
QUIC Working Group M. Bishop
Internet-Draft Akamai
Intended status: Standards Track December 14, 2017
Expires: June 17, 2018

 Header Compression for HTTP/QUIC
 draft-bishop-quic-http-and-qpack-07

Abstract

 HTTP/2 [RFC7540] uses HPACK [RFC7541] for header compression.
 However, HPACK relies on the in-order message-based semantics of the
 HTTP/2 framing layer in order to function. Messages can only be
 successfully decoded if processed by the decoder in the same order as
 generated by the encoder. This draft refines HPACK to loosen the
 ordering requirements for use over QUIC [I-D.ietf-quic-transport].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 17, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bishop Expires June 17, 2018 [Page 1]

Internet-Draft QPACK December 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. QPACK - Concepts . 3
 2.1. Changes to Static and Dynamic Tables 4
 2.1.1. Dynamic Table State Synchronization 4
 2.2. Encoding Constraints 6
 2.2.1. Permitted References 6
 2.2.2. Header Table Size 6
 3. Wire Format . 7
 3.1. Feedback Stream . 8
 3.1.1. HEADERS_DONE . 8
 3.1.2. ACK_FLUSH . 8
 3.1.3. DROP . 9
 3.1.4. ACK_DROP . 9
 3.2. Checkpoint Streams 10
 3.2.1. INSERT . 10
 3.2.2. TOUCH . 12
 3.3. Request Streams . 12
 3.3.1. Indexed Header Field Representation 13
 3.3.2. Literal Header Field Representation 13
 4. Use in HTTP/QUIC . 14
 4.1. SETTING_QPACK_BLOCKING_PERMITTED 15
 4.2. SETTING_QPACK_INITIAL_CHECKPOINT 15
 5. Implementation trade-offs 15
 5.1. Compression Efficiency versus Blocking Avoidance 16
 5.2. Timely State Transitions versus Decoder Complexity . . . 16
 6. Security Considerations 17
 7. IANA Considerations . 17
 7.1. Settings . 17
 7.2. Errors . 18
 8. Acknowledgements . 18
 9. References . 18
 9.1. Normative References 18
 9.2. Informative References 19
 Author’s Address . 19

1. Introduction

 HPACK has a number of features that were intended to provide
 performance advantages to HTTP/2, but which don’t live well in an
 out-of-order environment such as that provided by QUIC.

Bishop Expires June 17, 2018 [Page 2]

Internet-Draft QPACK December 2017

 The largest challenge is the fact that elements are referenced by a
 very fluid index. Not only is the index implicit when an item is
 added to the header table, the index will change without notice as
 other items are added to the header table. Static entries occupy the
 first 61 values, followed by dynamic entries. A newly-added dynamic
 entry would cause older dynamic entries to be evicted, and the
 retained items are then renumbered beginning with 62. This means
 that, without processing all preceding header sets, no index into the
 dynamic table can be interpreted, and the index of a given entry
 cannot be predicted.

 Any solution to the above will almost certainly fall afoul of the
 memory constraints the decompressor imposes. The automatic eviction
 of entries is done based on the compressor’s declared dynamic table
 size, which MUST be less than the maximum permitted by the
 decompressor (and relayed using an HTTP/2 SETTINGS value).

 Further, streams in QUIC are lossy in the presence of stream resets.
 While HTTP/2 (via TCP) guarantees the delivery of all previously-sent
 data on a stream even if that stream is reset, QUIC does not
 retransmit lost frames if a stream has been reset, and may discard
 data which has not yet been delivered to the application.

 Early versions of QPACK were small deltas of HPACK to introduce
 order-resiliency. Recent versions depart from HPACK more
 substantially to add resilience against reset message streams and
 reduce the impact of head-of-line blocking.

 In the following sections, this document proposes a successor to
 HPACK which makes different trade-offs, enabling partial out-of-order
 interpretation and bounded memory consumption with minimal head-of-
 line blocking. None of the proposed improvements to HPACK (strongly-
 typed fields, binary compression of common header syntax) are
 currently included, but certainly could be.

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14,
 [RFC2119] and indicate requirement levels for compliant
 implementations.

