
QUIC M. Bishop, Ed.
Internet-Draft Akamai
Intended status: Standards Track 2 February 2021
Expires: 6 August 2021

 Hypertext Transfer Protocol Version 3 (HTTP/3)
 draft-ietf-quic-http-34

Abstract

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP, such as stream multiplexing, per-stream flow
 control, and low-latency connection establishment. This document
 describes a mapping of HTTP semantics over QUIC. This document also
 identifies HTTP/2 features that are subsumed by QUIC, and describes
 how HTTP/2 extensions can be ported to HTTP/3.

DO NOT DEPLOY THIS VERSION OF HTTP

 DO NOT DEPLOY THIS VERSION OF HTTP/3 UNTIL IT IS IN AN RFC. This
 version is still a work in progress. For trial deployments, please
 use earlier versions.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/search/?email_list=quic.

 Working Group information can be found at https://github.com/quicwg;
 source code and issues list for this draft can be found at
 https://github.com/quicwg/base-drafts/labels/-http.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bishop Expires 6 August 2021 [Page 1]

Internet-Draft HTTP/3 February 2021

 This Internet-Draft will expire on 6 August 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Prior versions of HTTP 5
 1.2. Delegation to QUIC 5
 2. HTTP/3 Protocol Overview 5
 2.1. Document Organization 6
 2.2. Conventions and Terminology 7
 3. Connection Setup and Management 8
 3.1. Discovering an HTTP/3 Endpoint 8
 3.1.1. HTTP Alternative Services 9
 3.1.2. Other Schemes . 10
 3.2. Connection Establishment 10
 3.3. Connection Reuse . 11
 4. HTTP Request Lifecycle 12
 4.1. HTTP Message Exchanges 12
 4.1.1. Field Formatting and Compression 14
 4.1.2. Request Cancellation and Rejection 17
 4.1.3. Malformed Requests and Responses 18
 4.2. The CONNECT Method 19
 4.3. HTTP Upgrade . 21
 4.4. Server Push . 21
 5. Connection Closure . 23
 5.1. Idle Connections . 23
 5.2. Connection Shutdown 24
 5.3. Immediate Application Closure 26
 5.4. Transport Closure . 26
 6. Stream Mapping and Usage 27
 6.1. Bidirectional Streams 27
 6.2. Unidirectional Streams 28
 6.2.1. Control Streams 29
 6.2.2. Push Streams . 30

Bishop Expires 6 August 2021 [Page 2]

Internet-Draft HTTP/3 February 2021

 6.2.3. Reserved Stream Types 30
 7. HTTP Framing Layer . 31
 7.1. Frame Layout . 32
 7.2. Frame Definitions . 32
 7.2.1. DATA . 32
 7.2.2. HEADERS . 33
 7.2.3. CANCEL_PUSH . 33
 7.2.4. SETTINGS . 35
 7.2.5. PUSH_PROMISE . 38
 7.2.6. GOAWAY . 39
 7.2.7. MAX_PUSH_ID . 40
 7.2.8. Reserved Frame Types 41
 8. Error Handling . 41
 8.1. HTTP/3 Error Codes 42
 9. Extensions to HTTP/3 . 43
 10. Security Considerations 44
 10.1. Server Authority . 44
 10.2. Cross-Protocol Attacks 44
 10.3. Intermediary Encapsulation Attacks 45
 10.4. Cacheability of Pushed Responses 45
 10.5. Denial-of-Service Considerations 45
 10.5.1. Limits on Field Section Size 46
 10.5.2. CONNECT Issues 47
 10.6. Use of Compression 47
 10.7. Padding and Traffic Analysis 48
 10.8. Frame Parsing . 48
 10.9. Early Data . 49
 10.10. Migration . 49
 10.11. Privacy Considerations 49
 11. IANA Considerations . 49
 11.1. Registration of HTTP/3 Identification String 50
 11.2. New Registries . 50
 11.2.1. Frame Types . 50
 11.2.2. Settings Parameters 52
 11.2.3. Error Codes . 53
 11.2.4. Stream Types . 55
 12. References . 56
 12.1. Normative References 56
 12.2. Informative References 57
 Appendix A. Considerations for Transitioning from HTTP/2 58
 A.1. Streams . 59
 A.2. HTTP Frame Types . 60
 A.2.1. Prioritization Differences 60
 A.2.2. Field Compression Differences 60
 A.2.3. Flow Control Differences 61
 A.2.4. Guidance for New Frame Type Definitions 61
 A.2.5. Comparison Between HTTP/2 and HTTP/3 Frame Types . . 61
 A.3. HTTP/2 SETTINGS Parameters 62

Bishop Expires 6 August 2021 [Page 3]

Internet-Draft HTTP/3 February 2021

 A.4. HTTP/2 Error Codes 64
 A.4.1. Mapping Between HTTP/2 and HTTP/3 Errors 65
 Appendix B. Change Log . 65
 B.1. Since draft-ietf-quic-http-32 65
 B.2. Since draft-ietf-quic-http-31 66
 B.3. Since draft-ietf-quic-http-30 66
 B.4. Since draft-ietf-quic-http-29 66
 B.5. Since draft-ietf-quic-http-28 66
 B.6. Since draft-ietf-quic-http-27 66
 B.7. Since draft-ietf-quic-http-26 66
 B.8. Since draft-ietf-quic-http-25 66
 B.9. Since draft-ietf-quic-http-24 67
 B.10. Since draft-ietf-quic-http-23 67
 B.11. Since draft-ietf-quic-http-22 67
 B.12. Since draft-ietf-quic-http-21 68
 B.13. Since draft-ietf-quic-http-20 68
 B.14. Since draft-ietf-quic-http-19 69
 B.15. Since draft-ietf-quic-http-18 69
 B.16. Since draft-ietf-quic-http-17 69
 B.17. Since draft-ietf-quic-http-16 70
 B.18. Since draft-ietf-quic-http-15 70
 B.19. Since draft-ietf-quic-http-14 70
 B.20. Since draft-ietf-quic-http-13 70
 B.21. Since draft-ietf-quic-http-12 71
 B.22. Since draft-ietf-quic-http-11 71
 B.23. Since draft-ietf-quic-http-10 71
 B.24. Since draft-ietf-quic-http-09 71
 B.25. Since draft-ietf-quic-http-08 72
 B.26. Since draft-ietf-quic-http-07 72
 B.27. Since draft-ietf-quic-http-06 72
 B.28. Since draft-ietf-quic-http-05 72
 B.29. Since draft-ietf-quic-http-04 72
 B.30. Since draft-ietf-quic-http-03 72
 B.31. Since draft-ietf-quic-http-02 73
 B.32. Since draft-ietf-quic-http-01 73
 B.33. Since draft-ietf-quic-http-00 73
 B.34. Since draft-shade-quic-http2-mapping-00 74
 Acknowledgments . 74
 Author’s Address . 75

1. Introduction

 HTTP semantics ([SEMANTICS]) are used for a broad range of services
 on the Internet. These semantics have most commonly been used with
 HTTP/1.1 and HTTP/2. HTTP/1.1 has been used over a variety of
 transport and session layers, while HTTP/2 has been used primarily
 with TLS over TCP. HTTP/3 supports the same semantics over a new
 transport protocol, QUIC.

Bishop Expires 6 August 2021 [Page 4]

Internet-Draft HTTP/3 February 2021

1.1. Prior versions of HTTP

 HTTP/1.1 ([HTTP11]) uses whitespace-delimited text fields to convey
 HTTP messages. While these exchanges are human-readable, using
 whitespace for message formatting leads to parsing complexity and
 excessive tolerance of variant behavior.

 Because HTTP/1.1 does not include a multiplexing layer, multiple TCP
 connections are often used to service requests in parallel. However,
 that has a negative impact on congestion control and network
 efficiency, since TCP does not share congestion control across
 multiple connections.

 HTTP/2 ([HTTP2]) introduced a binary framing and multiplexing layer
 to improve latency without modifying the transport layer. However,
 because the parallel nature of HTTP/2’s multiplexing is not visible
 to TCP’s loss recovery mechanisms, a lost or reordered packet causes
 all active transactions to experience a stall regardless of whether
 that transaction was directly impacted by the lost packet.

1.2. Delegation to QUIC

 The QUIC transport protocol incorporates stream multiplexing and per-
 stream flow control, similar to that provided by the HTTP/2 framing
 layer. By providing reliability at the stream level and congestion
 control across the entire connection, QUIC has the capability to
 improve the performance of HTTP compared to a TCP mapping. QUIC also
 incorporates TLS 1.3 ([TLS13]) at the transport layer, offering
 comparable confidentiality and integrity to running TLS over TCP,
 with the improved connection setup latency of TCP Fast Open ([TFO]).

 This document defines HTTP/3, a mapping of HTTP semantics over the
 QUIC transport protocol, drawing heavily on the design of HTTP/2.
 HTTP/3 relies on QUIC to provide confidentiality and integrity
 protection of data; peer authentication; and reliable, in-order, per-
 stream delivery. While delegating stream lifetime and flow control
 issues to QUIC, a binary framing similar to the HTTP/2 framing is
 used on each stream. Some HTTP/2 features are subsumed by QUIC,
 while other features are implemented atop QUIC.

 QUIC is described in [QUIC-TRANSPORT]. For a full description of
 HTTP/2, see [HTTP2].

2. HTTP/3 Protocol Overview

 HTTP/3 provides a transport for HTTP semantics using the QUIC
 transport protocol and an internal framing layer similar to HTTP/2.

Bishop Expires 6 August 2021 [Page 5]

Internet-Draft HTTP/3 February 2021

 Once a client knows that an HTTP/3 server exists at a certain
 endpoint, it opens a QUIC connection. QUIC provides protocol
 negotiation, stream-based multiplexing, and flow control. Discovery
 of an HTTP/3 endpoint is described in Section 3.1.

 Within each stream, the basic unit of HTTP/3 communication is a frame
 (Section 7.2). Each frame type serves a different purpose. For
 example, HEADERS and DATA frames form the basis of HTTP requests and
 responses (Section 4.1). Frames that apply to the entire connection
 are conveyed on a dedicated control stream.

 Multiplexing of requests is performed using the QUIC stream
 abstraction, described in Section 2 of [QUIC-TRANSPORT]. Each
 request-response pair consumes a single QUIC stream. Streams are
 independent of each other, so one stream that is blocked or suffers
 packet loss does not prevent progress on other streams.

 Server push is an interaction mode introduced in HTTP/2 ([HTTP2])
 that permits a server to push a request-response exchange to a client
 in anticipation of the client making the indicated request. This
 trades off network usage against a potential latency gain. Several
 HTTP/3 frames are used to manage server push, such as PUSH_PROMISE,
 MAX_PUSH_ID, and CANCEL_PUSH.

 As in HTTP/2, request and response fields are compressed for
 transmission. Because HPACK ([HPACK]) relies on in-order
 transmission of compressed field sections (a guarantee not provided
 by QUIC), HTTP/3 replaces HPACK with QPACK ([QPACK]). QPACK uses
 separate unidirectional streams to modify and track field table
 state, while encoded field sections refer to the state of the table
 without modifying it.

2.1. Document Organization

 The following sections provide a detailed overview of the lifecycle
 of an HTTP/3 connection:

 * Connection Setup and Management (Section 3) covers how an HTTP/3
 endpoint is discovered and an HTTP/3 connection is established.

 * HTTP Request Lifecycle (Section 4) describes how HTTP semantics
 are expressed using frames.

 * Connection Closure (Section 5) describes how HTTP/3 connections
 are terminated, either gracefully or abruptly.

 The details of the wire protocol and interactions with the transport
 are described in subsequent sections:

Bishop Expires 6 August 2021 [Page 6]

Internet-Draft HTTP/3 February 2021

 * Stream Mapping and Usage (Section 6) describes the way QUIC
 streams are used.

 * HTTP Framing Layer (Section 7) describes the frames used on most
 streams.

 * Error Handling (Section 8) describes how error conditions are
 handled and expressed, either on a particular stream or for the
 connection as a whole.

 Additional resources are provided in the final sections:

 * Extensions to HTTP/3 (Section 9) describes how new capabilities
 can be added in future documents.

 * A more detailed comparison between HTTP/2 and HTTP/3 can be found
 in Appendix A.

2.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the variable-length integer encoding from
 [QUIC-TRANSPORT].

 The following terms are used:

 abort: An abrupt termination of a connection or stream, possibly due
 to an error condition.

 client: The endpoint that initiates an HTTP/3 connection. Clients
 send HTTP requests and receive HTTP responses.

 connection: A transport-layer connection between two endpoints,
 using QUIC as the transport protocol.

 connection error: An error that affects the entire HTTP/3
 connection.

 endpoint: Either the client or server of the connection.

 frame: The smallest unit of communication on a stream in HTTP/3,
 consisting of a header and a variable-length sequence of bytes
 structured according to the frame type.

Bishop Expires 6 August 2021 [Page 7]

Internet-Draft HTTP/3 February 2021

 Protocol elements called "frames" exist in both this document and
 [QUIC-TRANSPORT]. Where frames from [QUIC-TRANSPORT] are
 referenced, the frame name will be prefaced with "QUIC." For
 example, "QUIC CONNECTION_CLOSE frames." References without this
 preface refer to frames defined in Section 7.2.

 HTTP/3 connection: A QUIC connection where the negotiated
 application protocol is HTTP/3.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving frames.

 sender: An endpoint that is transmitting frames.

 server: The endpoint that accepts an HTTP/3 connection. Servers
 receive HTTP requests and send HTTP responses.

 stream: A bidirectional or unidirectional bytestream provided by the
 QUIC transport. All streams within an HTTP/3 connection can be
 considered "HTTP/3 streams," but multiple stream types are defined
 within HTTP/3.

 stream error: An application-level error on the individual stream.

 The term "content" is defined in Section 6.4 of [SEMANTICS].

 Finally, the terms "resource", "message", "user agent", "origin
 server", "gateway", "intermediary", "proxy", and "tunnel" are defined
 in Section 3 of [SEMANTICS].

 Packet diagrams in this document use the format defined in
 Section 1.3 of [QUIC-TRANSPORT] to illustrate the order and size of
 fields.

3. Connection Setup and Management

3.1. Discovering an HTTP/3 Endpoint

 HTTP relies on the notion of an authoritative response: a response
 that has been determined to be the most appropriate response for that
 request given the state of the target resource at the time of
 response message origination by (or at the direction of) the origin
 server identified within the target URI. Locating an authoritative
 server for an HTTP URI is discussed in Section 4.3 of [SEMANTICS].

Bishop Expires 6 August 2021 [Page 8]

Internet-Draft HTTP/3 February 2021

 The "https" scheme associates authority with possession of a
 certificate that the client considers to be trustworthy for the host
 identified by the authority component of the URI. Upon receiving a
 server certificate in the TLS handshake, the client MUST verify that
 the certificate is an acceptable match for the URI’s origin server
 using the process described in Section 4.3.4 of [SEMANTICS]. If the
 certificate cannot be verified with respect to the URI’s origin
 server, the client MUST NOT consider the server authoritative for
 that origin.

 A client MAY attempt access to a resource with an "https" URI by
 resolving the host identifier to an IP address, establishing a QUIC
 connection to that address on the indicated port (including
 validation of the server certificate as described above), and sending
 an HTTP/3 request message targeting the URI to the server over that
 secured connection. Unless some other mechanism is used to select
 HTTP/3, the token "h3" is used in the Application Layer Protocol
 Negotiation (ALPN; see [RFC7301]) extension during the TLS handshake.

 Connectivity problems (e.g., blocking UDP) can result in QUIC
 connection establishment failure; clients SHOULD attempt to use TCP-
 based versions of HTTP in this case.

 Servers MAY serve HTTP/3 on any UDP port; an alternative service
 advertisement always includes an explicit port, and URIs contain
 either an explicit port or a default port associated with the scheme.

3.1.1. HTTP Alternative Services

 An HTTP origin can advertise the availability of an equivalent HTTP/3
 endpoint via the Alt-Svc HTTP response header field or the HTTP/2
 ALTSVC frame ([ALTSVC]), using the "h3" ALPN token.

 For example, an origin could indicate in an HTTP response that HTTP/3
 was available on UDP port 50781 at the same hostname by including the
 following header field:

 Alt-Svc: h3=":50781"

 On receipt of an Alt-Svc record indicating HTTP/3 support, a client
 MAY attempt to establish a QUIC connection to the indicated host and
 port; if this connection is successful, the client can send HTTP
 requests using the mapping described in this document.

Bishop Expires 6 August 2021 [Page 9]

Internet-Draft HTTP/3 February 2021

3.1.2. Other Schemes

 Although HTTP is independent of the transport protocol, the "http"
 scheme associates authority with the ability to receive TCP
 connections on the indicated port of whatever host is identified
 within the authority component. Because HTTP/3 does not use TCP,
 HTTP/3 cannot be used for direct access to the authoritative server
 for a resource identified by an "http" URI. However, protocol
 extensions such as [ALTSVC] permit the authoritative server to
 identify other services that are also authoritative and that might be
 reachable over HTTP/3.

 Prior to making requests for an origin whose scheme is not "https",
 the client MUST ensure the server is willing to serve that scheme.
 For origins whose scheme is "http", an experimental method to
 accomplish this is described in [RFC8164]. Other mechanisms might be
 defined for various schemes in the future.

