
QUIC M. Bishop, Ed.
Internet-Draft Microsoft
Intended status: Standards Track March 13, 2017
Expires: September 14, 2017

 Hypertext Transfer Protocol (HTTP) over QUIC
 draft-ietf-quic-http-02

Abstract

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP, such as stream multiplexing, per-stream flow
 control, and low-latency connection establishment. This document
 describes a mapping of HTTP semantics over QUIC. This document also
 identifies HTTP/2 features that are subsumed by QUIC, and describes
 how HTTP/2 extensions can be ported to QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/search/?email_list=quic .

 Working Group information can be found at https://github.com/quicwg ;
 source code and issues list for this draft can be found at
 https://github.com/quicwg/base-drafts/labels/http .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Bishop Expires September 14, 2017 [Page 1]

Internet-Draft HTTP over QUIC March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Notational Conventions 3
 2. QUIC Advertisement . 3
 2.1. QUIC Version Hints 4
 3. Connection Establishment 4
 3.1. Draft Version Identification 5
 4. Stream Mapping and Usage 5
 4.1. Stream 3: Connection Control Stream 6
 4.2. HTTP Message Exchanges 6
 4.2.1. Header Compression 7
 4.2.2. The CONNECT Method 8
 4.3. Stream Priorities . 9
 4.4. Server Push . 9
 5. HTTP Framing Layer . 10
 5.1. Frame Layout . 10
 5.2. Frame Definitions . 10
 5.2.1. HEADERS . 10
 5.2.2. PRIORITY . 11
 5.2.3. SETTINGS . 12
 5.2.4. PUSH_PROMISE . 15
 6. Error Handling . 15
 6.1. HTTP-Defined QUIC Error Codes 16
 7. Considerations for Transitioning from HTTP/2 17
 7.1. HTTP Frame Types . 17
 7.2. HTTP/2 SETTINGS Parameters 18
 7.3. HTTP/2 Error Codes 19
 8. Security Considerations 20
 9. IANA Considerations . 21
 9.1. Registration of HTTP/QUIC Identification String 21
 9.2. Registration of QUIC Version Hint Alt-Svc Parameter . . . 21
 9.3. Existing Frame Types 21

Bishop Expires September 14, 2017 [Page 2]

Internet-Draft HTTP over QUIC March 2017

 9.4. Settings Parameters 22
 9.5. Error Codes . 23
 10. References . 25
 10.1. Normative References 25
 10.2. Informative References 26
 Appendix A. Contributors . 26
 Appendix B. Change Log . 26
 B.1. Since draft-ietf-quic-http-01: 26
 B.2. Since draft-ietf-quic-http-00: 27
 B.3. Since draft-shade-quic-http2-mapping-00: 27
 Author’s Address . 27

1. Introduction

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP, such as stream multiplexing, per-stream flow
 control, and low-latency connection establishment. This document
 describes a mapping of HTTP semantics over QUIC, drawing heavily on
 the existing TCP mapping, HTTP/2. Specifically, this document
 identifies HTTP/2 features that are subsumed by QUIC, and describes
 how the other features can be implemented atop QUIC.

 QUIC is described in [QUIC-TRANSPORT]. For a full description of
 HTTP/2, see [RFC7540].

1.1. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It’s not shouting; when they are capitalized, they have
 the special meaning defined in [RFC2119].

2. QUIC Advertisement

 An HTTP origin advertises the availability of an equivalent HTTP/QUIC
 endpoint via the Alt-Svc HTTP response header or the HTTP/2 ALTSVC
 frame ([RFC7838]), using the ALPN token defined in Section 3.

 For example, an origin could indicate in an HTTP/1.1 or HTTP/2
 response that HTTP/QUIC was available on UDP port 443 at the same
 hostname by including the following header in any response:

 Alt-Svc: hq=":443"

 On receipt of an Alt-Svc header indicating HTTP/QUIC support, a
 client MAY attempt to establish a QUIC connection to the indicated
 host and port and, if successful, send HTTP requests using the
 mapping described in this document.

Bishop Expires September 14, 2017 [Page 3]

Internet-Draft HTTP over QUIC March 2017

 Connectivity problems (e.g. firewall blocking UDP) can result in QUIC
 connection establishment failure, in which case the client SHOULD
 continue using the existing connection or try another alternative
 endpoint offered by the origin.

2.1. QUIC Version Hints

 This document defines the "quic" parameter for Alt-Svc, which MAY be
 used to provide version-negotiation hints to HTTP/QUIC clients. QUIC
 versions are four-octet sequences with no additional constraints on
 format. Syntax:

 quic = version-number
 version-number = 1*8HEXDIG; hex-encoded QUIC version

 Leading zeros SHOULD be omitted for brevity. When multiple versions
 are supported, the "quic" parameter MAY be repeated multiple times in
 a single Alt-Svc entry. For example, if a server supported both
 version 0x00000001 and the version rendered in ASCII as "Q034", it
 could specify the following header:

 Alt-Svc: hq=":443";quic=1;quic=51303334

 Where multiple versions are listed, the order of the values reflects
 the server’s preference (with the first value being the most
 preferred version). Origins SHOULD list only versions which are
 supported by the alternative, but MAY omit supported versions for any
 reason.

3. Connection Establishment

 HTTP/QUIC connections are established as described in
 [QUIC-TRANSPORT]. During connection establishment, HTTP/QUIC support
 is indicated by selecting the ALPN token "hq" in the crypto
 handshake.

 While connection-level options pertaining to the core QUIC protocol
 are set in the initial crypto handshake, HTTP-specific settings are
 conveyed in the SETTINGS frame. After the QUIC connection is
 established, a SETTINGS frame (Section 5.2.3) MUST be sent as the
 initial frame of the HTTP control stream (StreamID 3, see Section 4).
 The server MUST NOT send data on any other stream until the client’s
 SETTINGS frame has been received.

