QI C J. lyengar, Ed.

I nternet-Draft Googl e
I ntended status: Standards Track M Thonson, Ed.
Expi res: Septenber 14, 2017 Mozill a

March 13, 2017

QUIC: A UDP-Based Miltiplexed and Secure Transport
draft-ietf-quic-transport-02

Abst ract

Thi s docunent defines the core of the QU C transport protocol. This
docunent describes connection establishment, packet fornmat,

mul tiplexing and reliability. Acconpanying docunents describe the
crypt ographi ¢ handshake and | oss detection.

Note to Readers

Di scussion of this draft takes place on the QU C working group
mailing list (quic@etf.org), which is archived at
https://mailarchive.ietf.org/arch/search/?email _|ist=quic .

Worki ng Group information can be found at https://github. con quicwy ;
source code and issues list for this draft can be found at
https://github. com qui cwy/ base-drafts/| abel s/transport

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on Septenber 14, 2017.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 1]

Internet-Draft

Copyright Notice

Copyright (c) 2017 |IETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents

careful ly,
to this docunent.

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

QUI C Transport Protocol March 2017

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of

1. Introduction . . 4
2. Conventions and Deflnltlons . 4
2.1. Notational Conventions 5
3. A QUIC Overview. 5
3.1. Low Latency Cbnnection Establishnent 6
3.2. Stream Ml ti pl exing . e e e e e 6
3.3. Rich Signaling for Congestion Control and Loss Recovery . 6
3.4. Stream and Connection Flow Control . 6
3.5. Authenticated and Encrypted Header and Payload 7
3.6. Connection Mgration and Resilience to NAT Rebinding 7
3.7. Version Negotiation . 8
4. \Versions . 8
5. Packet Types and Fornats 8
5.1. Long Header . 9
5.2. Short Header 11
5.3. Version Negotiation Packet 12
5.4. deartext Packets . 13
5.5. Encrypted Packets . 14
5.6. Public Reset Packet . 15
5.6.1. Public Reset Proof 15
5.7. Connection ID . 16
5.8. Packet Numbers . 16
5.8.1. Initial Packet Nunber . 17
5.9. Handling Packets fromDifferent VérS|ons 17
6. Franes and Frame Types 18
7. VLife of a Connection 19
7.1. Version Negotiation . . 19
7.1.1. Using Reserved Vér3|ons . . 20
7.2. Cryptographic and Transport andshake . 21
7.3. Transport Paraneters . 22
7.3.1. Transport Paraneter Definitions . 24

I yengar & Thonson Expi res Septenber 14, 2017 [Page 2]

Internet-Draft QUI C Transport Protocol March 2017

7.3.2 Val ues of Transport Paraneters for O-RTT 24
7.3.3 New Transport Paraneters . . e e 25
7.3.4. Version Negotiation valldatlon e e e 25
7.4. Proof of Source Address Omwmership 27
7.4.1 Client Address Validation Procedure 27
7.4.2 Address Validation on Session Resunption 28
7.4.3. Address Validation Token Integrlty e e oo oo .29
7.5. Connection Mgration A]
7.6. Connection Term nation 30
8. Frame Types and Formats 3
8.1. STREAM Frarme 2
8.2. ACK Frame . . e V4
8.2.1. ACK Bl ock Sectlon e 7|
8.2.2. Timestamp Section . . < 151
8.2.3. ACK Frames and Packet Protectlon - ¥ £
8.3. W NDOW UPDATE Frame 38
8.4. BLOCKED Frame ... 39
8.5. RST_STREAM Frane 39
8.6. PADDING Frame 40
8.7. PING frane . . X0
8.8. CONNECTI ON_ CLCSE frane e ¢
8.9. GOAWAY Franme . . T 3
9. Packetization and Rellablllty -
9.1. Special Considerations for PMIU Di scovery 44
10. Streanms: QU C s Data Structuring Abstraction 45
10.1. Life of a Stream. 45
10.2.1. idle Lo a
10.1.2. open . . e ¥
10.1.3. half- cIosed (Iocal) e e 48
10.1.4. half-closed (renote) 48
10.1.5. closed . . e e e 48

10. 2. Strean1|dent|f|ers . 10
10.3. Stream Concurrency . . . 10
10. 4. Sending and Recei ving Eata oy
10.5. Stream Prioritization b1
11. Flow Control . . T 4
11.1. Edge Cases and ther Cbn5|derat|ons . .« b4
11.1.1. Md-stream RST.STREAM b4
11.1.2. Response to a RST. STREAM. b4
11.1.3. Ofset Increment b4
11.1.4. BLOCKED franmes 655

12. Error Handling . . e e b5
12.1. Connection Errors e e e 55
12.2. StreamErrors . b6
12.3. FError Codes e b6
13. Security and Privacy Cbn5|derat|ons e e e 60
13.1. Spoofed ACK Attack 60
14. | ANA Considerations 61