3.2. Connection Establishment

 HTTP/3 relies on QUIC version 1 as the underlying transport. The use
 of other QUIC transport versions with HTTP/3 MAY be defined by future
 specifications.

 QUIC version 1 uses TLS version 1.3 or greater as its handshake
 protocol. HTTP/3 clients MUST support a mechanism to indicate the
 target host to the server during the TLS handshake. If the server is
 identified by a domain name ([DNS-TERMS]), clients MUST send the
 Server Name Indication (SNI; [RFC6066]) TLS extension unless an
 alternative mechanism to indicate the target host is used.

 QUIC connections are established as described in [QUIC-TRANSPORT].
 During connection establishment, HTTP/3 support is indicated by
 selecting the ALPN token "h3" in the TLS handshake. Support for
 other application-layer protocols MAY be offered in the same
 handshake.

 While connection-level options pertaining to the core QUIC protocol
 are set in the initial crypto handshake, HTTP/3-specific settings are
 conveyed in the SETTINGS frame. After the QUIC connection is
 established, a SETTINGS frame (Section 7.2.4) MUST be sent by each
 endpoint as the initial frame of their respective HTTP control
 stream; see Section 6.2.1.

Bishop Expires 6 August 2021 [Page 10]

Internet-Draft HTTP/3 February 2021

3.3. Connection Reuse

 HTTP/3 connections are persistent across multiple requests. For best
 performance, it is expected that clients will not close connections
 until it is determined that no further communication with a server is
 necessary (for example, when a user navigates away from a particular
 web page) or until the server closes the connection.

 Once a connection exists to a server endpoint, this connection MAY be
 reused for requests with multiple different URI authority components.
 To use an existing connection for a new origin, clients MUST validate
 the certificate presented by the server for the new origin server
 using the process described in Section 4.3.4 of [SEMANTICS]. This
 implies that clients will need to retain the server certificate and
 any additional information needed to verify that certificate; clients
 which do not do so will be unable to reuse the connection for
 additional origins.

 If the certificate is not acceptable with regard to the new origin
 for any reason, the connection MUST NOT be reused and a new
 connection SHOULD be established for the new origin. If the reason
 the certificate cannot be verified might apply to other origins
 already associated with the connection, the client SHOULD re-validate
 the server certificate for those origins. For instance, if
 validation of a certificate fails because the certificate has expired
 or been revoked, this might be used to invalidate all other origins
 for which that certificate was used to establish authority.

 Clients SHOULD NOT open more than one HTTP/3 connection to a given IP
 address and UDP port, where the IP address and port might be derived
 from a URI, a selected alternative service ([ALTSVC]), a configured
 proxy, or name resolution of any of these. A client MAY open
 multiple HTTP/3 connections to the same IP address and UDP port using
 different transport or TLS configurations but SHOULD avoid creating
 multiple connections with the same configuration.

 Servers are encouraged to maintain open HTTP/3 connections for as
 long as possible but are permitted to terminate idle connections if
 necessary. When either endpoint chooses to close the HTTP/3
 connection, the terminating endpoint SHOULD first send a GOAWAY frame
 (Section 5.2) so that both endpoints can reliably determine whether
 previously sent frames have been processed and gracefully complete or
 terminate any necessary remaining tasks.

 A server that does not wish clients to reuse HTTP/3 connections for a
 particular origin can indicate that it is not authoritative for a
 request by sending a 421 (Misdirected Request) status code in
 response to the request; see Section 7.4 of [SEMANTICS].

Bishop Expires 6 August 2021 [Page 11]

Internet-Draft HTTP/3 February 2021

4. HTTP Request Lifecycle

4.1. HTTP Message Exchanges

 A client sends an HTTP request on a request stream, which is a
 client-initiated bidirectional QUIC stream; see Section 6.1. A
 client MUST send only a single request on a given stream. A server
 sends zero or more interim HTTP responses on the same stream as the
 request, followed by a single final HTTP response, as detailed below.
 See Section 15 of [SEMANTICS] for a description of interim and final
 HTTP responses.

 Pushed responses are sent on a server-initiated unidirectional QUIC
 stream; see Section 6.2.2. A server sends zero or more interim HTTP
 responses, followed by a single final HTTP response, in the same
 manner as a standard response. Push is described in more detail in
 Section 4.4.

 On a given stream, receipt of multiple requests or receipt of an
 additional HTTP response following a final HTTP response MUST be
 treated as malformed (Section 4.1.3).

 An HTTP message (request or response) consists of:

 1. the header section, sent as a single HEADERS frame (see
 Section 7.2.2),

 2. optionally, the content, if present, sent as a series of DATA
 frames (see Section 7.2.1), and

 3. optionally, the trailer section, if present, sent as a single
 HEADERS frame.

 Header and trailer sections are described in Sections 6.3 and 6.5 of
 [SEMANTICS]; the content is described in Section 6.4 of [SEMANTICS].

 Receipt of an invalid sequence of frames MUST be treated as a
 connection error of type H3_FRAME_UNEXPECTED; see Section 8. In
 particular, a DATA frame before any HEADERS frame, or a HEADERS or
 DATA frame after the trailing HEADERS frame, is considered invalid.
 Other frame types, especially unknown frame types, might be permitted
 subject to their own rules; see Section 9.

Bishop Expires 6 August 2021 [Page 12]

Internet-Draft HTTP/3 February 2021

 A server MAY send one or more PUSH_PROMISE frames (Section 7.2.5)
 before, after, or interleaved with the frames of a response message.
 These PUSH_PROMISE frames are not part of the response; see
 Section 4.4 for more details. PUSH_PROMISE frames are not permitted
 on push streams; a pushed response that includes PUSH_PROMISE frames
 MUST be treated as a connection error of type H3_FRAME_UNEXPECTED;
 see Section 8.

 Frames of unknown types (Section 9), including reserved frames
 (Section 7.2.8) MAY be sent on a request or push stream before,
 after, or interleaved with other frames described in this section.

 The HEADERS and PUSH_PROMISE frames might reference updates to the
 QPACK dynamic table. While these updates are not directly part of
 the message exchange, they must be received and processed before the
 message can be consumed. See Section 4.1.1 for more details.

 Transfer codings (see Section 6.1 of [HTTP11]) are not defined for
 HTTP/3; the Transfer-Encoding header field MUST NOT be used.

 A response MAY consist of multiple messages when and only when one or
 more interim responses (1xx; see Section 15.2 of [SEMANTICS]) precede
 a final response to the same request. Interim responses do not
 contain content or trailer sections.

 An HTTP request/response exchange fully consumes a client-initiated
 bidirectional QUIC stream. After sending a request, a client MUST
 close the stream for sending. Unless using the CONNECT method (see
 Section 4.2), clients MUST NOT make stream closure dependent on
 receiving a response to their request. After sending a final
 response, the server MUST close the stream for sending. At this
 point, the QUIC stream is fully closed.

 When a stream is closed, this indicates the end of the final HTTP
 message. Because some messages are large or unbounded, endpoints
 SHOULD begin processing partial HTTP messages once enough of the
 message has been received to make progress. If a client-initiated
 stream terminates without enough of the HTTP message to provide a
 complete response, the server SHOULD abort its response stream with
 the error code H3_REQUEST_INCOMPLETE; see Section 8.

 A server can send a complete response prior to the client sending an
 entire request if the response does not depend on any portion of the
 request that has not been sent and received. When the server does
 not need to receive the remainder of the request, it MAY abort
 reading the request stream, send a complete response, and cleanly
 close the sending part of the stream. The error code H3_NO_ERROR
 SHOULD be used when requesting that the client stop sending on the

Bishop Expires 6 August 2021 [Page 13]

Internet-Draft HTTP/3 February 2021

 request stream. Clients MUST NOT discard complete responses as a
 result of having their request terminated abruptly, though clients
 can always discard responses at their discretion for other reasons.
 If the server sends a partial or complete response but does not abort
 reading the request, clients SHOULD continue sending the body of the
 request and close the stream normally.

4.1.1. Field Formatting and Compression

 HTTP messages carry metadata as a series of key-value pairs called
 HTTP fields; see Sections 6.3 and 6.5 of [SEMANTICS]. For a listing
 of registered HTTP fields, see the "Hypertext Transfer Protocol
 (HTTP) Field Name Registry" maintained at
 https://www.iana.org/assignments/http-fields/.

 Note: This registry will not exist until [SEMANTICS] is
 approved. *RFC Editor*, please remove this note prior to
 publication.

 Field names are strings containing a subset of ASCII characters.
 Properties of HTTP field names and values are discussed in more
 detail in Section 5.1 of [SEMANTICS]. As in HTTP/2, characters in
 field names MUST be converted to lowercase prior to their encoding.
 A request or response containing uppercase characters in field names
 MUST be treated as malformed (Section 4.1.3).

 Like HTTP/2, HTTP/3 does not use the Connection header field to
 indicate connection-specific fields; in this protocol, connection-
 specific metadata is conveyed by other means. An endpoint MUST NOT
 generate an HTTP/3 field section containing connection-specific
 fields; any message containing connection-specific fields MUST be
 treated as malformed (Section 4.1.3).

 The only exception to this is the TE header field, which MAY be
 present in an HTTP/3 request header; when it is, it MUST NOT contain
 any value other than "trailers".

 An intermediary transforming an HTTP/1.x message to HTTP/3 MUST
 remove connection-specific header fields as discussed in
 Section 7.6.1 of [SEMANTICS], or their messages will be treated by
 other HTTP/3 endpoints as malformed (Section 4.1.3).

4.1.1.1. Pseudo-Header Fields

 Like HTTP/2, HTTP/3 employs a series of pseudo-header fields where
 the field name begins with the ’:’ character (ASCII 0x3a). These
 pseudo-header fields convey the target URI, the method of the
 request, and the status code for the response.

Bishop Expires 6 August 2021 [Page 14]

Internet-Draft HTTP/3 February 2021

 Pseudo-header fields are not HTTP fields. Endpoints MUST NOT
 generate pseudo-header fields other than those defined in this
 document; however, an extension could negotiate a modification of
 this restriction; see Section 9.

 Pseudo-header fields are only valid in the context in which they are
 defined. Pseudo-header fields defined for requests MUST NOT appear
 in responses; pseudo-header fields defined for responses MUST NOT
 appear in requests. Pseudo-header fields MUST NOT appear in trailer
 sections. Endpoints MUST treat a request or response that contains
 undefined or invalid pseudo-header fields as malformed
 (Section 4.1.3).

 All pseudo-header fields MUST appear in the header section before
 regular header fields. Any request or response that contains a
 pseudo-header field that appears in a header section after a regular
 header field MUST be treated as malformed (Section 4.1.3).

 The following pseudo-header fields are defined for requests:

 ":method": Contains the HTTP method (Section 9 of [SEMANTICS])

 ":scheme": Contains the scheme portion of the target URI
 (Section 3.1 of [URI])

 ":scheme" is not restricted to URIs with scheme "http" and
 "https". A proxy or gateway can translate requests for non-HTTP
 schemes, enabling the use of HTTP to interact with non-HTTP
 services.

 See Section 3.1.2 for guidance on using a scheme other than
 "https".

 ":authority": Contains the authority portion of the target URI
 (Section 3.2 of [URI]). The authority MUST NOT include the
 deprecated "userinfo" subcomponent for URIs of scheme "http" or
 "https".

 To ensure that the HTTP/1.1 request line can be reproduced
 accurately, this pseudo-header field MUST be omitted when
 translating from an HTTP/1.1 request that has a request target in
 origin or asterisk form; see Section 7.1 of [SEMANTICS]. Clients
 that generate HTTP/3 requests directly SHOULD use the ":authority"
 pseudo-header field instead of the Host field. An intermediary
 that converts an HTTP/3 request to HTTP/1.1 MUST create a Host
 field if one is not present in a request by copying the value of
 the ":authority" pseudo-header field.

Bishop Expires 6 August 2021 [Page 15]

Internet-Draft HTTP/3 February 2021

 ":path": Contains the path and query parts of the target URI (the
 "path-absolute" production and optionally a ’?’ character followed
 by the "query" production; see Sections 3.3 and 3.4 of [URI]. A
 request in asterisk form includes the value ’*’ for the ":path"
 pseudo-header field.

 This pseudo-header field MUST NOT be empty for "http" or "https"
 URIs; "http" or "https" URIs that do not contain a path component
 MUST include a value of ’/’. The exception to this rule is an
 OPTIONS request for an "http" or "https" URI that does not include
 a path component; these MUST include a ":path" pseudo-header field
 with a value of ’*’; see Section 7.1 of [SEMANTICS].

 All HTTP/3 requests MUST include exactly one value for the ":method",
 ":scheme", and ":path" pseudo-header fields, unless it is a CONNECT
 request; see Section 4.2.

 If the ":scheme" pseudo-header field identifies a scheme that has a
 mandatory authority component (including "http" and "https"), the
 request MUST contain either an ":authority" pseudo-header field or a
 "Host" header field. If these fields are present, they MUST NOT be
 empty. If both fields are present, they MUST contain the same value.
 If the scheme does not have a mandatory authority component and none
 is provided in the request target, the request MUST NOT contain the
 ":authority" pseudo-header or "Host" header fields.

 An HTTP request that omits mandatory pseudo-header fields or contains
 invalid values for those pseudo-header fields is malformed
 (Section 4.1.3).

 HTTP/3 does not define a way to carry the version identifier that is
 included in the HTTP/1.1 request line.

 For responses, a single ":status" pseudo-header field is defined that
 carries the HTTP status code; see Section 15 of [SEMANTICS]. This
 pseudo-header field MUST be included in all responses; otherwise, the
 response is malformed (Section 4.1.3).

 HTTP/3 does not define a way to carry the version or reason phrase
 that is included in an HTTP/1.1 status line.

Bishop Expires 6 August 2021 [Page 16]

Internet-Draft HTTP/3 February 2021

4.1.1.2. Field Compression

 [QPACK] describes a variation of HPACK that gives an encoder some
 control over how much head-of-line blocking can be caused by
 compression. This allows an encoder to balance compression
 efficiency with latency. HTTP/3 uses QPACK to compress header and
 trailer sections, including the pseudo-header fields present in the
 header section.

 To allow for better compression efficiency, the "Cookie" field
 ([RFC6265]) MAY be split into separate field lines, each with one or
 more cookie-pairs, before compression. If a decompressed field
 section contains multiple cookie field lines, these MUST be
 concatenated into a single byte string using the two-byte delimiter
 of 0x3b, 0x20 (the ASCII string "; ") before being passed into a
 context other than HTTP/2 or HTTP/3, such as an HTTP/1.1 connection,
 or a generic HTTP server application.

4.1.1.3. Header Size Constraints

 An HTTP/3 implementation MAY impose a limit on the maximum size of
 the message header it will accept on an individual HTTP message. A
 server that receives a larger header section than it is willing to
 handle can send an HTTP 431 (Request Header Fields Too Large) status
 code ([RFC6585]). A client can discard responses that it cannot
 process. The size of a field list is calculated based on the
 uncompressed size of fields, including the length of the name and
 value in bytes plus an overhead of 32 bytes for each field.

 If an implementation wishes to advise its peer of this limit, it can
 be conveyed as a number of bytes in the
 SETTINGS_MAX_FIELD_SECTION_SIZE parameter. An implementation that
 has received this parameter SHOULD NOT send an HTTP message header
 that exceeds the indicated size, as the peer will likely refuse to
 process it. However, an HTTP message can traverse one or more
 intermediaries before reaching the origin server; see Section 3.7 of
 [SEMANTICS]. Because this limit is applied separately by each
 implementation which processes the message, messages below this limit
 are not guaranteed to be accepted.

4.1.2. Request Cancellation and Rejection

 Once a request stream has been opened, the request MAY be cancelled
 by either endpoint. Clients cancel requests if the response is no
 longer of interest; servers cancel requests if they are unable to or
 choose not to respond. When possible, it is RECOMMENDED that servers
 send an HTTP response with an appropriate status code rather than
 canceling a request it has already begun processing.

Bishop Expires 6 August 2021 [Page 17]

Internet-Draft HTTP/3 February 2021

 Implementations SHOULD cancel requests by abruptly terminating any
 directions of a stream that are still open. This means resetting the
 sending parts of streams and aborting reading on receiving parts of
 streams; see Section 2.4 of [QUIC-TRANSPORT].

 When the server cancels a request without performing any application
 processing, the request is considered "rejected." The server SHOULD
 abort its response stream with the error code H3_REQUEST_REJECTED.
 In this context, "processed" means that some data from the stream was
 passed to some higher layer of software that might have taken some
 action as a result. The client can treat requests rejected by the
 server as though they had never been sent at all, thereby allowing
 them to be retried later.

 Servers MUST NOT use the H3_REQUEST_REJECTED error code for requests
 that were partially or fully processed. When a server abandons a
 response after partial processing, it SHOULD abort its response
 stream with the error code H3_REQUEST_CANCELLED.

 Client SHOULD use the error code H3_REQUEST_CANCELLED to cancel
 requests. Upon receipt of this error code, a server MAY abruptly
 terminate the response using the error code H3_REQUEST_REJECTED if no
 processing was performed. Clients MUST NOT use the
 H3_REQUEST_REJECTED error code, except when a server has requested
 closure of the request stream with this error code.

