
Network Working Group                                       I. Johansson
Internet-Draft                                               Ericsson AB
Intended status: Informational                         February 21, 2017
Expires: August 25, 2017

                          ECN support in QUIC
                      draft-johansson-quic-ecn-01

Abstract

   This memo outlines the ECN support in QUIC.  The intention is that
   most of the material ends up updating other new or existing QUIC
   protocol specifications, thus it may be possible that this draft does
   not warrant a working group status.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 25, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Johansson                Expires August 25, 2017                [Page 1]



Internet-Draft             ECN support in QUIC             February 2017

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Elements of ECN support . . . . . . . . . . . . . . . . . . .   2
     2.1.  ECN negotialtion  . . . . . . . . . . . . . . . . . . . .   3
     2.2.  ECN bits in the IP header, semantics  . . . . . . . . . .   4
     2.3.  ECN echo  . . . . . . . . . . . . . . . . . . . . . . . .   4
     2.4.  Fallback in case of ECN fault . . . . . . . . . . . . . .   8
     2.5.  OS socket specifics, access to the ECN bits . . . . . . .   9
     2.6.  Monitoring  . . . . . . . . . . . . . . . . . . . . . . .   9
   3.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  10
   4.  Open questions  . . . . . . . . . . . . . . . . . . . . . . .  10
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  10
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  11
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  11
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  11
   Author’s Address  . . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   ECN support in transport protocols is a fundamental feature that
   should be included in the QUIC specification as a mandatory element.
   The benefits of ECN is described in [I-D.ietf-aqm-ecn-benefits].  The
   ECN support should be implemented to support both present and future
   ECN, the latter is outlined in [I-D.ietf-tsvwg-ecn-experimentation],
   of particular interest is the ability to discriminate between classic
   ECN and L4S ECN by means of differentiation between the use of the
   ECT(0) and ECT(1) code points.  This draft does however not delve
   into the details of the congestion control implementation.

2.  Elements of ECN support

   This draft covers the following aspects of ECN support:

   o  ECN negotiation

   o  ECN echo

   o  ECN bits in the IP header, semantics

   o  Fallback in case of ECN fault

Johansson                Expires August 25, 2017                [Page 2]



Internet-Draft             ECN support in QUIC             February 2017

   o  OS socket specifics, access to the ECN bits

   o  Monitoring

2.1.  ECN negotialtion

   ECN support in QUIC needs to be negotiated.  The reasons is that
   network elements may not support ECN and may either clear the ECN
   bits or simply discard packets that have the ECN bits set.  In
   addition, a QUIC implementation may not have access to the ECN bits
   in the IP header due to OS dependent restrictions, investigations
   (Piers O’Hanlon) have indicated that this is in certain cases an
   asymmetric property, for instance while it is possible to set the ECN
   bits it is not possible to read them.

   It is also required that the ECN negotiation does not interfere with
   the connection setup, in other words a failed ECN negotation should
   not cause an extra roundtrip for the connection setup.

   The suggested method in this draft is to add an ECN negotiation frame
   that is transmitted when connection setup is completed.  Both peers
   MUST transmit the ECN negotation frame.  The ECN negotiation frame is
   shown below.

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Type         |C|R|W|U U U|E E|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 1: ECN negotation frame

   The 2nd byte contains the flags:

   o  C: Challenge bit, indicates that the transmitted ECN negotiation
      frame is a challenge, if bit is not set then it is a response.

   o  R: Possible to read ECN bits in IP header

   o  W: Possible to write ECN bits in IP header

   o  EE : Echo of ECN bits

   o  U: Unused

   A peer transmits the ECN negotiation frame with the R,W and EE bits
   in the 2nd byte set to ’0’ and the C bit set to ’1’.  This frame is
   echoed back with the flags set occording to the degree of ECN support

Johansson                Expires August 25, 2017                [Page 3]



Internet-Draft             ECN support in QUIC             February 2017

   and with the ECN bits in the IP header of the received ECN
   negotiation frame copied to the EE field, the C bit is ’0’.  As both
   peers MUST transmit an ECN negotation frame there will be a total of
   4 ECN negotiation frames transmitted, two challenges and two
   responses.

   The IP header for the ECN negotiation frame should set the ECN bits
   to CE ’11’.  When the corresponding response is received then an EE
   pattern of ’11’ indicates that ECN is likely supported in the
   network.  This does not give a full quarantee that ECN is supported
   in the network.  Monitoring of the ECN field in the ACK-frame serves
   to give further indication of ECN support once ECN is turned on.

   A peer is not allowed to set ECT on outgoing data packets until a ECN
   negotiation response that inticates that ECN is supported is
   received.  In other words it is only the ECN negotiation frame that
   is allowed to set the ECN bits in the IP header.

