QUI C Working G oup M Bi shop
I nternet-Draft Akamai
I nt ended status: Standards Track Decenber 14, 2017
Expi res: June 17, 2018

Header Conpression for HTTP/ QU C
dr af t - bi shop- qui c- htt p-and- gpack-07

Abst r act

HTTP/ 2 [RFC7540] uses HPACK [RFC7541] for header conpression

However, HPACK relies on the in-order nessage-based semantics of the
HTTP/ 2 frami ng layer in order to function. Messages can only be
successfully decoded if processed by the decoder in the sane order as
generated by the encoder. This draft refines HPACK to | oosen the
ordering requirenments for use over QUC [I-D.ietf-quic-transport].

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on June 17, 2018.
Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of

Bi shop Expi res June 17, 2018 [Page 1]

Internet-Draft QPACK Decenber 2017

t he

Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 2
1.1. Ternminol ogy . 3
2. (QPACK - Concepts . 3
2.1. Changes to Static and Dynanlc Tables 4
2.1.1. Dynamc Table State Synchronization . 4
2.2. Encoding Constraints Ce e 6
2.2.1. Pernmtted References 6
2.2.2. Header Table Size . 6
3. Wre Format 7
3.1. Feedback Stream 8
3.1.1. HEADERS_DONE 8
3.1.2. ACK FLUSH . 8
3.1.3. DROP . . 9
3.1.4. ACK DROP . 9
3.2. Checkpoint Streans 10
3.2.1. | NSERT 10
3.2.2. TOUCH . . 12
3.3. Request Streanms 12
3.3.1. Indexed Header Field Representation . 13
3.3.2. Literal Header Field Representation . 13
4., Use in HTITPRQUIC . . 14
4.1. SETTI NG_QPACK _ BLOCKING PERM'TTED 15
4.2. SETTI NG_QPACK_I NI TI AL_CHECKPO NT 15
5. Inplenentation trade-offs . . 15
5.1. Conpression Efficiency versus Blockrng AMOldance 16
5.2. Tinely State Transitions versus Decoder Conplexity 16
6. Security Considerations . Coe e 17
7. | ANA Considerations . 17
7.1. Settings 17
7.2. FErrors 18
8. Acknomﬁedgenents 18
9. References 18
9.1. Normative References 18
9.2. Informative References 19
Aut hor’ s Address 19
1. Introduction
HPACK has a number of features that were intended to provide
performance advantages to HITP/ 2, but which don’'t live well in an
out - of -order environnment such as that provided by QU C
Bi shop Expi res June 17, 2018 [Page 2]

Internet-Draft QPACK Decenber 2017

The |l argest challenge is the fact that elements are referenced by a
very fluid index. Not only is the index inplicit when an itemis
added to the header table, the index will change w thout notice as
other itens are added to the header table. Static entries occupy the
first 61 values, followed by dynanmic entries. A new y-added dynam c
entry woul d cause ol der dynanic entries to be evicted, and the
retained itens are then renunbered beginning with 62. This nmeans
that, without processing all preceding header sets, no index into the
dynamic table can be interpreted, and the index of a given entry
cannot be predicted.

Any solution to the above will alnost certainly fall afoul of the
menory constraints the deconpressor inposes. The autonatic eviction
of entries is done based on the conpressor’s declared dynam c table
size, which MJST be I ess than the maxi num permtted by the
deconpressor (and relayed using an HTTP/ 2 SETTI NGS val ue).

Further, streanms in QU C are lossy in the presence of streamresets.
While HTTP/ 2 (via TCP) guarantees the delivery of all previously-sent
data on a streameven if that streamis reset, QU C does not
retransmt lost frames if a stream has been reset, and may discard
data which has not yet been delivered to the application

Early versions of QPACK were small deltas of HPACK to introduce
order-resiliency. Recent versions depart from HPACK nore
substantially to add resilience against reset nessage streans and
reduce the inpact of head-of-Iine blocking.

In the followi ng sections, this docunent proposes a successor to
HPACK whi ch rmakes different trade-offs, enabling partial out-of-order
interpretation and bounded menory consunption with m nimal head- of -

I ine bl ocking. None of the proposed inprovenents to HPACK (strongly-
typed fields, binary conpression of common header syntax) are
currently included, but certainly could be.

