
QUIC Working Group M. Bishop
Internet-Draft Microsoft
Intended status: Standards Track February 8, 2017
Expires: August 12, 2017

 Header Compression for HTTP/QUIC
 draft-bishop-quic-http-and-qpack-02

Abstract

 HTTP/2 [RFC7540] uses HPACK [RFC7541] for header compression.
 However, HPACK relies on the in-order message-based semantics of the
 HTTP/2 framing layer in order to function. Messages can only be
 successfully decoded if processed by the decoder in the same order as
 generated by the encoder. This draft refines HPACK to loosen the
 ordering requirements for use over QUIC [I-D.ietf-quic-transport].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 12, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bishop Expires August 12, 2017 [Page 1]

Internet-Draft QPACK February 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. QPACK . 3
 2.1. Basic model . 3
 2.2. Changes to Static and Dynamic Tables 4
 2.2.1. Changes to Header Table Size 4
 2.2.2. Dynamic Table State Synchronization 5
 2.3. Format of Header Management stream 6
 2.3.1. Insert . 6
 2.3.2. Delete . 7
 2.3.3. Delete-Ack . 10
 2.4. Format of Encoded Headers on Message Streams 10
 2.4.1. Indexed Header Field Representation 10
 2.4.2. Literal Header Field Representation 11
 3. Use in HTTP/QUIC . 12
 4. Performance Considerations 12
 5. Security Considerations 13
 6. IANA Considerations . 13
 7. Acknowledgements . 13
 8. Normative References . 14
 Author’s Address . 14

1. Introduction

 HPACK has a number of features that were intended to provide
 performance advantages to HTTP/2, but which don’t live well in an
 out-of-order environment such as that provided by QUIC.

 The largest challenge is the fact that elements are referenced by a
 very fluid index. Not only is the index implicit when an item is
 added to the header table, the index will change without notice as
 other items are added to the header table. Static entries occupy the
 first 61 values, followed by dynamic entries. A newly-added dynamic
 entry would cause older dynamic entries to be evicted, and the
 retained items are then renumbered beginning with 62. This means
 that, without processing all preceding header sets, no index into the
 dynamic table can be interpreted, and the index of a given entry
 cannot be predicted.

 Any solution to the above will almost certainly fall afoul of the
 memory constraints the decompressor imposes. The automatic eviction
 of entries is done based on the compressor’s declared dynamic table

Bishop Expires August 12, 2017 [Page 2]

Internet-Draft QPACK February 2017

 size, which MUST be less than the maximum permitted by the
 decompressor (and relayed using an HTTP/2 SETTINGS value).

 Further, streams in QUIC are lossy in the presence of stream resets.
 While HTTP/2 (via TCP) guarantees the delivery of all previously-sent
 data on a stream even if that stream is reset, QUIC does not
 retransmit lost frames if a stream has been reset, and may discard
 data which has not yet been delivered to the application.

 Previous versions of QPACK were small deltas of HPACK to introduce
 order-resiliency. This version departs from HPACK more substantially
 to add resilience against reset message streams.

 In the following sections, this document proposes a new version of
 HPACK which makes different trade-offs, enabling partial out-of-order
 interpretation and bounded memory consumption with minimal head-of-
 line blocking. None of the proposed improvements to HPACK (strongly-
 typed fields, binary compression of common header syntax) are
 currently included, but certainly could be.

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14,
 [RFC2119] and indicate requirement levels for compliant
 implementations.

2. QPACK

2.1. Basic model

 HPACK combines header table modification and message header emission
 in a single sequence of coded bytes. QPACK bifurcates these into two
 channels:

 o A connection-wide series of table update instructions sent on a
 dedicated headers stream

 o Non-modifying instructions which use the current header table
 state to encode message headers

 Because the per-message instructions introduce no changes to the
 header table state, no state is lost if these instructions are
 discarded due to a stream reset.