Bishop Expires September 14, 2017 [Page 4]

Internet-Draft HTTP over QUIC March 2017

3.1. Draft Version Identification

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

 Only implementations of the final, published RFC can identify
 themselves as "hq". Until such an RFC exists, implementations MUST
 NOT identify themselves using this string.

 Implementations of draft versions of the protocol MUST add the string
 "-" and the corresponding draft number to the identifier. For
 example, draft-ietf-quic-http-01 is identified using the string "hq-
 01".

 Non-compatible experiments that are based on these draft versions
 MUST append the string "-" and an experiment name to the identifier.
 For example, an experimental implementation based on draft-ietf-quic-
 http-09 which reserves an extra stream for unsolicited transmission
 of 1980s pop music might identify itself as "hq-09-rickroll". Note
 that any label MUST conform to the "token" syntax defined in
 Section 3.2.6 of [RFC7230]. Experimenters are encouraged to
 coordinate their experiments on the quic@ietf.org mailing list.

4. Stream Mapping and Usage

 A QUIC stream provides reliable in-order delivery of bytes, but makes
 no guarantees about order of delivery with regard to bytes on other
 streams. On the wire, data is framed into QUIC STREAM frames, but
 this framing is invisible to the HTTP framing layer. A QUIC receiver
 buffers and orders received STREAM frames, exposing the data
 contained within as a reliable byte stream to the application.

 QUIC reserves Stream 1 for crypto operations (the handshake, crypto
 config updates). Stream 3 is reserved for sending and receiving HTTP
 control frames, and is analogous to HTTP/2’s Stream 0. This
 connection control stream is considered critical to the HTTP
 connection. If the connection control stream is closed for any
 reason, this MUST be treated as a connection error of type
 QUIC_CLOSED_CRITICAL_STREAM.

 When HTTP headers and data are sent over QUIC, the QUIC layer handles
 most of the stream management. An HTTP request/response consumes a
 pair of streams: This means that the client’s first request occurs on
 QUIC streams 5 and 7, the second on stream 9 and 11, and so on. The
 server’s first push consumes streams 2 and 4. This amounts to the
 second least-significant bit differentiating the two streams in a
 request.

Bishop Expires September 14, 2017 [Page 5]

Internet-Draft HTTP over QUIC March 2017

 The lower-numbered stream is called the message control stream and
 carries frames related to the request/response, including HEADERS.
 The higher-numbered stream is the data stream and carries the
 request/response body with no additional framing. Note that a
 request or response without a body will cause this stream to be half-
 closed in the corresponding direction without transferring data.

 Because the message control stream contains HPACK data which
 manipulates connection-level state, the message control stream MUST
 NOT be closed with a stream-level error. If an implementation
 chooses to reject a request with a QUIC error code, it MUST trigger a
 QUIC RST_STREAM on the data stream only. An implementation MAY close
 (FIN) a message control stream without completing a full HTTP message
 if the data stream has been abruptly closed. Data on message control
 streams MUST be fully consumed, or the connection terminated.

 All message control streams are considered critical to the HTTP
 connection. If a message control stream is terminated abruptly for
 any reason, this MUST be treated as a connection error of type
 HTTP_RST_CONTROL_STREAM. When a message control stream terminates
 cleanly, if the last frame on the stream was truncated, this MUST be
 treated as a connection error (see HTTP_MALFORMED_* in Section 6.1).

 Pairs of streams must be utilized sequentially, with no gaps. The
 data stream is opened at the same time as the message control stream
 is opened and is closed after transferring the body. The data stream
 is closed immediately after sending the request headers if there is
 no body.

 HTTP does not need to do any separate multiplexing when using QUIC -
 data sent over a QUIC stream always maps to a particular HTTP
 transaction. Requests and responses are considered complete when the
 corresponding QUIC streams are closed in the appropriate direction.

4.1. Stream 3: Connection Control Stream

 Since most connection-level concerns will be managed by QUIC, the
 primary use of Stream 3 will be for the SETTINGS frame when the
 connection opens and for PRIORITY frames subsequently.

4.2. HTTP Message Exchanges

 A client sends an HTTP request on a new pair of QUIC streams. A
 server sends an HTTP response on the same streams as the request.

 An HTTP message (request or response) consists of:

Bishop Expires September 14, 2017 [Page 6]

Internet-Draft HTTP over QUIC March 2017

 1. one header block (see Section 5.2.1) on the control stream
 containing the message headers (see [RFC7230], Section 3.2),

 2. the payload body (see [RFC7230], Section 3.3), sent on the data
 stream,

 3. optionally, one header block on the control stream containing the
 trailer-part, if present (see [RFC7230], Section 4.1.2).

 In addition, prior to sending the message header block indicated
 above, a response may contain zero or more header blocks on the
 control stream containing the message headers of informational (1xx)
 HTTP responses (see [RFC7230], Section 3.2 and [RFC7231],
 Section 6.2).

 The data stream MUST be half-closed immediately after the transfer of
 the body. If the message does not contain a body, the corresponding
 data stream MUST still be half-closed without transferring any data.
 The "chunked" transfer encoding defined in Section 4.1 of [RFC7230]
 MUST NOT be used.

 Trailing header fields are carried in an additional header block on
 the message control stream. Such a header block is a sequence of
 HEADERS frames with End Header Block set on the last frame. Senders
 MUST send only one header block in the trailers section; receivers
 MUST decode any subsequent header blocks in order to maintain HPACK
 decoder state, but the resulting output MUST be discarded.

 An HTTP request/response exchange fully consumes a pair of streams.
 After sending a request, a client closes the streams for sending;
 after sending a response, the server closes its streams for sending
 and the QUIC streams are fully closed.