1.1. Termnol ogy

In this docunent, the key words "MJST", "MJST NOT", "REQUI RED",
"SHALL", "SHALL NOT", "SHOULD', "SHOULD NOT", "RECOMMENDED', " MAY",
and "OPTIONAL" are to be interpreted as described in BCP 14,

[RFC2119] and indicate requirenent |levels for conpliant

i mpl emrent ati ons.

2. QPACK - Concepts
HPACK conbi nes header table nodification and nessage header eni ssion

in a single sequence of coded bytes. QPACK bifurcates these into
t hree channel s:

Bi shop Expi res June 17, 2018 [Page 3]

Internet-Draft QPACK Decenber 2017

o Connection-wi de sets of table update instructions sent on non-
request streans

0 Connection-w de feedback on stream and checkpoint state on a
singl e non-request stream

o Non-nodi fying instructions which use the current header table
state to encode nmessage headers on request streans

Because t he per-nessage instructions introduce no changes to the
header table state, no state is lost if these instructions are

di scarded due to a streamreset. Because the updates to the header
tabl e supply their own order controls (the checkpoint |ogic), they
can be processed in any order and therefore delivered as nessages
usi ng uni directional QU C streans.

2.1. Changes to Static and Dynanic Tabl es

QPACK uses two tables for associating header fields to i ndexes. The
static table is unchanged from|[RFC7541]. Unlike in [RFC7541], the
tabl es are not concatenated, but are referenced separately.

The dynanmic table is a map fromindex to header field. Indices are
arbitrary nunbers between 1 and 2727. Each insert instruction will

specify the index being nodified. While any index MAY be chosen for
a new entry, snmaller nunmbers will yield better conpression

per f or mance.

Wth decoder consent (see Section 4.1), it is possible for QPACK
instructions to arrive which reference indices which have not yet
been defined. Such instructions MUST wait until the index definition
has arrived. |In order to guard against malicious peers,

i mpl ement ati ons supporting bl ocking SHOULD i npose a tine limt and
treat expiration of the tiner as a decoding error.

2.1.1. Dynanic Table State Synchroni zation

In order to ensure table consistency, all nodifications of the header
tabl e occur as separate nessages rather than on request streans.
Request streans contain only indexed and literal header entries.

No entries are automatically evicted fromthe dynanmic table. Size
managenment is purely the responsibility of the encoder, which MJST
NOT exceed the declared nmenory size of the decoder.

To sinplify state managenent in the dynanmic table, _checkpoints_ are

i ntroduced. A checkpoint is used to track entries added to the
dynanic table and streans that reference those entries, rather than

Bi shop Expi res June 17, 2018 [Page 4]

Internet-Draft QPACK Decenber 2017

mai ntai ning the full state of which streans reference which table
entries.

Checkpoi nts are unordered and have an identifier which MJST be uni que
anong checkpoi nts which have not been dropped. Each checkpoint has a
uni di rectional stream which begins with its identifier and contains a
series of updates associated with that checkpoint. These updates
SHOULD be processed as they arrive; it is not necessary (and m ght

not be desirable) to wait for all instructions associated with a
checkpoint to arrive before beginning to process it.

The feedback streamis used to relay state transitions to the peer
For exanple, when a decoder is done processing a header block, it
signals this using the HEADERS DONE nmessage. The encoder uses this
information to track which checkpoints can be dropped.

2.1.1.1. Checkpoint Lifecycle

A checkpoint is created by opening a new checkpoint stream This
pl aces the checkpoint in the NEWstate for both encoder and decoder
The encoder typically has at | east one checkpoint in the NEWstate.

Fl ushing a checkpoint is a two-step operation. First, the checkpoint
streamis closed. At that time, the encoder’s NEW checkpoi nt becones
PENDI NG The decoder noves its NEW checkpoint directly to LIVE and
responds with an ACK FLUSH nmessage on the feedback stream \Wen the
encoder receives this nessage, its PENDI NG checkpoi nt becones LI VE.

Unused entries are evicted indirectly, by dropping checkpoints.

Bef ore a checkpoint can be dropped, its state is changed to DYI NG
Changi ng a checkpoint’s state to DYING all ows the checkpoint to age
out. This is a strictly internal state on the encoder, and not
visible to the decoder. A DYING checkpoint can be returned to LIVE
at the encoder’s discretion if necessary.

