at the token endpoint. In this case, the
 constraint is expressed by including the following member at the top
 level of cnf claim.

 cn The Common Name of the client certificate that the client used in
 the authorization request.

 The authorization server finds the relevant CN from the X.509 client
 certificate authentication that is performed at the token endpoint.

 {
 "iss": "https://server.example.com",
 "sub": "joe@example.com",
 "aud": "https://resource.example.org",
 "exp": "1361398824",
 "nbf": "1360189224",
 "cnf":{
 "cn": "client.example.com"
 }

 Figure 2: Example of CN Constrained JWT.

Sakimura, et al. Expires September 12, 2017 [Page 4]

Internet-Draft JPOP March 2017

4.2. Client ID Constrained Token

 The constraint in the Client ID constrained token is expressed by
 including the following member at the top level of cnf claim.

 cid The client_id of the client that the client used in the
 authorization request. The combination of the "iss" of the access
 token and this value forms a globally unique identifier for the
 client.

 The authorization server finds the client ID from the client ID used
 in the client authentication at the token endpoint.

5. Key Constrained Token

 Methods to express key constraints are extensively described in the
 section 3 of [RFC7800]. Such cnf claim is used in the access token
 described in section 3 to form a key constrained token. [RFC7800]
 defines 4 confirmation methods.

 jwk JSON Web Key Representing a Public Key

 jwe Encrypted JSON Web Key

 jwkt#s256 [RFC7638] Thumbprint of a JWK using the SHA-256 hash
 function.

 x5t#s256 [RFC7515] X.509 Certificate SHA-256 Thumbprint

 jku JWK Set URL

 Following is an example of a JWT payload containing a JWK with a raw
 key.

Sakimura, et al. Expires September 12, 2017 [Page 5]

Internet-Draft JPOP March 2017

 {
 "iss": "https://server.example.com",
 "sub": "joe@example.com",
 "aud": "https://resource.example.org",
 "exp": "1361398824",
 "nbf": "1360189224",
 "cnf":{
 "jwk":{
 "kty": "EC",
 "use": "sig",
 "crv": "P-256",
 "x": "18wHLeIgW9wVN6VD1Txgpqy2LszYkMf6J8njVAibvhM",
 "y": "-V4dS4UaLMgP_4fY4j8ir7cl1TXlFdAgcx55o7TkcSA"
 }
 }
 }

 Figure 3: Example of a JWK Key Constrained JWT.

 Following is an example of a JWT payload containing a jku URI.

 {
 "iss": "https://server.example.com",
 "sub": "joe@example.com",
 "aud": "https://resource.example.org",
 "exp": "1361398824",
 "nbf": "1360189224",
 "cnf":{
 "jku": "https://client.example.com/keys/client123-jwks"
 }
 }

 Figure 4: Example of a jku Constrained JWT.

 Following is an example of a JWT payload containing a x5t#s256
 Certificate Thumbprint of a x509 certificate. .

Sakimura, et al. Expires September 12, 2017 [Page 6]

Internet-Draft JPOP March 2017

 {
 "iss": "https://server.example.com",
 "sub": "joe@example.com",
 "aud": "https://resource.example.org",
 "exp": "1361398824",
 "nbf": "1360189224",
 "cnf":{
 "x5t#s256": "w5cK0ebwmCZUYDB2Y5SlESsXE8o9yZg05O89jdNidgI"
 }
 }

 Figure 5: Example of a x5t#s256 Certificate Thumbprint Constrained
 JWT.

6. Resource access method

 The resource server that supports this specification MUST
 authenticate the Client by having it demonstrate that it is the
 holder of the key associated with the access token being used. The
 confirmation method can be broadly categorized in two forms.

 Mutual TLS method A method leveraging on the X.509 client
 certificate authentication of the TLS connection. cn, x5t#s256,
 and jku confirmation methods can be used with this access method.
 (The JWKS referenced by the jku MUST contain JWK with x5c
 certificate elements for this access method)

 Signature method A method leveraging the signature on the nonce.
 cid, jku, jwk, jwe, and, jwkt#S256 confirmation methods can be
 used with this access method.