I yengar & Thonson Expi res Septenber 14, 2017 [Page 3]

Internet-Draft QUI C Transport Protocol March 2017

14.1. QU C Transport Paranmeter Registry 61
15. References . . < V24
15.1. Normative References e V24
15.2. Informative References 63
15.3. URIs b4
Appendix A. Contributors 64
Appendi x B. Acknow edgrents 64
Appendi x C. Change Log . . . e b4
C.1l. Since draft-ietf- qurc transport 01 O o
C. 2. Since draft-ietf-quic- transport-00: 66
C. 3. Since draft-ham |ton-quic-transport- protocol 67
Authors’ Addresses 67
1. Introduction

QUICis a nultiplexed and secure transport protocol that runs on top
of UDP. QU C ainms to provide a flexible set of features that all ow
it to be a general -purpose transport for nultiple applications.

QUIC inplements techni ques | earned from experience with TCP, SCTP and
other transport protocols. Using UDP as the substrate, QUI C seeks to
be conpatible with legacy clients and m ddl eboxes. QJC
authenticates all of its headers and encrypts nost of the data it
exchanges, including its signaling. This allows the protocol to

evol ve without incurring a dependency on upgrades to m ddl eboxes.

Thi s docunment describes the core QU C protocol, including the
conceptual design, wire format, and mechani sns of the QUI C protoco
for connection establishnent, stream nultiplexing, stream and
connection-level flow control, and data reliability.
Accompanyi ng docunents describe QU C s |oss detection and congestion
control [QUI C RECOVERY], and the use of TLS 1.3 for key negotiation
[QU CTLS].

2. Conventions and Definitions
The words "MJST", "MJST NOI*, "SHOULD', and "MAY" are used in this
docunent. It’s not shouting; when they are capitalized, they have
t he special neaning defined in [RFC2119].
Definitions of terms that are used in this docunent:
Client: The endpoint initiating a QU C connection

Server: The endpoint accepting i ncomi ng QU C connecti ons.

Endpoint: The client or server end of a connection

I yengar & Thonson Expi res Septenber 14, 2017 [Page 4]

Internet-Draft QUI C Transport Protocol March 2017
Stream A logical, bi-directional channel of ordered bytes within a
QUI C connecti on.

Connection: A conversation between two QU C endpoints with a single
encryption context that nultiplexes streans within it.

Connection ID: The identifier for a QU C connecti on.

QUI C packet: A well-fornmed UDP payl oad that can be parsed by a QU C
receiver. QU C packet size in this docunent refers to the UDP
payl oad si ze.

2.1. Notational Conventions

Packet and frame diagrans use the format described in [RFC2360]
Section 3.1, with the follow ng additional conventions:

[x] Indicates that x is optional
{x} Indicates that x is encrypted
X (A Indicates that x is A bits |long
Xx (AB/C ... Indicates that x is one of A, B, or Cbits |ong
x (*) ... Indicates that x is variable-length
3. A QUC Overview

This section briefly describes QU C s key nmechani sns and benefits.
Key strengths of QU C incl ude:

0 Low Il atency connection establishnent

o Miltiplexing without head-of-1ine blocking

0 Authenticated and encrypted header and payl oad

0o Rich signaling for congestion control and | oss recovery
0 Stream and connection flow control

0 Connection migration and resilience to NAT rebinding

0 \Version negotiation

I yengar & Thonson Expi res Septenber 14, 2017 [Page 5]

Internet-Draft QUI C Transport Protocol March 2017

3.1. Low Latency Connection Establishnent

QUIC relies on a conbined cryptographic and transport handshake for
setting up a secure transport connection. QU C connections are
expected to comonly use 0-RTT handshakes, neaning that for nost QU C
connections, data can be sent inmediately follow ng the client
handshake packet, without waiting for a reply fromthe server. QU C
provi des a dedicated stream (Stream 1D 1) to be used for performng
the cryptographi c handshake and QUI C options negotiation. The format
of the QU C options and paranmeters used during negotiation are
described in this docunent, but the handshake protocol that runs on
Stream I D 1 is described in the acconpanyi ng cryptographi ¢ handshake
draft [QU CTLS].

3.2. Stream Mil ti pl exi ng

When application nmessages are transported over TCP, independent
application nmessages can suffer from head-of-1ine blocking. Wen an
application nultiplexes many streans atop TCP' s singl e-byt estream
abstraction, a loss of a TCP segnent results in bl ocking of all
subsequent segnents until a retransm ssion arrives, irrespective of
the application streans that are encapsul ated i n subsequent segnents.
QUI C ensures that |ost packets carrying data for an individual stream
only inpact that specific stream Data received on other streans can
continue to be reassenbl ed and delivered to the application

3.3. Rich Signaling for Congestion Control and Loss Recovery

QUI C s packet franmi ng and acknow edgnents carry rich information that
hel p both congestion control and | oss recovery in fundanental ways.
Each QUI C packet carries a new packet number, including those
carrying retransmitted data. This obviates the need for a separate
mechani smto di stingui sh acknow edgnents for retransnissions from
those for original transm ssions, avoiding TCP's retransm ssion
anbiguity problem QU C acknow edgnents al so explicitly encode the
del ay between the receipt of a packet and its acknow edgnent being
sent, and together with the nonotonically-increasing packet nunbers,
this allows for precise network roundtrip-time (RTT) cal cul ation
QUIC s ACK franes support up to 256 ACK bl ocks, so QU C is nore
resilient to reordering than TCP with SACK support, as well as able
to keep nore bytes on the wire when there is reordering or |oss.