The encoder can change a DYI NG checkpoi nt to DEAD (sending a DROP
instruction) when it is no |longer referenced by any outstanding
header bl ocks. The encoder sends the DROP command to the decoder
when it declares a checkpoi nt DEAD.

To ensure consi stency, the decoder drops the correspondi ng checkpoi nt
and responds with an ACK DROP nessage only when it has fully received

all instructions the encoder has issued up to that point. The
encoder drops the DEAD checkpoi nt upon recei pt of the ACK DROP
nessage.

Bi shop Expi res June 17, 2018 [Page 5]

Internet-Draft QPACK Decenber 2017

2

2

2

When a checkpoint is dropped by encoder or decoder, the table entries
it references are checked: if an entry is no |longer referenced by any
checkpoint, the entry is evicted.

Dr oppi ng a checkpoint and the entries associated with it is not
limted to just the ol dest checkpoint; any DYl NG checkpoint - as |ong
as state transition rules are followed - may be dropped. This
flexibility permts the encoder to use a nunmber of strategies for
entry eviction.

As | ong as the maxi num dynanic table size is observed, new
checkpoints can be created; no upper linmt on the nunber of
checkpoints is specified. A well-balanced spread of checkpoints
permits the encoder to recycle entries effectively.

2. Encoding Constraints
2.1. Permtted References

When encodi ng headers on a request stream an encoder MAY reference
any static table entry or any dynam c header table entry referenced
by a LIVE checkpoint. References to entries in NEWor PENDI NG
checkpoints are permitted only if the client has set

" SETTI NG_QPACK_BLOCKI NG PERM TTED' (see Section 4.1).

If a decoder receives a reference to an enpty slot in the dynamc
tabl e but has not sent "SETTI NG QPACK BLOCKI NG PERM TTED', this MJST
be treated as a streamerror of type "ERROR QPACK | NVALI D REFERENCE"
if on a request stream References to enpty slots in the dynanic
tabl e on a checkpoint stream MJUST be treated as a connection error of
type "ERROR_QPACK_ | NVALI D_REFERENCE" .

Ref erences to DYI NG checkpoints are possible by returning the
checkpoint to LIVE, but this is usually inadvisable. Table entries
contained only in a DEAD checkpoi nt can never be referenced.

2.2. Header Table Size

As in HPACK, the dynamic table is constrained to the maxi mum size
specified by the decoder. An attenpt to add a header to the dynanic
table or to create a new checkpoint which causes it to exceed the
maxi mum si ze MJUST be treated as an error by a decoder. To enable
encoders to reclai mspace, encoders can drop old checkpoints (see
Section 2.1.1).

The total table size is calculated as foll ows:

0 The size of each entry is calculated as in HPACK

Bi shop Expi res June 17, 2018 [Page 6]

Internet-Draft QPACK Decenber 2017

o Each checkpoint that has not been renoved, regardless of state,
consumes 64 bytes

2.2.2.1. Table Size Changes

HTTP/ QUI C prohi bits m d-stream changes of settings. As a result,
only one table size change is possible: Fromthe value a client
assunes during the O-RTT flight to the actual value included in the
server’s SETTINGS franme. The assuned value is required to be either
a server’s previous value or zero. A server whose configuration has
recently changed MAY overl ook inadvertent violations of its maxi num
table size during the first round-trip

In the case that the value has increased, either fromzero to a non-
zero value or fromthe cached value to a higher value, no action is
required by the client. The encoder can sinply begin using the
additional space. |In the case that the val ue has decreased, the
encoder MJST nove checkpoints to the DYI NG state which, upon renoval,
woul d bring the table within the required size.

Regardl ess of changes to header table size, the encoder MJUST NOT
create new checkpoints or add entries to the table which would result
in a size greater than the maxi mumpernmtted. This can inply that no
additions are pernitted while waiting for old checkpoints to
conpl et e.

3. Wre Format

QPACK instructions occur on three streamtypes, each of which uses a
separate instruction space

The feedback streamis a bidirectional server-initiated stream used
for acknow edgenent of actions and checkpoi nt state nmanagenent.
Checkpoint streans are unidirectional streans from encoder to
decoder. Both types of streams consist of a series of QPACK
instructions with no nmessage boundaries, preceded by a stream header
for checkpoint streans.