   A lack of an ECN negotiation response may indicate that the ECN
   challenge frame or the ECN response frame was lost or that a node in
   the network deliberately discards ECN-CE marked packets.  The peer
   can transmit additonal ECN challeges with given time intervals to
   rule out accidentail packet loss.  The detailed timing for this is
   T.B.D.

   The mode mechanism in [RFC6679] can serve as in input to a solution
   for the support of ECN in the case that OS ECN support is asymmetric.
   It is however unclear how a QUIC implementation can determine
   asymmetric ECN support in the underlying OS.  For instance the method
   to send ECN marked packets to the local host to determine OS support
   does not reveal if the OS ECN support is asymmetric.

2.2.  ECN bits in the IP header, semantics

   The ECN bits in the IP header should be set according to the
   recommendations in [I-D.ietf-tsvwg-ecn-experimentation].  This means
   that the meaning of ECT(0) and ECT(1) differ.

2.3.  ECN echo

   The ECN echo should prefferably go into the ACK frame
   [I-D.ietf-quic-transport], this is beneficial as the ECN information
   can then use some of the already existing data in the ACK frame for
   improved efficiency, this applies especially to alternatives 1 and 2
   below.  It is suggested that the ’U’ bit in the ACK frame type is
   renamed ’E’ to indicate the presence of an ECN field in the ACK
   frame, this makes it possible to omit the ECN information for the
   cases where ECN is not supported for the connection.

Johansson                Expires August 25, 2017                [Page 4]



Internet-Draft             ECN support in QUIC             February 2017

   Currently there are three alternatives how to add ECN support to the
   ACK frames .

   The first alternative inserts a one octet field that contains a 2 bit
   ECN echo, followed by the ACK block length.  The ACK block length
   then dictates the number of received contiguous frames with the
   indicated ECN echo.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | ECE (8)       | First Ack Block Length (8/16/32/48)         ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap 1 (8)]  | ECE(8)        |[Ack Blk 1 L (8/16/32/48)]   ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap 2 (8)]  | ECE(8)        |[Ack Blk 2 L (8/16/32/48)]   ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap N (8)]  | ECE(8)        |[Ack Blk N L (8/16/32/48)]   ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 2: ECN field in ACK frame ACK block, alt 1

   The second alternative encodes a variable length field that contains
   the ECN echoes for the frames listed in the ACK blocks.  The length
   of the field is inferred from the ACK block lengths.  No ECN echoes
   are indicated for the gaps (it is, after all, impossible to indicate
   status of the ECN bits for lost packets).  For instance if the ACK
   blocks list 10 frames, then the length of the ECN echo field becomes
   2*10=20bits, with additional 4 bits of padding the ECN echo field
   will then become 3 octets long.

Johansson                Expires August 25, 2017                [Page 5]



Internet-Draft             ECN support in QUIC             February 2017

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              First Ack Block Length (8/16/32/48)            ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap 1 (8)]  |       [Ack Block 1 Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap 2 (8)]  |       [Ack Block 2 Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap N (8)]  |       [Ack Block N Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |ECE|ECE|... variable length, padded to full octets           ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 3: ECN field in ACK frame ACK block, alt 2

   The third alternative encodes the number of bytes that are marked
   ECT(0), ECT(1) and CE with 32 bits each, the total extra overhead is
   thus 12 octets.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              First Ack Block Length (8/16/32/48)            ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap 1 (8)]  |       [Ack Block 1 Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap 2 (8)]  |       [Ack Block 2 Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap N (8)]  |       [Ack Block N Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   # ECT(0) bytes (32)                                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   # ECT(1) bytes (32)                                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   # ECN-CE bytes (32)                                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 4: ECN field in ACK frame ACK block, alt 3

   The fourth alternative use an extra byte to encode how many bits that
   encode each of the ECT/CE fields.

Johansson                Expires August 25, 2017                [Page 6]



Internet-Draft             ECN support in QUIC             February 2017

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              First Ack Block Length (8/16/32/48)            ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap 1 (8)]  |       [Ack Block 1 Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap 2 (8)]  |       [Ack Block 2 Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  [Gap N (8)]  |       [Ack Block N Length (8/16/32/48)]     ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |R|R|E1 |E2 |CE | # ECT(0) bytes (0/16/32/48)                 ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  # ECT(1) bytes (0/16/32/48)                                ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  # ECN-CE bytes (0/16/32/48)                                ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 5: ECN field in ACK frame ACK block, alt 4

   The E1,E2 and CE fields indicate the length of each encoding for the
   number of ECT(0), ECT(1) and ECN-CE marked bytes.  This is encoded
   as:

   o  00: 0 bits

   o  01: 16 bits

   o  10: 32 bits

   o  11: 48bits

   R indicates reserved bits.

