
QUIC J. Iyengar, Ed.
Internet-Draft I. Swett, Ed.
Intended status: Standards Track Google
Expires: September 14, 2017 March 13, 2017

 QUIC Loss Detection and Congestion Control
 draft-ietf-quic-recovery-02

Abstract

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. QUIC implements the spirit of known TCP loss detection
 mechanisms, described in RFCs, various Internet-drafts, and also
 those prevalent in the Linux TCP implementation. This document
 describes QUIC loss detection and congestion control, and attributes
 the TCP equivalent in RFCs, Internet-drafts, academic papers, and TCP
 implementations.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/search/?email_list=quic .

 Working Group information can be found at https://github.com/quicwg ;
 source code and issues list for this draft can be found at
 https://github.com/quicwg/base-drafts/labels/recovery .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Iyengar & Swett Expires September 14, 2017 [Page 1]

Internet-Draft QUIC Loss Detection March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Notational Conventions 3
 2. Design of the QUIC Transmission Machinery 3
 2.1. Relevant Differences Between QUIC and TCP 4
 2.1.1. Monotonically Increasing Packet Numbers 4
 2.1.2. No Reneging . 4
 2.1.3. More ACK Ranges 5
 2.1.4. Explicit Correction For Delayed Acks 5
 3. Loss Detection . 5
 3.1. Constants of interest 5
 3.2. Variables of interest 6
 3.3. Initialization . 7
 3.4. On Sending a Packet 7
 3.5. On Ack Receipt . 8
 3.6. On Packet Acknowledgment 8
 3.7. Setting the Loss Detection Alarm 9
 3.7.1. Handshake Packets 9
 3.7.2. Tail Loss Probe and Retransmission Timeout 9
 3.7.3. Early Retransmit 9
 3.7.4. Pseudocode . 10
 3.8. On Alarm Firing . 10
 3.9. Detecting Lost Packets 11
 3.9.1. Handshake Packets 11
 3.9.2. Pseudocode . 11
 4. Congestion Control . 12
 5. IANA Considerations . 12
 6. References . 12
 6.1. Normative References 12
 6.2. Informative References 13
 Appendix A. Acknowledgments 13
 Appendix B. Change Log . 13

Iyengar & Swett Expires September 14, 2017 [Page 2]

Internet-Draft QUIC Loss Detection March 2017

 B.1. Since draft-ietf-quic-recovery-01 14
 B.2. Since draft-ietf-quic-recovery-00: 14
 B.3. Since draft-iyengar-quic-loss-recovery-01: 14
 Authors’ Addresses . 14

1. Introduction

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. The QUIC protocol is described in [QUIC-TRANSPORT].

 QUIC implements the spirit of known TCP loss recovery mechanisms,
 described in RFCs, various Internet-drafts, and also those prevalent
 in the Linux TCP implementation. This document describes QUIC
 congestion control and loss recovery, and where applicable,
 attributes the TCP equivalent in RFCs, Internet-drafts, academic
 papers, and/or TCP implementations.

 This document first describes pre-requisite parts of the QUIC
 transmission machinery, then discusses QUIC’s default congestion
 control and loss detection mechanisms, and finally lists the various
 TCP mechanisms that QUIC loss detection implements (in spirit.)

1.1. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It’s not shouting; when they are capitalized, they have
 the special meaning defined in [RFC2119].

2. Design of the QUIC Transmission Machinery

 All transmissions in QUIC are sent with a packet-level header, which
 includes a packet sequence number (referred to below as a packet
 number). These packet numbers never repeat in the lifetime of a
 connection, and are monotonically increasing, which makes duplicate
 detection trivial. This fundamental design decision obviates the
 need for disambiguating between transmissions and retransmissions and
 eliminates significant complexity from QUIC’s interpretation of TCP
 loss detection mechanisms.

 Every packet may contain several frames. We outline the frames that
 are important to the loss detection and congestion control machinery
 below.

 o Retransmittable frames are frames requiring reliable delivery.
 The most common are STREAM frames, which typically contain
 application data.

Iyengar & Swett Expires September 14, 2017 [Page 3]

Internet-Draft QUIC Loss Detection March 2017

 o Crypto handshake data is also sent as STREAM data, and uses the
 reliability machinery of QUIC underneath.

 o ACK frames contain acknowledgment information. QUIC uses a SACK-
 based scheme, where acks express up to 256 ranges. The ACK frame
 also includes a receive timestamp for each packet newly acked.