Finally, the contents of HEADERS and PUSH PROM SE frames on request
streans reference the QPACK table state.

This section describes the instructions which are possible on each
stream type

Bi shop Expi res June 17, 2018 [Page 7]

Internet-Draft QPACK Decenber 2017

3.1. Feedback Stream

Stream 1, the first server-initiated bidirectional stream is used as
the feedback stream since the client does not need to begin sending
data on this streamuntil it has received data fromthe server

This streamis critical to the HITP/ QUI C connection, and carries a
streamof the instructions defined in this section. Data on this
stream SHOULD be processed as soon as it arrives.

3.1.1. HEADERS_DONE

When the decoder has processed a frame containi ng header enission
instructions (Section 3.3, HEADERS or PUSH PROM SE franes) on a
stream it MJIST enit a HEADERS DONE message on the feedback stream
The sane Stream I D can be identified nultiple tinmes, as nultiple
header - cont ai ni ng bl ocks can be sent on a single streamin the case
of internedi ate responses, trailers, pushed requests, etc.

Since header frames on a request stream are received and processed in
order, this gives the encoder precise feedback on which header bl ocks
within a stream have been fully processed. This information can then
be used to correctly track outstanding streamreferences to
checkpoi nt s.

0 1 2 3 4 5 6 7

B T T Sy S S
| 1| Stream I D (7+) [

HEADERS_DONE i nstruction
3.1.2. ACK FLUsH
When t he decoder has finished processing all instructions that nake
up a checkpoint, it MJST indicate successful processing to the
encoder by enitting an ACK FLUSH i nstruction on the feedback stream
Upon emtting an ACK FLUSH, the checkpoint transitions from NEWtoO
LI VE on the decoder. Upon receipt of an ACK FLUSH, the checkpoi nt
transitions from PENDING to LIVE on the encoder
0 1 2 3 4 5 6 7

B e T s T o S R
| O] 1] O] Checkpoint ID (5+)]

ACK_FLUSH i nstruction

Bi shop Expi res June 17, 2018 [Page 8]

Internet-Draft QPACK Decenber 2017

3.1.3. DRCP

When an encoder has received sufficient HEADERS DONE nessages to know
that a DYI NG checkpoi nt has no outstanding references, it emts a
DROP instruction to informthe decoder that the checkpoint can be
removed. Upon sending a DROP instruction, a DYl NG checkpoi nt becones
DEAD. The DROP instruction also includes the |Ds of any PENDI NG or
NEW checkpoi nts which reference entries contained in the checkpoint
bei ng dropped. The "L" bit in each byte indicates whether another
checkpoint ID follows (L=0) or this is the final byte of the DROP
instruction (L=1).

Upon receiving a DROP instruction, if all |isted checkpoints have
been fully processed (transitioned fromNEWto LIVE), the identified
LI VE checkpoint is imediately renoved fromthe decoder state and an
ACK DROP instruction is emtted. Oherw se, the decoder saves the
DROP instruction until other checkpoints beconme LI VE.

0 1 2 3 4 5 6 7
M S Sy S S

| O] 0] L | Checkpoint ID (5+)]

B T IR, ey Uy +
| L | Checkpoint (7+) |
oo o +
| L | Checkpoint (7+) [
S +
| ce |
Fom e e e e e e e e e m oo oo +

DROP i nstruction
3.1.4. ACK DROP

Wien a decoder receives a DROP instruction, it renoves the referenced
checkpoint fromits state and clears any table entries which were
referenced only by that checkpoint. It then emits an ACK DROP
instruction. Wen an encoder receives an ACK DROP instruction, it
renoves the correspondi ng DEAD checkpoint fromits state and clears
any table entries which were referenced only by that checkpoint.

0 1 2 3 4 5 6 7
L S S P S

| O] 1| 1| Checkpoint ID (5+4)]
Fomm e e e e e e e e oo +

ACK_DROP instruction

Bi shop Expi res June 17, 2018 [Page 9]

Internet-Draft QPACK Decenber 2017

3.2. Checkpoint Streans

Each checkpoint streamindicates the creation and content of a NEW
checkpoint. Each checkpoint has an ID; these IDs are chosen
arbitrarily by the encoder, though | ower val ues SHOULD be preferred.
| Ds of checkpoi nts which have been dropped MAY be reused for future
NEW checkpoi nt s.