3.4. Stream and Connection Flow Contro
QUIC inplements stream and connection-level flow control, closely
following HTTP/2's flow control nechanisns. At a high level, a QU C

recei ver advertises the absolute byte offset within each streamup to
which the receiver is willing to receive data. As data is sent,

I yengar & Thonson Expi res Septenber 14, 2017 [Page 6]

Internet-Draft QUI C Transport Protocol March 2017

received, and delivered on a particular stream the receiver sends

W NDOW UPDATE franes that increase the advertised offset limt for
that stream allowing the peer to send nore data on that stream |In
addition to this streamlevel flow control, QU C inplenents
connection-level flowcontrol to linmt the aggregate buffer that a
QUICreceiver is willing to allocate to all streams on a connection
Connection-level flow control works in the same way as streaml eve
flow control, but the bytes delivered and hi ghest received offset are
al | aggregates across all streans.

3.5. Authenticated and Encrypted Header and Payl oad

TCP headers appear in plaintext on the wire and are not

aut henti cated, causing a plethora of injection and header
mani pul ation i ssues for TCP, such as receive-w ndow mani pul ati on and
sequence- nunber overwiting. Wile sone of these are nechani sns used
by ni ddl eboxes to inprove TCP perfornance, others are active attacks.
Even "perfornmance-enhanci ng" niddl eboxes that routinely interpose on
the transport state machine end up linmting the evolvability of the
transport protocol, as has been observed in the design of MPTCP

[RFC6824] and in its subsequent deployability issues.

General ly, QU C packets are always authenticated and the payload is
typically fully encrypted. The parts of the packet header which are
not encrypted are still authenticated by the receiver, so as to
thwart any packet injection or manipulation by third parties. Some
early handshake packets, such as the Version Negotiation packet, are
not encrypted, but information sent in these unencrypted handshake
packets is later verified as part of cryptographic processing.

PUBLI C_RESET packets that reset a connection are currently not
aut henti cat ed.

3.6. Connection Mgration and Resilience to NAT Rebi ndi ng

QUI C connections are identified by a 64-bit Connection ID, randomy
generated by the client. QU C s consistent connection |ID allows
connections to survive changes to the client’s I P and port, such as
those caused by NAT rebindings or by the client changi ng network
connectivity to a new address. QUIC provides automatic cryptographic
verification of a rebound client, since the client continues to use

t he same session key for encrypting and decrypting packets. The
consi stent connection ID can be used to allow migration of the
connection to a new server | P address as well, since the Connection

I D remai ns consi stent across changes in the client’s and the server’s
net wor k addr esses.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 7]

Internet-Draft QUI C Transport Protocol March 2017

3.7. Version Negotiation

QUI C version negotiation allows for nmultiple versions of the protoco
to be depl oyed and used concurrently. Version negotiation is
described in Section 7.1.

4. \Versions
QUIC versions are identified using a 32-bit val ue.

The versi on 0x00000000 is reserved to represent an invalid version
This version of the specification is identified by the nunber
0x00000001.

Versions with the nost significant 16 bits of the version nunber
cleared are reserved for use in future | ETF consensus docunents.

Versions that follow the pattern Ox?a?a?a?a are reserved for use in
forcing version negotiation to be exercised. That is, any version
nunber where the low four bits of all octets is 1010 (in binary). A
client or server MAY advertise support for any of these reserved
ver si ons.

Reserved version nunbers will probably never represent a rea
protocol; a client MAY use one of these version nunbers with the
expectation that the server will initiate version negotiation; a
server MAY advertise support for one of these versions and can expect
that clients ignore the val ue.

[[RFC editor: please renove the renmi nder of this section before
publication.]]

The version nunber for the final version of this specification
(0x00000001), is reserved for the version of the protocol that is
publ i shed as an RFC

Version nunbers used to identify | ETF drafts are created by addi ng
the draft number to OxffO000000. For exanple, draft-ietf-quic-
transport-13 would be identified as Oxff00000D.

| npl enentors are encouraged to register version nunbers of QU C that
they are using for private experinmentation on the github wi ki [4].