 A server can send a complete response prior to the client sending an
 entire request if the response does not depend on any portion of the
 request that has not been sent and received. When this is true, a
 server MAY request that the client abort transmission of a request
 without error by sending a RST_STREAM with an error code of NO_ERROR
 after sending a complete response and closing its stream. Clients
 MUST NOT discard responses as a result of receiving such a
 RST_STREAM, though clients can always discard responses at their
 discretion for other reasons.

4.2.1. Header Compression

 HTTP/QUIC uses HPACK header compression as described in [RFC7541].
 HPACK was designed for HTTP/2 with the assumption of in-order
 delivery such as that provided by TCP. A sequence of encoded header

Bishop Expires September 14, 2017 [Page 7]

Internet-Draft HTTP over QUIC March 2017

 blocks must arrive (and be decoded) at an endpoint in the same order
 in which they were encoded. This ensures that the dynamic state at
 the two endpoints remains in sync.

 QUIC streams provide in-order delivery of data sent on those streams,
 but there are no guarantees about order of delivery between streams.
 To achieve in-order delivery of HEADERS frames in QUIC, the HPACK-
 bearing frames contain a counter which can be used to ensure in-order
 processing. Data (request/response bodies) which arrive out of order
 are buffered until the corresponding HEADERS arrive.

 This does introduce head-of-line blocking: if the packet containing
 HEADERS for stream N is lost or reordered then the HEADERS for stream
 N+4 cannot be processed until it has been retransmitted successfully,
 even though the HEADERS for stream N+4 may have arrived.

 DISCUSS: Keep HPACK with HOLB? Redesign HPACK to be order-
 invariant? How much do we need to retain compatibility with
 HTTP/2’s HPACK?

4.2.2. The CONNECT Method

 The pseudo-method CONNECT ([RFC7231], Section 4.3.6) is primarily
 used with HTTP proxies to establish a TLS session with an origin
 server for the purposes of interacting with "https" resources. In
 HTTP/1.x, CONNECT is used to convert an entire HTTP connection into a
 tunnel to a remote host. In HTTP/2, the CONNECT method is used to
 establish a tunnel over a single HTTP/2 stream to a remote host for
 similar purposes.

 A CONNECT request in HTTP/QUIC functions in the same manner as in
 HTTP/2. The request MUST be formatted as described in [RFC7540],
 Section 8.3. A CONNECT request that does not conform to these
 restrictions is malformed. The message data stream MUST NOT be
 closed at the end of the request.

 A proxy that supports CONNECT establishes a TCP connection
 ([RFC0793]) to the server identified in the ":authority" pseudo-
 header field. Once this connection is successfully established, the
 proxy sends a HEADERS frame containing a 2xx series status code to
 the client, as defined in [RFC7231], Section 4.3.6, on the message
 control stream.

 All QUIC STREAM frames on the message data stream correspond to data
 sent on the TCP connection. Any QUIC STREAM frame sent by the client
 is transmitted by the proxy to the TCP server; data received from the
 TCP server is written to the data stream by the proxy. Note that the

Bishop Expires September 14, 2017 [Page 8]

Internet-Draft HTTP over QUIC March 2017

 size and number of TCP segments is not guaranteed to map predictably
 to the size and number of QUIC STREAM frames.

 The TCP connection can be closed by either peer. When the client
 half-closes the data stream, the proxy will set the FIN bit on its
 connection to the TCP server. When the proxy receives a packet with
 the FIN bit set, it will half-close the corresponding data stream.
 TCP connections which remain half-closed in a single direction are
 not invalid, but are often handled poorly by servers, so clients
 SHOULD NOT half-close connections on which they are still expecting
 data.

 A TCP connection error is signaled with RST_STREAM. A proxy treats
 any error in the TCP connection, which includes receiving a TCP
 segment with the RST bit set, as a stream error of type
 HTTP_CONNECT_ERROR (Section 6.1). Correspondingly, a proxy MUST send
 a TCP segment with the RST bit set if it detects an error with the
 stream or the QUIC connection.

4.3. Stream Priorities

 HTTP/QUIC uses the priority scheme described in [RFC7540]
 Section 5.3. In this priority scheme, a given stream can be
 designated as dependent upon another stream, which expresses the
 preference that the latter stream (the "parent" stream) be allocated
 resources before the former stream (the "dependent" stream). Taken
 together, the dependencies across all streams in a connection form a
 dependency tree. The structure of the dependency tree changes as
 PRIORITY frames add, remove, or change the dependency links between
 streams.

 For consistency’s sake, all PRIORITY frames MUST refer to the message
 control stream of the dependent request, not the data stream.

4.4. Server Push

 HTTP/QUIC supports server push as described in [RFC7540]. During
 connection establishment, the client indicates whether it is willing
 to receive server pushes via the SETTINGS_DISABLE_PUSH setting in the
 SETTINGS frame (see Section 3), which defaults to 1 (true).

 As with server push for HTTP/2, the server initiates a server push by
 sending a PUSH_PROMISE frame containing the StreamID of the stream to
 be pushed, as well as request header fields attributed to the
 request. The PUSH_PROMISE frame is sent on the control stream of the
 associated (client-initiated) request, while the Promised Stream ID
 field specifies the Stream ID of the control stream for the server-
 initiated request.

Bishop Expires September 14, 2017 [Page 9]

Internet-Draft HTTP over QUIC March 2017

 The server push response is conveyed in the same way as a non-server-
 push response, with response headers and (if present) trailers
 carried by HEADERS frames sent on the control stream, and response
 body (if any) sent via the corresponding data stream.

5. HTTP Framing Layer

 Frames are used only on the connection (stream 3) and message
 (streams 5, 9, etc.) control streams. Other streams carry data
 payload and are not framed at the HTTP layer.

 This section describes HTTP framing in QUIC and highlights some
 differences from HTTP/2 framing. For more detail on differences from
 HTTP/2, see Section 7.1.