2.1. Relevant Differences Between QUIC and TCP

 There are some notable differences between QUIC and TCP which are
 important for reasoning about the differences between the loss
 recovery mechanisms employed by the two protocols. We briefly
 describe these differences below.

2.1.1. Monotonically Increasing Packet Numbers

 TCP conflates transmission sequence number at the sender with
 delivery sequence number at the receiver, which results in
 retransmissions of the same data carrying the same sequence number,
 and consequently to problems caused by "retransmission ambiguity".
 QUIC separates the two: QUIC uses a packet sequence number (referred
 to as the "packet number") for transmissions, and any data that is to
 be delivered to the receiving application(s) is sent in one or more
 streams, with stream offsets encoded within STREAM frames inside of
 packets that determine delivery order.

 QUIC’s packet number is strictly increasing, and directly encodes
 transmission order. A higher QUIC packet number signifies that the
 packet was sent later, and a lower QUIC packet number signifies that
 the packet was sent earlier. When a packet containing frames is
 deemed lost, QUIC rebundles necessary frames in a new packet with a
 new packet number, removing ambiguity about which packet is
 acknowledged when an ACK is received. Consequently, more accurate
 RTT measurements can be made, spurious retransmissions are trivially
 detected, and mechanisms such as Fast Retransmit can be applied
 universally, based only on packet number.

 This design point significantly simplifies loss detection mechanisms
 for QUIC. Most TCP mechanisms implicitly attempt to infer
 transmission ordering based on TCP sequence numbers - a non-trivial
 task, especially when TCP timestamps are not available.

2.1.2. No Reneging

 QUIC ACKs contain information that is equivalent to TCP SACK, but
 QUIC does not allow any acked packet to be reneged, greatly
 simplifying implementations on both sides and reducing memory
 pressure on the sender.

Iyengar & Swett Expires September 14, 2017 [Page 4]

Internet-Draft QUIC Loss Detection March 2017

2.1.3. More ACK Ranges

 QUIC supports up to 256 ACK ranges, opposed to TCP’s 3 SACK ranges.
 In high loss environments, this speeds recovery.

2.1.4. Explicit Correction For Delayed Acks

 QUIC ACKs explicitly encode the delay incurred at the receiver
 between when a packet is received and when the corresponding ACK is
 sent. This allows the receiver of the ACK to adjust for receiver
 delays, specifically the delayed ack timer, when estimating the path
 RTT. This mechanism also allows a receiver to measure and report the
 delay from when a packet was received by the OS kernel, which is
 useful in receivers which may incur delays such as context-switch
 latency before a userspace QUIC receiver processes a received packet.

3. Loss Detection

 We now describe QUIC’s loss detection as functions that should be
 called on packet transmission, when a packet is acked, and timer
 expiration events.

3.1. Constants of interest

 Constants used in loss recovery and congestion control are based on a
 combination of RFCs, papers, and common practice. Some may need to
 be changed or negotiated in order to better suit a variety of
 environments.

 kMaxTLPs (default 2): Maximum number of tail loss probes before an
 RTO fires.

 kReorderingThreshold (default 3): Maximum reordering in packet
 number space before FACK style loss detection considers a packet
 lost.

 kTimeReorderingFraction (default 1/8): Maximum reordering in time
 sapce before time based loss detection considers a packet lost.
 In fraction of an RTT.

 kMinTLPTimeout (default 10ms): Minimum time in the future a tail
 loss probe alarm may be set for.

 kMinRTOTimeout (default 200ms): Minimum time in the future an RTO
 alarm may be set for.

 kDelayedAckTimeout (default 25ms): The length of the peer’s delayed
 ack timer.

Iyengar & Swett Expires September 14, 2017 [Page 5]

Internet-Draft QUIC Loss Detection March 2017

 kDefaultInitialRtt (default 100ms): The default RTT used before an
 RTT sample is taken.