2. QPACK - Concepts

 HPACK combines header table modification and message header emission
 in a single sequence of coded bytes. QPACK bifurcates these into
 three channels:

Bishop Expires June 17, 2018 [Page 3]

Internet-Draft QPACK December 2017

 o Connection-wide sets of table update instructions sent on non-
 request streams

 o Connection-wide feedback on stream and checkpoint state on a
 single non-request stream

 o Non-modifying instructions which use the current header table
 state to encode message headers on request streams

 Because the per-message instructions introduce no changes to the
 header table state, no state is lost if these instructions are
 discarded due to a stream reset. Because the updates to the header
 table supply their own order controls (the checkpoint logic), they
 can be processed in any order and therefore delivered as messages
 using unidirectional QUIC streams.

2.1. Changes to Static and Dynamic Tables

 QPACK uses two tables for associating header fields to indexes. The
 static table is unchanged from [RFC7541]. Unlike in [RFC7541], the
 tables are not concatenated, but are referenced separately.

 The dynamic table is a map from index to header field. Indices are
 arbitrary numbers between 1 and 2^27. Each insert instruction will
 specify the index being modified. While any index MAY be chosen for
 a new entry, smaller numbers will yield better compression
 performance.

 With decoder consent (see Section 4.1), it is possible for QPACK
 instructions to arrive which reference indices which have not yet
 been defined. Such instructions MUST wait until the index definition
 has arrived. In order to guard against malicious peers,
 implementations supporting blocking SHOULD impose a time limit and
 treat expiration of the timer as a decoding error.

2.1.1. Dynamic Table State Synchronization

 In order to ensure table consistency, all modifications of the header
 table occur as separate messages rather than on request streams.
 Request streams contain only indexed and literal header entries.

 No entries are automatically evicted from the dynamic table. Size
 management is purely the responsibility of the encoder, which MUST
 NOT exceed the declared memory size of the decoder.

 To simplify state management in the dynamic table, _checkpoints_ are
 introduced. A checkpoint is used to track entries added to the
 dynamic table and streams that reference those entries, rather than

Bishop Expires June 17, 2018 [Page 4]

Internet-Draft QPACK December 2017

 maintaining the full state of which streams reference which table
 entries.

 Checkpoints are unordered and have an identifier which MUST be unique
 among checkpoints which have not been dropped. Each checkpoint has a
 unidirectional stream which begins with its identifier and contains a
 series of updates associated with that checkpoint. These updates
 SHOULD be processed as they arrive; it is not necessary (and might
 not be desirable) to wait for all instructions associated with a
 checkpoint to arrive before beginning to process it.

 The feedback stream is used to relay state transitions to the peer.
 For example, when a decoder is done processing a header block, it
 signals this using the HEADERS_DONE message. The encoder uses this
 information to track which checkpoints can be dropped.

2.1.1.1. Checkpoint Lifecycle

 A checkpoint is created by opening a new checkpoint stream. This
 places the checkpoint in the NEW state for both encoder and decoder.
 The encoder typically has at least one checkpoint in the NEW state.

 Flushing a checkpoint is a two-step operation. First, the checkpoint
 stream is closed. At that time, the encoder’s NEW checkpoint becomes
 PENDING. The decoder moves its NEW checkpoint directly to LIVE and
 responds with an ACK_FLUSH message on the feedback stream. When the
 encoder receives this message, its PENDING checkpoint becomes LIVE.

 Unused entries are evicted indirectly, by dropping checkpoints.
 Before a checkpoint can be dropped, its state is changed to DYING.
 Changing a checkpoint’s state to DYING allows the checkpoint to age
 out. This is a strictly internal state on the encoder, and not
 visible to the decoder. A DYING checkpoint can be returned to LIVE
 at the encoder’s discretion if necessary.

 The encoder can change a DYING checkpoint to DEAD (sending a DROP
 instruction) when it is no longer referenced by any outstanding
 header blocks. The encoder sends the DROP command to the decoder
 when it declares a checkpoint DEAD.

 To ensure consistency, the decoder drops the corresponding checkpoint
 and responds with an ACK_DROP message only when it has fully received
 all instructions the encoder has issued up to that point. The
 encoder drops the DEAD checkpoint upon receipt of the ACK_DROP
 message.

Bishop Expires June 17, 2018 [Page 5]

Internet-Draft QPACK December 2017

 When a checkpoint is dropped by encoder or decoder, the table entries
 it references are checked: if an entry is no longer referenced by any
 checkpoint, the entry is evicted.