5.1. Frame Layout

 All frames have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (16) | Type (8) | Flags (8) |
 +-+
 | Frame Payload (*) ...
 +-+

 Figure 1: HTTP/QUIC frame format

5.2. Frame Definitions

5.2.1. HEADERS

 The HEADERS frame (type=0x1) is used to carry part of a header set,
 compressed using HPACK [RFC7541].

 One flag is defined:

 End Header Block (0x4): This frame concludes a header block.

 A HEADERS frame with any other flags set MUST be treated as a
 connection error of type HTTP_MALFORMED_HEADERS.

Bishop Expires September 14, 2017 [Page 10]

Internet-Draft HTTP over QUIC March 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence? (16) | Header Block Fragment (*)...
 +-+

 Figure 2: HEADERS frame payload

 The HEADERS frame payload has the following fields:

 Sequence Number: Present only on the first frame of a header block
 sequence. This MUST be set to zero on the first header block
 sequence, and incremented on each header block.

 The next frame on the same stream after a HEADERS frame without the
 EHB flag set MUST be another HEADERS frame. A receiver MUST treat
 the receipt of any other type of frame as a stream error of type
 HTTP_INTERRUPTED_HEADERS. (Note that QUIC can intersperse data from
 other streams between frames, or even during transmission of frames,
 so multiplexing is not blocked by this requirement.)

 A full header block is contained in a sequence of zero or more
 HEADERS frames without EHB set, followed by a HEADERS frame with EHB
 set.

 On receipt, header blocks (HEADERS, PUSH_PROMISE) MUST be processed
 by the HPACK decoder in sequence. If a block is missing, all
 subsequent HPACK frames MUST be held until it arrives, or the
 connection terminated.

 When the Sequence counter reaches its maximum value (0xFFFF), the
 next increment returns it to zero. An endpoint MUST NOT wrap the
 Sequence counter to zero until the previous zero-value header block
 has been confirmed received.

5.2.2. PRIORITY

 The PRIORITY (type=0x02) frame specifies the sender-advised priority
 of a stream and is substantially different from [RFC7540]. In order
 to support ordering, it MUST be sent only on the connection control
 stream. The format has been modified to accommodate not being sent
 on-stream and the larger stream ID space of QUIC.

 The semantics of the Stream Dependency, Weight, and E flag are the
 same as in HTTP/2.

 The flags defined are:

Bishop Expires September 14, 2017 [Page 11]

Internet-Draft HTTP over QUIC March 2017

 E (0x01): Indicates that the stream dependency is exclusive (see
 [RFC7540] Section 5.3).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Prioritized Stream (32) |
 +-+
 | Dependent Stream (32) |
 +-+
 | Weight (8) |
 +-+-+-+-+-+-+-+-+

 Figure 3: PRIORITY frame payload

 The HEADERS frame payload has the following fields:

 Prioritized Stream: A 32-bit stream identifier for the message
 control stream whose priority is being updated.

 Stream Dependency: A 32-bit stream identifier for the stream that
 this stream depends on (see Section 4.3 and {!RFC7540}}
 Section 5.3).

 Weight: An unsigned 8-bit integer representing a priority weight for
 the stream (see [RFC7540] Section 5.3). Add one to the value to
 obtain a weight between 1 and 256.

 A PRIORITY frame MUST have a payload length of nine octets. A
 PRIORITY frame of any other length MUST be treated as a connection
 error of type HTTP_MALFORMED_PRIORITY.

5.2.3. SETTINGS

 The SETTINGS frame (type=0x4) conveys configuration parameters that
 affect how endpoints communicate, such as preferences and constraints
 on peer behavior, and is substantially different from [RFC7540].
 Individually, a SETTINGS parameter can also be referred to as a
 "setting".

 SETTINGS parameters are not negotiated; they describe characteristics
 of the sending peer, which can be used by the receiving peer.
 However, a negotiation can be implied by the use of SETTINGS - a peer
 uses SETTINGS to advertise a set of supported values. The recipient
 can then choose which entries from this list are also acceptable and
 proceed with the value it has chosen. (This choice could be
 announced in a field of an extension frame, or in its own value in
 SETTINGS.)

Bishop Expires September 14, 2017 [Page 12]

Internet-Draft HTTP over QUIC March 2017

 Different values for the same parameter can be advertised by each
 peer. For example, a client might permit a very large HPACK state
 table while a server chooses to use a small one to conserve memory.

 Parameters MUST NOT occur more than once. A receiver MAY treat the
 presence of the same parameter more than once as a connection error
 of type HTTP_MALFORMED_SETTINGS.

 The SETTINGS frame defines no flags.

 The payload of a SETTINGS frame consists of zero or more parameters,
 each consisting of an unsigned 16-bit setting identifier and a
 length-prefixed binary value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Identifier (16) | Length (16) |
 +-+
 | Contents (?) ...
 +-+

 Figure 4: SETTINGS value format

 A zero-length content indicates that the setting value is a Boolean
 and true. False is indicated by the absence of the setting.

 Non-zero-length values MUST be compared against the remaining length
 of the SETTINGS frame. Any value which purports to cross the end of
 the frame MUST cause the SETTINGS frame to be considered malformed
 and trigger a connection error of type HTTP_MALFORMED_SETTINGS.

 An implementation MUST ignore the contents for any SETTINGS
 identifier it does not understand.

 SETTINGS frames always apply to a connection, never a single stream.
 A SETTINGS frame MUST be sent as the first frame of the connection
 control stream (see Section 4) by each peer, and MUST NOT be sent
 subsequently or on any other stream. If an endpoint receives an
 SETTINGS frame on a different stream, the endpoint MUST respond with
 a connection error of type HTTP_SETTINGS_ON_WRONG_STREAM. If an
 endpoint receives a second SETTINGS frame, the endpoint MUST respond
 with a connection error of type HTTP_MULTIPLE_SETTINGS.

 The SETTINGS frame affects connection state. A badly formed or
 incomplete SETTINGS frame MUST be treated as a connection error
 (Section 5.4.1) of type HTTP_MALFORMED_SETTINGS.