5. Packet Types and Formats

We first describe QU C s packet types and their formats, since sone
are referenced i n subsequent nechani sns.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 8]

Internet-Draft QUI C Transport Protocol March 2017

Al'l nuneric values are encoded in network byte order (that is, big-
endi an) and all field sizes are in bits. Wen discussing individual
bits of fields, the |east significant bit is referred to as bit O.
Hexadeci mal notation is used for describing the value of fields.

Any QUI C packet has either a long or a short header, as indicated by
the Header Formbit. Long headers are expected to be used early in
the connection before version negotiation and establishment of 1-RTT
keys, and for public resets. Short headers are mniml version-
speci fic headers, which can be used after version negotiation and
1-RTT keys are established.

5.1. Long Header

0 1 2 3
01234567890123456789012345678901
R ol it SR R SR SR
1] Type (7) |
R R ki i I EIE I I R R T R R R R el i R S R R e e R e il i

+
+- +
+ Connection | D (64) +
B i I S i i S S i S S e
[Packet Nunmber (32) |

B e i I i S T e i i e R S S I S S S S
| Ver si on (32) |

B i S S T s i S T st i S S S S S S S S i
[Payl oad (*) -

B i I S i i S S i S S e

Figure 1: Long Header For mat

Long headers are used for packets that are sent prior to the

conpl etion of version negotiation and establishnent of 1-RTT keys.
Once both conditions are net, a sender SHOULD switch to sending
short-form headers. Wile inefficient, |ong headers MAY be used for
packets encrypted with 1-RTT keys. The long formallows for specia
packets, such as the Version Negotiation and the Public Reset packets
to be represented in this uniformfixed-Iength packet format. A |ong
header contains the follow ng fields:

Header Form The nost significant bit (0x80) of the first octet is
set to 1 for long headers and 0 for short headers.

Long Packet Type: The renmining seven bits of first octet of a |long
packet is the packet type. This field can indicate one of 128
packet types. The types specified for this version are listed in
Tabl e 1.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 9]

Internet-Draft QUI C Transport Protocol March 2017
Connection ID: Cctets 1 through 8 contain the connection |D.
Section 5.7 describes the use of this field in nore detail.

Packet Nunber: Cctets 9 to 12 contain the packet nunber. {{packet-
nunber s} descri bes the use of packet nunbers.

Version: COctets 13 to 16 contain the sel ected protocol version
This field indicates which version of QUCis in use and
determ nes how the rest of the protocol fields are interpreted.

Payl oad: Cctets from 17 onwards (the rest of QU C packet) are the
payl oad of the packet.

The foll owi ng packet types are defined:

Homm - - - Fom e e e e e e e e e m oo oo e e e - +
| Type | Name | Section |
Fom e e oo e e e e e e eeee oo - S +
| 01 | Version Negotiation | Section 5.3
I I I I
| 02 | dient O eartext | Section 5.4 |
I I I I
| 03 | Non-Final Server C eartext | Section 5.4
I I I I
| 04 | Final Server d eartext | Section 5.4
I I I I
| 05 | O-RTT Encrypted | Section 5.5
I I I I
| 06 | 1-RTT Encrypted (key phase 0) | Section 5.5
I I I I
| 07 | 1-RTT Encrypted (key phase 1) | Section 5.5
I I I I
| 08 | Public Reset | Section 5.6
Homm - - - Fom e e e e e e e e e m oo oo e e e - +

Tabl e 1: Long Header Packet Types

The header form packet type, connection |ID, packet nunber and
version fields of a |ong header packet are version-independent. The
types of packets defined in Table 1 are version-specific. See
Section 5.9 for details on how packets fromdifferent versions of
QUIC are interpreted.

(TODO Should the Iist of packet types be version-independent ?)

The interpretation of the fields and the payload are specific to a
versi on and packet type. Type-specific semantics for this version

I yengar & Thonson Expi res Septenber 14, 2017 [Page 10]

Internet-Draft QUI C Transport Protocol March 2017

are described in Section 5.3, Section 5.6, Section 5.4, and
Section 5.5.

5.2. Short Header

0 1 2 3
01234567890123456789012345678901
T ST S S S

+
0| G K| Type (5)]
T i T S S T i I S S i S S o

+
I
[Connection I D (64)] +
I
+

B I T e S i i ot S I R S S b aie (T I TR R S S e S
Packet Nunber (8/16/32)
B el S N I S R R R e I T it R R R i R R R NI R R R R R e e e

Encrypted Payl oad (*)
++++++++++++++++++++++++++++++++

FT T+ T+

Figure 2: Short Header For mat

The short header can be used after the version and 1-RTT keys are
negotiated. This header formhas the follow ng fields:

Header Form The nobst significant bit (0x80) of the first octet of a
packet is the header form This bit is set to O for the short
header .

Connection ID Flag: The second bit (0x40) of the first octet
i ndi cates whether the Connection ID field is present. |If set to
1, then the Connection ID field is present; if set to 0, the
Connection ID field is omtted.