 Dropping a checkpoint and the entries associated with it is not
 limited to just the oldest checkpoint; any DYING checkpoint - as long
 as state transition rules are followed - may be dropped. This
 flexibility permits the encoder to use a number of strategies for
 entry eviction.

 As long as the maximum dynamic table size is observed, new
 checkpoints can be created; no upper limit on the number of
 checkpoints is specified. A well-balanced spread of checkpoints
 permits the encoder to recycle entries effectively.

2.2. Encoding Constraints

2.2.1. Permitted References

 When encoding headers on a request stream, an encoder MAY reference
 any static table entry or any dynamic header table entry referenced
 by a LIVE checkpoint. References to entries in NEW or PENDING
 checkpoints are permitted only if the client has set
 "SETTING_QPACK_BLOCKING_PERMITTED" (see Section 4.1).

 If a decoder receives a reference to an empty slot in the dynamic
 table but has not sent "SETTING_QPACK_BLOCKING_PERMITTED", this MUST
 be treated as a stream error of type "ERROR_QPACK_INVALID_REFERENCE"
 if on a request stream. References to empty slots in the dynamic
 table on a checkpoint stream MUST be treated as a connection error of
 type "ERROR_QPACK_INVALID_REFERENCE".

 References to DYING checkpoints are possible by returning the
 checkpoint to LIVE, but this is usually inadvisable. Table entries
 contained only in a DEAD checkpoint can never be referenced.

2.2.2. Header Table Size

 As in HPACK, the dynamic table is constrained to the maximum size
 specified by the decoder. An attempt to add a header to the dynamic
 table or to create a new checkpoint which causes it to exceed the
 maximum size MUST be treated as an error by a decoder. To enable
 encoders to reclaim space, encoders can drop old checkpoints (see
 Section 2.1.1).

 The total table size is calculated as follows:

 o The size of each entry is calculated as in HPACK

Bishop Expires June 17, 2018 [Page 6]

Internet-Draft QPACK December 2017

 o Each checkpoint that has not been removed, regardless of state,
 consumes 64 bytes

2.2.2.1. Table Size Changes

 HTTP/QUIC prohibits mid-stream changes of settings. As a result,
 only one table size change is possible: From the value a client
 assumes during the 0-RTT flight to the actual value included in the
 server’s SETTINGS frame. The assumed value is required to be either
 a server’s previous value or zero. A server whose configuration has
 recently changed MAY overlook inadvertent violations of its maximum
 table size during the first round-trip.

 In the case that the value has increased, either from zero to a non-
 zero value or from the cached value to a higher value, no action is
 required by the client. The encoder can simply begin using the
 additional space. In the case that the value has decreased, the
 encoder MUST move checkpoints to the DYING state which, upon removal,
 would bring the table within the required size.

 Regardless of changes to header table size, the encoder MUST NOT
 create new checkpoints or add entries to the table which would result
 in a size greater than the maximum permitted. This can imply that no
 additions are permitted while waiting for old checkpoints to
 complete.

3. Wire Format

 QPACK instructions occur on three stream types, each of which uses a
 separate instruction space.

 The feedback stream is a bidirectional server-initiated stream used
 for acknowledgement of actions and checkpoint state management.
 Checkpoint streams are unidirectional streams from encoder to
 decoder. Both types of streams consist of a series of QPACK
 instructions with no message boundaries, preceded by a stream header
 for checkpoint streams.

 Finally, the contents of HEADERS and PUSH_PROMISE frames on request
 streams reference the QPACK table state.

 This section describes the instructions which are possible on each
 stream type.

Bishop Expires June 17, 2018 [Page 7]

Internet-Draft QPACK December 2017

3.1. Feedback Stream

 Stream 1, the first server-initiated bidirectional stream, is used as
 the feedback stream, since the client does not need to begin sending
 data on this stream until it has received data from the server.

 This stream is critical to the HTTP/QUIC connection, and carries a
 stream of the instructions defined in this section. Data on this
 stream SHOULD be processed as soon as it arrives.

3.1.1. HEADERS_DONE

 When the decoder has processed a frame containing header emission
 instructions (Section 3.3, HEADERS or PUSH_PROMISE frames) on a
 stream, it MUST emit a HEADERS_DONE message on the feedback stream.
 The same Stream ID can be identified multiple times, as multiple
 header-containing blocks can be sent on a single stream in the case
 of intermediate responses, trailers, pushed requests, etc.