Bishop Expires September 14, 2017 [Page 13]

Internet-Draft HTTP over QUIC March 2017

5.2.3.1. Integer encoding

 Settings which are integers are transmitted in network byte order.
 Leading zero octets are permitted, but implementations SHOULD use
 only as many bytes as are needed to represent the value. An integer
 MUST NOT be represented in more bytes than would be used to transfer
 the maximum permitted value.

5.2.3.2. Defined SETTINGS Parameters

 The following settings are defined in HTTP/QUIC:

 SETTINGS_HEADER_TABLE_SIZE (0x1): An integer with a maximum value of
 2^32 - 1.

 SETTINGS_DISABLE_PUSH (0x2): Transmitted as a Boolean; replaces
 SETTINGS_ENABLE_PUSH

 SETTINGS_MAX_HEADER_LIST_SIZE (0x6): An integer with a maximum value
 of 2^32 - 1.

5.2.3.3. Usage in 0-RTT

 When a 0-RTT QUIC connection is being used, the client’s initial
 requests will be sent before the arrival of the server’s SETTINGS
 frame. Clients SHOULD cache at least the following settings about
 servers:

 o SETTINGS_HEADER_TABLE_SIZE

 o SETTINGS_MAX_HEADER_LIST_SIZE

 Clients MUST comply with cached settings until the server’s current
 settings are received. If a client does not have cached values, it
 SHOULD assume the following values:

 o SETTINGS_HEADER_TABLE_SIZE: 0 octets

 o SETTINGS_MAX_HEADER_LIST_SIZE: 16,384 octets

 Servers MAY continue processing data from clients which exceed its
 current configuration during the initial flight. In this case, the
 client MUST apply the new settings immediately upon receipt.

 If the connection is closed because these or other constraints were
 violated during the 0-RTT flight (e.g. with
 HTTP_HPACK_DECOMPRESSION_FAILED), clients MAY establish a new
 connection and retry any 0-RTT requests using the settings sent by

Bishop Expires September 14, 2017 [Page 14]

Internet-Draft HTTP over QUIC March 2017

 the server on the closed connection. (This assumes that only
 requests that are safe to retry are sent in 0-RTT.) If the
 connection was closed before the SETTINGS frame was received, clients
 SHOULD discard any cached values and use the defaults above on the
 next connection.

5.2.4. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x05) is used to carry a request header
 set from server to client, as in HTTP/2. It defines no flags.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Promised Stream ID (32) |
 +-+
 | Sequence? (16) | Header Block (*) ...
 +-+

 Figure 5: PUSH_PROMISE frame payload

 The payload consists of:

 Promised Stream ID: A 32-bit Stream ID indicating the QUIC stream on
 which the response headers will be sent. (The response body
 stream is implied by the headers stream, as defined in Section 4.)

 HPACK Sequence: A sixteen-bit counter, equivalent to the Sequence
 field in HEADERS

 Payload: HPACK-compressed request headers for the promised response.

6. Error Handling

 QUIC allows the application to abruptly terminate individual streams
 or the entire connection when an error is encountered. These are
 referred to as "stream errors" or "connection errors" and are
 described in more detail in [QUIC-TRANSPORT].

 HTTP/QUIC requires that only data streams be terminated abruptly.
 Terminating a message control stream will result in an error of type
 HTTP_RST_CONTROL_STREAM.

 This section describes HTTP-specific error codes which can be used to
 express the cause of a connection or stream error.

Bishop Expires September 14, 2017 [Page 15]

Internet-Draft HTTP over QUIC March 2017

6.1. HTTP-Defined QUIC Error Codes

 QUIC allocates error codes 0x0000-0x3FFF to application protocol
 definition. The following error codes are defined by HTTP for use in
 QUIC RST_STREAM, GOAWAY, and CONNECTION_CLOSE frames.

 HTTP_PUSH_REFUSED (0x01): The server has attempted to push content
 which the client will not accept on this connection.

 HTTP_INTERNAL_ERROR (0x02): An internal error has occurred in the
 HTTP stack.

 HTTP_PUSH_ALREADY_IN_CACHE (0x03): The server has attempted to push
 content which the client has cached.

 HTTP_REQUEST_CANCELLED (0x04): The client no longer needs the
 requested data.

 HTTP_HPACK_DECOMPRESSION_FAILED (0x05): HPACK failed to decompress a
 frame and cannot continue.

 HTTP_CONNECT_ERROR (0x06): The connection established in response to
 a CONNECT request was reset or abnormally closed.

 HTTP_EXCESSIVE_LOAD (0x07): The endpoint detected that its peer is
 exhibiting a behavior that might be generating excessive load.

 HTTP_VERSION_FALLBACK (0x08): The requested operation cannot be
 served over HTTP/QUIC. The peer should retry over HTTP/2.

 HTTP_MALFORMED_HEADERS (0x09): A HEADERS frame has been received
 with an invalid format.

 HTTP_MALFORMED_PRIORITY (0x0A): A PRIORITY frame has been received
 with an invalid format.

 HTTP_MALFORMED_SETTINGS (0x0B): A SETTINGS frame has been received
 with an invalid format.

 HTTP_MALFORMED_PUSH_PROMISE (0x0C): A PUSH_PROMISE frame has been
 received with an invalid format.

 HTTP_INTERRUPTED_HEADERS (0x0E): A HEADERS frame without the End
 Header Block flag was followed by a frame other than HEADERS.

 HTTP_SETTINGS_ON_WRONG_STREAM (0x0F): A SETTINGS frame was received
 on a request control stream.

Bishop Expires September 14, 2017 [Page 16]

Internet-Draft HTTP over QUIC March 2017

 HTTP_MULTIPLE_SETTINGS (0x10): More than one SETTINGS frame was
 received.