6.1. Mutual TLS acess method

 CN cnf method Under this method, X.509 client certificate
 authentication at the resource endpoint is being leveraged. The
 resource endpoint MUST obtain the CN of the client certificate
 used for the authentication and MUST verify that the value of the
 cn member in the cnf member matches with it.

 If it does not match, the process stops here and the resource
 access MUST be denied.

 If it is valid, then the resource server MUST verify the access
 token. If it is valid, the resource SHOULD be returned as HTTP
 response.

Sakimura, et al. Expires September 12, 2017 [Page 7]

Internet-Draft JPOP March 2017

 x5t#s256 cnf method Under this method, X.509 client certificate
 authentication at the resource endpoint is being leveraged. The
 resource endpoint MUST obtain the client certificate used for the
 authentication and MUST verify that the base64url-encoded SHA-256
 thumprint of the DER encoded X.509 client certificate. The
 x5t#s256 member in the cnf member MUST exactly match the
 calculated thumbprint.

 If it does not match, the process stops here and the resource
 access MUST be denied.

 If it is valid, then the resource server MUST verify the access
 token. If it is valid, the resource SHOULD be returned as HTTP
 response.

 jku cnf method Under this method, X.509 client certificate
 authentication at the resource endpoint is being leveraged. The
 resource endpoint MUST obtain the client certificate used for the
 authentication and MUST verify that the certificate matches one of
 the x5c elements retrieved from the [RFC7517]JWKS. Each x5c
 element may contain a chain of base64-encoded certificates. The
 client certificate MUST only be compared with the last certificate
 in the chain.

 If it does not match, the process stops here and the resource
 access MUST be denied.

 If it is valid, then the resource server MUST verify the access
 token. If it is valid, the resource SHOULD be returned as HTTP
 response.

6.2. Signature method

 For this, the following steps are taken:

 1. The client prepares a nonce.

 2. The client creates JWS compact serialization over the nonce.

 To obtain it, first create a JSON with a name "nonce" and the value
 being what was received in the previous step. The JWS MUST contain a
 kid header element if the client has more than one signing key
 published via JWKS URI e.g.,

 {
 "nonce":"dcd98b7102dd2f0e8b11d0f600bfb0c093"
 }

Sakimura, et al. Expires September 12, 2017 [Page 8]

Internet-Draft JPOP March 2017

 Then, "jws-on-nonce" is obtained by creating a compact serialization
 of JWS on this JSON.

 3. The client sends the request to the resource server, this time
 with Authorization Request Header as defined in section 4.2 of
 [RFC7235] with the credential as follows:

 credentials = "Jpop" jpop-response
 jpop-response = at-response "," s-response
 at-response = "at" "=" access-token; As specified by [POPKD]
 s-response = "s" "=" jws-on-nonce; Created in the step 3.
 access-token = quoted-string
 jws-on-nonce = quoted-string

 In the following example, the access token and the jws-on-nonce are
 represented as access.token.jwt and jws.of.nonce for the sake of
 brevity.

 GET /resource/1234 HTTP/1.0
 Host: server.example.com
 Authorization: Jpop at="access.token.jwt", s="jws.of.nonce"

 Figure 6: Example resouce request

 4. The resource server finds the client’s public key form the access
 token through the methods described in [RFC7800].

 5. The resource server MUST verify the value of "s" of the
 Authorization header. If it fails, the process stops here and the
 resource access MUST be denied.

 6. The resource server MUST verify the access token. If it is
 valid, the resource SHOULD be returned as HTTP response.

7. Authorization Error

 If the client requests the resource without the proper authoization
 header, the resource server returns a HTTP 401 response with "WWW-
 Authenticate" header as defined in section 4.1 of [RFC7235] with the
 challenge as follows:

 challenge = "Jpop" jpop-challenge
 jpop-challenge = "nonce" "=" nonce-value
 nonce-value = quoted-string

 Following example depicts what the response would look like.