 Since header frames on a request stream are received and processed in
 order, this gives the encoder precise feedback on which header blocks
 within a stream have been fully processed. This information can then
 be used to correctly track outstanding stream references to
 checkpoints.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Stream ID (7+) |
 +---+---------------------------+

 HEADERS_DONE instruction

3.1.2. ACK_FLUSH

 When the decoder has finished processing all instructions that make
 up a checkpoint, it MUST indicate successful processing to the
 encoder by emitting an ACK_FLUSH instruction on the feedback stream.

 Upon emitting an ACK_FLUSH, the checkpoint transitions from NEW to
 LIVE on the decoder. Upon receipt of an ACK_FLUSH, the checkpoint
 transitions from PENDING to LIVE on the encoder.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 0 | Checkpoint ID (5+)|
 +---+---------------------------+

 ACK_FLUSH instruction

Bishop Expires June 17, 2018 [Page 8]

Internet-Draft QPACK December 2017

3.1.3. DROP

 When an encoder has received sufficient HEADERS_DONE messages to know
 that a DYING checkpoint has no outstanding references, it emits a
 DROP instruction to inform the decoder that the checkpoint can be
 removed. Upon sending a DROP instruction, a DYING checkpoint becomes
 DEAD. The DROP instruction also includes the IDs of any PENDING or
 NEW checkpoints which reference entries contained in the checkpoint
 being dropped. The "L" bit in each byte indicates whether another
 checkpoint ID follows (L=0) or this is the final byte of the DROP
 instruction (L=1).

 Upon receiving a DROP instruction, if all listed checkpoints have
 been fully processed (transitioned from NEW to LIVE), the identified
 LIVE checkpoint is immediately removed from the decoder state and an
 ACK_DROP instruction is emitted. Otherwise, the decoder saves the
 DROP instruction until other checkpoints become LIVE.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | L | Checkpoint ID (5+)|
 +---+---+---+-------------------+
 | L | Checkpoint (7+) |
 +---+---------------------------+
 | L | Checkpoint (7+) |
 +---+---------------------------+
 | ... |
 +-------------------------------+

 DROP instruction

3.1.4. ACK_DROP

 When a decoder receives a DROP instruction, it removes the referenced
 checkpoint from its state and clears any table entries which were
 referenced only by that checkpoint. It then emits an ACK_DROP
 instruction. When an encoder receives an ACK_DROP instruction, it
 removes the corresponding DEAD checkpoint from its state and clears
 any table entries which were referenced only by that checkpoint.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 1 | Checkpoint ID (5+)|
 +---+---+---+-------------------+

 ACK_DROP instruction

Bishop Expires June 17, 2018 [Page 9]

Internet-Draft QPACK December 2017

3.2. Checkpoint Streams

 Each checkpoint stream indicates the creation and content of a NEW
 checkpoint. Each checkpoint has an ID; these IDs are chosen
 arbitrarily by the encoder, though lower values SHOULD be preferred.
 IDs of checkpoints which have been dropped MAY be reused for future
 NEW checkpoints.

 When the encoder has finished writing all data on the stream, it
 changes the checkpoint to PENDING. When the decoder has received and
 processed all data on the stream, it changes the checkpoint to LIVE
 and generates an ACK_FLUSH.

 Unidirectional streams in HTTP/QUIC begin with a stream header
 indicating the nature of the stream content; the identifier for QPACK
 checkpoints is 0x4B.

 Note to readers: This header does not currently exist in the
 main draft, but has manifested in several PRs, and would need to
 be resurrected.

 Following the stream header, a checkpoint stream contains its
 checkpoint ID as an 8-bit prefix integer. The remainder of the
 stream’s data consists of the instructions defined in this section.

 Data on checkpoint streams SHOULD be processed as soon as it arrives.
 If multiple checkpoint streams are received at once, a decoder SHOULD
 process data on each as it arrives if it has sent
 "SETTINGS_QPACK_BLOCKING_PERMITTED", but MAY process checkpoint
 streams one at a time.

3.2.1. INSERT

 An addition to the dynamic table starts with the ’1’ one-bit pattern,
 followed by the new index of the header represented as an integer
 with a 7-bit prefix. The decoder adds the supplied header to the
 checkpoint currently being processed, which is in the NEW state.