 If a stream is canceled after receiving a complete response, the
 client MAY ignore the cancellation and use the response. However, if
 a stream is cancelled after receiving a partial response, the
 response SHOULD NOT be used. Only idempotent actions such as GET,
 PUT, or DELETE can be safely retried; a client SHOULD NOT
 automatically retry a request with a non-idempotent method unless it
 has some means to know that the request semantics are idempotent
 independent of the method or some means to detect that the original
 request was never applied. See Section 9.2.2 of [SEMANTICS] for more
 details.

4.1.3. Malformed Requests and Responses

 A malformed request or response is one that is an otherwise valid
 sequence of frames but is invalid due to:

 * the presence of prohibited fields or pseudo-header fields,

 * the absence of mandatory pseudo-header fields,

 * invalid values for pseudo-header fields,

Bishop Expires 6 August 2021 [Page 18]

Internet-Draft HTTP/3 February 2021

 * pseudo-header fields after fields,

 * an invalid sequence of HTTP messages,

 * the inclusion of uppercase field names, or

 * the inclusion of invalid characters in field names or values.

 A request or response that is defined as having content when it
 contains a Content-Length header field (Section 6.4.1 of
 [SEMANTICS]), is malformed if the value of a Content-Length header
 field does not equal the sum of the DATA frame lengths received. A
 response that is defined as never having content, even when a
 Content-Length is present, can have a non-zero Content-Length field
 even though no content is included in DATA frames.

 Intermediaries that process HTTP requests or responses (i.e., any
 intermediary not acting as a tunnel) MUST NOT forward a malformed
 request or response. Malformed requests or responses that are
 detected MUST be treated as a stream error (Section 8) of type
 H3_MESSAGE_ERROR.

 For malformed requests, a server MAY send an HTTP response indicating
 the error prior to closing or resetting the stream. Clients MUST NOT
 accept a malformed response. Note that these requirements are
 intended to protect against several types of common attacks against
 HTTP; they are deliberately strict because being permissive can
 expose implementations to these vulnerabilities.

4.2. The CONNECT Method

 The CONNECT method requests that the recipient establish a tunnel to
 the destination origin server identified by the request-target; see
 Section 9.3.6 of [SEMANTICS]. It is primarily used with HTTP proxies
 to establish a TLS session with an origin server for the purposes of
 interacting with "https" resources.

 In HTTP/1.x, CONNECT is used to convert an entire HTTP connection
 into a tunnel to a remote host. In HTTP/2 and HTTP/3, the CONNECT
 method is used to establish a tunnel over a single stream.

 A CONNECT request MUST be constructed as follows:

 * The ":method" pseudo-header field is set to "CONNECT"

 * The ":scheme" and ":path" pseudo-header fields are omitted

Bishop Expires 6 August 2021 [Page 19]

Internet-Draft HTTP/3 February 2021

 * The ":authority" pseudo-header field contains the host and port to
 connect to (equivalent to the authority-form of the request-target
 of CONNECT requests; see Section 7.1 of [SEMANTICS])

 The request stream remains open at the end of the request to carry
 the data to be transferred. A CONNECT request that does not conform
 to these restrictions is malformed; see Section 4.1.3.

 A proxy that supports CONNECT establishes a TCP connection
 ([RFC0793]) to the server identified in the ":authority" pseudo-
 header field. Once this connection is successfully established, the
 proxy sends a HEADERS frame containing a 2xx series status code to
 the client, as defined in Section 15.3 of [SEMANTICS].

 All DATA frames on the stream correspond to data sent or received on
 the TCP connection. The payload of any DATA frame sent by the client
 is transmitted by the proxy to the TCP server; data received from the
 TCP server is packaged into DATA frames by the proxy. Note that the
 size and number of TCP segments is not guaranteed to map predictably
 to the size and number of HTTP DATA or QUIC STREAM frames.

 Once the CONNECT method has completed, only DATA frames are permitted
 to be sent on the stream. Extension frames MAY be used if
 specifically permitted by the definition of the extension. Receipt
 of any other known frame type MUST be treated as a connection error
 of type H3_FRAME_UNEXPECTED; see Section 8.

 The TCP connection can be closed by either peer. When the client
 ends the request stream (that is, the receive stream at the proxy
 enters the "Data Recvd" state), the proxy will set the FIN bit on its
 connection to the TCP server. When the proxy receives a packet with
 the FIN bit set, it will close the send stream that it sends to the
 client. TCP connections that remain half-closed in a single
 direction are not invalid, but are often handled poorly by servers,
 so clients SHOULD NOT close a stream for sending while they still
 expect to receive data from the target of the CONNECT.

 A TCP connection error is signaled by abruptly terminating the
 stream. A proxy treats any error in the TCP connection, which
 includes receiving a TCP segment with the RST bit set, as a stream
 error of type H3_CONNECT_ERROR; see Section 8. Correspondingly, if a
 proxy detects an error with the stream or the QUIC connection, it
 MUST close the TCP connection. If the underlying TCP implementation
 permits it, the proxy SHOULD send a TCP segment with the RST bit set.

Bishop Expires 6 August 2021 [Page 20]

Internet-Draft HTTP/3 February 2021

 Since CONNECT creates a tunnel to an arbitrary server, proxies that
 support CONNECT SHOULD restrict its use to a set of known ports or a
 list of safe request targets; see Section 9.3.6 of [SEMANTICS] for
 more detail.

4.3. HTTP Upgrade

 HTTP/3 does not support the HTTP Upgrade mechanism (Section 7.8 of
 [SEMANTICS]) or 101 (Switching Protocols) informational status code
 (Section 15.2.2 of [SEMANTICS]).

4.4. Server Push

 Server push is an interaction mode that permits a server to push a
 request-response exchange to a client in anticipation of the client
 making the indicated request. This trades off network usage against
 a potential latency gain. HTTP/3 server push is similar to what is
 described in Section 8.2 of [HTTP2], but uses different mechanisms.

 Each server push is assigned a unique Push ID by the server. The
 Push ID is used to refer to the push in various contexts throughout
 the lifetime of the HTTP/3 connection.

 The Push ID space begins at zero, and ends at a maximum value set by
 the MAX_PUSH_ID frame; see Section 7.2.7. In particular, a server is
 not able to push until after the client sends a MAX_PUSH_ID frame. A
 client sends MAX_PUSH_ID frames to control the number of pushes that
 a server can promise. A server SHOULD use Push IDs sequentially,
 beginning from zero. A client MUST treat receipt of a push stream as
 a connection error of type H3_ID_ERROR (Section 8) when no
 MAX_PUSH_ID frame has been sent or when the stream references a Push
 ID that is greater than the maximum Push ID.

 The Push ID is used in one or more PUSH_PROMISE frames
 (Section 7.2.5) that carry the header section of the request message.
 These frames are sent on the request stream that generated the push.
 This allows the server push to be associated with a client request.
 When the same Push ID is promised on multiple request streams, the
 decompressed request field sections MUST contain the same fields in
 the same order, and both the name and the value in each field MUST be
 identical.

 The Push ID is then included with the push stream that ultimately
 fulfills those promises; see Section 6.2.2. The push stream
 identifies the Push ID of the promise that it fulfills, then contains
 a response to the promised request as described in Section 4.1.

Bishop Expires 6 August 2021 [Page 21]

Internet-Draft HTTP/3 February 2021

 Finally, the Push ID can be used in CANCEL_PUSH frames; see
 Section 7.2.3. Clients use this frame to indicate they do not wish
 to receive a promised resource. Servers use this frame to indicate
 they will not be fulfilling a previous promise.

 Not all requests can be pushed. A server MAY push requests that have
 the following properties:

 * cacheable; see Section 9.2.3 of [SEMANTICS]

 * safe; see Section 9.2.1 of [SEMANTICS]

 * does not include a request body or trailer section

 The server MUST include a value in the ":authority" pseudo-header
 field for which the server is authoritative. If the client has not
 yet validated the connection for the origin indicated by the pushed
 request, it MUST perform the same verification process it would do
 before sending a request for that origin on the connection; see
 Section 3.3. If this verification fails, the client MUST NOT
 consider the server authoritative for that origin.

 Clients SHOULD send a CANCEL_PUSH frame upon receipt of a
 PUSH_PROMISE frame carrying a request that is not cacheable, is not
 known to be safe, that indicates the presence of a request body, or
 for which it does not consider the server authoritative. Any
 corresponding responses MUST NOT be used or cached.

 Each pushed response is associated with one or more client requests.
 The push is associated with the request stream on which the
 PUSH_PROMISE frame was received. The same server push can be
 associated with additional client requests using a PUSH_PROMISE frame
 with the same Push ID on multiple request streams. These
 associations do not affect the operation of the protocol, but MAY be
 considered by user agents when deciding how to use pushed resources.

 Ordering of a PUSH_PROMISE frame in relation to certain parts of the
 response is important. The server SHOULD send PUSH_PROMISE frames
 prior to sending HEADERS or DATA frames that reference the promised
 responses. This reduces the chance that a client requests a resource
 that will be pushed by the server.

Bishop Expires 6 August 2021 [Page 22]

Internet-Draft HTTP/3 February 2021

 Due to reordering, push stream data can arrive before the
 corresponding PUSH_PROMISE frame. When a client receives a new push
 stream with an as-yet-unknown Push ID, both the associated client
 request and the pushed request header fields are unknown. The client
 can buffer the stream data in expectation of the matching
 PUSH_PROMISE. The client can use stream flow control (see
 Section 4.1 of [QUIC-TRANSPORT]) to limit the amount of data a server
 may commit to the pushed stream.

 Push stream data can also arrive after a client has canceled a push.
 In this case, the client can abort reading the stream with an error
 code of H3_REQUEST_CANCELLED. This asks the server not to transfer
 additional data and indicates that it will be discarded upon receipt.

 Pushed responses that are cacheable (see Section 3 of [CACHING]) can
 be stored by the client, if it implements an HTTP cache. Pushed
 responses are considered successfully validated on the origin server
 (e.g., if the "no-cache" cache response directive is present; see
 Section 5.2.2.3 of [CACHING]) at the time the pushed response is
 received.

 Pushed responses that are not cacheable MUST NOT be stored by any
 HTTP cache. They MAY be made available to the application
 separately.

5. Connection Closure

 Once established, an HTTP/3 connection can be used for many requests
 and responses over time until the connection is closed. Connection
 closure can happen in any of several different ways.

5.1. Idle Connections

 Each QUIC endpoint declares an idle timeout during the handshake. If
 the QUIC connection remains idle (no packets received) for longer
 than this duration, the peer will assume that the connection has been
 closed. HTTP/3 implementations will need to open a new HTTP/3
 connection for new requests if the existing connection has been idle
 for longer than the idle timeout negotiated during the QUIC
 handshake, and SHOULD do so if approaching the idle timeout; see
 Section 10.1 of [QUIC-TRANSPORT].

 HTTP clients are expected to request that the transport keep
 connections open while there are responses outstanding for requests
 or server pushes, as described in Section 10.1.2 of [QUIC-TRANSPORT].
 If the client is not expecting a response from the server, allowing
 an idle connection to time out is preferred over expending effort
 maintaining a connection that might not be needed. A gateway MAY

Bishop Expires 6 August 2021 [Page 23]

Internet-Draft HTTP/3 February 2021

 maintain connections in anticipation of need rather than incur the
 latency cost of connection establishment to servers. Servers SHOULD
 NOT actively keep connections open.

5.2. Connection Shutdown

 Even when a connection is not idle, either endpoint can decide to
 stop using the connection and initiate a graceful connection close.
 Endpoints initiate the graceful shutdown of an HTTP/3 connection by
 sending a GOAWAY frame (Section 7.2.6). The GOAWAY frame contains an
 identifier that indicates to the receiver the range of requests or
 pushes that were or might be processed in this connection. The
 server sends a client-initiated bidirectional Stream ID; the client
 sends a Push ID (Section 4.4). Requests or pushes with the indicated
 identifier or greater are rejected (Section 4.1.2) by the sender of
 the GOAWAY. This identifier MAY be zero if no requests or pushes
 were processed.

 The information in the GOAWAY frame enables a client and server to
 agree on which requests or pushes were accepted prior to the shutdown
 of the HTTP/3 connection. Upon sending a GOAWAY frame, the endpoint
 SHOULD explicitly cancel (see Section 4.1.2 and Section 7.2.3) any
 requests or pushes that have identifiers greater than or equal to
 that indicated, in order to clean up transport state for the affected
 streams. The endpoint SHOULD continue to do so as more requests or
 pushes arrive.

 Endpoints MUST NOT initiate new requests or promise new pushes on the
 connection after receipt of a GOAWAY frame from the peer. Clients
 MAY establish a new connection to send additional requests.

 Some requests or pushes might already be in transit:

 * Upon receipt of a GOAWAY frame, if the client has already sent
 requests with a Stream ID greater than or equal to the identifier
 contained in the GOAWAY frame, those requests will not be
 processed. Clients can safely retry unprocessed requests on a
 different HTTP connection. A client that is unable to retry
 requests loses all requests that are in flight when the server
 closes the connection.

 Requests on Stream IDs less than the Stream ID in a GOAWAY frame
 from the server might have been processed; their status cannot be
 known until a response is received, the stream is reset
 individually, another GOAWAY is received with a lower Stream ID
 than that of the request in question, or the connection
 terminates.

Bishop Expires 6 August 2021 [Page 24]

Internet-Draft HTTP/3 February 2021

 Servers MAY reject individual requests on streams below the
 indicated ID if these requests were not processed.

 * If a server receives a GOAWAY frame after having promised pushes
 with a Push ID greater than or equal to the identifier contained
 in the GOAWAY frame, those pushes will not be accepted.

 Servers SHOULD send a GOAWAY frame when the closing of a connection
 is known in advance, even if the advance notice is small, so that the
 remote peer can know whether a request has been partially processed
 or not. For example, if an HTTP client sends a POST at the same time
 that a server closes a QUIC connection, the client cannot know if the
 server started to process that POST request if the server does not
 send a GOAWAY frame to indicate what streams it might have acted on.

 An endpoint MAY send multiple GOAWAY frames indicating different
 identifiers, but the identifier in each frame MUST NOT be greater
 than the identifier in any previous frame, since clients might
 already have retried unprocessed requests on another HTTP connection.
 Receiving a GOAWAY containing a larger identifier than previously
 received MUST be treated as a connection error of type H3_ID_ERROR;
 see Section 8.

 An endpoint that is attempting to gracefully shut down a connection
 can send a GOAWAY frame with a value set to the maximum possible
 value (2^(62)-4 for servers, 2^(62)-1 for clients). This ensures
 that the peer stops creating new requests or pushes. After allowing
 time for any in-flight requests or pushes to arrive, the endpoint can
 send another GOAWAY frame indicating which requests or pushes it
 might accept before the end of the connection. This ensures that a
 connection can be cleanly shut down without losing requests.

 A client has more flexibility in the value it chooses for the Push ID
 in a GOAWAY that it sends. A value of 2^(62)-1 indicates that the
 server can continue fulfilling pushes that have already been
 promised. A smaller value indicates the client will reject pushes
 with Push IDs greater than or equal to this value. Like the server,
 the client MAY send subsequent GOAWAY frames so long as the specified
 Push ID is no greater than any previously sent value.

 Even when a GOAWAY indicates that a given request or push will not be
 processed or accepted upon receipt, the underlying transport
 resources still exist. The endpoint that initiated these requests
 can cancel them to clean up transport state.

Bishop Expires 6 August 2021 [Page 25]

Internet-Draft HTTP/3 February 2021

 Once all accepted requests and pushes have been processed, the
 endpoint can permit the connection to become idle, or MAY initiate an
 immediate closure of the connection. An endpoint that completes a
 graceful shutdown SHOULD use the H3_NO_ERROR error code when closing
 the connection.

 If a client has consumed all available bidirectional stream IDs with
 requests, the server need not send a GOAWAY frame, since the client
 is unable to make further requests.

5.3. Immediate Application Closure

 An HTTP/3 implementation can immediately close the QUIC connection at
 any time. This results in sending a QUIC CONNECTION_CLOSE frame to
 the peer indicating that the application layer has terminated the
 connection. The application error code in this frame indicates to
 the peer why the connection is being closed. See Section 8 for error
 codes that can be used when closing a connection in HTTP/3.

 Before closing the connection, a GOAWAY frame MAY be sent to allow
 the client to retry some requests. Including the GOAWAY frame in the
 same packet as the QUIC CONNECTION_CLOSE frame improves the chances
 of the frame being received by clients.

 If there are open streams that have not been explicitly closed, they
 are implicitly closed when the connection is closed; see Section 10.2
 of [QUIC-TRANSPORT].

5.4. Transport Closure

 For various reasons, the QUIC transport could indicate to the
 application layer that the connection has terminated. This might be
 due to an explicit closure by the peer, a transport-level error, or a
 change in network topology that interrupts connectivity.

 If a connection terminates without a GOAWAY frame, clients MUST
 assume that any request that was sent, whether in whole or in part,
 might have been processed.