 HTTP_RST_CONTROL_STREAM (0x11): A message control stream closed
 abruptly.

7. Considerations for Transitioning from HTTP/2

 HTTP/QUIC is strongly informed by HTTP/2, and bears many
 similarities. This section points out important differences from
 HTTP/2 and describes how to map HTTP/2 extensions into HTTP/QUIC.

7.1. HTTP Frame Types

 Many framing concepts from HTTP/2 can be elided away on QUIC, because
 the transport deals with them. Because frames are already on a
 stream, they can omit the stream number. Because frames do not block
 multiplexing (QUIC’s multiplexing occurs below this layer), the
 support for variable-maximum-length packets can be removed. Because
 stream termination is handled by QUIC, an END_STREAM flag is not
 required.

 Frame payloads are largely drawn from [RFC7540]. However, QUIC
 includes many features (e.g. flow control) which are also present in
 HTTP/2. In these cases, the HTTP mapping does not re-implement them.
 As a result, several HTTP/2 frame types are not required in HTTP/
 QUIC. Where an HTTP/2-defined frame is no longer used, the frame ID
 has been reserved in order to maximize portability between HTTP/2 and
 HTTP/QUIC implementations. However, even equivalent frames between
 the two mappings are not identical.

 Many of the differences arise from the fact that HTTP/2 provides an
 absolute ordering between frames across all streams, while QUIC
 provides this guarantee on each stream only. As a result, if a frame
 type makes assumptions that frames from different streams will still
 be received in the order sent, HTTP/QUIC will break them.

 For example, implicit in the HTTP/2 prioritization scheme is the
 notion of in-order delivery of priority changes (i.e., dependency
 tree mutations): since operations on the dependency tree such as
 reparenting a subtree are not commutative, both sender and receiver
 must apply them in the same order to ensure that both sides have a
 consistent view of the stream dependency tree. HTTP/2 specifies
 priority assignments in PRIORITY frames and (optionally) in HEADERS
 frames. To achieve in-order delivery of priority changes in HTTP/
 QUIC, PRIORITY frames are sent on the connection control stream and
 the PRIORITY section is removed from the HEADERS frame.

Bishop Expires September 14, 2017 [Page 17]

Internet-Draft HTTP over QUIC March 2017

 Other than this issue, frame type HTTP/2 extensions are typically
 portable to QUIC simply by replacing Stream 0 in HTTP/2 with Stream 3
 in HTTP/QUIC.

 Below is a listing of how each HTTP/2 frame type is mapped:

 DATA (0x0): Instead of DATA frames, HTTP/QUIC uses a separate data
 stream. See Section 4.

 HEADERS (0x1): As described above, the PRIORITY region of HEADERS is
 not supported. A separate PRIORITY frame MUST be used. Padding
 is not defined in HTTP/QUIC frames. See Section 5.2.1.

 PRIORITY (0x2): As described above, the PRIORITY frame is sent on
 the connection control stream. See Section 5.2.2.

 RST_STREAM (0x3): RST_STREAM frames do not exist, since QUIC
 provides stream lifecycle management.

 SETTINGS (0x4): SETTINGS frames are sent only at the beginning of
 the connection. See Section 5.2.3 and Section 7.2.

 PUSH_PROMISE (0x5): See Section 5.2.4.

 PING (0x6): PING frames do not exist, since QUIC provides equivalent
 functionality.

 GOAWAY (0x7): GOAWAY frames do not exist, since QUIC provides
 equivalent functionality.

 WINDOW_UPDATE (0x8): WINDOW_UPDATE frames do not exist, since QUIC
 provides flow control.

 CONTINUATION (0x9): CONTINUATION frames do not exist; instead,
 larger HEADERS/PUSH_PROMISE frames than HTTP/2 are permitted, and
 HEADERS frames can be used in series.

 The IANA registry of frame types has been updated in Section 9.3 to
 include references to the definition for each frame type in HTTP/2
 and in HTTP/QUIC. Frames not defined as available in HTTP/QUIC
 SHOULD NOT be sent and SHOULD be ignored as unknown on receipt.

7.2. HTTP/2 SETTINGS Parameters

 An important difference from HTTP/2 is that settings are sent once,
 at the beginning of the connection, and thereafter cannot change.
 This eliminates many corner cases around synchronization of changes.

Bishop Expires September 14, 2017 [Page 18]

Internet-Draft HTTP over QUIC March 2017

 Some transport-level options that HTTP/2 specifies via the SETTINGS
 frame are superseded by QUIC transport parameters in HTTP/QUIC. The
 HTTP-level options that are retained in HTTP/QUIC have the same value
 as in HTTP/2.

 Below is a listing of how each HTTP/2 SETTINGS parameter is mapped:

 SETTINGS_HEADER_TABLE_SIZE: See Section 5.2.3.2.

 SETTINGS_ENABLE_PUSH: See SETTINGS_DISABLE_PUSH in Section 5.2.3.2.

 SETTINGS_MAX_CONCURRENT_STREAMS: QUIC requires the maximum number of
 incoming streams per connection to be specified in the initial
 transport handshake. Specifying SETTINGS_MAX_CONCURRENT_STREAMS
 in the SETTINGS frame is an error.

 SETTINGS_INITIAL_WINDOW_SIZE: QUIC requires both stream and
 connection flow control window sizes to be specified in the
 initial transport handshake. Specifying
 SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame is an error.

 SETTINGS_MAX_FRAME_SIZE: This setting has no equivalent in HTTP/
 QUIC. Specifying it in the SETTINGS frame is an error.

 SETTINGS_MAX_HEADER_LIST_SIZE: See Section 5.2.3.2.

 Settings defined by extensions to HTTP/2 MAY be expressed as integers
 with a maximum value of 2^32-1, if they are applicable to HTTP/QUIC,
 but SHOULD have a specification describing their usage. Fields for
 this purpose have been added to the IANA registry in Section 9.4.