Bishop Expires August 12, 2017 [Page 3]

Internet-Draft QPACK February 2017

2.2. Changes to Static and Dynamic Tables

 QPACK uses two tables for associating header fields to indexes. The
 static table is unchanged from [RFC7541].

 The dynamic table is a map from index to header field. Indices are
 arbitrary numbers greater than the last index of the static table and
 less than 2^27. Each insert instruction will specify the index being
 modified. While any index MAY be chosen for a new entry, smaller
 numbers will yield better compression performance.

 The dynamic table is still constrained to the size specified by the
 decoder. An attempt to add a header to the dynamic table which
 causes it to exceed the maximum size MUST be treated as an error by a
 decoder. To enable encoders to reclaim space, encoders can delete
 entries in the dynamic table, but can only reuse the index or the
 space after receiving confirmation of a successful deletion.

 Because it is possible for QPACK frames to arrive which reference
 indices which have not yet been defined, such frames MUST wait until
 another frame has arrived and defined the index. In order to guard
 against malicious peers, implementations SHOULD impose a time limit
 and treat expiration of the timer as a decoding error. However, if
 the implementation chooses not to abort the connection, the remainder
 of the header block MUST be decoded and the output discarded.

2.2.1. Changes to Header Table Size

 HTTP/QUIC prohibits mid-stream changes of settings. As a result,
 only one table size change is possible: From the value a client
 assumes during the 0-RTT flight to the actual value included in the
 server’s SETTINGS frame. The assumed value is required to be either
 a server’s previous value or zero. A server whose configuration has
 recently changed MAY overlook inadvertent violations of its maximum
 table size during the first round-trip.

 In the case that the value has increased, either from zero to a non-
 zero value or from the cached value to a higher value, no action is
 required by the client. The encoder can simply begin using the
 additional space. In the case that the value has decreased, the
 encoder MUST immediately emit delete instructions which, upon
 completion, would bring the table within the required size.

 Regardless of changes to header table size, the encoder MUST NOT add
 entries to the table which would result in a size greater than the
 maximum permitted. This can imply that no additions are permitted
 while waiting for these delete instructions to complete.

Bishop Expires August 12, 2017 [Page 4]

Internet-Draft QPACK February 2017

2.2.2. Dynamic Table State Synchronization

 In order to ensure table consistency, all modifications of the header
 table occur on a dedicated control stream. Message control streams
 contain only indexed and literal header entries.

 No entries are automatically evicted from the dynamic table. Size
 management is purely the responsibility of the encoder, which MUST
 NOT exceed the declared memory size of the decoder.

 The encoder SHOULD track the following information about each entry
 in the table:

 o The list of recently-active streams which reference the entry in a
 trailer block, if any

 o The list of recently-active streams which reference the entry in a
 non-trailer block, if any

 "Recently-active" streams are those which are still open or were
 closed less than a reasonable number of RTTs ago. An implementation
 MAY vary its definition of "recent" to trade off memory consumption
 and timely completion of deletes.

 The encoder MUST consider memory as committed beginning when the
 indexed entry is assigned.

 When the encoder wishes to delete an inserted value, it flows through
 the following set of states:

 1. *Delete requested.* The encoder emits a delete instruction
 indicating which streams might have referenced the entry. The
 encoder MUST NOT reference the entry in any subsequent frame
 until this state machine has completed and MUST continue to
 include the entry in its calculation of consumed memory.

 2. *Delete pending.* The decoder receives the delete instruction and
 checks the current state of its incoming streams (see
 Section 2.3.2.2). If more references might arrive, it stores the
 streams still needed and waits for them to complete.

 3. *Delete acknowledged.* The decoder has received all QPACK frames
 which reference the deleted value, and can safely delete the
 entry. The decoder SHOULD promptly emit a Delete-Ack instruction
 on the header management stream.