When the encoder has finished witing all data on the stream it
changes the checkpoint to PENDING Wen the decoder has received and
processed all data on the stream it changes the checkpoint to LIVE
and generates an ACK FLUSH

Unidirectional streams in HITP/QUI C begin with a stream header
i ndicating the nature of the streamcontent; the identifier for QPACK
checkpoints is 0x4B.

Note to readers: This header does not currently exist in the
main draft, but has manifested in several PRs, and would need to
be resurrected.

Fol | owi ng the stream header, a checkpoint streamcontains its
checkpoint ID as an 8-bit prefix integer. The renminder of the
streami s data consists of the instructions defined in this section

Dat a on checkpoi nt streanms SHOULD be processed as soon as it arrives.
If multiple checkpoint streans are received at once, a decoder SHOULD
process data on each as it arrives if it has sent

"SETTI NGS_QPACK BLOCKI NG PERM TTED', but MAY process checkpoi nt
streams one at a tine.

3.2.1. | NSERT

An addition to the dynamc table starts with the '1' one-bit pattern
foll owed by the new i ndex of the header represented as an integer
with a 7-bit prefix. The decoder adds the supplied header to the
checkpoi nt currently being processed, which is in the NEWstate.

If the header field name matches the header field nane of an entry
stored in the static table or the dynanic table, the header field
nane can be represented using the index of that entry. |In this case,
the "S" bit indicates whether the reference is to the static (S=1) or
dynanic (S=0) table and the index of the entry is represented as an
integer with an 7-bit prefix (see Section 5.1 of [RFC7/541]). This
val ue is al ways non-zero.

If an I NSERT instruction uses an existing dynamic table entry for the
nane of an entry being added to the NEW checkpoint, both the existing

Bi shop Expi res June 17, 2018 [Page 10]

Internet-Draft QPACK Decenber 2017

entry and the new entry are referenced by the NEWcheckpoint. | NSERT
i nstructions which reference the dynam c table MJST reference only
entries which are already included in a LIVE checkpoint. This avoids
the possibility of one checkpoint stream bl ocking on a different
checkpoi nt .

0 1 2 3 4 5 6 7
M S Sy S S

| 1] New | ndex (7+) [

o +

| S| Nane | ndex (7+) |

T S +

| HI Val ue Length (7+) |

B +

| Value String (Length octets)
2 +

I NSERT instruction -- |ndexed Nane

O herwi se, the header field nane is represented as a string litera
(see Section 5.2 of [RFC7541]). A value O is used in place of the
table reference, followed by the header field nane.

0 1 2 3 4 5 6 7
S

| 1] New | ndex (7+) |
T +
I 0 I
e +
| H Name Length (7+) |
T e +
| Nane String (Length octets) |
T +
| H Val ue Length (7+) [
S +
| Value String (Length octets)

YT +

I NSERT i nstruction -- New Nane

Ei ther form of header field nane representation is followed by the
header field value represented as a string literal (see Section 5.2
of [RFC7541]).

An encoder MUST NOT attenpt to place a value at an index not known to

be vacant. A decoder MJST treat the attenpt to insert into an
occupied slot or reference a nane in a vacant slot as a fatal error

Bi shop Expi res June 17, 2018 [Page 11]

Internet-Draft QPACK Decenber 2017

3.2.2. TOUCH

This instruction is emitted to link a NEWcheckpoint to an existing
header table entry created by a previous checkpoint. This causes the
entry not to be renoved fromthe table so long as the current
checkpoint is alive.

0 1 2 3 4 5 6 7
T

| 0| I ndex (7+) |

| ndexed Header Field

The encoder SHOULD NOT issue nultiple TOUCH commands for the sane
entry in the context of the sane NEW checkpoint. |[|f a non-existent
i ndex is specified, the decoder MJST treat is as an error

3.3. Request Streans

Frames which carry HITP nessage headers begin with an optiona
preface indicating potentially-blocking references in the frame. |If
present, this preface indicates that the request depends on one or
nore checkpoi nts which were NEWor PENDI NG for the encoder when the
frane was generated. |f these checkpoints are not LIVE on the
decoder, it MAY delay reading the remai nder of the frame until they
are. (If any of these checkpoints have al ready been dropped, this
must be treated as a streamerror of type
ERROR_QPACK_| NVALI D_REFERENCE.)