3.2. Variables of interest

 We first describe the variables required to implement the loss
 detection mechanisms described in this section.

 loss_detection_alarm: Multi-modal alarm used for loss detection.

 handshake_count: The number of times the handshake packets have been
 retransmitted without receiving an ack.

 tlp_count: The number of times a tail loss probe has been sent
 without receiving an ack.

 rto_count: The number of times an rto has been sent without
 receiving an ack.

 smoothed_rtt: The smoothed RTT of the connection, computed as
 described in [RFC6298]

 rttvar: The RTT variance, computed as described in [RFC6298]

 initial_rtt: The initial RTT used before any RTT measurements have
 been made.

 reordering_threshold: The largest delta between the largest acked
 retransmittable packet and a packet containing retransmittable
 frames before it’s declared lost.

 time_reordering_fraction: The reordering window as a fraction of
 max(smoothed_rtt, latest_rtt).

 loss_time: The time at which the next packet will be considered lost
 based on early transmit or exceeding the reordering window in
 time.

 sent_packets: An association of packet numbers to information about
 them, including a number field indicating the packet number, a
 time field indicating the time a packet was sent, and a bytes
 field indicating the packet’s size. sent_packets is ordered by
 packet number, and packets remain in sent_packets until
 acknowledged or lost.

Iyengar & Swett Expires September 14, 2017 [Page 6]

Internet-Draft QUIC Loss Detection March 2017

3.3. Initialization

 At the beginning of the connection, initialize the loss detection
 variables as follows:

 loss_detection_alarm.reset()
 handshake_count = 0
 tlp_count = 0
 rto_count = 0
 if (UsingTimeLossDetection())
 reordering_threshold = infinite
 time_reordering_fraction = kTimeReorderingFraction
 else:
 reordering_threshold = kReorderingThreshold
 time_reordering_fraction = infinite
 loss_time = 0
 smoothed_rtt = 0
 rttvar = 0
 initial_rtt = kDefaultInitialRtt

3.4. On Sending a Packet

 After any packet is sent, be it a new transmission or a rebundled
 transmission, the following OnPacketSent function is called. The
 parameters to OnPacketSent are as follows:

 o packet_number: The packet number of the sent packet.

 o is_retransmittble: A boolean that indicates whether the packet
 contains at least one frame requiring reliable deliver. The
 retransmittability of various QUIC frames is described in
 [QUIC-TRANSPORT]. If false, it is still acceptable for an ack to
 be received for this packet. However, a caller MUST NOT set
 is_retransmittable to true if an ack is not expected.

 o sent_bytes: The number of bytes sent in the packet.

 Pseudocode for OnPacketSent follows:

 OnPacketSent(packet_number, is_retransmittable, sent_bytes):
 sent_packets[packet_number].packet_number = packet_number
 sent_packets[packet_number].time = now
 if is_retransmittable:
 sent_packets[packet_number].bytes = sent_bytes
 SetLossDetectionAlarm()

Iyengar & Swett Expires September 14, 2017 [Page 7]

Internet-Draft QUIC Loss Detection March 2017

3.5. On Ack Receipt

 When an ack is received, it may acknowledge 0 or more packets.

 Pseudocode for OnAckReceived and UpdateRtt follow:

 OnAckReceived(ack):
 // If the largest acked is newly acked, update the RTT.
 if (sent_packets[ack.largest_acked]):
 rtt_sample = now - sent_packets[ack.largest_acked].time
 if (rtt_sample > ack.ack_delay):
 rtt_sample -= ack.delay
 UpdateRtt(rtt_sample)
 // Find all newly acked packets.
 for acked_packet_number in DetermineNewlyAckedPackets():
 OnPacketAcked(acked_packet_number)

 DetectLostPackets(ack.largest_acked_packet)
 SetLossDetectionAlarm()

 UpdateRtt(rtt_sample):
 // Based on {{RFC6298}}.
 if (smoothed_rtt == 0):
 smoothed_rtt = rtt_sample
 rttvar = rtt_sample / 2
 else:
 rttvar = 3/4 * rttvar + 1/4 * (smoothed_rtt - rtt_sample)
 smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * rtt_sample

3.6. On Packet Acknowledgment

 When a packet is acked for the first time, the following
 OnPacketAcked function is called. Note that a single ACK frame may
 newly acknowledge several packets. OnPacketAcked must be called once
 for each of these newly acked packets.

 OnPacketAcked takes one parameter, acked_packet, which is the packet
 number of the newly acked packet, and returns a list of packet
 numbers that are detected as lost.