Sakimura, et al. Expires September 12, 2017 [Page 9]

Internet-Draft JPOP March 2017

 HTTP/1.0 401 Unauthorized
 Server: HTTPd/0.9
 Date: Wed, 14 March 2017 09:26:53 GMT
 WWW-Authenticate: Jpop nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093"

 Figure 7: Example error response.

8. IANA Considerations

8.1. Jpop Authentication Scheme

 A new scheme has been registered in the HTTP Authentication Scheme
 Registry as follows:

 Authentication Scheme Name: Jpop

 Reference: Section 3 of this specification

 Notes (optional): The Named Authentication scheme is intended to be
 used only with OAuth Resource Access, and thus does not support proxy
 authentication.

8.2. JWT Confirmation Methods

 o Confirmation Method Value: "cn"

 o Confirmation Method Description: CN match with the TLS client
 auth.

 o Change Controller: IESG

 o Specification Document(s): This document.

 o Confirmation Method Value: "cid"

 o Confirmation Method Description: Client ID Confirmation

 o Change Controller: IESG

 o Specification Document(s): This document.

9. Security Considerations

9.1. Certificate validation

 The "cn" JWT confirmation method relies its security property on the
 X.509 client certificate authentication. In particular, the validity
 of the certificate needs to be verified properly. It involves the

Sakimura, et al. Expires September 12, 2017 [Page 10]

Internet-Draft JPOP March 2017

 traversal of all the certificate chain and the certificate validation
 (e.g., with OCSP).

9.2. Key protection

 The client’s secret key must be kept securely. Otherwise, the notion
 of PoP breaks down.

 It should be noted that JWE confirmation method is significantly
 weaker form of the PoP, as the resource server and the authorization
 server can masquerade as the client.

9.3. Audiance Restriction

 When using the signature method the client must specify to the AS the
 aud it intends to send the token to, so that it can be included in
 the AT.

 A malicious RS could receive a AT with no aud or a logical audience
 and then replay the AT and jws-on-nonce to the actual server.

 NOTE another approach would be to include the resource in the jws-on-
 nonce

9.4. Dynamic client registration elements

 When a AS uses dynamic client registration it may accept software
 statements supplied by a federation operator. Those software
 statements can contain a JWKS-URI that is hosted by the federation
 operator or protected by a certificate provisioned from a trusted
 root. These methods would allow the federation operator to
 administratively revoke the keys at the JWKS-URI without requiring
 the JWKS to contain x5c elements with CA issued certificates and
 having to have the RS perform full certificate validation for each
 request.

10. Acknowledgements

 The authors thank the following people for providing valuable
 feedback to this document. Nov Matake (YAuth).

11. References

11.1. Normative References

Sakimura, et al. Expires September 12, 2017 [Page 11]

Internet-Draft JPOP March 2017

 [POPKD] Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", March 2017,
 <https://tools.ietf.org/html/draft-ietf-oauth-pop-key-
 distribution-03>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <http://www.rfc-editor.org/info/rfc2617>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [RFC7638] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <http://www.rfc-editor.org/info/rfc7638>.

Sakimura, et al. Expires September 12, 2017 [Page 12]

Internet-Draft JPOP March 2017

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <http://www.rfc-editor.org/info/rfc7800>.

11.2. Informative References

 [PKCE] Sakimura, N., "Proof Key for Code Exchange by OAuth Public
 Clients", July 2015.

 [POPA] Hunt, P., Ed., "OAuth 2.0 Proof-of-Possession (PoP)
 Security Architecture", March 2015,
 <https://tools.ietf.org/html/draft-ietf-oauth-pop-
 architecture-08>.

 [TINTRO] Richer, J., "OAuth 2.0 Token Introspection", July 2015.

Appendix A. Document History

 -00 Initial Version.