The preface is formatted as fol |l ows:

0 1 2 3 4 5 6 7
S

| L | Checkpoint (7+) |
e +
| L | Checkpoint (7+) |
S +
| . |
Fom e e e e e e e e e m oo oo +

QPACK pref ace
The "L" bit indicates that this checkpoint is the |ast checkpoint in

the preface; if the bit is unset (0), then another checkpoint
fol | ows.

Bi shop Expi res June 17, 2018 [Page 12]

Internet-Draft QPACK Decenber 2017

3.3.1. Indexed Header Field Representation

An indexed header field representation identifies an entry in either
the static table or the dynanic table and causes that header field to
be added to the decoded header |ist, as described in Section 3.2 of

[RFC7541] .

0 1 2 3 4 5 6 7
g
| 11 S| I ndex (6+) |
e +

| ndexed Header Field

An indexed header field starts with the '1" 1-bit pattern, followed
by the "S" bit indicating whether the reference is into the static
(S=1) or dynamic (S=0) table. Finally, the index of the natching
header field is represented as an integer with a 6-bit prefix (see
Section 5.1 of [RFC7541]).

The index value of 0 is not used. It MJIST be treated as a decoding
error if found in an indexed header field representation

3.3.2. Literal Header Field Representation

A literal header field representation starts with the "0 1-bit
pattern and causes a header field to be added the decoded header
list.

The second bit, 'N, indicates whether an internediary is pernitted
to add this header to the dynanic header table on subsequent hops.
When the "N bit is set, the encoded header MJST al ways be encoded
with this specific literal representation. |In particular, when a
peer sends a header field that it received represented as a litera
header field with the "N bit set, it MJST use the sane
representation to forward this header field. This bit is intended
for protecting header field values that are not to be put at risk by
conmpressing them (see Section 7.1 of [RFC7541] for nore details).

If the header field nane matches the header field nane of an entry
stored in the static table or the dynanic table, the header field
nane can be represented using the index of that entry. |In this case,
the "S" bit indicates whether the reference is to the static (S=1) or
dynanmic (S=0) table and the index of the entry is represented as an
integer with an 5-bit prefix (see Section 5.1 of [RFC/541]). This
val ue i s al ways non-zero.

Bi shop Expi res June 17, 2018 [Page 13]

Internet-Draft QPACK Decenber 2017

0 1 2 3 4 5 6 7
M S Sy S S

| 0] N| S| Name Index (5+) |

B T IR, ey Uy +
| H| Val ue Length (7+) |
oo e e e e e e e e eao oo - +
| Value String (Length octets)
S +

Literal Header Field -- Indexed Nane

O herwi se, the header field nane is represented as a string litera
(see Section 5.2 of [RFC7541]). A value 0 is used in place of the
6-bit index, followed by the header field nane.

0 1 2 3 4 5 6 7
L S P S

| O] N 0 I
T e T +
| H| Name Length (7+) |
T +
| Name String (Length octets) |
e +
| H Val ue Length (7+) |
T YT T +
| Value String (Length octets)

Fom e e e e e e e e e e ee oo +

Literal Header Field -- Literal Nane

Ei ther form of header field name representation is followed by the
header field value represented as a string literal (see Section 5.2
of [RFC7541]).

4. Use in HTTP/QUIC
HTTP/ QU C [I-D.ietf-quic-http] currently retains the HPACK encoder/
decoder from HTTP/ 2, but restricts the size of the dynanmic table to
zero. Using QPACK instead would entail the follow ng changes:
0 Header Bl ocks consist of QPACK data instead of HPACK data

0 HEADERS and PUSH PROM SE franes define a flag indicating the
presence of a preface.

o0 Just as unidirectional push streans have a stream header

identifying their Push ID, a header will need to be added to
differentiate checkpoint streans from pushes

Bi shop Expi res June 17, 2018 [Page 14]

Internet-Draft QPACK Decenber 2017

0 Stream 2 is reserved for the Feedback Stream

A HEADERS or PUSH PROM SE frane MAY contain an arbitrary number of
QPACK instructions. A partial HEADERS or PUSH PROM SE franme MAY be
processed upon arrival and the resulting partial header set enmtted
or buffered according to inplenentation requirenents.