 If the header field name matches the header field name of an entry
 stored in the static table or the dynamic table, the header field
 name can be represented using the index of that entry. In this case,
 the "S" bit indicates whether the reference is to the static (S=1) or
 dynamic (S=0) table and the index of the entry is represented as an
 integer with an 7-bit prefix (see Section 5.1 of [RFC7541]). This
 value is always non-zero.

 If an INSERT instruction uses an existing dynamic table entry for the
 name of an entry being added to the NEW checkpoint, both the existing

Bishop Expires June 17, 2018 [Page 10]

Internet-Draft QPACK December 2017

 entry and the new entry are referenced by the NEW checkpoint. INSERT
 instructions which reference the dynamic table MUST reference only
 entries which are already included in a LIVE checkpoint. This avoids
 the possibility of one checkpoint stream blocking on a different
 checkpoint.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | New Index (7+) |
 +---+---------------------------+
 | S | Name Index (7+) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 INSERT instruction -- Indexed Name

 Otherwise, the header field name is represented as a string literal
 (see Section 5.2 of [RFC7541]). A value 0 is used in place of the
 table reference, followed by the header field name.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | New Index (7+) |
 +---+---------------------------+
 | 0 |
 +---+---------------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 INSERT instruction -- New Name

 Either form of header field name representation is followed by the
 header field value represented as a string literal (see Section 5.2
 of [RFC7541]).

 An encoder MUST NOT attempt to place a value at an index not known to
 be vacant. A decoder MUST treat the attempt to insert into an
 occupied slot or reference a name in a vacant slot as a fatal error.

Bishop Expires June 17, 2018 [Page 11]

Internet-Draft QPACK December 2017

3.2.2. TOUCH

 This instruction is emitted to link a NEW checkpoint to an existing
 header table entry created by a previous checkpoint. This causes the
 entry not to be removed from the table so long as the current
 checkpoint is alive.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | Index (7+) |
 +---+---------------------------+

 Indexed Header Field

 The encoder SHOULD NOT issue multiple TOUCH commands for the same
 entry in the context of the same NEW checkpoint. If a non-existent
 index is specified, the decoder MUST treat is as an error.

3.3. Request Streams

 Frames which carry HTTP message headers begin with an optional
 preface indicating potentially-blocking references in the frame. If
 present, this preface indicates that the request depends on one or
 more checkpoints which were NEW or PENDING for the encoder when the
 frame was generated. If these checkpoints are not LIVE on the
 decoder, it MAY delay reading the remainder of the frame until they
 are. (If any of these checkpoints have already been dropped, this
 must be treated as a stream error of type
 ERROR_QPACK_INVALID_REFERENCE.)

 The preface is formatted as follows:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | L | Checkpoint (7+) |
 +---+---+---+-------------------+
 | L | Checkpoint (7+) |
 +---+---------------------------+
 | ... |
 +-------------------------------+

 QPACK preface

 The "L" bit indicates that this checkpoint is the last checkpoint in
 the preface; if the bit is unset (0), then another checkpoint
 follows.

Bishop Expires June 17, 2018 [Page 12]

Internet-Draft QPACK December 2017

3.3.1. Indexed Header Field Representation

 An indexed header field representation identifies an entry in either
 the static table or the dynamic table and causes that header field to
 be added to the decoded header list, as described in Section 3.2 of
 [RFC7541].

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | S | Index (6+) |
 +---+---+-----------------------+

 Indexed Header Field

 An indexed header field starts with the ’1’ 1-bit pattern, followed
 by the "S" bit indicating whether the reference is into the static
 (S=1) or dynamic (S=0) table. Finally, the index of the matching
 header field is represented as an integer with a 6-bit prefix (see
 Section 5.1 of [RFC7541]).

 The index value of 0 is not used. It MUST be treated as a decoding
 error if found in an indexed header field representation.

3.3.2. Literal Header Field Representation

 A literal header field representation starts with the ’0’ 1-bit
 pattern and causes a header field to be added the decoded header
 list.

 The second bit, ’N’, indicates whether an intermediary is permitted
 to add this header to the dynamic header table on subsequent hops.
 When the ’N’ bit is set, the encoded header MUST always be encoded
 with this specific literal representation. In particular, when a
 peer sends a header field that it received represented as a literal
 header field with the ’N’ bit set, it MUST use the same
 representation to forward this header field. This bit is intended
 for protecting header field values that are not to be put at risk by
 compressing them (see Section 7.1 of [RFC7541] for more details).