Key Phase Bit: The third bit (0x20) of the first octet indicates the
key phase, which allows a recipient of a packet to identify the
packet protection keys that are used to protect the packet. See
[QUICTLS] for details.

Short Packet Type: The remaining 5 bits of the first octet include
one of 32 packet types. Table 2 lists the types that are defined
for short packets.

Connection ID: |If the Connection ID Flag is set, a connection ID

occupies octets 1 through 8 of the packet. See Section 5.7 for
nore details.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 11]

Internet-Draft QUI C Transport Protocol March 2017

Packet Nunber: The length of the packet nunber field depends on the
packet type. This field can be 1, 2 or 4 octets | ong dependi ng on
the short packet type.

Encrypted Payl oad: Packets with a short header always include a
1-RTT protected payl oad.

The packet type in a short header currently deternmines only the size
of the packet number field. Additional types can be used to signa
the presence of other fields.

Fom e e oo +
| Type | Packet Nunber Size

Fomm - - - Fom e e e e e e e e oo +
| 01 | 1 octet |
I I I
| 02 | 2 octets |
I I I
| 03 | 4 octets |
Fomm - - - Fom e e e e e e e e oo +

Tabl e 2: Short Header Packet Types

The header form connection ID flag and connection |ID of a short

header packet are version-independent. The remaining fields are

specific to the selected QU C version. See Section 5.9 for details

on how packets fromdifferent versions of QU C are interpreted
5.3. Version Negotiation Packet

A Version Negotiation packet is sent only by servers and is a

response to a client packet of an unsupported version. It uses a

| ong header and contai ns:

0o Cctet 0: 0x81

0 Cctets 1-8: Connection |ID (echoed)

0 Cctets 9-12: Packet Nunber (echoed)

0 Cctets 13-16: Version (echoed)

o0 OCctets 17+ Payl oad

The payl oad of the Version Negotiation packet is a list of 32-bit
versi ons which the server supports, as shown bel ow.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 12]

Internet-Draft QUI C Transport Protoco

0

1 2

March 2017

3

01234567890123456789012345678901
B i T T i i S i S SR

Supported Version 1 (32)

e e e e e e e e e e e A e e e A b e e e e e e e e e e e e e e et

[Supported Version 2 (32)]

i I S T i S i T S i ik S N e

B i T T i i S i S SR

[Supported Version N (32)]

e e e e e e e e e e e A e e e e e e e e b e e e e e e e e e e b

Fi gure 3: Version Negotiation Packet

See Section 7.1 for a description of the version negotiation process.

5. 4.

Cl eartext Packets

Cl eartext packets are sent during the handshake prior to key

negoti ati on.

(0]

(0]

0

(0]

(0]

Cctet 0: 0x82

Cctets 1-8: Connection ID (initial)
Cctets 9-12: Packet nunber

Cctets 13-16: Version

Cctets 17+ Payl oad

Non- Fi nal Server C eartext packets contain:

(0]

(0]

0

(0]

(0]

Cctet 0: 0x83

Cctets 1-8: Connection | D (echoed)
Cctets 9-12: Packet Nunber

Cctets 13-16: Version

Cctets 17+ Payl oad

Fi nal Server C eartext packets contains:

(0]

(0]

Cctet 0: 0Ox84

Cctets 1-8: Connection ID (final)

I yengar & Thonson Expi res Septenber 14, 2017

A dient Ceartext packet contains:

[Page 13]

Internet-Draft QUI C Transport Protocol March 2017

0 Cctets 9-12: Packet Nunber

0 COctets 13-16: Version

0 Cctets 17+: Payl oad

The client MJUST choose a random 64-bit value and use it as the
initial Connection IDin all packets until the server replies with
the final Connection ID. The server echoes the client’s Connection
IDin Non-Final Server Ceartext packets. The first Final Server
Cleartext and all subsequent packets MJST use the final Connection
I D, as described in Section 5.7.

The payl oad of a C eartext packet consists of a sequence of franes,
as described in Section 6.

(TODO. Add hash before franes.)

5.5. Encrypted Packets
Packets encrypted with either 0-RTT or 1-RTT keys may be sent with
| ong headers. Different packet types explicitly indicate the
encryption level for ease of decryption. These packets contain:
o Cctet 0: 0Ox85, 0x86 or 0x87
0 Cctets 1-8: Connection ID (initial or final)
0 Octets 9-12: Packet Number
0 Octets 13-16: Version
0 Cctets 17+: Encrypted Payl oad
A first octet of 0x85 indicates a O-RTT packet. After the 1-RTT keys
are established, key phases are used by the QU C packet protection to
identify the correct packet protection keys. The initial key phase
is 0. See [QUCTLS] for nmore details.
The encrypted payl oad is both authenticated and encrypted using
packet protection keys. [QU CTLS] describes packet protection in

detail. After decryption, the plaintext consists of a sequence of
franmes, as described in Section 6.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 14]

Internet-Draft QUI C Transport Protocol March 2017

5.6. Public Reset Packet

A Public Reset packet is only sent by servers and is used to abruptly
term nate conmunications. Public Reset is provided as an option of

| ast resort for a server that does not have access to the state of a
connection. This is intended for use by a server that has | ost state
(for exanple, through a crash or outage). A server that w shes to
comruni cate a fatal connection error MUST use a CONNECTI ON_CLCSE
frane if it has sufficient state to do so.