4.1. SETTI NG_QPACK_BLOCKI NG_PERM TTED

An HTTP/ QUIC i npl ementation can trade off the conplexity of its QPACK
decoder agai nst conpression efficiency by permitting the peer’s
conmpressor to reference unacknow edged entries. |In the case of |oss
on a checkpoint stream such references m ght cause the processing of
request streams to block, waiting for the arrival of mssing data.

If the decoder permts the encoder to nmake bl ocking references, it
sets "SETTI NG_QPACK_BLOCKI NG_PERM TTED' (OxSETTING TBD1) to a non-
zero value. The encoder receiving this setting MAY encode up to this
number of potentially-blocking references at a tine.

Sending this setting with no value indicates that a decoder is
willing to tolerate blocking references bounded only by the all owed
nunber of streans. |If a decoder does not send this setting or sends
this setting with a value of zero, the encoder MJUST NOT encode a
header using a reference that mi ght block

4.2. SETTING_QPACK_I NI TI AL_CHECKPO NT

An HTTP/ QUI C i npl enent ati on MAY incl ude the

" SETTI NG_QPACK_| NI TI AL_CHECKPO NT" (OxSETTI NG TBD2) setting,
containing the full serialization of an initial checkpoint streanis
data. |If present, this setting MIST be fully processed by the peer
bef ore decodi ng any checkpoint streans or header frames on request
streans.

The checkpoint defined by this setting is considered LIVE by both the
encoder and the decoder fromthe begi nning of the connection. The
decoder does not need to send an ACK FLUSH nessage confirm ng receipt
of this setting.

5. Inplenentation trade-offs
Thi s docunent specifies a means for the encoder to express the
choices it made while encoding, but intentionally does not nandate

what those choices should be. In this section, potential areas for
i npl ementation tuning are expl ored.

Bi shop Expi res June 17, 2018 [Page 15]

Internet-Draft QPACK Decenber 2017

5.1. Conpression Efficiency versus Bl ocki ng Avoi dance

If blocking references are permtted, they will block if the franme
containing the entry definition is |ost or delayed. Encoders MAY
choose to trade of f conpression efficiency and avoid bl ocki ng by
using literal instructions rather than referencing the dynanm c table
until the insertion is believed to be conplete.

The nost efficient conpression algorithmw |l reference a table entry
whenever it exists in the table, but risks blocking when subject to
packet |oss or reordering. The nost conservative algorithmwll
always enit literals to guarantee that no blocking will ever occur
Most inplenentations will choose a bal ance between these two
extrenes.

Better efficiency while being simlarly conservative can be achieved

by permitting references to table entries only once these entries are
confirnmed to be present in the table. More optinization can be

achi eved when the reference is known to be in the same packet as the

definition.

Increases in efficiency can be achieved by assumi ng greater risk of
bl ocking - inplenentations mght choose a particul ar bal ance, or
adj ust their aggressiveness based on observed network
characteristics.

Since it is possible to insert header values wi thout emtting themon
a stream an encoder MAY al so proactively insert header val ues which
it believes will be needed on future requests, at the cost of reduced
conmpression efficiency for incorrect predictions.

The ability to split updates to the header table into discrete
checkpoints reduces the possibility for head-of-line bl ocking within
the checkpoint streans. |Inplenmentations SHOULD Iimt the size of
checkpoints to avoi d head-of-l1ine blocking within these nessages.