 If the header field name matches the header field name of an entry
 stored in the static table or the dynamic table, the header field
 name can be represented using the index of that entry. In this case,
 the "S" bit indicates whether the reference is to the static (S=1) or
 dynamic (S=0) table and the index of the entry is represented as an
 integer with an 5-bit prefix (see Section 5.1 of [RFC7541]). This
 value is always non-zero.

Bishop Expires June 17, 2018 [Page 13]

Internet-Draft QPACK December 2017

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | N | S | Name Index (5+) |
 +---+---+---+-------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field -- Indexed Name

 Otherwise, the header field name is represented as a string literal
 (see Section 5.2 of [RFC7541]). A value 0 is used in place of the
 6-bit index, followed by the header field name.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | N | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field -- Literal Name

 Either form of header field name representation is followed by the
 header field value represented as a string literal (see Section 5.2
 of [RFC7541]).

4. Use in HTTP/QUIC

 HTTP/QUIC [I-D.ietf-quic-http] currently retains the HPACK encoder/
 decoder from HTTP/2, but restricts the size of the dynamic table to
 zero. Using QPACK instead would entail the following changes:

 o Header Blocks consist of QPACK data instead of HPACK data

 o HEADERS and PUSH_PROMISE frames define a flag indicating the
 presence of a preface.

 o Just as unidirectional push streams have a stream header
 identifying their Push ID, a header will need to be added to
 differentiate checkpoint streams from pushes

Bishop Expires June 17, 2018 [Page 14]

Internet-Draft QPACK December 2017

 o Stream 2 is reserved for the Feedback Stream

 A HEADERS or PUSH_PROMISE frame MAY contain an arbitrary number of
 QPACK instructions. A partial HEADERS or PUSH_PROMISE frame MAY be
 processed upon arrival and the resulting partial header set emitted
 or buffered according to implementation requirements.

4.1. SETTING_QPACK_BLOCKING_PERMITTED

 An HTTP/QUIC implementation can trade off the complexity of its QPACK
 decoder against compression efficiency by permitting the peer’s
 compressor to reference unacknowledged entries. In the case of loss
 on a checkpoint stream, such references might cause the processing of
 request streams to block, waiting for the arrival of missing data.

 If the decoder permits the encoder to make blocking references, it
 sets "SETTING_QPACK_BLOCKING_PERMITTED" (0xSETTING-TBD1) to a non-
 zero value. The encoder receiving this setting MAY encode up to this
 number of potentially-blocking references at a time.

 Sending this setting with no value indicates that a decoder is
 willing to tolerate blocking references bounded only by the allowed
 number of streams. If a decoder does not send this setting or sends
 this setting with a value of zero, the encoder MUST NOT encode a
 header using a reference that might block.

4.2. SETTING_QPACK_INITIAL_CHECKPOINT

 An HTTP/QUIC implementation MAY include the
 "SETTING_QPACK_INITIAL_CHECKPOINT" (0xSETTING_TBD2) setting,
 containing the full serialization of an initial checkpoint stream’s
 data. If present, this setting MUST be fully processed by the peer
 before decoding any checkpoint streams or header frames on request
 streams.

 The checkpoint defined by this setting is considered LIVE by both the
 encoder and the decoder from the beginning of the connection. The
 decoder does not need to send an ACK_FLUSH message confirming receipt
 of this setting.

5. Implementation trade-offs

 This document specifies a means for the encoder to express the
 choices it made while encoding, but intentionally does not mandate
 what those choices should be. In this section, potential areas for
 implementation tuning are explored.

Bishop Expires June 17, 2018 [Page 15]

Internet-Draft QPACK December 2017

5.1. Compression Efficiency versus Blocking Avoidance

 If blocking references are permitted, they will block if the frame
 containing the entry definition is lost or delayed. Encoders MAY
 choose to trade off compression efficiency and avoid blocking by
 using literal instructions rather than referencing the dynamic table
 until the insertion is believed to be complete.

 The most efficient compression algorithm will reference a table entry
 whenever it exists in the table, but risks blocking when subject to
 packet loss or reordering. The most conservative algorithm will
 always emit literals to guarantee that no blocking will ever occur.
 Most implementations will choose a balance between these two
 extremes.

 Better efficiency while being similarly conservative can be achieved
 by permitting references to table entries only once these entries are
 confirmed to be present in the table. More optimization can be
 achieved when the reference is known to be in the same packet as the
 definition.