 Pseudocode for OnPacketAcked follows:

 OnPacketAcked(acked_packet_number):
 handshake_count = 0
 tlp_count = 0
 rto_count = 0
 sent_packets.remove(acked_packet_number)

Iyengar & Swett Expires September 14, 2017 [Page 8]

Internet-Draft QUIC Loss Detection March 2017

3.7. Setting the Loss Detection Alarm

 QUIC loss detection uses a single alarm for all timer-based loss
 detection. The duration of the alarm is based on the alarm’s mode,
 which is set in the packet and timer events further below. The
 function SetLossDetectionAlarm defined below shows how the single
 timer is set based on the alarm mode.

3.7.1. Handshake Packets

 The initial flight has no prior RTT sample. A client SHOULD remember
 the previous RTT it observed when resumption is attempted and use
 that for an initial RTT value. If no previous RTT is available, the
 initial RTT defaults to 200ms. Once an RTT measurement is taken, it
 MUST replace initial_rtt.

 Endpoints MUST retransmit handshake frames if not acknowledged within
 a time limit. This time limit will start as the largest of twice the
 rtt value and MinTLPTimeout. Each consecutive handshake
 retransmission doubles the time limit, until an acknowledgement is
 received.

 Handshake frames may be cancelled by handshake state transitions. In
 particular, all non-protected frames SHOULD be no longer be
 transmitted once packet protection is available.

 When stateless rejects are in use, the connection is considered
 immediately closed once a reject is sent, so no timer is set to
 retransmit the reject.

 Version negotiation packets are always stateless, and MUST be sent
 once per per handshake packet that uses an unsupported QUIC version,
 and MAY be sent in response to 0RTT packets.

3.7.2. Tail Loss Probe and Retransmission Timeout

 Tail loss probes [I-D.dukkipati-tcpm-tcp-loss-probe] and
 retransmission timeouts[RFC6298] are an alarm based mechanism to
 recover from cases when there are outstanding retransmittable
 packets, but an acknowledgement has not been received in a timely
 manner.

3.7.3. Early Retransmit

 Early retransmit [RFC5827] is implemented with a 1/4 RTT timer. It
 is part of QUIC’s time based loss detection, but is always enabled,
 even when only packet reordering loss detection is enabled.

Iyengar & Swett Expires September 14, 2017 [Page 9]

Internet-Draft QUIC Loss Detection March 2017

3.7.4. Pseudocode

 Pseudocode for SetLossDetectionAlarm follows:

 SetLossDetectionAlarm():
 if (retransmittable packets are not outstanding):
 loss_detection_alarm.cancel();
 return

 if (handshake packets are outstanding):
 // Handshake retransmission alarm.
 if (smoothed_rtt == 0):
 alarm_duration = 2 * initial_rtt
 else:
 alarm_duration = 2 * smoothed_rtt
 alarm_duration = max(alarm_duration, kMinTLPTimeout)
 alarm_duration = alarm_duration << handshake_count
 else if (loss_time != 0):
 // Early retransmit timer or time loss detection.
 alarm_duration = loss_time - now
 else if (tlp_count < kMaxTLPs):
 // Tail Loss Probe
 if (retransmittable_packets_outstanding = 1):
 alarm_duration = 1.5 * smoothed_rtt + kDelayedAckTimeout
 else:
 alarm_duration = kMinTLPTimeout
 alarm_duration = max(alarm_duration, 2 * smoothed_rtt)
 else:
 // RTO alarm
 if (rto_count = 0):
 alarm_duration = smoothed_rtt + 4 * rttvar
 alarm_duration = max(alarm_duration, kMinRTOTimeout)
 else:
 alarm_duration = loss_detection_alarm.get_delay() << 1

 loss_detection_alarm.set(now + alarm_duration)

3.8. On Alarm Firing

 QUIC uses one loss recovery alarm, which when set, can be in one of
 several modes. When the alarm fires, the mode determines the action
 to be performed.

 Pseudocode for OnLossDetectionAlarm follows:

Iyengar & Swett Expires September 14, 2017 [Page 10]

Internet-Draft QUIC Loss Detection March 2017

 OnLossDetectionAlarm():
 if (handshake packets are outstanding):
 // Handshake retransmission alarm.
 RetransmitAllHandshakePackets();
 handshake_count++;
 // TODO: Clarify early retransmit and time loss.
 else if (loss_time != 0):
 // Early retransmit or Time Loss Detection
 DetectLostPackets(largest_acked_packet)
 else if (tlp_count < kMaxTLPs):
 // Tail Loss Probe.
 if (HasNewDataToSend()):
 SendOnePacketOfNewData()
 else:
 RetransmitOldestPacket()
 tlp_count++
 else:
 // RTO.
 RetransmitOldestTwoPackets()
 rto_count++

 SetLossDetectionAlarm()

3.9. Detecting Lost Packets

 Packets in QUIC are only considered lost once a larger packet number
 is acknowledged. DetectLostPackets is called every time an ack is
 received. If the loss detection alarm fires and the loss_time is
 set, the previous largest acked packet is supplied.