Bishop Expires 6 August 2021 [Page 26]

Internet-Draft HTTP/3 February 2021

6. Stream Mapping and Usage

 A QUIC stream provides reliable in-order delivery of bytes, but makes
 no guarantees about order of delivery with regard to bytes on other
 streams. In version 1 of QUIC, the stream data containing HTTP
 frames is carried by QUIC STREAM frames, but this framing is
 invisible to the HTTP framing layer. The transport layer buffers and
 orders received stream data, exposing a reliable byte stream to the
 application. Although QUIC permits out-of-order delivery within a
 stream, HTTP/3 does not make use of this feature.

 QUIC streams can be either unidirectional, carrying data only from
 initiator to receiver, or bidirectional. Streams can be initiated by
 either the client or the server. For more detail on QUIC streams,
 see Section 2 of [QUIC-TRANSPORT].

 When HTTP fields and data are sent over QUIC, the QUIC layer handles
 most of the stream management. HTTP does not need to do any separate
 multiplexing when using QUIC - data sent over a QUIC stream always
 maps to a particular HTTP transaction or to the entire HTTP/3
 connection context.

6.1. Bidirectional Streams

 All client-initiated bidirectional streams are used for HTTP requests
 and responses. A bidirectional stream ensures that the response can
 be readily correlated with the request. These streams are referred
 to as request streams.

 This means that the client’s first request occurs on QUIC stream 0,
 with subsequent requests on stream 4, 8, and so on. In order to
 permit these streams to open, an HTTP/3 server SHOULD configure non-
 zero minimum values for the number of permitted streams and the
 initial stream flow control window. So as to not unnecessarily limit
 parallelism, at least 100 request streams SHOULD be permitted at a
 time.

 HTTP/3 does not use server-initiated bidirectional streams, though an
 extension could define a use for these streams. Clients MUST treat
 receipt of a server-initiated bidirectional stream as a connection
 error of type H3_STREAM_CREATION_ERROR (Section 8) unless such an
 extension has been negotiated.

Bishop Expires 6 August 2021 [Page 27]

Internet-Draft HTTP/3 February 2021

6.2. Unidirectional Streams

 Unidirectional streams, in either direction, are used for a range of
 purposes. The purpose is indicated by a stream type, which is sent
 as a variable-length integer at the start of the stream. The format
 and structure of data that follows this integer is determined by the
 stream type.

 Unidirectional Stream Header {
 Stream Type (i),
 }

 Figure 1: Unidirectional Stream Header

 Two stream types are defined in this document: control streams
 (Section 6.2.1) and push streams (Section 6.2.2). [QPACK] defines
 two additional stream types. Other stream types can be defined by
 extensions to HTTP/3; see Section 9 for more details. Some stream
 types are reserved (Section 6.2.3).

 The performance of HTTP/3 connections in the early phase of their
 lifetime is sensitive to the creation and exchange of data on
 unidirectional streams. Endpoints that excessively restrict the
 number of streams or the flow control window of these streams will
 increase the chance that the remote peer reaches the limit early and
 becomes blocked. In particular, implementations should consider that
 remote peers may wish to exercise reserved stream behavior
 (Section 6.2.3) with some of the unidirectional streams they are
 permitted to use. To avoid blocking, the transport parameters sent
 by both clients and servers MUST allow the peer to create at least
 one unidirectional stream for the HTTP control stream plus the number
 of unidirectional streams required by mandatory extensions (three
 being the minimum number required for the base HTTP/3 protocol and
 QPACK), and SHOULD provide at least 1,024 bytes of flow control
 credit to each stream.

 Note that an endpoint is not required to grant additional credits to
 create more unidirectional streams if its peer consumes all the
 initial credits before creating the critical unidirectional streams.
 Endpoints SHOULD create the HTTP control stream as well as the
 unidirectional streams required by mandatory extensions (such as the
 QPACK encoder and decoder streams) first, and then create additional
 streams as allowed by their peer.

Bishop Expires 6 August 2021 [Page 28]

Internet-Draft HTTP/3 February 2021

 If the stream header indicates a stream type that is not supported by
 the recipient, the remainder of the stream cannot be consumed as the
 semantics are unknown. Recipients of unknown stream types MAY abort
 reading of the stream with an error code of H3_STREAM_CREATION_ERROR
 or a reserved error code (Section 8.1), but MUST NOT consider such
 streams to be a connection error of any kind.

 Implementations MAY send stream types before knowing whether the peer
 supports them. However, stream types that could modify the state or
 semantics of existing protocol components, including QPACK or other
 extensions, MUST NOT be sent until the peer is known to support them.

 A sender can close or reset a unidirectional stream unless otherwise
 specified. A receiver MUST tolerate unidirectional streams being
 closed or reset prior to the reception of the unidirectional stream
 header.

6.2.1. Control Streams

 A control stream is indicated by a stream type of 0x00. Data on this
 stream consists of HTTP/3 frames, as defined in Section 7.2.

 Each side MUST initiate a single control stream at the beginning of
 the connection and send its SETTINGS frame as the first frame on this
 stream. If the first frame of the control stream is any other frame
 type, this MUST be treated as a connection error of type
 H3_MISSING_SETTINGS. Only one control stream per peer is permitted;
 receipt of a second stream claiming to be a control stream MUST be
 treated as a connection error of type H3_STREAM_CREATION_ERROR. The
 sender MUST NOT close the control stream, and the receiver MUST NOT
 request that the sender close the control stream. If either control
 stream is closed at any point, this MUST be treated as a connection
 error of type H3_CLOSED_CRITICAL_STREAM. Connection errors are
 described in Section 8.

 Because the contents of the control stream are used to manage the
 behavior of other streams, endpoints SHOULD provide enough flow
 control credit to keep the peer’s control stream from becoming
 blocked.

 A pair of unidirectional streams is used rather than a single
 bidirectional stream. This allows either peer to send data as soon
 as it is able. Depending on whether 0-RTT is available on the QUIC
 connection, either client or server might be able to send stream data
 first.

Bishop Expires 6 August 2021 [Page 29]

Internet-Draft HTTP/3 February 2021

6.2.2. Push Streams

 Server push is an optional feature introduced in HTTP/2 that allows a
 server to initiate a response before a request has been made. See
 Section 4.4 for more details.

 A push stream is indicated by a stream type of 0x01, followed by the
 Push ID of the promise that it fulfills, encoded as a variable-length
 integer. The remaining data on this stream consists of HTTP/3
 frames, as defined in Section 7.2, and fulfills a promised server
 push by zero or more interim HTTP responses followed by a single
 final HTTP response, as defined in Section 4.1. Server push and Push
 IDs are described in Section 4.4.

 Only servers can push; if a server receives a client-initiated push
 stream, this MUST be treated as a connection error of type
 H3_STREAM_CREATION_ERROR; see Section 8.

 Push Stream Header {
 Stream Type (i) = 0x01,
 Push ID (i),
 }

 Figure 2: Push Stream Header

 Each Push ID MUST only be used once in a push stream header. If a
 push stream header includes a Push ID that was used in another push
 stream header, the client MUST treat this as a connection error of
 type H3_ID_ERROR; see Section 8.

6.2.3. Reserved Stream Types

 Stream types of the format "0x1f * N + 0x21" for non-negative integer
 values of N are reserved to exercise the requirement that unknown
 types be ignored. These streams have no semantics, and can be sent
 when application-layer padding is desired. They MAY also be sent on
 connections where no data is currently being transferred. Endpoints
 MUST NOT consider these streams to have any meaning upon receipt.

 The payload and length of the stream are selected in any manner the
 sending implementation chooses. When sending a reserved stream type,
 the implementation MAY either terminate the stream cleanly or reset
 it. When resetting the stream, either the H3_NO_ERROR error code or
 a reserved error code (Section 8.1) SHOULD be used.

Bishop Expires 6 August 2021 [Page 30]

Internet-Draft HTTP/3 February 2021

7. HTTP Framing Layer

 HTTP frames are carried on QUIC streams, as described in Section 6.
 HTTP/3 defines three stream types: control stream, request stream,
 and push stream. This section describes HTTP/3 frame formats and
 their permitted stream types; see Table 1 for an overview. A
 comparison between HTTP/2 and HTTP/3 frames is provided in
 Appendix A.2.

 +==============+================+================+========+=========+
 | Frame | Control Stream | Request | Push | Section |
 | | | Stream | Stream | |
 +==============+================+================+========+=========+
 | DATA | No | Yes | Yes | Section |
 | | | | | 7.2.1 |
 +--------------+----------------+----------------+--------+---------+
 | HEADERS | No | Yes | Yes | Section |
 | | | | | 7.2.2 |
 +--------------+----------------+----------------+--------+---------+
 | CANCEL_PUSH | Yes | No | No | Section |
 | | | | | 7.2.3 |
 +--------------+----------------+----------------+--------+---------+
 | SETTINGS | Yes (1) | No | No | Section |
 | | | | | 7.2.4 |
 +--------------+----------------+----------------+--------+---------+
 | PUSH_PROMISE | No | Yes | No | Section |
 | | | | | 7.2.5 |
 +--------------+----------------+----------------+--------+---------+
 | GOAWAY | Yes | No | No | Section |
 | | | | | 7.2.6 |
 +--------------+----------------+----------------+--------+---------+
 | MAX_PUSH_ID | Yes | No | No | Section |
 | | | | | 7.2.7 |
 +--------------+----------------+----------------+--------+---------+
 | Reserved | Yes | Yes | Yes | Section |
 | | | | | 7.2.8 |
 +--------------+----------------+----------------+--------+---------+

 Table 1: HTTP/3 Frames and Stream Type Overview

 The SETTINGS frame can only occur as the first frame of a Control
 stream; this is indicated in Table 1 with a (1). Specific guidance
 is provided in the relevant section.

 Note that, unlike QUIC frames, HTTP/3 frames can span multiple
 packets.

Bishop Expires 6 August 2021 [Page 31]

Internet-Draft HTTP/3 February 2021

7.1. Frame Layout

 All frames have the following format:

 HTTP/3 Frame Format {
 Type (i),
 Length (i),
 Frame Payload (..),
 }

 Figure 3: HTTP/3 Frame Format

 A frame includes the following fields:

 Type: A variable-length integer that identifies the frame type.

 Length: A variable-length integer that describes the length in bytes
 of the Frame Payload.

 Frame Payload: A payload, the semantics of which are determined by
 the Type field.

 Each frame’s payload MUST contain exactly the fields identified in
 its description. A frame payload that contains additional bytes
 after the identified fields or a frame payload that terminates before
 the end of the identified fields MUST be treated as a connection
 error of type H3_FRAME_ERROR; see Section 8. In particular,
 redundant length encodings MUST be verified to be self-consistent;
 see Section 10.8.

 When a stream terminates cleanly, if the last frame on the stream was
 truncated, this MUST be treated as a connection error of type
 H3_FRAME_ERROR; see Section 8. Streams that terminate abruptly may
 be reset at any point in a frame.

7.2. Frame Definitions

7.2.1. DATA

 DATA frames (type=0x0) convey arbitrary, variable-length sequences of
 bytes associated with HTTP request or response content.

 DATA frames MUST be associated with an HTTP request or response. If
 a DATA frame is received on a control stream, the recipient MUST
 respond with a connection error of type H3_FRAME_UNEXPECTED; see
 Section 8.

Bishop Expires 6 August 2021 [Page 32]

Internet-Draft HTTP/3 February 2021

 DATA Frame {
 Type (i) = 0x0,
 Length (i),
 Data (..),
 }

 Figure 4: DATA Frame

7.2.2. HEADERS

 The HEADERS frame (type=0x1) is used to carry an HTTP field section,
 encoded using QPACK. See [QPACK] for more details.

 HEADERS Frame {
 Type (i) = 0x1,
 Length (i),
 Encoded Field Section (..),
 }

 Figure 5: HEADERS Frame

 HEADERS frames can only be sent on request or push streams. If a
 HEADERS frame is received on a control stream, the recipient MUST
 respond with a connection error (Section 8) of type
 H3_FRAME_UNEXPECTED.

7.2.3. CANCEL_PUSH

 The CANCEL_PUSH frame (type=0x3) is used to request cancellation of a
 server push prior to the push stream being received. The CANCEL_PUSH
 frame identifies a server push by Push ID (see Section 4.4), encoded
 as a variable-length integer.

 When a client sends CANCEL_PUSH, it is indicating that it does not
 wish to receive the promised resource. The server SHOULD abort
 sending the resource, but the mechanism to do so depends on the state
 of the corresponding push stream. If the server has not yet created
 a push stream, it does not create one. If the push stream is open,
 the server SHOULD abruptly terminate that stream. If the push stream
 has already ended, the server MAY still abruptly terminate the stream
 or MAY take no action.

Bishop Expires 6 August 2021 [Page 33]

Internet-Draft HTTP/3 February 2021

 A server sends CANCEL_PUSH to indicate that it will not be fulfilling
 a promise which was previously sent. The client cannot expect the
 corresponding promise to be fulfilled, unless it has already received
 and processed the promised response. Regardless of whether a push
 stream has been opened, a server SHOULD send a CANCEL_PUSH frame when
 it determines that promise will not be fulfilled. If a stream has
 already been opened, the server can abort sending on the stream with
 an error code of H3_REQUEST_CANCELLED.

 Sending a CANCEL_PUSH frame has no direct effect on the state of
 existing push streams. A client SHOULD NOT send a CANCEL_PUSH frame
 when it has already received a corresponding push stream. A push
 stream could arrive after a client has sent a CANCEL_PUSH frame,
 because a server might not have processed the CANCEL_PUSH. The
 client SHOULD abort reading the stream with an error code of
 H3_REQUEST_CANCELLED.

 A CANCEL_PUSH frame is sent on the control stream. Receiving a
 CANCEL_PUSH frame on a stream other than the control stream MUST be
 treated as a connection error of type H3_FRAME_UNEXPECTED.

 CANCEL_PUSH Frame {
 Type (i) = 0x3,
 Length (i),
 Push ID (i),
 }

 Figure 6: CANCEL_PUSH Frame

 The CANCEL_PUSH frame carries a Push ID encoded as a variable-length
 integer. The Push ID identifies the server push that is being
 cancelled; see Section 4.4. If a CANCEL_PUSH frame is received that
 references a Push ID greater than currently allowed on the
 connection, this MUST be treated as a connection error of type
 H3_ID_ERROR.

 If the client receives a CANCEL_PUSH frame, that frame might identify
 a Push ID that has not yet been mentioned by a PUSH_PROMISE frame due
 to reordering. If a server receives a CANCEL_PUSH frame for a Push
 ID that has not yet been mentioned by a PUSH_PROMISE frame, this MUST
 be treated as a connection error of type H3_ID_ERROR.

Bishop Expires 6 August 2021 [Page 34]

Internet-Draft HTTP/3 February 2021

7.2.4. SETTINGS

 The SETTINGS frame (type=0x4) conveys configuration parameters that
 affect how endpoints communicate, such as preferences and constraints
 on peer behavior. Individually, a SETTINGS parameter can also be
 referred to as a "setting"; the identifier and value of each setting
 parameter can be referred to as a "setting identifier" and a "setting
 value".

 SETTINGS frames always apply to an entire HTTP/3 connection, never a
 single stream. A SETTINGS frame MUST be sent as the first frame of
 each control stream (see Section 6.2.1) by each peer, and MUST NOT be
 sent subsequently. If an endpoint receives a second SETTINGS frame
 on the control stream, the endpoint MUST respond with a connection
 error of type H3_FRAME_UNEXPECTED.

 SETTINGS frames MUST NOT be sent on any stream other than the control
 stream. If an endpoint receives a SETTINGS frame on a different
 stream, the endpoint MUST respond with a connection error of type
 H3_FRAME_UNEXPECTED.

 SETTINGS parameters are not negotiated; they describe characteristics
 of the sending peer that can be used by the receiving peer. However,
 a negotiation can be implied by the use of SETTINGS - each peer uses
 SETTINGS to advertise a set of supported values. The definition of
 the setting would describe how each peer combines the two sets to
 conclude which choice will be used. SETTINGS does not provide a
 mechanism to identify when the choice takes effect.

 Different values for the same parameter can be advertised by each
 peer. For example, a client might be willing to consume a very large
 response field section, while servers are more cautious about request
 size.

 The same setting identifier MUST NOT occur more than once in the
 SETTINGS frame. A receiver MAY treat the presence of duplicate
 setting identifiers as a connection error of type H3_SETTINGS_ERROR.

 The payload of a SETTINGS frame consists of zero or more parameters.
 Each parameter consists of a setting identifier and a value, both
 encoded as QUIC variable-length integers.

Bishop Expires 6 August 2021 [Page 35]

Internet-Draft HTTP/3 February 2021

 Setting {
 Identifier (i),
 Value (i),
 }

 SETTINGS Frame {
 Type (i) = 0x4,
 Length (i),
 Setting (..) ...,
 }

 Figure 7: SETTINGS Frame

 An implementation MUST ignore any parameter with an identifier it
 does not understand.

7.2.4.1. Defined SETTINGS Parameters

 The following settings are defined in HTTP/3:

 SETTINGS_MAX_FIELD_SECTION_SIZE (0x6): The default value is
 unlimited. See Section 4.1.1.3 for usage.

 Setting identifiers of the format "0x1f * N + 0x21" for non-negative
 integer values of N are reserved to exercise the requirement that
 unknown identifiers be ignored. Such settings have no defined
 meaning. Endpoints SHOULD include at least one such setting in their
 SETTINGS frame. Endpoints MUST NOT consider such settings to have
 any meaning upon receipt.