7.3. HTTP/2 Error Codes

 QUIC has the same concepts of "stream" and "connection" errors that
 HTTP/2 provides. However, because the error code space is shared
 between multiple components, there is no direct portability of HTTP/2
 error codes.

 The HTTP/2 error codes defined in Section 7 of [RFC7540] map to QUIC
 error codes as follows:

 NO_ERROR (0x0): QUIC_NO_ERROR

 PROTOCOL_ERROR (0x1): No single mapping. See new HTTP_MALFORMED_*
 error codes defined in Section 6.1.

 INTERNAL_ERROR (0x2) HTTP_INTERNAL_ERROR in Section 6.1.

Bishop Expires September 14, 2017 [Page 19]

Internet-Draft HTTP over QUIC March 2017

 FLOW_CONTROL_ERROR (0x3): Not applicable, since QUIC handles flow
 control. Would provoke a QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA
 from the QUIC layer.

 SETTINGS_TIMEOUT (0x4): Not applicable, since no acknowledgement of
 SETTINGS is defined.

 STREAM_CLOSED (0x5): Not applicable, since QUIC handles stream
 management. Would provoke a QUIC_STREAM_DATA_AFTER_TERMINATION
 from the QUIC layer.

 FRAME_SIZE_ERROR (0x6) No single mapping. See new error codes
 defined in Section 6.1.

 REFUSED_STREAM (0x7): Not applicable, since QUIC handles stream
 management. Would provoke a QUIC_TOO_MANY_OPEN_STREAMS from the
 QUIC layer.

 CANCEL (0x8): HTTP_REQUEST_CANCELLED in Section 6.1.

 COMPRESSION_ERROR (0x9): HTTP_HPACK_DECOMPRESSION_FAILED in
 Section 6.1.

 CONNECT_ERROR (0xa): HTTP_CONNECT_ERROR in Section 6.1.

 ENHANCE_YOUR_CALM (0xb): HTTP_EXCESSIVE_LOAD in Section 6.1.

 INADEQUATE_SECURITY (0xc): Not applicable, since QUIC is assumed to
 provide sufficient security on all connections.

 HTTP_1_1_REQUIRED (0xd): HTTP_VERSION_FALLBACK in Section 6.1.

 Error codes defined by HTTP/2 extensions need to be re-registered for
 HTTP/QUIC if still applicable. See Section 9.5.

8. Security Considerations

 The security considerations of HTTP over QUIC should be comparable to
 those of HTTP/2.

 The modified SETTINGS format contains nested length elements, which
 could pose a security risk to an uncautious implementer. A SETTINGS
 frame parser MUST ensure that the length of the frame exactly matches
 the length of the settings it contains.

Bishop Expires September 14, 2017 [Page 20]

Internet-Draft HTTP over QUIC March 2017

9. IANA Considerations

9.1. Registration of HTTP/QUIC Identification String

 This document creates a new registration for the identification of
 HTTP/QUIC in the "Application Layer Protocol Negotiation (ALPN)
 Protocol IDs" registry established in [RFC7301].

 The "hq" string identifies HTTP/QUIC:

 Protocol: HTTP over QUIC

 Identification Sequence: 0x68 0x71 ("hq")

 Specification: This document

9.2. Registration of QUIC Version Hint Alt-Svc Parameter

 This document creates a new registration for version-negotiation
 hints in the "Hypertext Transfer Protocol (HTTP) Alt-Svc Parameter"
 registry established in [RFC7838].

 Parameter: "quic"

 Specification: This document, Section 2.1

9.3. Existing Frame Types

 This document adds two new columns to the "HTTP/2 Frame Type"
 registry defined in [RFC7540]:

 Supported Protocols: Indicates which associated protocols use the
 frame type. Values MUST be one of:

 * "HTTP/2 only"

 * "HTTP/QUIC only"

 * "Both"

 HTTP/QUIC Specification: Indicates where this frame’s behavior over
 QUIC is defined; required if the frame is supported over QUIC.

 Values for existing registrations are assigned by this document:

Bishop Expires September 14, 2017 [Page 21]

Internet-Draft HTTP over QUIC March 2017

 +---------------+---------------------+-------------------------+
 | Frame Type | Supported Protocols | HTTP/QUIC Specification |
 +---------------+---------------------+-------------------------+
 | DATA | HTTP/2 only | N/A |
 | | | |
 | HEADERS | Both | Section 5.2.1 |
 | | | |
 | PRIORITY | Both | Section 5.2.2 |
 | | | |
 | RST_STREAM | HTTP/2 only | N/A |
 | | | |
 | SETTINGS | Both | Section 5.2.3 |
 | | | |
 | PUSH_PROMISE | Both | Section 5.2.4 |
 | | | |
 | PING | HTTP/2 only | N/A |
 | | | |
 | GOAWAY | HTTP/2 only | N/A |
 | | | |
 | WINDOW_UPDATE | HTTP/2 only | N/A |
 | | | |
 | CONTINUATION | HTTP/2 only | N/A |
 +---------------+---------------------+-------------------------+

 The "Specification" column is renamed to "HTTP/2 specification" and
 is only required if the frame is supported over HTTP/2.

9.4. Settings Parameters

 This document adds two new columns to the "HTTP/2 Settings" registry
 defined in [RFC7540]:

 Supported Protocols: Indicates which associated protocols use the
 setting. Values MUST be one of:

 * "HTTP/2 only"

 * "HTTP/QUIC only"

 * "Both"

 HTTP/QUIC Specification: Indicates where this setting’s behavior
 over QUIC is defined; required if the frame is supported over
 QUIC.