3.9.1. Handshake Packets

 The receiver MUST ignore unprotected packets that ack protected
 packets. The receiver MUST trust protected acks for unprotected
 packets, however. Aside from this, loss detection for handshake
 packets when an ack is processed is identical to other packets.

3.9.2. Pseudocode

 DetectLostPackets takes one parameter, acked, which is the largest
 acked packet.

 Pseudocode for DetectLostPackets follows:

Iyengar & Swett Expires September 14, 2017 [Page 11]

Internet-Draft QUIC Loss Detection March 2017

 DetectLostPackets(largest_acked):
 loss_time = 0
 lost_packets = {}
 delay_until_lost = infinite;
 if (time_reordering_fraction != infinite):
 delay_until_lost =
 (1 + time_reordering_fraction) * max(latest_rtt, smoothed_rtt)
 else if (largest_acked.packet_number == largest_sent_packet):
 // Early retransmit alarm.
 delay_until_lost = 9/8 * max(latest_rtt, smoothed_rtt)
 foreach (unacked less than largest_acked.packet_number):
 time_since_sent = now() - unacked.time_sent
 packet_delta = largest_acked.packet_number - unacked.packet_number
 if (time_since_sent > delay_until_lost):
 lost_packets.insert(unacked)
 else if (packet_delta > reordering_threshold)
 lost_packets.insert(unacked)
 else if (loss_time == 0 && delay_until_lost != infinite):
 loss_time = delay_until_lost - time_since_sent

 // Inform the congestion controller of lost packets and
 // lets it decide whether to retransmit immediately.
 OnPacketsLost(lost_packets)
 foreach (packet in lost_packets)
 sent_packets.remove(packet.packet_number)

4. Congestion Control

 (describe NewReno-style congestion control [RFC6582] for QUIC.)
 (describe appropriate byte counting.) (define recovery based on
 packet numbers.) (describe min_rtt based hystart.) (describe how
 QUIC’s F-RTO [RFC5682] delays reducing CWND.) (describe PRR
 [RFC6937])

5. IANA Considerations

 This document has no IANA actions. Yet.

6. References

6.1. Normative References

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport".

Iyengar & Swett Expires September 14, 2017 [Page 12]

Internet-Draft QUIC Loss Detection March 2017

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

6.2. Informative References

 [I-D.dukkipati-tcpm-tcp-loss-probe]
 Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Losses", draft-dukkipati-tcpm-tcp-loss-probe-01 (work
 in progress), February 2013.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 DOI 10.17487/RFC5682, September 2009,
 <http://www.rfc-editor.org/info/rfc5682>.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827,
 DOI 10.17487/RFC5827, May 2010,
 <http://www.rfc-editor.org/info/rfc5827>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <http://www.rfc-editor.org/info/rfc6298>.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP’s Fast Recovery Algorithm",
 RFC 6582, DOI 10.17487/RFC6582, April 2012,
 <http://www.rfc-editor.org/info/rfc6582>.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", RFC 6937, DOI 10.17487/RFC6937,
 May 2013, <http://www.rfc-editor.org/info/rfc6937>.

Appendix A. Acknowledgments

Appendix B. Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

Iyengar & Swett Expires September 14, 2017 [Page 13]

Internet-Draft QUIC Loss Detection March 2017

B.1. Since draft-ietf-quic-recovery-01

 o Changes initial default RTT to 100ms

 o Added time-based loss detection and fixes early retransmit

 o Clarified loss recovery for handshake packets

 o Fixed references and made TCP references informative

B.2. Since draft-ietf-quic-recovery-00:

 o Improved description of constants and ACK behavior

B.3. Since draft-iyengar-quic-loss-recovery-01:

 o Adopted as base for draft-ietf-quic-recovery.

 o Updated authors/editors list.

 o Added table of contents.

Authors’ Addresses

 Jana Iyengar (editor)
 Google

 Email: jri@google.com

 Ian Swett (editor)
 Google

 Email: ianswett@google.com

Iyengar & Swett Expires September 14, 2017 [Page 14]