A Public Reset packet contains:

o Cctet 0: 0Ox88

0 Cctets 1-8: Echoed data (octets 1-8 of received packet)

0 Cctets 9-12: Echoed data (octets 9-12 of received packet)

0 Octets 13-16: Version

0 Cctets 17+: Public Reset Proof

For a client that sends a connection |ID on every packet, the
Connection ID field is sinply an echo of the initial Connection ID
and the Packet Number field includes an echo of the client’s packet
nunber (and, depending on the client’s packet number length, 0, 2, or

3 additional octets fromthe client’s packet).

A Public Reset packet sent by a server indicates that it does not

have the state necessary to continue with a connection. 1In this
case, the server will include the fields that prove that it
originally participated in the connection (see Section 5.6.1 for
details).

Upon receipt of a Public Reset packet that contains a valid proof, a
client MUST tear down state associated with the connection. The
client MJUST then cease sending packets on the connection and SHOULD
di scard any subsequent packets that arrive. A Public Reset that does
not contain a valid proof MJST be ignored.

5.6.1. Public Reset Proof

TODO Details to be added

I yengar & Thonson Expi res Septenber 14, 2017 [Page 15]

Internet-Draft QUI C Transport Protocol March 2017

5.7. Connection |ID

QUI C connections are identified by their 64-bit Connection ID. All
| ong headers contain a Connection ID. Short headers indicate the
presence of a Connection ID using the CONNECTION ID flag. When
present, the Connection IDis in the sane |location in all packet
headers, making it straightforward for m ddl eboxes, such as |oad
bal ancers, to locate and use it.

Wien a connection is initiated, the client MJST choose a random val ue
and use it as the initial Connection ID until the final value is
avail able. The initial Connection IDis a suggestion to the server
The server echoes this value in all packets until the handshake is
successful (see [QUCTLS]). On a successful handshake, the server
MUST sel ect the final Connection ID for the connection and use it in
Fi nal Server C eartext packets. This final Connection |ID MAY be the
one proposed by the client or MAY be a new server-sel ected val ue.

Al'l subsequent packets fromthe server MJST contain this value. On
handshake compl etion, the client MUST switch to using the fina
Connection ID for all subsequent packets.

Thus, all dient Ceartext packets, 0-RTT Encrypted packets, and Non-
Fi nal Server C eartext packets MJST use the client’'s randon y-
generated initial Connection ID. Final Server C eartext packets,
1-RTT Encrypted packets, and all short-header packets MJST use the
final Connection ID.

5.8. Packet Nunbers

The packet nunber is a 64-bit unsigned nunber and is used as part of
a cryptographi c nonce for packet encryption. Each endpoint nmaintains
a separate packet nunmber for sending and receiving. The packet
nunber for sending MJIST increase by at | east one after sending any
packet .

A QUI C endpoi nt MUST NOT reuse a packet nunber within the sane
connection (that is, under the same cryptographic keys). |If the
packet number for sending reaches 2764 - 1, the sender MJST cl ose the
connection by sending a CONNECTI ON_CLOSE frame with the error code
QUI C_SEQUENCE_NUMBER LI M T_REACHED (connection termination is
described in Section 7.6.)

To reduce the nunber of bits required to represent the packet nunber
over the wire, only the least significant bits of the packet nunber
are transmtted over the wire, up to 32 bits. The actual packet
nunber for each packet is reconstructed at the receiver based on the
| ar gest packet nunber received on a successfully authenticated
packet .

I yengar & Thonson Expi res Septenber 14, 2017 [Page 16]

I nt

5.8.

5.9.

lye

ernet-Draft QUI C Transport Protocol March 2017

A packet nunber is decoded by finding the packet number value that is
cl osest to the next expected packet. The next expected packet is the
hi ghest received packet nunber plus one. For exanple, if the highest
successful ly authenticated packet had a packet nunber of 0xaa82f 30e,
then a packet containing a 16-bit value of 0x1f94 will be decoded as
Oxaa831f 94.

The sender MUST use a packet nunber size able to represent nore than
twice as large a range than the difference between the | argest
acknow edged packet and packet nunber being sent. A peer receiving
the packet will then correctly decode the packet nunmber, unless the
packet is delayed in transit such that it arrives after many higher-
nunmber ed packets have been received. An endpoint MAY use a | arger
packet number size to safeguard agai nst such reordering

As a result, the size of the packet nunmber encoding is at |east one
nore than the base 2 | ogarithm of the nunber of contiguous

unacknow edged packet nunbers, including the new packet.