 Because the setting has no defined meaning, the value of the setting
 can be any value the implementation selects.

 Setting identifiers which were defined in [HTTP2] where there is no
 corresponding HTTP/3 setting have also been reserved
 (Section 11.2.2). These reserved settings MUST NOT be sent, and
 their receipt MUST be treated as a connection error of type
 H3_SETTINGS_ERROR.

 Additional settings can be defined by extensions to HTTP/3; see
 Section 9 for more details.

7.2.4.2. Initialization

 An HTTP implementation MUST NOT send frames or requests that would be
 invalid based on its current understanding of the peer’s settings.

Bishop Expires 6 August 2021 [Page 36]

Internet-Draft HTTP/3 February 2021

 All settings begin at an initial value. Each endpoint SHOULD use
 these initial values to send messages before the peer’s SETTINGS
 frame has arrived, as packets carrying the settings can be lost or
 delayed. When the SETTINGS frame arrives, any settings are changed
 to their new values.

 This removes the need to wait for the SETTINGS frame before sending
 messages. Endpoints MUST NOT require any data to be received from
 the peer prior to sending the SETTINGS frame; settings MUST be sent
 as soon as the transport is ready to send data.

 For servers, the initial value of each client setting is the default
 value.

 For clients using a 1-RTT QUIC connection, the initial value of each
 server setting is the default value. 1-RTT keys will always become
 available prior to the packet containing SETTINGS being processed by
 QUIC, even if the server sends SETTINGS immediately. Clients SHOULD
 NOT wait indefinitely for SETTINGS to arrive before sending requests,
 but SHOULD process received datagrams in order to increase the
 likelihood of processing SETTINGS before sending the first request.

 When a 0-RTT QUIC connection is being used, the initial value of each
 server setting is the value used in the previous session. Clients
 SHOULD store the settings the server provided in the HTTP/3
 connection where resumption information was provided, but MAY opt not
 to store settings in certain cases (e.g., if the session ticket is
 received before the SETTINGS frame). A client MUST comply with
 stored settings -- or default values, if no values are stored -- when
 attempting 0-RTT. Once a server has provided new settings, clients
 MUST comply with those values.

 A server can remember the settings that it advertised, or store an
 integrity-protected copy of the values in the ticket and recover the
 information when accepting 0-RTT data. A server uses the HTTP/3
 settings values in determining whether to accept 0-RTT data. If the
 server cannot determine that the settings remembered by a client are
 compatible with its current settings, it MUST NOT accept 0-RTT data.
 Remembered settings are compatible if a client complying with those
 settings would not violate the server’s current settings.

 A server MAY accept 0-RTT and subsequently provide different settings
 in its SETTINGS frame. If 0-RTT data is accepted by the server, its
 SETTINGS frame MUST NOT reduce any limits or alter any values that
 might be violated by the client with its 0-RTT data. The server MUST
 include all settings that differ from their default values. If a
 server accepts 0-RTT but then sends settings that are not compatible
 with the previously specified settings, this MUST be treated as a

Bishop Expires 6 August 2021 [Page 37]

Internet-Draft HTTP/3 February 2021

 connection error of type H3_SETTINGS_ERROR. If a server accepts
 0-RTT but then sends a SETTINGS frame that omits a setting value that
 the client understands (apart from reserved setting identifiers) that
 was previously specified to have a non-default value, this MUST be
 treated as a connection error of type H3_SETTINGS_ERROR.

7.2.5. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x5) is used to carry a promised request
 header section from server to client on a request stream, as in
 HTTP/2.

 PUSH_PROMISE Frame {
 Type (i) = 0x5,
 Length (i),
 Push ID (i),
 Encoded Field Section (..),
 }

 Figure 8: PUSH_PROMISE Frame

 The payload consists of:

 Push ID: A variable-length integer that identifies the server push
 operation. A Push ID is used in push stream headers (Section 4.4)
 and CANCEL_PUSH frames (Section 7.2.3).

 Encoded Field Section: QPACK-encoded request header fields for the
 promised response. See [QPACK] for more details.

 A server MUST NOT use a Push ID that is larger than the client has
 provided in a MAX_PUSH_ID frame (Section 7.2.7). A client MUST treat
 receipt of a PUSH_PROMISE frame that contains a larger Push ID than
 the client has advertised as a connection error of H3_ID_ERROR.

 A server MAY use the same Push ID in multiple PUSH_PROMISE frames.
 If so, the decompressed request header sets MUST contain the same
 fields in the same order, and both the name and the value in each
 field MUST be exact matches. Clients SHOULD compare the request
 header sections for resources promised multiple times. If a client
 receives a Push ID that has already been promised and detects a
 mismatch, it MUST respond with a connection error of type
 H3_GENERAL_PROTOCOL_ERROR. If the decompressed field sections match
 exactly, the client SHOULD associate the pushed content with each
 stream on which a PUSH_PROMISE frame was received.

Bishop Expires 6 August 2021 [Page 38]

Internet-Draft HTTP/3 February 2021

 Allowing duplicate references to the same Push ID is primarily to
 reduce duplication caused by concurrent requests. A server SHOULD
 avoid reusing a Push ID over a long period. Clients are likely to
 consume server push responses and not retain them for reuse over
 time. Clients that see a PUSH_PROMISE frame that uses a Push ID that
 they have already consumed and discarded are forced to ignore the
 promise.

 If a PUSH_PROMISE frame is received on the control stream, the client
 MUST respond with a connection error of type H3_FRAME_UNEXPECTED; see
 Section 8.

 A client MUST NOT send a PUSH_PROMISE frame. A server MUST treat the
 receipt of a PUSH_PROMISE frame as a connection error of type
 H3_FRAME_UNEXPECTED; see Section 8.

 See Section 4.4 for a description of the overall server push
 mechanism.

7.2.6. GOAWAY

 The GOAWAY frame (type=0x7) is used to initiate graceful shutdown of
 an HTTP/3 connection by either endpoint. GOAWAY allows an endpoint
 to stop accepting new requests or pushes while still finishing
 processing of previously received requests and pushes. This enables
 administrative actions, like server maintenance. GOAWAY by itself
 does not close a connection.

 GOAWAY Frame {
 Type (i) = 0x7,
 Length (i),
 Stream ID/Push ID (..),
 }

 Figure 9: GOAWAY Frame

 The GOAWAY frame is always sent on the control stream. In the server
 to client direction, it carries a QUIC Stream ID for a client-
 initiated bidirectional stream encoded as a variable-length integer.
 A client MUST treat receipt of a GOAWAY frame containing a Stream ID
 of any other type as a connection error of type H3_ID_ERROR.

 In the client to server direction, the GOAWAY frame carries a Push ID
 encoded as a variable-length integer.

Bishop Expires 6 August 2021 [Page 39]

Internet-Draft HTTP/3 February 2021

 The GOAWAY frame applies to the entire connection, not a specific
 stream. A client MUST treat a GOAWAY frame on a stream other than
 the control stream as a connection error of type H3_FRAME_UNEXPECTED;
 see Section 8.

 See Section 5.2 for more information on the use of the GOAWAY frame.

7.2.7. MAX_PUSH_ID

 The MAX_PUSH_ID frame (type=0xd) is used by clients to control the
 number of server pushes that the server can initiate. This sets the
 maximum value for a Push ID that the server can use in PUSH_PROMISE
 and CANCEL_PUSH frames. Consequently, this also limits the number of
 push streams that the server can initiate in addition to the limit
 maintained by the QUIC transport.

 The MAX_PUSH_ID frame is always sent on the control stream. Receipt
 of a MAX_PUSH_ID frame on any other stream MUST be treated as a
 connection error of type H3_FRAME_UNEXPECTED.

 A server MUST NOT send a MAX_PUSH_ID frame. A client MUST treat the
 receipt of a MAX_PUSH_ID frame as a connection error of type
 H3_FRAME_UNEXPECTED.

 The maximum Push ID is unset when an HTTP/3 connection is created,
 meaning that a server cannot push until it receives a MAX_PUSH_ID
 frame. A client that wishes to manage the number of promised server
 pushes can increase the maximum Push ID by sending MAX_PUSH_ID frames
 as the server fulfills or cancels server pushes.

 MAX_PUSH_ID Frame {
 Type (i) = 0xd,
 Length (i),
 Push ID (i),
 }

 Figure 10: MAX_PUSH_ID Frame

 The MAX_PUSH_ID frame carries a single variable-length integer that
 identifies the maximum value for a Push ID that the server can use;
 see Section 4.4. A MAX_PUSH_ID frame cannot reduce the maximum Push
 ID; receipt of a MAX_PUSH_ID frame that contains a smaller value than
 previously received MUST be treated as a connection error of type
 H3_ID_ERROR.

Bishop Expires 6 August 2021 [Page 40]

Internet-Draft HTTP/3 February 2021

7.2.8. Reserved Frame Types

 Frame types of the format "0x1f * N + 0x21" for non-negative integer
 values of N are reserved to exercise the requirement that unknown
 types be ignored (Section 9). These frames have no semantics, and
 MAY be sent on any stream where frames are allowed to be sent. This
 enables their use for application-layer padding. Endpoints MUST NOT
 consider these frames to have any meaning upon receipt.

 The payload and length of the frames are selected in any manner the
 implementation chooses.

 Frame types that were used in HTTP/2 where there is no corresponding
 HTTP/3 frame have also been reserved (Section 11.2.1). These frame
 types MUST NOT be sent, and their receipt MUST be treated as a
 connection error of type H3_FRAME_UNEXPECTED.

8. Error Handling

 When a stream cannot be completed successfully, QUIC allows the
 application to abruptly terminate (reset) that stream and communicate
 a reason; see Section 2.4 of [QUIC-TRANSPORT]. This is referred to
 as a "stream error." An HTTP/3 implementation can decide to close a
 QUIC stream and communicate the type of error. Wire encodings of
 error codes are defined in Section 8.1. Stream errors are distinct
 from HTTP status codes which indicate error conditions. Stream
 errors indicate that the sender did not transfer or consume the full
 request or response, while HTTP status codes indicate the result of a
 request that was successfully received.

 If an entire connection needs to be terminated, QUIC similarly
 provides mechanisms to communicate a reason; see Section 5.3 of
 [QUIC-TRANSPORT]. This is referred to as a "connection error."
 Similar to stream errors, an HTTP/3 implementation can terminate a
 QUIC connection and communicate the reason using an error code from
 Section 8.1.

 Although the reasons for closing streams and connections are called
 "errors," these actions do not necessarily indicate a problem with
 the connection or either implementation. For example, a stream can
 be reset if the requested resource is no longer needed.

 An endpoint MAY choose to treat a stream error as a connection error
 under certain circumstances, closing the entire connection in
 response to a condition on a single stream. Implementations need to
 consider the impact on outstanding requests before making this
 choice.

Bishop Expires 6 August 2021 [Page 41]

Internet-Draft HTTP/3 February 2021

 Because new error codes can be defined without negotiation (see
 Section 9), use of an error code in an unexpected context or receipt
 of an unknown error code MUST be treated as equivalent to
 H3_NO_ERROR. However, closing a stream can have other effects
 regardless of the error code; for example, see Section 4.1.

8.1. HTTP/3 Error Codes

 The following error codes are defined for use when abruptly
 terminating streams, aborting reading of streams, or immediately
 closing HTTP/3 connections.

 H3_NO_ERROR (0x100): No error. This is used when the connection or
 stream needs to be closed, but there is no error to signal.

 H3_GENERAL_PROTOCOL_ERROR (0x101): Peer violated protocol
 requirements in a way that does not match a more specific error
 code, or endpoint declines to use the more specific error code.

 H3_INTERNAL_ERROR (0x102): An internal error has occurred in the
 HTTP stack.

 H3_STREAM_CREATION_ERROR (0x103): The endpoint detected that its
 peer created a stream that it will not accept.

 H3_CLOSED_CRITICAL_STREAM (0x104): A stream required by the HTTP/3
 connection was closed or reset.

 H3_FRAME_UNEXPECTED (0x105): A frame was received that was not
 permitted in the current state or on the current stream.

 H3_FRAME_ERROR (0x106): A frame that fails to satisfy layout
 requirements or with an invalid size was received.

 H3_EXCESSIVE_LOAD (0x107): The endpoint detected that its peer is
 exhibiting a behavior that might be generating excessive load.

 H3_ID_ERROR (0x108): A Stream ID or Push ID was used incorrectly,
 such as exceeding a limit, reducing a limit, or being reused.

 H3_SETTINGS_ERROR (0x109): An endpoint detected an error in the
 payload of a SETTINGS frame.

 H3_MISSING_SETTINGS (0x10a): No SETTINGS frame was received at the
 beginning of the control stream.

 H3_REQUEST_REJECTED (0x10b): A server rejected a request without
 performing any application processing.

Bishop Expires 6 August 2021 [Page 42]

Internet-Draft HTTP/3 February 2021

 H3_REQUEST_CANCELLED (0x10c): The request or its response (including
 pushed response) is cancelled.

 H3_REQUEST_INCOMPLETE (0x10d): The client’s stream terminated
 without containing a fully-formed request.

 H3_MESSAGE_ERROR (0x10e): An HTTP message was malformed and cannot
 be processed.

 H3_CONNECT_ERROR (0x10f): The TCP connection established in response
 to a CONNECT request was reset or abnormally closed.

 H3_VERSION_FALLBACK (0x110): The requested operation cannot be
 served over HTTP/3. The peer should retry over HTTP/1.1.

 Error codes of the format "0x1f * N + 0x21" for non-negative integer
 values of N are reserved to exercise the requirement that unknown
 error codes be treated as equivalent to H3_NO_ERROR (Section 9).
 Implementations SHOULD select an error code from this space with some
 probability when they would have sent H3_NO_ERROR.

9. Extensions to HTTP/3

 HTTP/3 permits extension of the protocol. Within the limitations
 described in this section, protocol extensions can be used to provide
 additional services or alter any aspect of the protocol. Extensions
 are effective only within the scope of a single HTTP/3 connection.

 This applies to the protocol elements defined in this document. This
 does not affect the existing options for extending HTTP, such as
 defining new methods, status codes, or fields.

 Extensions are permitted to use new frame types (Section 7.2), new
 settings (Section 7.2.4.1), new error codes (Section 8), or new
 unidirectional stream types (Section 6.2). Registries are
 established for managing these extension points: frame types
 (Section 11.2.1), settings (Section 11.2.2), error codes
 (Section 11.2.3), and stream types (Section 11.2.4).

 Implementations MUST ignore unknown or unsupported values in all
 extensible protocol elements. Implementations MUST discard frames
 and abort reading on unidirectional streams that have unknown or
 unsupported types. This means that any of these extension points can
 be safely used by extensions without prior arrangement or
 negotiation. However, where a known frame type is required to be in
 a specific location, such as the SETTINGS frame as the first frame of
 the control stream (see Section 6.2.1), an unknown frame type does
 not satisfy that requirement and SHOULD be treated as an error.

Bishop Expires 6 August 2021 [Page 43]

Internet-Draft HTTP/3 February 2021

 Extensions that could change the semantics of existing protocol
 components MUST be negotiated before being used. For example, an
 extension that changes the layout of the HEADERS frame cannot be used
 until the peer has given a positive signal that this is acceptable.
 Coordinating when such a revised layout comes into effect could prove
 complex. As such, allocating new identifiers for new definitions of
 existing protocol elements is likely to be more effective.

 This document does not mandate a specific method for negotiating the
 use of an extension but notes that a setting (Section 7.2.4.1) could
 be used for that purpose. If both peers set a value that indicates
 willingness to use the extension, then the extension can be used. If
 a setting is used for extension negotiation, the default value MUST
 be defined in such a fashion that the extension is disabled if the
 setting is omitted.

10. Security Considerations

 The security considerations of HTTP/3 should be comparable to those
 of HTTP/2 with TLS. However, many of the considerations from
 Section 10 of [HTTP2] apply to [QUIC-TRANSPORT] and are discussed in
 that document.

10.1. Server Authority

 HTTP/3 relies on the HTTP definition of authority. The security
 considerations of establishing authority are discussed in
 Section 17.1 of [SEMANTICS].

10.2. Cross-Protocol Attacks

 The use of ALPN in the TLS and QUIC handshakes establishes the target
 application protocol before application-layer bytes are processed.
 This ensures that endpoints have strong assurances that peers are
 using the same protocol.

 This does not guarantee protection from all cross-protocol attacks.
 Section 21.5 of [QUIC-TRANSPORT] describes some ways in which the
 plaintext of QUIC packets can be used to perform request forgery
 against endpoints that don’t use authenticated transports.

Bishop Expires 6 August 2021 [Page 44]

Internet-Draft HTTP/3 February 2021

10.3. Intermediary Encapsulation Attacks

 The HTTP/3 field encoding allows the expression of names that are not
 valid field names in the syntax used by HTTP (Section 5.1 of
 [SEMANTICS]). Requests or responses containing invalid field names
 MUST be treated as malformed (Section 4.1.3). An intermediary
 therefore cannot translate an HTTP/3 request or response containing
 an invalid field name into an HTTP/1.1 message.