 4. *Delete completed.* When the encoder receives a Delete-Ack
 instruction acknowledging the delete, it no longer counts the

Bishop Expires August 12, 2017 [Page 5]

Internet-Draft QPACK February 2017

 size of the deleted entry against the table size and MAY emit
 insert instructions for the field with a new value.

2.3. Format of Header Management stream

 The header management stream contains a series of QPACK instructions
 with no message boundaries. Data on this stream SHOULD be processed
 as soon as it arrives.

 This section describes the instructions which are possible on the
 Header Management stream.

2.3.1. Insert

 An addition to the header table starts with the ’1’ one-bit pattern,
 followed by the new index of the header represented as an integer
 with a 7-bit prefix. This value is always greater than the number of
 entries in the static table.

 If the header field name matches the header field name of an entry
 stored in the static table or the dynamic table, the header field
 name can be represented using the index of that entry. In this case,
 the index of the entry is represented as an integer with an 8-bit
 prefix (see Section 5.1 of [RFC7541]). This value is always non-
 zero.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | New Index (7+) |
 +---+---+-----------------------+
 | Name Index (8+) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Insert Header Field -- Indexed Name

 Otherwise, the header field name is represented as a string literal
 (see Section 5.2 of [RFC7541]). A value 0 is used in place of the
 8-bit index, followed by the header field name.

Bishop Expires August 12, 2017 [Page 6]

Internet-Draft QPACK February 2017

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | New Index (7+) |
 +---+---+-----------------------+
 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Insert Header Field -- New Name

 Either form of header field name representation is followed by the
 header field value represented as a string literal (see Section 5.2
 of [RFC7541]).

 An encoder MUST NOT attempt to place a value at an index not known to
 be vacant. A decoder MUST treat the attempt to insert into an
 occupied slot as a fatal error.

2.3.2. Delete

 A deletion from the header table starts with the ’00’ two bit
 pattern, followed by the index of the affected entry represented as
 an integer with a 6-bit prefix. This value is always greater than
 the number of entries in the static table.

 A delete instruction then encodes a series of stream IDs which might
 have contained references to the entry in question.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | Index (6+) |
 +---+---+-----------------------+
 | Non-Trailer List (*) ...
 +-------------------------------+
 | Trailer List (*) ...
 +-------------------------------+

 Delete Instruction

Bishop Expires August 12, 2017 [Page 7]

Internet-Draft QPACK February 2017

 Both the Non-Trailer List and Trailer List are Stream ID Lists (see
 below) encoding a list of streams which might have referenced the
 entry either in non-trailer or trailer blocks.

2.3.2.1. Stream ID List

 A Stream ID List encodes a sequence of stream IDs in two parts:
 First, a Horizon value indicates the first non-occurrence about which
 data is maintained. If data is maintained from the beginning of the
 connection, the Horizon is zero. This allows senders to succinctly
 express both old state which has been discarded and large regions
 where many or all streams contain references.

 Following the horizon, a sequence of deltas indicates all streams
 since the Horizon on which a value has been used.

 In the simplest case, a Stream ID List might be a horizon value
 followed by one zero byte. This indicates an absolute cut-off after
 which the entry is guaranteed not to be referenced.

 0 1 2 3 4 5 6 7
 +-------------------------------+
 | Horizon (8+) |
 +-------------------------------+
 | NumEntries (8+) |
 +-------------------------------+
 | [Delta1 (8+)] |
 +-------------------------------+
 | [Delta2 (8+)] |
 +-------------------------------+
 ...
 +-------------------------------+
 | [DeltaN (8+)] |
 +-------------------------------+

 Stream ID List

 The field are as follows:

 Horizon: The ID of the first stream for which the sender retains
 state which does not reference the deleted entry in the indicated
 block

 NumEntries: The number of streams greater than the Horizon which
 might reference the entry and are listed in the remainder of the
 instruction

Bishop Expires August 12, 2017 [Page 8]

Internet-Draft QPACK February 2017

 Delta1..N: A sequence of streams greater than the Horizon which
 might reference the entry, encoded as the difference in stream
 number from the previously-listed stream. This field is repeated
 NumEntries times.