   There are pros an cons with the four alternatives:

   o  Alt 1: Is very compact in the case where the ECN bits are largely
      unchanged.  However in the worst case where received frames flip
      forth and back between ECT and CE then each frame will require at
      least 3 octets overhead (ECE, ACK block length, Gap).

   o  Alt 2: Is quite compact as it only requires two bits encoding per
      frame.  The additional overhead amounts to ceil(N*2/8) octets
      where the N is the sum of the ACK block lengths.  On the downside
      is that it is a less efficient format for the case that the ECN

Johansson                Expires August 25, 2017                [Page 7]



Internet-Draft             ECN support in QUIC             February 2017

      bits are unchanged.  One uncertainty is if STOP_WAITING frames
      could make this encoding bulky.

   o  Alt 3: Has a fixed 12 octet overhead which may be beneficial as it
      gives a deterministic overhead.  The possible drawback is that it
      is not possible to know exactly which frames have been remarked,
      something that can limit the ability to detect network ECN faults
      based on the method to transmit a pattern on ECT and CE marked
      packets.

   o  Alt 4: Is a variation to Alt 3 but has a variable length encoding
      that should consume less space, especially in the cases that one
      of the ECT code points is not used and for the case that packets
      are only sporadically ECN-CE marked.  This alternative also makes
      it unnecessary to use a bit in the ACK frame type to indicate the
      precense of an ECN field as this can be indicated in a efficient
      way with the one byte header in this format.  E0=E1=CE = 00
      indicates that the following ECT and CE fields are encoded with
      zero bits.

   Which of the three formats above (or something else) that is the best
   alternative is subject to discussion.

2.4.  Fallback in case of ECN fault

   ECN can be subject to issues in network equipment, such as remarking
   to Not-ECN, remarking from ECT(0) to ECT(1) and vice versa or
   constant remarking to ECN-CE.  Furthermore ECT marked packets may be
   discarded in the network.  While these problems seem to be rare, see
   for instance [McQuistin-Perkins], it is still necessary to safeguard
   against such problems.

   A peer should disable ECN for its outgoing packets if ECN fault is
   detected, it is however still possible for the other peer to use ECN.

   TODO add more information as regards to how to detect network ECN
   faults.  [ECN-fallback](expired) gives a few examples for fault
   detection.  Examples on how to detect ECN faults include for instance
   the method to set ECT and CE for outgoing packets according to a
   given pattern.

   Fallback in case of ECN faults is not an issue only for QUIC, it is
   here suggested that mechanisms for this is described in a non QUIC
   related draft, for instance in TSVWG.

Johansson                Expires August 25, 2017                [Page 8]



Internet-Draft             ECN support in QUIC             February 2017

2.5.  OS socket specifics, access to the ECN bits

   ECN support in QUIC comes with the additional challenge that it is
   necessary to somehow access the ECN bits in the IP headers.  In TCP
   this is provided without major concerns as TCP is generally
   implemented in OS kernel space.  QUIC can however be implemented both
   in user space or kernel space and is layered on top of UDP, which
   means that access to the ECN bits is not a given, instead various
   tricks are needed.

   The text below is copy-pasted from [OHanlon].

   "To set ECN on Linux, BSD and OSX one can use IP_TOS socket option,
   with the setsockopt() call, to set the relevant ECN bits of the TOS
   byte.  On Windows one can use a similar technique though firstly one
   has to enable TOS byte setting by enabling a particular Registry key
   ( DisableUserTOSSetting=0 (see https://msdn.microsoft.com/en-
   us/library/windows/desktop/dd874008%28v=vs.85%29.aspx One could also
   probably use the libpcap write functionality."

   "To obtain the ECN bits from a packet one needs a mechanism to
   retrieve the ECN bits from each packet.  On Linux, one needs to
   firstly set the IP_RECVTOS socket option on the receiving socket, and
   use the recvmsg() call to receive a packet, and then retrieve the TOS
   byte from the associated csmg structure returned by the recvmsg()
   call.  This still works with linux-4.2.3.  On OSX/BSD there are no
   suitable socket options to retrieve the ECN/TOS bits and one cannot
   use raw sockets as they do not function for UDP/TCP sockets (they do
   work with ICMP), so one has to use alternatives such the bpf
   interface, or a REDIRECT socket.  Whilst on Windows it seems that the
   only way to retrieve the ECN bits is via a raw socket, or custom NDIS
   driver, though it’s possible there’s an API I’m missing."

   TODO: Write a more detailed description on how to implement ECN
   support in QUIC for different OS stacks.

2.6.  Monitoring

   A QUIC implementation should monitor the ECN functionality in order
   to provide input to e.g. service providers to improve ECN support in
   the networks.  Items of interest are:

   o  Black holes, ECT or CE marked packets are discarded.

   o  Faulty remarking, e.g.  ECT(0) is remarked to ECT(1) or Not-ECT.

   o  Continuous CE marking, possible indication of faulty on/off ECN
      marking, but can also be an effect of severe congestion.