 Similarly, HTTP/3 can transport field values that are not valid.
 While most values that can be encoded will not alter field parsing,
 carriage return (CR, ASCII 0xd), line feed (LF, ASCII 0xa), and the
 zero character (NUL, ASCII 0x0) might be exploited by an attacker if
 they are translated verbatim. Any request or response that contains
 a character not permitted in a field value MUST be treated as
 malformed (Section 4.1.3). Valid characters are defined by the
 "field-content" ABNF rule in Section 5.5 of [SEMANTICS].

10.4. Cacheability of Pushed Responses

 Pushed responses do not have an explicit request from the client; the
 request is provided by the server in the PUSH_PROMISE frame.

 Caching responses that are pushed is possible based on the guidance
 provided by the origin server in the Cache-Control header field.
 However, this can cause issues if a single server hosts more than one
 tenant. For example, a server might offer multiple users each a
 small portion of its URI space.

 Where multiple tenants share space on the same server, that server
 MUST ensure that tenants are not able to push representations of
 resources that they do not have authority over. Failure to enforce
 this would allow a tenant to provide a representation that would be
 served out of cache, overriding the actual representation that the
 authoritative tenant provides.

 Clients are required to reject pushed responses for which an origin
 server is not authoritative; see Section 4.4.

10.5. Denial-of-Service Considerations

 An HTTP/3 connection can demand a greater commitment of resources to
 operate than an HTTP/1.1 or HTTP/2 connection. The use of field
 compression and flow control depend on a commitment of resources for
 storing a greater amount of state. Settings for these features
 ensure that memory commitments for these features are strictly
 bounded.

Bishop Expires 6 August 2021 [Page 45]

Internet-Draft HTTP/3 February 2021

 The number of PUSH_PROMISE frames is constrained in a similar
 fashion. A client that accepts server push SHOULD limit the number
 of Push IDs it issues at a time.

 Processing capacity cannot be guarded as effectively as state
 capacity.

 The ability to send undefined protocol elements that the peer is
 required to ignore can be abused to cause a peer to expend additional
 processing time. This might be done by setting multiple undefined
 SETTINGS parameters, unknown frame types, or unknown stream types.
 Note, however, that some uses are entirely legitimate, such as
 optional-to-understand extensions and padding to increase resistance
 to traffic analysis.

 Compression of field sections also offers some opportunities to waste
 processing resources; see Section 7 of [QPACK] for more details on
 potential abuses.

 All these features -- i.e., server push, unknown protocol elements,
 field compression -- have legitimate uses. These features become a
 burden only when they are used unnecessarily or to excess.

 An endpoint that does not monitor such behavior exposes itself to a
 risk of denial-of-service attack. Implementations SHOULD track the
 use of these features and set limits on their use. An endpoint MAY
 treat activity that is suspicious as a connection error of type
 H3_EXCESSIVE_LOAD (Section 8), but false positives will result in
 disrupting valid connections and requests.

10.5.1. Limits on Field Section Size

 A large field section (Section 4.1) can cause an implementation to
 commit a large amount of state. Header fields that are critical for
 routing can appear toward the end of a header section, which prevents
 streaming of the header section to its ultimate destination. This
 ordering and other reasons, such as ensuring cache correctness, mean
 that an endpoint likely needs to buffer the entire header section.
 Since there is no hard limit to the size of a field section, some
 endpoints could be forced to commit a large amount of available
 memory for header fields.

 An endpoint can use the SETTINGS_MAX_FIELD_SECTION_SIZE
 (Section 4.1.1.3) setting to advise peers of limits that might apply
 on the size of field sections. This setting is only advisory, so
 endpoints MAY choose to send field sections that exceed this limit
 and risk having the request or response being treated as malformed.
 This setting is specific to an HTTP/3 connection, so any request or

Bishop Expires 6 August 2021 [Page 46]

Internet-Draft HTTP/3 February 2021

 response could encounter a hop with a lower, unknown limit. An
 intermediary can attempt to avoid this problem by passing on values
 presented by different peers, but they are not obligated to do so.

 A server that receives a larger field section than it is willing to
 handle can send an HTTP 431 (Request Header Fields Too Large) status
 code ([RFC6585]). A client can discard responses that it cannot
 process.

10.5.2. CONNECT Issues

 The CONNECT method can be used to create disproportionate load on a
 proxy, since stream creation is relatively inexpensive when compared
 to the creation and maintenance of a TCP connection. Therefore, a
 proxy that supports CONNECT might be more conservative in the number
 of simultaneous requests it accepts.

 A proxy might also maintain some resources for a TCP connection
 beyond the closing of the stream that carries the CONNECT request,
 since the outgoing TCP connection remains in the TIME_WAIT state. To
 account for this, a proxy might delay increasing the QUIC stream
 limits for some time after a TCP connection terminates.

10.6. Use of Compression

 Compression can allow an attacker to recover secret data when it is
 compressed in the same context as data under attacker control.
 HTTP/3 enables compression of fields (Section 4.1.1); the following
 concerns also apply to the use of HTTP compressed content-codings;
 see Section 8.4.1 of [SEMANTICS].

 There are demonstrable attacks on compression that exploit the
 characteristics of the web (e.g., [BREACH]). The attacker induces
 multiple requests containing varying plaintext, observing the length
 of the resulting ciphertext in each, which reveals a shorter length
 when a guess about the secret is correct.

 Implementations communicating on a secure channel MUST NOT compress
 content that includes both confidential and attacker-controlled data
 unless separate compression contexts are used for each source of
 data. Compression MUST NOT be used if the source of data cannot be
 reliably determined.

 Further considerations regarding the compression of field sections
 are described in [QPACK].

Bishop Expires 6 August 2021 [Page 47]

Internet-Draft HTTP/3 February 2021

10.7. Padding and Traffic Analysis

 Padding can be used to obscure the exact size of frame content and is
 provided to mitigate specific attacks within HTTP, for example,
 attacks where compressed content includes both attacker-controlled
 plaintext and secret data (e.g., [BREACH]).

 Where HTTP/2 employs PADDING frames and Padding fields in other
 frames to make a connection more resistant to traffic analysis,
 HTTP/3 can either rely on transport-layer padding or employ the
 reserved frame and stream types discussed in Section 7.2.8 and
 Section 6.2.3. These methods of padding produce different results in
 terms of the granularity of padding, how padding is arranged in
 relation to the information that is being protected, whether padding
 is applied in the case of packet loss, and how an implementation
 might control padding.

 Reserved stream types can be used to give the appearance of sending
 traffic even when the connection is idle. Because HTTP traffic often
 occurs in bursts, apparent traffic can be used to obscure the timing
 or duration of such bursts, even to the point of appearing to send a
 constant stream of data. However, as such traffic is still flow
 controlled by the receiver, a failure to promptly drain such streams
 and provide additional flow control credit can limit the sender’s
 ability to send real traffic.

 To mitigate attacks that rely on compression, disabling or limiting
 compression might be preferable to padding as a countermeasure.

 Use of padding can result in less protection than might seem
 immediately obvious. Redundant padding could even be
 counterproductive. At best, padding only makes it more difficult for
 an attacker to infer length information by increasing the number of
 frames an attacker has to observe. Incorrectly implemented padding
 schemes can be easily defeated. In particular, randomized padding
 with a predictable distribution provides very little protection;
 similarly, padding payloads to a fixed size exposes information as
 payload sizes cross the fixed-sized boundary, which could be possible
 if an attacker can control plaintext.

10.8. Frame Parsing

 Several protocol elements contain nested length elements, typically
 in the form of frames with an explicit length containing variable-
 length integers. This could pose a security risk to an incautious
 implementer. An implementation MUST ensure that the length of a
 frame exactly matches the length of the fields it contains.

Bishop Expires 6 August 2021 [Page 48]

Internet-Draft HTTP/3 February 2021

10.9. Early Data

 The use of 0-RTT with HTTP/3 creates an exposure to replay attack.
 The anti-replay mitigations in [HTTP-REPLAY] MUST be applied when
 using HTTP/3 with 0-RTT. When applying [HTTP-REPLAY] to HTTP/3,
 references to the TLS layer refer to the handshake performed within
 QUIC, while all references to application data refer to the contents
 of streams.

10.10. Migration

 Certain HTTP implementations use the client address for logging or
 access-control purposes. Since a QUIC client’s address might change
 during a connection (and future versions might support simultaneous
 use of multiple addresses), such implementations will need to either
 actively retrieve the client’s current address or addresses when they
 are relevant or explicitly accept that the original address might
 change.

10.11. Privacy Considerations

 Several characteristics of HTTP/3 provide an observer an opportunity
 to correlate actions of a single client or server over time. These
 include the value of settings, the timing of reactions to stimulus,
 and the handling of any features that are controlled by settings.

 As far as these create observable differences in behavior, they could
 be used as a basis for fingerprinting a specific client.

 HTTP/3’s preference for using a single QUIC connection allows
 correlation of a user’s activity on a site. Reusing connections for
 different origins allows for correlation of activity across those
 origins.

 Several features of QUIC solicit immediate responses and can be used
 by an endpoint to measure latency to their peer; this might have
 privacy implications in certain scenarios.

11. IANA Considerations

 This document registers a new ALPN protocol ID (Section 11.1) and
 creates new registries that manage the assignment of codepoints in
 HTTP/3.

Bishop Expires 6 August 2021 [Page 49]

Internet-Draft HTTP/3 February 2021

11.1. Registration of HTTP/3 Identification String

 This document creates a new registration for the identification of
 HTTP/3 in the "Application Layer Protocol Negotiation (ALPN) Protocol
 IDs" registry established in [RFC7301].

 The "h3" string identifies HTTP/3:

 Protocol: HTTP/3

 Identification Sequence: 0x68 0x33 ("h3")

 Specification: This document

11.2. New Registries

 New registries created in this document operate under the QUIC
 registration policy documented in Section 22.1 of [QUIC-TRANSPORT].
 These registries all include the common set of fields listed in
 Section 22.1.1 of [QUIC-TRANSPORT]. These registries [SHALL be/are]
 collected under a "Hypertext Transfer Protocol version 3 (HTTP/3)
 Parameters" heading.

 The initial allocations in these registries created in this document
 are all assigned permanent status and list a change controller of the
 IETF and a contact of the HTTP working group (ietf-http-wg@w3.org).

11.2.1. Frame Types

 This document establishes a registry for HTTP/3 frame type codes.
 The "HTTP/3 Frame Type" registry governs a 62-bit space. This
 registry follows the QUIC registry policy; see Section 11.2.
 Permanent registrations in this registry are assigned using the
 Specification Required policy ([RFC8126]), except for values between
 0x00 and 0x3f (in hexadecimal; inclusive), which are assigned using
 Standards Action or IESG Approval as defined in Sections 4.9 and 4.10
 of [RFC8126].

 While this registry is separate from the "HTTP/2 Frame Type" registry
 defined in [HTTP2], it is preferable that the assignments parallel
 each other where the code spaces overlap. If an entry is present in
 only one registry, every effort SHOULD be made to avoid assigning the
 corresponding value to an unrelated operation. Expert reviewers MAY
 reject unrelated registrations which would conflict with the same
 value in the corresponding registry.

 In addition to common fields as described in Section 11.2, permanent
 registrations in this registry MUST include the following field:

Bishop Expires 6 August 2021 [Page 50]

Internet-Draft HTTP/3 February 2021

 Frame Type: A name or label for the frame type.

 Specifications of frame types MUST include a description of the frame
 layout and its semantics, including any parts of the frame that are
 conditionally present.

 The entries in Table 2 are registered by this document.

 +==============+=======+===============+
 | Frame Type | Value | Specification |
 +==============+=======+===============+
 | DATA | 0x0 | Section 7.2.1 |
 +--------------+-------+---------------+
 | HEADERS | 0x1 | Section 7.2.2 |
 +--------------+-------+---------------+
 | Reserved | 0x2 | N/A |
 +--------------+-------+---------------+
 | CANCEL_PUSH | 0x3 | Section 7.2.3 |
 +--------------+-------+---------------+
 | SETTINGS | 0x4 | Section 7.2.4 |
 +--------------+-------+---------------+
 | PUSH_PROMISE | 0x5 | Section 7.2.5 |
 +--------------+-------+---------------+
 | Reserved | 0x6 | N/A |
 +--------------+-------+---------------+
 | GOAWAY | 0x7 | Section 7.2.6 |
 +--------------+-------+---------------+
 | Reserved | 0x8 | N/A |
 +--------------+-------+---------------+
 | Reserved | 0x9 | N/A |
 +--------------+-------+---------------+
 | MAX_PUSH_ID | 0xd | Section 7.2.7 |
 +--------------+-------+---------------+

 Table 2: Initial HTTP/3 Frame Types

 Each code of the format "0x1f * N + 0x21" for non-negative integer
 values of N (that is, 0x21, 0x40, ..., through 0x3ffffffffffffffe)
 MUST NOT be assigned by IANA and MUST NOT appear in the listing of
 assigned values.

Bishop Expires 6 August 2021 [Page 51]

Internet-Draft HTTP/3 February 2021

11.2.2. Settings Parameters

 This document establishes a registry for HTTP/3 settings. The
 "HTTP/3 Settings" registry governs a 62-bit space. This registry
 follows the QUIC registry policy; see Section 11.2. Permanent
 registrations in this registry are assigned using the Specification
 Required policy ([RFC8126]), except for values between 0x00 and 0x3f
 (in hexadecimal; inclusive), which are assigned using Standards
 Action or IESG Approval as defined in Sections 4.9 and 4.10 of
 [RFC8126].

 While this registry is separate from the "HTTP/2 Settings" registry
 defined in [HTTP2], it is preferable that the assignments parallel
 each other. If an entry is present in only one registry, every
 effort SHOULD be made to avoid assigning the corresponding value to
 an unrelated operation. Expert reviewers MAY reject unrelated
 registrations which would conflict with the same value in the
 corresponding registry.

 In addition to common fields as described in Section 11.2, permanent
 registrations in this registry MUST include the following fields:

 Setting Name: A symbolic name for the setting. Specifying a setting
 name is optional.

 Default: The value of the setting unless otherwise indicated. A
 default SHOULD be the most restrictive possible value.

 The entries in Table 3 are registered by this document.

 +========================+=======+=================+===========+
 | Setting Name | Value | Specification | Default |
 +========================+=======+=================+===========+
 | Reserved | 0x0 | N/A | N/A |
 +------------------------+-------+-----------------+-----------+
 | Reserved | 0x2 | N/A | N/A |
 +------------------------+-------+-----------------+-----------+
 | Reserved | 0x3 | N/A | N/A |
 +------------------------+-------+-----------------+-----------+
 | Reserved | 0x4 | N/A | N/A |
 +------------------------+-------+-----------------+-----------+
 | Reserved | 0x5 | N/A | N/A |
 +------------------------+-------+-----------------+-----------+
 | MAX_FIELD_SECTION_SIZE | 0x6 | Section 7.2.4.1 | Unlimited |
 +------------------------+-------+-----------------+-----------+

 Table 3: Initial HTTP/3 Settings

Bishop Expires 6 August 2021 [Page 52]

Internet-Draft HTTP/3 February 2021

 Each code of the format "0x1f * N + 0x21" for non-negative integer
 values of N (that is, 0x21, 0x40, ..., through 0x3ffffffffffffffe)
 MUST NOT be assigned by IANA and MUST NOT appear in the listing of
 assigned values.

11.2.3. Error Codes

 This document establishes a registry for HTTP/3 error codes. The
 "HTTP/3 Error Code" registry manages a 62-bit space. This registry
 follows the QUIC registry policy; see Section 11.2. Permanent
 registrations in this registry are assigned using the Specification
 Required policy ([RFC8126]), except for values between 0x00 and 0x3f
 (in hexadecimal; inclusive), which are assigned using Standards
 Action or IESG Approval as defined in Sections 4.9 and 4.10 of
 [RFC8126].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.
 Use of values that are registered in the "HTTP/2 Error Code" registry
 is discouraged, and expert reviewers MAY reject such registrations.

 In addition to common fields as described in Section 11.2, this
 registry includes two additional fields. Permanent registrations in
 this registry MUST include the following field:

 Name: A name for the error code.

 Description: A brief description of the error code semantics.

 The entries in Table 4 are registered by this document. These error
 codes were selected from the range that operates on a Specification
 Required policy to avoid collisions with HTTP/2 error codes.