Authors’ Addresses

 Nat Sakimura
 Nomura Research Institute
 Otemachi Financial City Grand Cube, 1-9-2 Otemachi
 Chiyoda-ku, Tokyo 100-0004
 Japan

 Phone: +81-3-5533-2111
 Email: n-sakimura@nri.co.jp
 URI: https://nat.sakimura.org/

 Kepeng Li
 Alibaba Group

 Email: kepeng.lkp@alibaba-inc.com

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

Sakimura, et al. Expires September 12, 2017 [Page 13]

OAuth Working Group W. Denniss
Internet-Draft Google
Intended status: Standards Track March 11, 2017
Expires: September 12, 2017

 OAuth 2.0 Device Posture Signals
 draft-wdenniss-oauth-device-posture-00

Abstract

 Enterprise and security focused OAuth providers typically want
 additional signals to confirm user presence when users return to
 previously authorized apps. Rather than requiring a full
 reauthentication, or require enrollment in a mobile device management
 solution, some authorization servers may be willing to accept device
 posture signals from the app, like the fact that device has a lock
 screen, as confirmation of user presence. This document details how
 OAuth native app clients can communicate device posture signals to
 OAuth providers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Denniss Expires September 12, 2017 [Page 1]

Internet-Draft OAuth 2.0 Device Posture Signals March 2017

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Notational Conventions 3
 3. Device Posture Signal Dictionary 3
 4. Authorization Request Device Posture Hint 3
 5. Token Endpoint Device Posture Enforcement 4
 6. Security Considerations 5
 6.1. Device Posture Scope 5
 6.2. Spoofed Devices . 5
 6.3. App Trustworthiness 5
 7. IANA Considerations . 5
 7.1. OAuth Parameters Registration 5
 7.1.1. Registry Contents 6
 7.2. OAuth Extensions Error Registration 6
 7.2.1. Registry Contents 6
 7.3. Device Posture Keys Registry 6
 7.3.1. Registration Template 7
 7.3.2. Initial Registry Contents 7
 8. References . 8
 8.1. Normative References 8
 8.2. Informative References 8
 Appendix A. Acknowledgements 8
 Author’s Address . 9

1. Introduction

 Users who follow strong security practices on their devices - such as
 configuring screen locks, and not enabling admin privileges (commonly
 known as "rooting" or "jailbreaking") - shouldn’t need to
 reauthenticate frequently to the individual apps on their device.

 This specification details how apps can send device posture signals
 to the OAuth Token Endpoint, enabling it to enforce device policy
 compliance, and avoid the need for reauthentication in some cases.

 It is designed to provide a mechanism for honest apps to communicate
 device posture. By itself it doesn’t protect against malicious
 users, dishonest apps, or compromised devices, but the signal format
 described could carry signals that do.

Denniss Expires September 12, 2017 [Page 2]

Internet-Draft OAuth 2.0 Device Posture Signals March 2017

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

3. Device Posture Signal Dictionary

 The device posture is a dictionary of signals asserted by the app
 about the device. The structure is send as an added parameter in
 several places during the OAuth flow, as documented in the subsequent
 sections.

 All device posture keys are OPTIONAL and MUST only be set when the
 attribute can be obtained by the app. The standard attribute keys
 are as follows:

 screen_lock
 Boolean. True if the user has a screen lock, such as a pin,
 pattern biometric, etc.
 root_privileges
 Boolean. True if user apps can access root device privileges.
 For mobile operating systems, known as "jailbreaking" on iOS and
 "rooting" on Android.
 device_attestation
 Dictionary. An attestation from the operating system, containing
 a signed-statement about the device and/or the app. The format is
 a dictionary, the specifics of which depends on the operating
 system.

 An example device posture dictionary:

 {
 "screen_lock": true,
 "root_privileges": false
 }

4. Authorization Request Device Posture Hint

 Clients MAY send the device posture signal dictionary to the
 authorization server in the authorization request. These signals,
 except for those that are signed and bound to the device are
 susceptible to client-side modification by end-users. While
 untrusted, such signals can still be used as hints by the

Denniss Expires September 12, 2017 [Page 3]

Internet-Draft OAuth 2.0 Device Posture Signals March 2017

 authorization server to present a better user experience, like
 informing the user they need a lock screen.