2.3.2.2. Delete Validation

 In order to safely delete an entry, a decoder MUST ensure that all
 outstanding references have arrived and been processed. Because no
 data is available about stream IDs less than the Horizon, a decoder
 MUST assume that any earlier stream ID might have contained a
 reference to the value in question.

 A decoder can ensure all outstanding references have been processed
 by verifying that the following statements are true:

 o In the Non-Trailer Block, all streams less than the Horizon and
 all streams explicitly listed are in one of two states:

 * closed

 * headers completely processed

 o In the Trailer Block, all streams less than the Horizon and all
 streams explicitly listed are in one of three states:

 * closed

 * headers completely processed AND no trailers are expected

 * trailers completely processed

 An implementation MAY omit the "trailers completely processed" case,
 since the stream is expected to close immediately after receipt of
 the trailers block.

 If these conditions are not met upon receipt of a Delete instruction,
 a decoder MUST wait to emit a Delete-Ack instruction until the
 outstanding streams have reached an appropriate state.

 Note that a decoder MAY condense the list of specified streams by
 increasing the Horizon value and discarding those explicitly-listed
 stream IDs which are less than the new Horizon it has chosen. This
 delays delete completion, but reduces the amount of state to be
 tracked by the decoder without changing the correctness of the
 requirements above.

Bishop Expires August 12, 2017 [Page 9]

Internet-Draft QPACK February 2017

2.3.3. Delete-Ack

 Confirmation that a delete has completed is expressed by an
 instruction which starts with the ’01’ two-bit pattern, followed by
 the index of the affected entry represented as an integer with a
 6-bit prefix. This value is always greater than the number of
 entries in the static table.

 Note that unlike all other instructions, this instruction refers to
 the receiver’s dynamic table, not the sender’s.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | Index (6+) |
 +---+---+-----------------------+

 Delete-Ack Instruction

 This instruction MUST NOT be sent before the conditions described in
 Section 2.3.2.2 have been satisfied, and SHOULD be sent as soon as
 possible once they are.

2.4. Format of Encoded Headers on Message Streams

 Frames which carry HTTP message headers encode them using the
 following instructions:

2.4.1. Indexed Header Field Representation

 An indexed header field representation identifies an entry in either
 the static table or the dynamic table and causes that header field to
 be added to the decoded header list, as described in Section 3.2 of
 [RFC7541].

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Index (7+) |
 +---+---------------------------+

 Indexed Header Field

 An indexed header field starts with the ’1’ 1-bit pattern, followed
 by the index of the matching header field, represented as an integer
 with a 7-bit prefix (see Section 5.1 of [RFC7541]).

 The index value of 0 is not used. It MUST be treated as a decoding
 error if found in an indexed header field representation.

Bishop Expires August 12, 2017 [Page 10]

Internet-Draft QPACK February 2017

2.4.2. Literal Header Field Representation

 A literal header field representation starts with the ’0’ 1-bit
 pattern and causes a header field to be added the decoded header
 list.

 The second bit, ’N’, indicates whether an intermediary is permitted
 to add this header to the dynamic header table on subsequent hops.
 When the ’N’ bit is set, the encoded header MUST always be encoded
 with this specific literal representation. In particular, when a
 peer sends a header field that it received represented as a literal
 header field with the ’N’ bit set, it MUST use the same
 representation to forward this header field. This bit is intended
 for protecting header field values that are not to be put at risk by
 compressing them (see Section 7.1 of [RFC7541] for more details).

 If the header field name matches the header field name of an entry
 stored in the static table or the dynamic table, the header field
 name can be represented using the index of that entry. In this case,
 the index of the entry is represented as an integer with a 6-bit
 prefix (see Section 5.1 of [RFC7541]). This value is always non-
 zero.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | N | Name Index (6+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field -- Indexed Name

 Otherwise, the header field name is represented as a string literal
 (see Section 5.2 of [RFC7541]). A value 0 is used in place of the
 6-bit index, followed by the header field name.