 +===========================+=======+==============+===============+
 | Name | Value | Description | Specification |
 +===========================+=======+==============+===============+
 | H3_NO_ERROR | 0x100 | No error | Section 8.1 |
 +---------------------------+-------+--------------+---------------+
H3_GENERAL_PROTOCOL_ERROR	0x101	General	Section 8.1
		protocol	
		error	
+---------------------------+-------+--------------+---------------+			
H3_INTERNAL_ERROR	0x102	Internal	Section 8.1
		error	
+---------------------------+-------+--------------+---------------+			
H3_STREAM_CREATION_ERROR	0x103	Stream	Section 8.1

Bishop Expires 6 August 2021 [Page 53]

Internet-Draft HTTP/3 February 2021

 | | | creation | |
 | | | error | |
 +---------------------------+-------+--------------+---------------+
H3_CLOSED_CRITICAL_STREAM	0x104	Critical	Section 8.1
		stream was	
		closed	
+---------------------------+-------+--------------+---------------+			
H3_FRAME_UNEXPECTED	0x105	Frame not	Section 8.1
		permitted in	
		the current	
		state	
+---------------------------+-------+--------------+---------------+			
H3_FRAME_ERROR	0x106	Frame	Section 8.1
		violated	
		layout or	
		size rules	
+---------------------------+-------+--------------+---------------+			
H3_EXCESSIVE_LOAD	0x107	Peer	Section 8.1
		generating	
		excessive	
		load	
+---------------------------+-------+--------------+---------------+			
H3_ID_ERROR	0x108	An	Section 8.1
		identifier	
		was used	
		incorrectly	
+---------------------------+-------+--------------+---------------+			
H3_SETTINGS_ERROR	0x109	SETTINGS	Section 8.1
		frame	
		contained	
		invalid	
		values	
+---------------------------+-------+--------------+---------------+			
H3_MISSING_SETTINGS	0x10a	No SETTINGS	Section 8.1
		frame	
		received	
+---------------------------+-------+--------------+---------------+			
H3_REQUEST_REJECTED	0x10b	Request not	Section 8.1
		processed	
+---------------------------+-------+--------------+---------------+			
H3_REQUEST_CANCELLED	0x10c	Data no	Section 8.1
		longer	
		needed	
+---------------------------+-------+--------------+---------------+			
H3_REQUEST_INCOMPLETE	0x10d	Stream	Section 8.1
		terminated	
		early	
 +---------------------------+-------+--------------+---------------+

Bishop Expires 6 August 2021 [Page 54]

Internet-Draft HTTP/3 February 2021

 | H3_MESSAGE_ERROR | 0x10e | Malformed | Section 8.1 |
 | | | message | |
 +---------------------------+-------+--------------+---------------+
H3_CONNECT_ERROR	0x10f	TCP reset or	Section 8.1
		error on	
		CONNECT	
		request	
+---------------------------+-------+--------------+---------------+			
H3_VERSION_FALLBACK	0x110	Retry over	Section 8.1
		HTTP/1.1	
 +---------------------------+-------+--------------+---------------+

 Table 4: Initial HTTP/3 Error Codes

 Each code of the format "0x1f * N + 0x21" for non-negative integer
 values of N (that is, 0x21, 0x40, ..., through 0x3ffffffffffffffe)
 MUST NOT be assigned by IANA and MUST NOT appear in the listing of
 assigned values.

11.2.4. Stream Types

 This document establishes a registry for HTTP/3 unidirectional stream
 types. The "HTTP/3 Stream Type" registry governs a 62-bit space.
 This registry follows the QUIC registry policy; see Section 11.2.
 Permanent registrations in this registry are assigned using the
 Specification Required policy ([RFC8126]), except for values between
 0x00 and 0x3f (in hexadecimal; inclusive), which are assigned using
 Standards Action or IESG Approval as defined in Sections 4.9 and 4.10
 of [RFC8126].

 In addition to common fields as described in Section 11.2, permanent
 registrations in this registry MUST include the following fields:

 Stream Type: A name or label for the stream type.

 Sender: Which endpoint on an HTTP/3 connection may initiate a stream
 of this type. Values are "Client", "Server", or "Both".

 Specifications for permanent registrations MUST include a description
 of the stream type, including the layout and semantics of the stream
 contents.

 The entries in the following table are registered by this document.

Bishop Expires 6 August 2021 [Page 55]

Internet-Draft HTTP/3 February 2021

 +================+=======+===============+========+
 | Stream Type | Value | Specification | Sender |
 +================+=======+===============+========+
 | Control Stream | 0x00 | Section 6.2.1 | Both |
 +----------------+-------+---------------+--------+
 | Push Stream | 0x01 | Section 4.4 | Server |
 +----------------+-------+---------------+--------+

 Table 5

 Each code of the format "0x1f * N + 0x21" for non-negative integer
 values of N (that is, 0x21, 0x40, ..., through 0x3ffffffffffffffe)
 MUST NOT be assigned by IANA and MUST NOT appear in the listing of
 assigned values.

12. References

12.1. Normative References

 [ALTSVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [CACHING] Fielding, R., Nottingham, M., and J. Reschke, "HTTP
 Caching", Work in Progress, Internet-Draft, draft-ietf-
 httpbis-cache-14, 12 January 2021, <http://www.ietf.org/
 internet-drafts/draft-ietf-httpbis-cache-14.txt>.

 [HTTP-REPLAY]
 Thomson, M., Nottingham, M., and W. Tarreau, "Using Early
 Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September
 2018, <https://www.rfc-editor.org/info/rfc8470>.

 [QPACK] Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:
 Header Compression for HTTP over QUIC", Work in Progress,
 Internet-Draft, draft-ietf-quic-qpack-21, 2 February 2021,
 <https://tools.ietf.org/html/draft-ietf-quic-qpack-21>.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", Work in Progress,
 Internet-Draft, draft-ietf-quic-transport-34, 2 February
 2021, <https://tools.ietf.org/html/draft-ietf-quic-
 transport-34>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

Bishop Expires 6 August 2021 [Page 56]

Internet-Draft HTTP/3 February 2021

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SEMANTICS]
 Fielding, R., Nottingham, M., and J. Reschke, "HTTP
 Semantics", Work in Progress, Internet-Draft, draft-ietf-
 httpbis-semantics-14, 12 January 2021,
 <http://www.ietf.org/internet-drafts/draft-ietf-httpbis-
 semantics-14.txt>.

 [URI] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

12.2. Informative References

 [BREACH] Gluck, Y., Harris, N., and A. Prado, "BREACH: Reviving the
 CRIME Attack", July 2013,
 <http://breachattack.com/resources/
 BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf>.

Bishop Expires 6 August 2021 [Page 57]

Internet-Draft HTTP/3 February 2021

 [DNS-TERMS]
 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

 [HPACK] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [HTTP11] Fielding, R., Nottingham, M., and J. Reschke, "HTTP/1.1",
 Work in Progress, Internet-Draft, draft-ietf-httpbis-
 messaging-14, 12 January 2021, <http://www.ietf.org/
 internet-drafts/draft-ietf-httpbis-messaging-14.txt>.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,
 <https://www.rfc-editor.org/info/rfc6585>.

 [RFC8164] Nottingham, M. and M. Thomson, "Opportunistic Security for
 HTTP/2", RFC 8164, DOI 10.17487/RFC8164, May 2017,
 <https://www.rfc-editor.org/info/rfc8164>.

 [TFO] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Considerations for Transitioning from HTTP/2

 HTTP/3 is strongly informed by HTTP/2, and bears many similarities.
 This section describes the approach taken to design HTTP/3, points
 out important differences from HTTP/2, and describes how to map
 HTTP/2 extensions into HTTP/3.

Bishop Expires 6 August 2021 [Page 58]

Internet-Draft HTTP/3 February 2021

 HTTP/3 begins from the premise that similarity to HTTP/2 is
 preferable, but not a hard requirement. HTTP/3 departs from HTTP/2
 where QUIC differs from TCP, either to take advantage of QUIC
 features (like streams) or to accommodate important shortcomings
 (such as a lack of total ordering). These differences make HTTP/3
 similar to HTTP/2 in key aspects, such as the relationship of
 requests and responses to streams. However, the details of the
 HTTP/3 design are substantially different from HTTP/2.

 Some important departures are noted in this section.

A.1. Streams

 HTTP/3 permits use of a larger number of streams (2^(62)-1) than
 HTTP/2. The same considerations about exhaustion of stream
 identifier space apply, though the space is significantly larger such
 that it is likely that other limits in QUIC are reached first, such
 as the limit on the connection flow control window.

 In contrast to HTTP/2, stream concurrency in HTTP/3 is managed by
 QUIC. QUIC considers a stream closed when all data has been received
 and sent data has been acknowledged by the peer. HTTP/2 considers a
 stream closed when the frame containing the END_STREAM bit has been
 committed to the transport. As a result, the stream for an
 equivalent exchange could remain "active" for a longer period of
 time. HTTP/3 servers might choose to permit a larger number of
 concurrent client-initiated bidirectional streams to achieve
 equivalent concurrency to HTTP/2, depending on the expected usage
 patterns.

 In HTTP/2, only request and response bodies (the frame payload of
 DATA frames) are subject to flow control. All HTTP/3 frames are sent
 on QUIC streams, so all frames on all streams are flow-controlled in
 HTTP/3.

 Due to the presence of other unidirectional stream types, HTTP/3 does
 not rely exclusively on the number of concurrent unidirectional
 streams to control the number of concurrent in-flight pushes.
 Instead, HTTP/3 clients use the MAX_PUSH_ID frame to control the
 number of pushes received from an HTTP/3 server.

Bishop Expires 6 August 2021 [Page 59]

Internet-Draft HTTP/3 February 2021

A.2. HTTP Frame Types

 Many framing concepts from HTTP/2 can be elided on QUIC, because the
 transport deals with them. Because frames are already on a stream,
 they can omit the stream number. Because frames do not block
 multiplexing (QUIC’s multiplexing occurs below this layer), the
 support for variable-maximum-length packets can be removed. Because
 stream termination is handled by QUIC, an END_STREAM flag is not
 required. This permits the removal of the Flags field from the
 generic frame layout.

 Frame payloads are largely drawn from [HTTP2]. However, QUIC
 includes many features (e.g., flow control) that are also present in
 HTTP/2. In these cases, the HTTP mapping does not re-implement them.
 As a result, several HTTP/2 frame types are not required in HTTP/3.
 Where an HTTP/2-defined frame is no longer used, the frame ID has
 been reserved in order to maximize portability between HTTP/2 and
 HTTP/3 implementations. However, even frame types that appear in
 both mappings do not have identical semantics.

 Many of the differences arise from the fact that HTTP/2 provides an
 absolute ordering between frames across all streams, while QUIC
 provides this guarantee on each stream only. As a result, if a frame
 type makes assumptions that frames from different streams will still
 be received in the order sent, HTTP/3 will break them.

 Some examples of feature adaptations are described below, as well as
 general guidance to extension frame implementors converting an HTTP/2
 extension to HTTP/3.

A.2.1. Prioritization Differences

 HTTP/2 specifies priority assignments in PRIORITY frames and
 (optionally) in HEADERS frames. HTTP/3 does not provide a means of
 signaling priority.

 Note that while there is no explicit signaling for priority, this
 does not mean that prioritization is not important for achieving good
 performance.

A.2.2. Field Compression Differences

 HPACK was designed with the assumption of in-order delivery. A
 sequence of encoded field sections must arrive (and be decoded) at an
 endpoint in the same order in which they were encoded. This ensures
 that the dynamic state at the two endpoints remains in sync.

Bishop Expires 6 August 2021 [Page 60]

Internet-Draft HTTP/3 February 2021

 Because this total ordering is not provided by QUIC, HTTP/3 uses a
 modified version of HPACK, called QPACK. QPACK uses a single
 unidirectional stream to make all modifications to the dynamic table,
 ensuring a total order of updates. All frames that contain encoded
 fields merely reference the table state at a given time without
 modifying it.

 [QPACK] provides additional details.

A.2.3. Flow Control Differences

 HTTP/2 specifies a stream flow control mechanism. Although all
 HTTP/2 frames are delivered on streams, only the DATA frame payload
 is subject to flow control. QUIC provides flow control for stream
 data and all HTTP/3 frame types defined in this document are sent on
 streams. Therefore, all frame headers and payload are subject to
 flow control.

A.2.4. Guidance for New Frame Type Definitions

 Frame type definitions in HTTP/3 often use the QUIC variable-length
 integer encoding. In particular, Stream IDs use this encoding, which
 allows for a larger range of possible values than the encoding used
 in HTTP/2. Some frames in HTTP/3 use an identifier other than a
 Stream ID (e.g., Push IDs). Redefinition of the encoding of
 extension frame types might be necessary if the encoding includes a
 Stream ID.

 Because the Flags field is not present in generic HTTP/3 frames,
 those frames that depend on the presence of flags need to allocate
 space for flags as part of their frame payload.

 Other than these issues, frame type HTTP/2 extensions are typically
 portable to QUIC simply by replacing Stream 0 in HTTP/2 with a
 control stream in HTTP/3. HTTP/3 extensions will not assume
 ordering, but would not be harmed by ordering, and are expected to be
 portable to HTTP/2.

A.2.5. Comparison Between HTTP/2 and HTTP/3 Frame Types

 DATA (0x0): Padding is not defined in HTTP/3 frames. See
 Section 7.2.1.

 HEADERS (0x1): The PRIORITY region of HEADERS is not defined in
 HTTP/3 frames. Padding is not defined in HTTP/3 frames. See
 Section 7.2.2.

 PRIORITY (0x2): As described in Appendix A.2.1, HTTP/3 does not

Bishop Expires 6 August 2021 [Page 61]

Internet-Draft HTTP/3 February 2021

 provide a means of signaling priority.

 RST_STREAM (0x3): RST_STREAM frames do not exist in HTTP/3, since
 QUIC provides stream lifecycle management. The same code point is
 used for the CANCEL_PUSH frame (Section 7.2.3).

 SETTINGS (0x4): SETTINGS frames are sent only at the beginning of
 the connection. See Section 7.2.4 and Appendix A.3.

 PUSH_PROMISE (0x5): The PUSH_PROMISE frame does not reference a
 stream; instead the push stream references the PUSH_PROMISE frame
 using a Push ID. See Section 7.2.5.

 PING (0x6): PING frames do not exist in HTTP/3, as QUIC provides
 equivalent functionality.

 GOAWAY (0x7): GOAWAY does not contain an error code. In the client
 to server direction, it carries a Push ID instead of a server
 initiated stream ID. See Section 7.2.6.

 WINDOW_UPDATE (0x8): WINDOW_UPDATE frames do not exist in HTTP/3,
 since QUIC provides flow control.

 CONTINUATION (0x9): CONTINUATION frames do not exist in HTTP/3;
 instead, larger HEADERS/PUSH_PROMISE frames than HTTP/2 are
 permitted.

 Frame types defined by extensions to HTTP/2 need to be separately
 registered for HTTP/3 if still applicable. The IDs of frames defined
 in [HTTP2] have been reserved for simplicity. Note that the frame
 type space in HTTP/3 is substantially larger (62 bits versus 8 bits),
 so many HTTP/3 frame types have no equivalent HTTP/2 code points.
 See Section 11.2.1.

A.3. HTTP/2 SETTINGS Parameters

 An important difference from HTTP/2 is that settings are sent once,
 as the first frame of the control stream, and thereafter cannot
 change. This eliminates many corner cases around synchronization of
 changes.

 Some transport-level options that HTTP/2 specifies via the SETTINGS
 frame are superseded by QUIC transport parameters in HTTP/3. The
 HTTP-level setting that is retained in HTTP/3 has the same value as
 in HTTP/2. The superseded settings are reserved, and their receipt
 is an error. See Section 7.2.4.1 for discussion of both the retained
 and reserved values.

Bishop Expires 6 August 2021 [Page 62]

Internet-Draft HTTP/3 February 2021

 Below is a listing of how each HTTP/2 SETTINGS parameter is mapped:

 SETTINGS_HEADER_TABLE_SIZE (0x1): See [QPACK].

 SETTINGS_ENABLE_PUSH (0x2): This is removed in favor of the
 MAX_PUSH_ID frame, which provides a more granular control over
 server push. Specifying a setting with the identifier 0x2
 (corresponding to the SETTINGS_ENABLE_PUSH parameter) in the
 HTTP/3 SETTINGS frame is an error.

 SETTINGS_MAX_CONCURRENT_STREAMS (0x3): QUIC controls the largest
 open Stream ID as part of its flow control logic. Specifying a
 setting with the identifier 0x3 (corresponding to the
 SETTINGS_MAX_CONCURRENT_STREAMS parameter) in the HTTP/3 SETTINGS
 frame is an error.

 SETTINGS_INITIAL_WINDOW_SIZE (0x4): QUIC requires both stream and
 connection flow control window sizes to be specified in the
 initial transport handshake. Specifying a setting with the
 identifier 0x4 (corresponding to the SETTINGS_INITIAL_WINDOW_SIZE
 parameter) in the HTTP/3 SETTINGS frame is an error.

 SETTINGS_MAX_FRAME_SIZE (0x5): This setting has no equivalent in
 HTTP/3. Specifying a setting with the identifier 0x5
 (corresponding to the SETTINGS_MAX_FRAME_SIZE parameter) in the
 HTTP/3 SETTINGS frame is an error.

 SETTINGS_MAX_HEADER_LIST_SIZE (0x6): This setting identifier has
 been renamed SETTINGS_MAX_FIELD_SECTION_SIZE.

 In HTTP/3, setting values are variable-length integers (6, 14, 30, or
 62 bits long) rather than fixed-length 32-bit fields as in HTTP/2.
 This will often produce a shorter encoding, but can produce a longer
 encoding for settings that use the full 32-bit space. Settings
 ported from HTTP/2 might choose to redefine their value to limit it
 to 30 bits for more efficient encoding, or to make use of the 62-bit
 space if more than 30 bits are required.

 Settings need to be defined separately for HTTP/2 and HTTP/3. The
 IDs of settings defined in [HTTP2] have been reserved for simplicity.
 Note that the settings identifier space in HTTP/3 is substantially
 larger (62 bits versus 16 bits), so many HTTP/3 settings have no
 equivalent HTTP/2 code point. See Section 11.2.2.

 As QUIC streams might arrive out of order, endpoints are advised not
 to wait for the peers’ settings to arrive before responding to other
 streams. See Section 7.2.4.2.