 Error encountered during authorization can be displayed to the user
 in the browser making this a more user friendly way to instruct the
 user on how to move their device into conformance. The token
 endpoint (on which errors are less user-friendly as there’s no user
 agent), can then enforce the restrictions per Section 5.

 The following parameters are added to the OAuth 2.0 Authorization
 Request:

 device_posture_hint
 JSON String. URL-encoded JSON dictionary, contains the Device
 Posture Signals defined in Section 3.

5. Token Endpoint Device Posture Enforcement

 Clients that follow this specification MUST send the device posture
 signals on every request to the token endpoint.

 Token Endpoints SHOULD verify that the posture conforms to their
 requirements and act accordingly.

 The following parameters are added to all requests to the Token
 Endpoint:

 device_posture
 JSON String. URL-encoded JSON dictionary, contains the Device
 Posture Signals defined in Section 3.

 The app MUST obtain fresh device posture information before every
 request to the Token Endpoint, and MUST NOT include stale information
 (rather, it should drop any signals it cannot freshly obtain).

 For token refresh requests, where the device posture has been
 previously communicated, if an attribute is missing, the Token
 Endpoint may choose to use the previous value, based on it’s own
 policy and freshness requirements.

 If the policy does not meet requirements, the Token Endpoint SHOULD
 return the following error code:

 device_posture_invalid
 Error indicating that the device posture does not meet
 requirements. The error description SHOULD contain details on why
 this is is the case.

Denniss Expires September 12, 2017 [Page 4]

Internet-Draft OAuth 2.0 Device Posture Signals March 2017

6. Security Considerations

6.1. Device Posture Scope

 This specification is designed to help authorization servers enforce
 security policy (like requiring a lock screen) on end-users. The
 intent is to enforce restrictions on honest users, to force them to
 follow security practices set out by the authorization server. By
 itself, it offers no protection against malicious users, dishonest
 apps, or compromised devices.

 Combined with other technologies like device-based attestations and
 token binding may enable such protection, and this specification
 could be used to transmit secure signals, but that topic is out of
 scope for this specification.

6.2. Spoofed Devices

 It is possible to at a device level completely spoof the device
 posture. Even statements signed by the operating system are
 vulnerable to spoofing, as it’s possible a statement from the real
 device can be replayed on a spoofed device, unless such statements
 include a binding to the device itself. Per Section 6.1, this topic
 is out of scope for this specification.

6.3. App Trustworthiness

 This specification is designed to allow trusted apps to report device
 posture to the authorization server to help the server enforce
 security policy on end-users. It does not by itself force apps to be
 honest, or genuine. Genuine apps (i.e. apps not lying about their
 client ID) might be dishonest about the device posture, and apps that
 are normally honest, could be spoofed, unless anti-spoofing
 countermeasures that are out of scope of this specification are
 employed.

7. IANA Considerations

7.1. OAuth Parameters Registration

 This specification registers the following value in the IANA "OAuth
 Parameters" registry [IANA.OAuth.Parameters] established by
 [RFC6749].

Denniss Expires September 12, 2017 [Page 5]

Internet-Draft OAuth 2.0 Device Posture Signals March 2017

7.1.1. Registry Contents

 o Parameter name: device_posture_hint
 o Parameter usage location: authorization request
 o Change controller: IESG
 o Specification document(s): Section 4 of [[this specification]]

 o Parameter name: device_posture
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): Section 5 of [[this specification]]

7.2. OAuth Extensions Error Registration

 This specification registers the following error in the IANA "OAuth
 Extensions Error Registry" [IANA.OAuth.Parameters] established by
 [RFC6749].