 Increases in efficiency can be achieved by assuming greater risk of
 blocking - implementations might choose a particular balance, or
 adjust their aggressiveness based on observed network
 characteristics.

 Since it is possible to insert header values without emitting them on
 a stream, an encoder MAY also proactively insert header values which
 it believes will be needed on future requests, at the cost of reduced
 compression efficiency for incorrect predictions.

 The ability to split updates to the header table into discrete
 checkpoints reduces the possibility for head-of-line blocking within
 the checkpoint streams. Implementations SHOULD limit the size of
 checkpoints to avoid head-of-line blocking within these messages.

5.2. Timely State Transitions versus Decoder Complexity

 Anything which prevent checkpoints from transitioning from DYING to
 DEAD can prevent the encoder from adding any new entries due to the
 maximum table size. This does not block the encoder from continuing
 to make requests, but could sharply limit compression performance.
 Encoders would be well-served to begin moving checkpoint to DYING in
 advance of encountering the table maximum. Decoders SHOULD be prompt
 about emitting STREAM_DONE and ACK_DROP instructions to enable the
 encoder to recover the table space.

Bishop Expires June 17, 2018 [Page 16]

Internet-Draft QPACK December 2017

 Similarly, for decoders which prohibit blocking references, delaying
 the transition of a checkpoint from PENDING to LIVE will degrade
 compression performance. Decoders SHOULD consume checkpoint data and
 emit ACK_FLUSH frames as promptly as possible.

 Since decoders cannot safely drop old checkpoints until they have
 fully processed any checkpoints which might have been open
 concurrently, a long-lived checkpoint can delay the completion of an
 ACK_DROP. Encoders SHOULD flush all NEW checkpoints as soon as
 feasible after issuing a DROP instruction.

6. Security Considerations

 A malicious encoder might attempt to consume a large amount of space
 on the decoder, but as each decoder chooses how much memory to allow
 the peer to consume, this state is bounded.

 A malicious encoder might also send blocking references to entries
 which will never actually be defined. This attack is comparable to a
 "slow loris" attack in which a request is delivered very slowly in an
 attempt to consume resources on the server. Similar mitigations
 (request timers, etc.) SHOULD be employed to guard against such
 attacks.

7. IANA Considerations

 This document registers two settings and one error code with the
 corresponding HTTP/QUIC registries.

7.1. Settings

 This document registers two entries in the "HTTP/QUIC Settings"
 registry established by [I-D.ietf-quic-http].

 Setting Name: SETTING_QPACK_BLOCKING_PERMITTED

 Code: 0xSETTING-TBD1

 Specification: Section 4.1

 and

 Setting Name: SETTING_QPACK_INITIAL_CHECKPOINT

 Code: 0xSETTING-TBD2

 Specification: Section 4.2

Bishop Expires June 17, 2018 [Page 17]

Internet-Draft QPACK December 2017

7.2. Errors

 This document registers one error code in the "HTTP/QUIC Error Code"
 registry established by [I-D.ietf-quic-http].

 Error name: ERROR_QPACK_INVALID_REFERENCE

 Code: 0xERROR-TBD

 Description: A blocking reference was received by a decoder which
 did not permit it

 Specification: Section 2.2.1

8. Acknowledgements

 This draft draws heavily on the text of [RFC7541], and adopts (with
 adaptation) the checkpoint model from [QMIN]. The direct and
 indirect input of those authors is gratefully acknowledged, as well
 as ideas gleefully stolen from:

 o Jana Iyengar

 o Patrick McManus

 o Martin Thomson

 o Charles ’Buck’ Krasic

 o Kyle Rose

 o Alan Frindell

 A substantial portion of Mike’s work on this draft was supported by
 Microsoft during his employment there.

9. References

9.1. Normative References

 [I-D.ietf-quic-http]
 Bishop, M., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-07 (work in progress), October
 2017.

Bishop Expires June 17, 2018 [Page 18]

Internet-Draft QPACK December 2017

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-07 (work
 in progress), October 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

9.2. Informative References

 [QMIN] Tikhonov, D., "QMIN: Header Compression for QUIC", draft-
 tikhonov-quic-qmin-00 (work in progress), November 2017.

Author’s Address

 Mike Bishop
 Akamai

 Email: mbishop@evequefou.be

Bishop Expires June 17, 2018 [Page 19]