Bishop Expires 6 August 2021 [Page 63]

Internet-Draft HTTP/3 February 2021

A.4. HTTP/2 Error Codes

 QUIC has the same concepts of "stream" and "connection" errors that
 HTTP/2 provides. However, the differences between HTTP/2 and HTTP/3
 mean that error codes are not directly portable between versions.

 The HTTP/2 error codes defined in Section 7 of [HTTP2] logically map
 to the HTTP/3 error codes as follows:

 NO_ERROR (0x0): H3_NO_ERROR in Section 8.1.

 PROTOCOL_ERROR (0x1): This is mapped to H3_GENERAL_PROTOCOL_ERROR
 except in cases where more specific error codes have been defined.
 Such cases include H3_FRAME_UNEXPECTED, H3_MESSAGE_ERROR, and
 H3_CLOSED_CRITICAL_STREAM defined in Section 8.1.

 INTERNAL_ERROR (0x2): H3_INTERNAL_ERROR in Section 8.1.

 FLOW_CONTROL_ERROR (0x3): Not applicable, since QUIC handles flow
 control.

 SETTINGS_TIMEOUT (0x4): Not applicable, since no acknowledgment of
 SETTINGS is defined.

 STREAM_CLOSED (0x5): Not applicable, since QUIC handles stream
 management.

 FRAME_SIZE_ERROR (0x6): H3_FRAME_ERROR error code defined in
 Section 8.1.

 REFUSED_STREAM (0x7): H3_REQUEST_REJECTED (in Section 8.1) is used
 to indicate that a request was not processed. Otherwise, not
 applicable because QUIC handles stream management.

 CANCEL (0x8): H3_REQUEST_CANCELLED in Section 8.1.

 COMPRESSION_ERROR (0x9): Multiple error codes are defined in
 [QPACK].

 CONNECT_ERROR (0xa): H3_CONNECT_ERROR in Section 8.1.

 ENHANCE_YOUR_CALM (0xb): H3_EXCESSIVE_LOAD in Section 8.1.

 INADEQUATE_SECURITY (0xc): Not applicable, since QUIC is assumed to
 provide sufficient security on all connections.

 HTTP_1_1_REQUIRED (0xd): H3_VERSION_FALLBACK in Section 8.1.

Bishop Expires 6 August 2021 [Page 64]

Internet-Draft HTTP/3 February 2021

 Error codes need to be defined for HTTP/2 and HTTP/3 separately. See
 Section 11.2.3.

A.4.1. Mapping Between HTTP/2 and HTTP/3 Errors

 An intermediary that converts between HTTP/2 and HTTP/3 may encounter
 error conditions from either upstream. It is useful to communicate
 the occurrence of error to the downstream but error codes largely
 reflect connection-local problems that generally do not make sense to
 propagate.

 An intermediary that encounters an error from an upstream origin can
 indicate this by sending an HTTP status code such as 502, which is
 suitable for a broad class of errors.

 There are some rare cases where it is beneficial to propagate the
 error by mapping it to the closest matching error type to the
 receiver. For example, an intermediary that receives an HTTP/2
 stream error of type REFUSED_STREAM from the origin has a clear
 signal that the request was not processed and that the request is
 safe to retry. Propagating this error condition to the client as an
 HTTP/3 stream error of type H3_REQUEST_REJECTED allows the client to
 take the action it deems most appropriate. In the reverse direction,
 the intermediary might deem it beneficial to pass on client request
 cancellations that are indicated by terminating a stream with
 H3_REQUEST_CANCELLED; see Section 4.1.2.

 Conversion between errors is described in the logical mapping. The
 error codes are defined in non-overlapping spaces in order to protect
 against accidental conversion that could result in the use of
 inappropriate or unknown error codes for the target version. An
 intermediary is permitted to promote stream errors to connection
 errors but they should be aware of the cost to the HTTP/3 connection
 for what might be a temporary or intermittent error.

Appendix B. Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

B.1. Since draft-ietf-quic-http-32

 * Removed draft version guidance; added final version string

 * Added H3_MESSAGE_ERROR for malformed messages

Bishop Expires 6 August 2021 [Page 65]

Internet-Draft HTTP/3 February 2021

B.2. Since draft-ietf-quic-http-31

 Editorial changes only.

B.3. Since draft-ietf-quic-http-30

 Editorial changes only.

B.4. Since draft-ietf-quic-http-29

 * Require a connection error if a reserved frame type that
 corresponds to a frame in HTTP/2 is received (#3991, #3993)

 * Require a connection error if a reserved setting that corresponds
 to a setting in HTTP/2 is received (#3954, #3955)

B.5. Since draft-ietf-quic-http-28

 * CANCEL_PUSH is recommended even when the stream is reset (#3698,
 #3700)

 * Use H3_ID_ERROR when GOAWAY contains a larger identifier (#3631,
 #3634)

B.6. Since draft-ietf-quic-http-27

 * Updated text to refer to latest HTTP revisions

 * Use the HTTP definition of authority for establishing and
 coalescing connections (#253, #2223, #3558)

 * Define use of GOAWAY from both endpoints (#2632, #3129)

 * Require either :authority or Host if the URI scheme has a
 mandatory authority component (#3408, #3475)

B.7. Since draft-ietf-quic-http-26

 * No changes

B.8. Since draft-ietf-quic-http-25

 * Require QUICv1 for HTTP/3 (#3117, #3323)

 * Remove DUPLICATE_PUSH and allow duplicate PUSH_PROMISE (#3275,
 #3309)

 * Clarify the definition of "malformed" (#3352, #3345)

Bishop Expires 6 August 2021 [Page 66]

Internet-Draft HTTP/3 February 2021

B.9. Since draft-ietf-quic-http-24

 * Removed H3_EARLY_RESPONSE error code; H3_NO_ERROR is recommended
 instead (#3130,#3208)

 * Unknown error codes are equivalent to H3_NO_ERROR (#3276,#3331)

 * Some error codes are reserved for greasing (#3325,#3360)

B.10. Since draft-ietf-quic-http-23

 * Removed "quic" Alt-Svc parameter (#3061,#3118)

 * Clients need not persist unknown settings for use in 0-RTT
 (#3110,#3113)

 * Clarify error cases around CANCEL_PUSH (#2819,#3083)

B.11. Since draft-ietf-quic-http-22

 * Removed priority signaling (#2922,#2924)

 * Further changes to error codes (#2662,#2551):

 - Error codes renumbered

 - HTTP_MALFORMED_FRAME replaced by HTTP_FRAME_ERROR,
 HTTP_ID_ERROR, and others

 * Clarify how unknown frame types interact with required frame
 sequence (#2867,#2858)

 * Describe interactions with the transport in terms of defined
 interface terms (#2857,#2805)

 * Require the use of the "http-opportunistic" resource (RFC 8164)
 when scheme is "http" (#2439,#2973)

 * Settings identifiers cannot be duplicated (#2979)

 * Changes to SETTINGS frames in 0-RTT (#2972,#2790,#2945):

 - Servers must send all settings with non-default values in their
 SETTINGS frame, even when resuming

 - If a client doesn’t have settings associated with a 0-RTT
 ticket, it uses the defaults

Bishop Expires 6 August 2021 [Page 67]

Internet-Draft HTTP/3 February 2021

 - Servers can’t accept early data if they cannot recover the
 settings the client will have remembered

 * Clarify that Upgrade and the 101 status code are prohibited
 (#2898,#2889)

 * Clarify that frame types reserved for greasing can occur on any
 stream, but frame types reserved due to HTTP/2 correspondence are
 prohibited (#2997,#2692,#2693)

 * Unknown error codes cannot be treated as errors (#2998,#2816)

B.12. Since draft-ietf-quic-http-21

 No changes

B.13. Since draft-ietf-quic-http-20

 * Prohibit closing the control stream (#2509, #2666)

 * Change default priority to use an orphan node (#2502, #2690)

 * Exclusive priorities are restored (#2754, #2781)

 * Restrict use of frames when using CONNECT (#2229, #2702)

 * Close and maybe reset streams if a connection error occurs for
 CONNECT (#2228, #2703)

 * Encourage provision of sufficient unidirectional streams for QPACK
 (#2100, #2529, #2762)

 * Allow extensions to use server-initiated bidirectional streams
 (#2711, #2773)

 * Clarify use of maximum header list size setting (#2516, #2774)

 * Extensive changes to error codes and conditions of their sending

 - Require connection errors for more error conditions (#2511,
 #2510)

 - Updated the error codes for illegal GOAWAY frames (#2714,
 #2707)

 - Specified error code for HEADERS on control stream (#2708)

 - Specified error code for servers receiving PUSH_PROMISE (#2709)

Bishop Expires 6 August 2021 [Page 68]

Internet-Draft HTTP/3 February 2021

 - Specified error code for receiving DATA before HEADERS (#2715)

 - Describe malformed messages and their handling (#2410, #2764)

 - Remove HTTP_PUSH_ALREADY_IN_CACHE error (#2812, #2813)

 - Refactor Push ID related errors (#2818, #2820)

 - Rationalize HTTP/3 stream creation errors (#2821, #2822)

B.14. Since draft-ietf-quic-http-19

 * SETTINGS_NUM_PLACEHOLDERS is 0x9 (#2443,#2530)

 * Non-zero bits in the Empty field of the PRIORITY frame MAY be
 treated as an error (#2501)

B.15. Since draft-ietf-quic-http-18

 * Resetting streams following a GOAWAY is recommended, but not
 required (#2256,#2457)

 * Use variable-length integers throughout (#2437,#2233,#2253,#2275)

 - Variable-length frame types, stream types, and settings
 identifiers

 - Renumbered stream type assignments

 - Modified associated reserved values

 * Frame layout switched from Length-Type-Value to Type-Length-Value
 (#2395,#2235)

 * Specified error code for servers receiving DUPLICATE_PUSH (#2497)

 * Use connection error for invalid PRIORITY (#2507, #2508)

B.16. Since draft-ietf-quic-http-17

 * HTTP_REQUEST_REJECTED is used to indicate a request can be retried
 (#2106, #2325)

 * Changed error code for GOAWAY on the wrong stream (#2231, #2343)

Bishop Expires 6 August 2021 [Page 69]

Internet-Draft HTTP/3 February 2021

B.17. Since draft-ietf-quic-http-16

 * Rename "HTTP/QUIC" to "HTTP/3" (#1973)

 * Changes to PRIORITY frame (#1865, #2075)

 - Permitted as first frame of request streams

 - Remove exclusive reprioritization

 - Changes to Prioritized Element Type bits

 * Define DUPLICATE_PUSH frame to refer to another PUSH_PROMISE
 (#2072)

 * Set defaults for settings, allow request before receiving SETTINGS
 (#1809, #1846, #2038)

 * Clarify message processing rules for streams that aren’t closed
 (#1972, #2003)

 * Removed reservation of error code 0 and moved HTTP_NO_ERROR to
 this value (#1922)

 * Removed prohibition of zero-length DATA frames (#2098)

B.18. Since draft-ietf-quic-http-15

 Substantial editorial reorganization; no technical changes.

B.19. Since draft-ietf-quic-http-14

 * Recommend sensible values for QUIC transport parameters
 (#1720,#1806)

 * Define error for missing SETTINGS frame (#1697,#1808)

 * Setting values are variable-length integers (#1556,#1807) and do
 not have separate maximum values (#1820)

 * Expanded discussion of connection closure (#1599,#1717,#1712)

 * HTTP_VERSION_FALLBACK falls back to HTTP/1.1 (#1677,#1685)

B.20. Since draft-ietf-quic-http-13

 * Reserved some frame types for grease (#1333, #1446)

Bishop Expires 6 August 2021 [Page 70]

Internet-Draft HTTP/3 February 2021

 * Unknown unidirectional stream types are tolerated, not errors;
 some reserved for grease (#1490, #1525)

 * Require settings to be remembered for 0-RTT, prohibit reductions
 (#1541, #1641)

 * Specify behavior for truncated requests (#1596, #1643)

B.21. Since draft-ietf-quic-http-12

 * TLS SNI extension isn’t mandatory if an alternative method is used
 (#1459, #1462, #1466)

 * Removed flags from HTTP/3 frames (#1388, #1398)

 * Reserved frame types and settings for use in preserving
 extensibility (#1333, #1446)

 * Added general error code (#1391, #1397)

 * Unidirectional streams carry a type byte and are extensible
 (#910,#1359)

 * Priority mechanism now uses explicit placeholders to enable
 persistent structure in the tree (#441,#1421,#1422)

B.22. Since draft-ietf-quic-http-11

 * Moved QPACK table updates and acknowledgments to dedicated streams
 (#1121, #1122, #1238)

B.23. Since draft-ietf-quic-http-10

 * Settings need to be remembered when attempting and accepting 0-RTT
 (#1157, #1207)

B.24. Since draft-ietf-quic-http-09

 * Selected QCRAM for header compression (#228, #1117)

 * The server_name TLS extension is now mandatory (#296, #495)

 * Specified handling of unsupported versions in Alt-Svc (#1093,
 #1097)

Bishop Expires 6 August 2021 [Page 71]

Internet-Draft HTTP/3 February 2021

B.25. Since draft-ietf-quic-http-08

 * Clarified connection coalescing rules (#940, #1024)

B.26. Since draft-ietf-quic-http-07

 * Changes for integer encodings in QUIC (#595,#905)

 * Use unidirectional streams as appropriate (#515, #240, #281, #886)

 * Improvement to the description of GOAWAY (#604, #898)

 * Improve description of server push usage (#947, #950, #957)

B.27. Since draft-ietf-quic-http-06

 * Track changes in QUIC error code usage (#485)

B.28. Since draft-ietf-quic-http-05

 * Made push ID sequential, add MAX_PUSH_ID, remove
 SETTINGS_ENABLE_PUSH (#709)

 * Guidance about keep-alive and QUIC PINGs (#729)

 * Expanded text on GOAWAY and cancellation (#757)

B.29. Since draft-ietf-quic-http-04

 * Cite RFC 5234 (#404)

 * Return to a single stream per request (#245,#557)

 * Use separate frame type and settings registries from HTTP/2 (#81)

 * SETTINGS_ENABLE_PUSH instead of SETTINGS_DISABLE_PUSH (#477)

 * Restored GOAWAY (#696)

 * Identify server push using Push ID rather than a stream ID
 (#702,#281)

 * DATA frames cannot be empty (#700)

B.30. Since draft-ietf-quic-http-03

 None.

Bishop Expires 6 August 2021 [Page 72]

Internet-Draft HTTP/3 February 2021

B.31. Since draft-ietf-quic-http-02

 * Track changes in transport draft

B.32. Since draft-ietf-quic-http-01

 * SETTINGS changes (#181):

 - SETTINGS can be sent only once at the start of a connection; no
 changes thereafter

 - SETTINGS_ACK removed

 - Settings can only occur in the SETTINGS frame a single time

 - Boolean format updated

 * Alt-Svc parameter changed from "v" to "quic"; format updated
 (#229)

 * Closing the connection control stream or any message control
 stream is a fatal error (#176)

 * HPACK Sequence counter can wrap (#173)

 * 0-RTT guidance added

 * Guide to differences from HTTP/2 and porting HTTP/2 extensions
 added (#127,#242)

B.33. Since draft-ietf-quic-http-00

 * Changed "HTTP/2-over-QUIC" to "HTTP/QUIC" throughout (#11,#29)

 * Changed from using HTTP/2 framing within Stream 3 to new framing
 format and two-stream-per-request model (#71,#72,#73)

 * Adopted SETTINGS format from draft-bishop-httpbis-extended-
 settings-01

 * Reworked SETTINGS_ACK to account for indeterminate inter-stream
 order (#75)

 * Described CONNECT pseudo-method (#95)

 * Updated ALPN token and Alt-Svc guidance (#13,#87)

 * Application-layer-defined error codes (#19,#74)

Bishop Expires 6 August 2021 [Page 73]

Internet-Draft HTTP/3 February 2021

B.34. Since draft-shade-quic-http2-mapping-00

 * Adopted as base for draft-ietf-quic-http

 * Updated authors/editors list

Acknowledgments

 The original authors of this specification were Robbie Shade and Mike
 Warres.

 The IETF QUIC Working Group received an enormous amount of support
 from many people. Among others, the following people provided
 substantial contributions to this document:

 * Bence Beky

 * Daan De Meyer

 * Martin Duke

 * Roy Fielding

 * Alan Frindell

 * Alessandro Ghedini

 * Nick Harper

 * Ryan Hamilton

 * Christian Huitema

 * Subodh Iyengar

 * Robin Marx

 * Patrick McManus

 * Luca Niccolini

 * (Kazuho Oku)

 * Lucas Pardue

 * Roberto Peon

 * Julian Reschke

Bishop Expires 6 August 2021 [Page 74]

Internet-Draft HTTP/3 February 2021

 * Eric Rescorla

 * Martin Seemann

 * Ben Schwartz

 * Ian Swett

 * Willy Taureau

 * Martin Thomson

 * Dmitri Tikhonov

 * Tatsuhiro Tsujikawa

 A portion of Mike’s contribution was supported by Microsoft during
 his employment there.

Author’s Address

 Mike Bishop (editor)
 Akamai

 Email: mbishop@evequefou.be

Bishop Expires 6 August 2021 [Page 75]