For exanple, if an endpoint has received an acknow edgnent for packet
Ox6af a2f, sending a packet with a nunmber of 0x6b4264 requires a
16-bit or |arger packet nunber encoding; whereas a 32-bit packet
nunber is needed to send a packet with a number of 0x6bcl07

1. Initial Packet Number

The initial value for packet nunber MJST be a 31-bit random numnber.
That is, the value is selected froman uniformrandomdistribution
between 0 and 2731-1. [RFC4086] provides guidance on the generation
of random val ues

The first set of packets sent by an endpoint MJST include the | ow
32-bits of the packet number. Once any packet has been acknow edged,
subsequent packets can use a shorter packet nunber encoding.

Handl i ng Packets from Different Versions

Bet ween different versions the followi ng things are guaranteed to
remai n constant:

o the location of the header form fl ag,
o the location of the Connection ID flag in short headers,

o the location and size of the Connection ID field in both header
forns,

o the location and size of the Version field in |ong headers, and

ngar & Thonson Expi res Septenber 14, 2017 [Page 17]

Internet-Draft QUI C Transport Protocol March 2017

o the location and size of the Packet Number field in | ong headers.

| mpl enent ati ons MUST assune that an unsupported version uses an
unknown packet format. All other fields MJUST be ignored when
processi ng a packet that contains an unsupported version

6. Franes and Frame Types

The payl oad of cl eartext packets and the plaintext after decryption
of encrypted payl oads consists of a sequence of frames, as shown in
Fi gure 4.

0 1 2 3
01234567890123456789012345678901
B i S S T s i S T st i S S S S S S S S i

[Frame 1 (*)
+++++++++++++++++++++++++++++++++

[Frame 2 (*)
e e i e S S e R Tk o o R

B i S S T s i S T st i S S S S S S S S i
Frame N (*)
+++++++++++++++++++++++++++++++++

Figure 4: Contents of Encrypted Payl oad

Encrypt ed payl oads MJST contain at |east one frame, and MAY contain
multiple franmes and nultiple frane types

Frames MUST fit within a single QU C packet and MJST NOT span a QU C
packet boundary. Each frame begins with a Frane Type byte,
indicating its type, followed by additional type-dependent fields:

0 1 2 3
01234567890123456789012345678901
e e e e e e A e

| Type (8) | Type- Dependent Fields (*)

B i s T T S T et S S T S I T s sl s ol ST S S S
Figure 5: Generic Frame Layout

Frame types are listed in Table 3. Note that the Frame Type byte in
STREAM and ACK frames is used to carry other frame-specific flags.
For all other frames, the Frane Type byte sinply identifies the
frane. These frames are explained in nore detail as they are
referenced later in the docunent.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 18]

Internet-Draft QUI C Transport Protocol March 2017

7

7

T T . +
| Type-field value | Frane type | Definition |
Fom e e e e e Fom e e e e e TSRS +
| 0x00 | PADDI NG | Section 8.6

I I I I
| Ox01 | RST_STREAM | Section 8.5

I I I I
| 0x02 | CONNECTI ON_CLOSE | Section 8.8

I I I I
| 0x03 | GOAVAY | Section 8.9 |
I I I I
| Ox04 | W NDOW UPDATE | Section 8.3

I I I I
| Ox05 | BLOCKED | Section 8.4 |
I I I I
| 0x07 | PING | Section 8.7

I I I I
| 0x40 - Ox7f | ACK | Section 8.2 |
I I I I
| Ox80 - Oxff | STREAM | Section 8.1 |
Fom e e e e e Fom e e e e e TSRS +

Tabl e 3: Franme Types
Life of a Connection

A QUI C connection is a single conversation between two QU C
endpoints. QU C s connection establishnent intertw nes version
negotiation with the cryptographic and transport handshakes to reduce
connection establishnment |atency, as described in Section 7.2. Once
establi shed, a connection may migrate to a different IP or port at

ei ther endpoint, due to NAT rebinding or mobility, as described in
Section 7.5. Finally a connection may be term nated by either
endpoi nt, as described in Section 7.6.

1. Version Negotiation

QUI C s connection establishnent begins with version negotiation
since all conmmuni cati on between the endpoints, including packet and
frame formats, relies on the two endpoints agreeing on a version

A QUI C connection begins with a client sending a handshake packet.
The details of the handshake nechani sns are described in Section 7.2,
but all of the initial packets sent fromthe client to the server
MUST use the | ong header format and MJUST specify the version of the
prot ocol being used.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 19]

Internet-Draft QUI C Transport Protocol March 2017

When the server receives a packet froma client with the | ong header
format, it conpares the client’s version to the versions it supports.

If the version selected by the client is not acceptable to the
server, the server discards the incom ng packet and responds with a
Version Negotiation packet (Section 5.3). This includes a list of
versions that the server will accept. A server MJST send a Version
Negoti ati on packet for every packet that it receives with an
unaccept abl e versi on.