 Values for existing registrations are assigned by this document:

Bishop Expires September 14, 2017 [Page 22]

Internet-Draft HTTP over QUIC March 2017

 +-------------------------+------------------+----------------------+
 | Setting Name | Supported | HTTP/QUIC |
 | | Protocols | Specification |
 +-------------------------+------------------+----------------------+
HEADER_TABLE_SIZE	Both	Section 5.2.3.2
ENABLE_PUSH /	Both	Section 5.2.3.2
DISABLE_PUSH		
MAX_CONCURRENT_STREAMS	HTTP/2 Only	N/A
INITIAL_WINDOW_SIZE	HTTP/2 Only	N/A
MAX_FRAME_SIZE	HTTP/2 Only	N/A
MAX_HEADER_LIST_SIZE	Both	Section 5.2.3.2
 +-------------------------+------------------+----------------------+

 The "Specification" column is renamed to "HTTP/2 Specification" and
 is only required if the setting is supported over HTTP/2.

9.5. Error Codes

 This document establishes a registry for HTTP/QUIC error codes. The
 "HTTP/QUIC Error Code" registry manages a 30-bit space. The "HTTP/
 QUIC Error Code" registry operates under the "Expert Review" policy
 [RFC5226].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Name: A name for the error code. Specifying an error code name is
 optional.

 Code: The 30-bit error code value.

 Description: A brief description of the error code semantics, longer
 if no detailed specification is provided.

 Specification: An optional reference for a specification that
 defines the error code.

 The entries in the following table are registered by this document.

Bishop Expires September 14, 2017 [Page 23]

Internet-Draft HTTP over QUIC March 2017

 +------------------------------+-----+--------------+---------------+
 | Name | Cod | Description | Specification |
 | | e | | |
 +------------------------------+-----+--------------+---------------+
HTTP_PUSH_REFUSED	0x0	Client	Section 6.1
	1	refused	
		pushed	
		content	
HTTP_INTERNAL_ERROR	0x0	Internal	Section 6.1
	2	error	
HTTP_PUSH_ALREADY_IN_CACHE	0x0	Pushed	Section 6.1
	3	content	
		already	
		cached	
HTTP_REQUEST_CANCELLED	0x0	Data no	Section 6.1
	4	longer	
		needed	
HTTP_HPACK_DECOMPRESSION_FAI	0x0	HPACK cannot	Section 6.1
LED	5	continue	
HTTP_CONNECT_ERROR	0x0	TCP reset or	Section 6.1
	6	error on	
		CONNECT	
		request	
HTTP_EXCESSIVE_LOAD	0x0	Peer	Section 6.1
	7	generating	
		excessive	
		load	
HTTP_VERSION_FALLBACK	0x0	Retry over	Section 6.1
	8	HTTP/2	
HTTP_MALFORMED_HEADERS	0x0	Invalid	Section 6.1
	9	HEADERS	
		frame	
HTTP_MALFORMED_PRIORITY	0x0	Invalid	Section 6.1
	A	PRIORITY	
		frame	
HTTP_MALFORMED_SETTINGS	0x0	Invalid	Section 6.1
	B	SETTINGS	
		frame	

Bishop Expires September 14, 2017 [Page 24]

Internet-Draft HTTP over QUIC March 2017

HTTP_MALFORMED_PUSH_PROMISE	0x0	Invalid	Section 6.1
	C	PUSH_PROMISE	
		frame	
HTTP_INTERRUPTED_HEADERS	0x0	Incomplete	Section 6.1
	E	HEADERS	
		block	
HTTP_SETTINGS_ON_WRONG_STREA	0x0	SETTINGS	Section 6.1
M	F	frame on a	
		request	
		control	
		stream	
HTTP_MULTIPLE_SETTINGS	0x1	Multiple	Section 6.1
	0	SETTINGS	
		frames	
HTTP_RST_CONTROL_STREAM	0x1	Message	Section 6.1
	1	control	
		stream was	
		RST	
 +------------------------------+-----+--------------+---------------+

10. References

10.1. Normative References

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport".

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Bishop Expires September 14, 2017 [Page 25]

Internet-Draft HTTP over QUIC March 2017

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <http://www.rfc-editor.org/info/rfc7541>.

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <http://www.rfc-editor.org/info/rfc7838>.

10.2. Informative References

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

Appendix A. Contributors

 The original authors of this specification were Robbie Shade and Mike
 Warres.

Appendix B. Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

B.1. Since draft-ietf-quic-http-01:

 o SETTINGS changes (#181):

 * SETTINGS can be sent only once at the start of a connection; no
 changes thereafter

 * SETTINGS_ACK removed

Bishop Expires September 14, 2017 [Page 26]

Internet-Draft HTTP over QUIC March 2017

 * Settings can only occur in the SETTINGS frame a single time

 * Boolean format updated

 o Alt-Svc parameter changed from "v" to "quic"; format updated
 (#229)

 o Closing the connection control stream or any message control
 stream is a fatal error (#176)

 o HPACK Sequence counter can wrap (#173)

 o 0-RTT guidance added

 o Guide to differences from HTTP/2 and porting HTTP/2 extensions
 added (#127,#242)

B.2. Since draft-ietf-quic-http-00:

 o Changed "HTTP/2-over-QUIC" to "HTTP/QUIC" throughout (#11,#29)

 o Changed from using HTTP/2 framing within Stream 3 to new framing
 format and two-stream-per-request model (#71,#72,#73)

 o Adopted SETTINGS format from draft-bishop-httpbis-extended-
 settings-01

 o Reworked SETTINGS_ACK to account for indeterminate inter-stream
 order (#75)

 o Described CONNECT pseudo-method (#95)

 o Updated ALPN token and Alt-Svc guidance (#13,#87)

 o Application-layer-defined error codes (#19,#74)

B.3. Since draft-shade-quic-http2-mapping-00:

 o Adopted as base for draft-ietf-quic-http.

 o Updated authors/editors list.

Author’s Address

 Mike Bishop (editor)
 Microsoft

 Email: Michael.Bishop@microsoft.com

Bishop Expires September 14, 2017 [Page 27]