5.2. Tinely State Transitions versus Decoder Conplexity

Anyt hi ng which prevent checkpoints fromtransitioning fromDYING to
DEAD can prevent the encoder from addi ng any new entries due to the
maxi mum tabl e size. This does not block the encoder from conti nuing
to nmake requests, but could sharply limt conpression performance.
Encoders woul d be well-served to begin nmoving checkpoint to DYING in
advance of encountering the table maxi num Decoders SHOULD be pronpt
about emtting STREAM DONE and ACK DROP instructions to enable the
encoder to recover the table space

Bi shop Expi res June 17, 2018 [Page 16]

Internet-Draft QPACK Decenber 2017

Simlarly, for decoders which prohibit blocking references, delaying
the transition of a checkpoint from PENDING to LIVE will degrade
compressi on performance. Decoders SHOULD consune checkpoi nt data and
emt ACK FLUSH franmes as pronptly as possi bl e.
Since decoders cannot safely drop old checkpoints until they have
fully processed any checkpoi nts which night have been open
concurrently, a long-lived checkpoint can delay the conpletion of an
ACK_DROP. Encoders SHOULD flush all NEW checkpoints as soon as
feasible after issuing a DROP instruction

6. Security Considerations
A malicious encoder might attenpt to consune a | arge anmount of space
on the decoder, but as each decoder chooses how nuch nenory to all ow
the peer to consune, this state is bounded.
A malicious encoder mght also send bl ocking references to entries
which will never actually be defined. This attack is conparable to a
"slow loris" attack in which a request is delivered very slowy in an
attenpt to consunme resources on the server. Simlar mtigations
(request tiners, etc.) SHOULD be enpl oyed to guard agai nst such
attacks.

7. 1 ANA Consi derations

Thi s docunment registers two settings and one error code with the
correspondi ng HTTP/ QUI C regi stri es.

7.1. Settings

This docunment registers two entries in the "HTTP/ QU C Settings"
registry established by [I-D.ietf-quic-http].

Setting Name: SETTI NG QPACK_BLOCKI NG PERM TTED
Code: OxSETTI NG TBD1

Specification: Section 4.1

and

Setting Nane: SETTI NG QPACK | NI TI AL_CHECKPO NT
Code: OxSETTI NG TBD2

Specification: Section 4.2

Bi shop Expi res June 17, 2018 [Page 17]

Internet-Draft QPACK Decenber 2017

7.

9.

9.

2.

1.

Errors

Thi s docunment registers one error code in the "HITP/ QU C Error Code"
registry established by [I-D.ietf-quic-http].

Error nanme: ERROR_QPACK_ | NVALI D_REFERENCE
Code: OxERROR- TBD

Description: A blocking reference was recei ved by a decoder which
did not permt it

Speci fication: Section 2.2.1

Acknowl edgenent s

This draft draws heavily on the text of [RFC7541], and adopts (with
adapt ati on) the checkpoint nodel from[QMN . The direct and
indirect input of those authors is gratefully acknow edged, as well
as ideas gleefully stolen from

o Jana |yengar

o Patrick MMnus

o Martin Thonmson

0 Charles 'Buck’ Krasic

0 Kyle Rose

o Al an Frindell

A substantial portion of Mke's work on this draft was supported by
M crosoft during his enpl oynent there.

Ref er ences
Nor mati ve References
[I-D.ietf-quic-http]
Bi shop, M, "Hypertext Transfer Protocol (HTTP) over

QU C', draft-ietf-quic-http-07 (work in progress), OCctober
2017.

Bi shop Expi res June 17, 2018 [Page 18]

Internet-Draft QPACK Decenber 2017

[I-D.ietf-quic-transport]
lyengar, J. and M Thonson, "QUI C. A UDP-Based Multi pl exed
and Secure Transport", draft-ietf-quic-transport-07 (work
in progress), Cctober 2017.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997,
<https://www. rfc-editor.org/info/rfc2119>.

[RFC7540] Belshe, M, Peon, R, and M Thomson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

DO 10.17487/ RFC7540, May 2015,
<https://www.rfc-editor.org/info/rfc7540>.

[RFC7541] Peon, R and H Ruellan, "HPACK: Header Conpression for
HTTP/ 2", RFC 7541, DO 10.17487/ RFC7541, WNMay 2015,
<https://ww. rfc-editor.org/info/rfc7541>.

9.2. Informative References

[QMN| Ti khonov, D., "QM N:. Header Conpression for QU C', draft-
ti khonov-qui c-qm n-00 (work in progress), Novenber 2017.

Aut hor’ s Addr ess

M ke Bi shop
Akanai

Enmai | : nmbi shop@vequef ou. be

Bi shop Expi res June 17, 2018 [Page 19]