Johansson                Expires August 25, 2017                [Page 9]



Internet-Draft             ECN support in QUIC             February 2017

   o  Degree of L4S support.  L4S should generally give low queue
      latency.  Estimation of one way queue delay for L4S enabled QUIC
      connections can be used to determine if there are congested nodes
      along the path that are not L4S capable.

3.  IANA Considerations

   T.B.D.

4.  Open questions

   A list of open questions:

   o  Is it sufficient that one peer sends an ECN negotiation challenge
      frame?.

   o  Should the ECN field in the ACK frame be mandatory ? (in which
      case it is not necessary to indicate its presence)

   o  Should all packets be ECT or should there be special patterns to
      improve fault detection.

   o  Write up a more detailed description on how to implement ECN
      support in QUIC for different OS stacks.

   o  Determine which ECN echo encoding in the ACK frame is the best
      alternative.

   o  Is a completely new ACK frame an alternative ?

   o  How do STOP_WAITING frames affect the ECN echo overhead.

   o  Outline possible connection migration actions

   o  Are there any security implications with the smalle ECN
      negotiation frame ?

5.  Security Considerations

   T.B.D

6.  Acknowledgements

   The following persons have contributed with comments and suggestions
   for improvements: Mirja Kuehlewind, Koen De Schepper, Piers O’Hanlon,
   Michael Welzl, Marcelo Bagnulo Braun, Martin Duke

Johansson                Expires August 25, 2017               [Page 10]



Internet-Draft             ECN support in QUIC             February 2017

7.  References

7.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

7.2.  Informative References

   [Bagnulo]  "Adding Explicit Congestion Notification (ECN) to TCP
              control packets and TCP retransmissions",
              <https://tools.ietf.org/id/draft-bagnulo-tcpm-generalized-
              ecn-00.txt>.

   [ECN-fallback]
              "A Mechanism for ECN Path Probing and Fallback",
              <https://www.ietf.org/archive/id/draft-kuehlewind-tcpm-
              ecn-fallback-01.txt>.

   [I-D.ietf-aqm-ecn-benefits]
              Fairhurst, G. and M. Welzl, "The Benefits of using
              Explicit Congestion Notification (ECN)", draft-ietf-aqm-
              ecn-benefits-08 (work in progress), November 2015.

   [I-D.ietf-quic-transport]
              Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
              and Secure Transport", draft-ietf-quic-transport-01 (work
              in progress), January 2017.

   [I-D.ietf-tsvwg-ecn-experimentation]
              Black, D., "Explicit Congestion Notification (ECN)
              Experimentation", draft-ietf-tsvwg-ecn-experimentation-00
              (work in progress), December 2016.

   [McQuistin-Perkins]
              ""Is Explicit Congestion Notification usable with UDP?",
              Proceedings of the ACM Internet Measurement Conference,
              Tokyo, Japan, October 2015. DOI:10.1145/2815675.2815716",
              <https://csperkins.org/publications/2015/10/
              mcquistin2015ecn-udp.pdf>.

   [OHanlon]  "ECN support in different OS stacks",
              <https://mailarchive.ietf.org/arch/msg/rmcat/
              rRKF3PVmFL2zHCp1bOPKimqSsbM>.

Johansson                Expires August 25, 2017               [Page 11]



Internet-Draft             ECN support in QUIC             February 2017

   [RFC6679]  Westerlund, M., Johansson, I., Perkins, C., O’Hanlon, P.,
              and K. Carlberg, "Explicit Congestion Notification (ECN)
              for RTP over UDP", RFC 6679, DOI 10.17487/RFC6679, August
              2012, <http://www.rfc-editor.org/info/rfc6679>.

   [RFC6789]  Briscoe, B., Ed., Woundy, R., Ed., and A. Cooper, Ed.,
              "Congestion Exposure (ConEx) Concepts and Use Cases",
              RFC 6789, DOI 10.17487/RFC6789, December 2012,
              <http://www.rfc-editor.org/info/rfc6789>.

   [RFC7560]  Kuehlewind, M., Ed., Scheffenegger, R., and B. Briscoe,
              "Problem Statement and Requirements for Increased Accuracy
              in Explicit Congestion Notification (ECN) Feedback",
              RFC 7560, DOI 10.17487/RFC7560, August 2015,
              <http://www.rfc-editor.org/info/rfc7560>.

Author’s Address

   Ingemar Johansson
   Ericsson AB
   Laboratoriegraend 11
   Luleaa  977 53
   Sweden

   Phone: +46 730783289
   Email: ingemar.s.johansson@ericsson.com

Johansson                Expires August 25, 2017               [Page 12]