Bishop Expires August 12, 2017 [Page 11]

Internet-Draft QPACK February 2017

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | N | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field -- Literal Name

 Either form of header field name representation is followed by the
 header field value represented as a string literal (see Section 5.2).

3. Use in HTTP/QUIC

 HTTP/QUIC [I-D.ietf-quic-http] currently retains the HPACK encoder/
 decoder from HTTP/2, using a Sequence number to enforce ordering.
 Using QPACK instead would entail the following changes:

 o The Sequence field is removed from HEADERS frames (Section 5.2.2)
 and PUSH_PROMISE frames (Section 5.2.6).

 o Header Block Fragments consist of QPACK data instead of HPACK
 data.

 o An additional control stream is reserved for header table updates.
 Alternately, this could be carried by HEADERS frames on the
 connection control stream.

 A HEADERS or PUSH_PROMISE frame MAY contain an arbitrary number of
 QPACK instructions, but QPACK instructions SHOULD NOT cross a
 boundary between successive HEADERS frames. A partial HEADERS or
 PUSH_PROMISE frame MAY be processed upon arrival and the resulting
 partial header set emitted or buffered according to implementation
 requirements.

4. Performance Considerations

 While QPACK is designed to minimize head-of-line blocking between
 streams on header decoding, there are some situations in which lost
 or delayed packets can still impact the performance of header
 compression.

Bishop Expires August 12, 2017 [Page 12]

Internet-Draft QPACK February 2017

 References to indexed entries will block if the frame containing the
 entry definition is lost or delayed. Encoders MAY choose to trade
 off compression efficiency and avoid blocking by using literal
 instructions rather than referencing the dynamic table until the
 insertion is believed to be complete.

 Since it is possible to insert header values without emitting them on
 a stream, an encoder MAY proactively insert header values which it
 believes will be needed on future requests.

 Delayed frames which prevent deletes from completing can prevent the
 encoder from adding any new entries due to the maximum table size.
 This does not block the encoder from continuing to make requests, but
 could sharply limit compression performance. Encoders would be well-
 served to delete entries in advance of encountering the table
 maximum. Decoders SHOULD be prompt about emitting Delete-Ack
 instructions to enable the encoder to recover the table space.

5. Security Considerations

 A malicious encoder might attempt to consume a large amount of space
 on the decoder by opening the maximum number of streams, adding
 entries to the table, then sending delete instructions enumerating
 many streams in a Stream ID List.

 To guard against such attacks, a decoder SHOULD bound its state
 tracking by generalizing the list of streams to be tracked. This is
 most easily achieved by advancing the Horizon to a later value and
 discarding explicit Stream IDs to track, but can also be accomplished
 by eliding explicit streams in ranges. This does not cause any loss
 of consistency for deletes, but could delay completion and reduce
 performance if done aggressively.

6. IANA Considerations

 This document currently makes no request of IANA, and might not need
 to.

7. Acknowledgements

 This draft draws heavily on the text of [RFC7541]. The indirect
 input of those authors is gratefully acknowledged, as well as ideas
 gleefully stolen from:

 o Jana Iyengar

 o Patrick McManus

Bishop Expires August 12, 2017 [Page 13]

Internet-Draft QPACK February 2017

 o Martin Thomson

 o Charles ’Buck’ Krasic

 o Kyle Rose

8. Normative References

 [I-D.ietf-quic-http]
 Bishop, M., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-01 (work in progress), January
 2017.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-01 (work
 in progress), January 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <http://www.rfc-editor.org/info/rfc7541>.

Author’s Address

 Mike Bishop
 Microsoft

 Email: michael.bishop@microsoft.com

Bishop Expires August 12, 2017 [Page 14]