7.2.1. Registry Contents

 o Error name: device_posture_invalid
 o Error usage location: authorization response, token error response
 o Related protocol extension: resource parameter
 o Change controller: IESG
 o Specification document(s): Section 5 of [[this specification]]

7.3. Device Posture Keys Registry

 This specification establishes the IANA "Device Posture Keys"
 registry for Device Posture Dictionary keys. The registry records
 the Device Posture key and a reference to the specification that
 defines it. This specification registers the Device Posture keys
 defined in Section 3.

 Keys are registered on an Expert Review [RFC5226] basis after a
 three-week review period on the oauth-reg-review@ietf.org mailing
 list, on the advice of one or more Designated Experts.

 Registration requests sent to the mailing list for review should use
 an appropriate subject (e.g., "Request to register Device Posture
 Key: screen_lock").

 Within the review period, the Designated Experts will either approve
 or deny the registration request, communicating this decision to the
 review list and IANA. Denials should include an explanation and, if
 applicable, suggestions as to how to make the request successful.
 Registration requests that are undetermined for a period longer than

Denniss Expires September 12, 2017 [Page 6]

Internet-Draft OAuth 2.0 Device Posture Signals March 2017

 21 days can be brought to the IESG’s attention (using the
 iesg@ietf.org mailing list) for resolution.

 Criteria that should be applied by the Designated Experts includes
 determining whether the proposed registration duplicates existing
 functionality, whether it is likely to be of general applicability or
 whether it is useful only for a single application, whether the value
 is actually being used, and whether the registration description is
 clear.

 IANA must only accept registry updates from the Designated Experts
 and should direct all requests for registration to the review mailing
 list.

 It is suggested that the same Designated Experts evaluate these
 registration requests as those who evaluate registration requests for
 the IANA "OAuth Parameters" registry [IANA.OAuth.Parameters].

7.3.1. Registration Template

 Device Posture Signal Key:
 The key name requested (e.g., "screen_lock"). Names may not match
 other registered names in a case-insensitive manner unless the
 Designated Experts state that there is a compelling reason to
 allow an exception.
 Device Posture Signal Key Description:
 Brief description of the device posture signal (e.g., "Screen lock
 active").
 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.
 Specification Document(s):
 Reference to the document or documents that specify the parameter,
 preferably including URIs that can be used to retrieve copies of
 the documents. An indication of the relevant sections may also be
 included but is not required.

7.3.2. Initial Registry Contents

 o Device Posture Signal Key: "screen_lock"
 o Device Posture Signal Key Description: Boolean. ’true’ when the
 device has a screen lock enabled.
 o Change Controller: IESG
 o Specification Document(s): Section 3 of [[this specification]]

 o Device Posture Signal Key: "root_privileges"

Denniss Expires September 12, 2017 [Page 7]

Internet-Draft OAuth 2.0 Device Posture Signals March 2017

 o Device Posture Signal Key Description: Boolean. True if user apps
 can access root device privileges.
 o Change Controller: IESG
 o Specification Document(s): Section 3 of [[this specification]]

 o Device Posture Signal Key: "device_attestation"
 o Device Posture Signal Key Description: Dictionary. An attestation
 from the operating system, containing a signed-statement about the
 device and/or the app.
 o Change Controller: IESG
 o Specification Document(s): Section 3 of [[this specification]]

8. References

8.1. Normative References

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

8.2. Informative References

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

Appendix A. Acknowledgements

 The following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Eric Sachs, John Bradley, and Andy Zmolek.

Denniss Expires September 12, 2017 [Page 8]

Internet-Draft OAuth 2.0 Device Posture Signals March 2017

Author’s Address

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Phone: +1 650-253-0000
 Email: wdenniss@google.com
 URI: http://google.com/

Denniss Expires September 12, 2017 [Page 9]

	draft-campbell-oauth-mtls-00
	draft-ietf-oauth-device-flow-14
	draft-ietf-oauth-discovery-10
	draft-ietf-oauth-pop-key-distribution-03
	draft-ietf-oauth-token-binding-08
	draft-ietf-oauth-token-exchange-16
	draft-sakimura-oauth-jpop-01
	draft-wdenniss-oauth-device-posture-00