If the packet contains a version that is acceptable to the server
the server proceeds with the handshake (Section 7.2). This comits
the server to the version that the client selected

When the client receives a Version Negotiation packet fromthe
server, it should select an acceptable protocol version. |If the
server lists an acceptable version, the client selects that version
and reattenpts to create a connection using that version. Though the
contents of a packet might not change in response to version
negotiation, a client MJST increase the packet nunber it uses on
every packet it sends. Packets MJST continue to use | ong headers and
MUST i ncl ude the new negoti ated protocol version

The client MJUST use the |ong header format and include its sel ected
version on all packets until it has 1-RTT keys and it has received a
packet fromthe server which is not a Version Negotiation packet.

A client MJUST NOT change the version it uses unless it is in response
to a Version Negotiation packet fromthe server. Once a client
receives a packet fromthe server which is not a Version Negotiation
packet, it MJST ignore Version Negotiation packets on the same
connecti on.

Versi on negotiation uses unprotected data. The result of the
negoti ati on MJUST be revalidated as part of the cryptographic
handshake (see Section 7.3.4).

7.1.1. Using Reserved Versions

For a server to use a new version in the future, clients nust
correctly handl e unsupported versions. To help ensure this, a server
SHOULD i nclude a reserved version (see Section 4) while generating a
Ver si on Negoti ati on packet.

The design of version negotiation permts a server to avoid

mai ntaining state for packets that it rejects in this fashion
However, when the server generates a Version Negotiation packet, it
cannot randomy generate a reserved version nunber. This is because

I yengar & Thonson Expi res Septenber 14, 2017 [Page 20]

Internet-Draft QUI C Transport Protocol March 2017

the server is required to include the same value in its transport
paraneters (see Section 7.3.4). To avoid the sel ected version nunber
changi ng during connection establishment, the reserved version SHOULD
be generated as a function of values that will be available to the
server when |l ater generating its handshake packets.

A pseudorandom function that takes client address information (IP and
port) and the client selected version as input would ensure that
there is sufficient variability in the values that a server uses.

A client MAY send a packet using a reserved version nunber. This can
be used to solicit a list of supported versions froma server

7.2. Cryptographic and Transport Handshake
QUIC relies on a conbined cryptographic and transport handshake to
m nim ze connection establishnent |latency. QU C allocates stream 1
for the cryptographi c handshake. This version of QU C uses TLS 1.3
[QUCTLS.

QUIC provides this streamwith reliable, ordered delivery of data.
In return, the cryptographi c handshake provides QU C with:

0o authenticated key exchange, where
* a server is always authenticated,
* aclient is optionally authenticated,
* every connection produces distinct and unrel ated keys,

* Kkeying material is usable for packet protection for both O-RTT
and 1-RTT packets, and

* 1-RTT keys have forward secrecy

0 authenticated values for the transport paraneters of the peer (see
Section 7.3)

0 authenticated confirmation of version negotiation (see
Section 7.3.4)

0 authenticated negotiation of an application protocol (TLS uses
ALPN [RFC7301] for this purpose)

o for the server, the ability to carry data that provides assurance

that the client can receive packets that are addressed with the
transport address that is clainmed by the client (see Section 7.4)

I yengar & Thonson Expi res Septenber 14, 2017 [Page 21]

Internet-Draft QUI C Transport Protocol March 2017

The initial cryptographi c handshake message MJUST be sent in a single
packet. Any second attenpt that is triggered by address validation
MUST al so be sent within a single packet. This avoids having to
reassenbl e a nmessage fromnultiple packets. Reassenbling nessages
requires that a server naintain state prior to establishing a
connection, exposing the server to a denial of service risk

The first client packet of the cryptographi c handshake protocol MJST
fit wwthin a 1280 octet QUI C packet. This includes overheads that
reduce the space avail able to the cryptographi ¢ handshake protocol

Details of how TLS is integrated with QU C is provided in nore detai
in [QUCTLS.

7.3. Transport Paraneters

During connection establishnment, both endpoints nake aut henti cated
declarations of their transport parameters. These declarations are
made unilaterally by each endpoint. Endpoints are required to conply
with the restrictions inplied by these parameters; the description of
each paraneter includes rules for its handling.

The format of the transport paraneters is the TransportParaneters

struct fromFigure 6. This is described using the presentation
| anguage from Section 3 of [I-D.ietf-tls-tlsl3].

I yengar & Thonson Expi res Septenber 14, 2017 [Page 22]

Internet-Draft QUI C Transport Protocol March 2017

ui nt 32 Qui cVersi on;

enum {
stream fc_offset(0),
connection_fc_offset(1),
concurrent _streans(2),
idle_tineout(3),
truncat e_connection_i d(4),
(65535)

} Transport Paraneterld;

struct {
Transport Paraneterld paraneter;
opaque val ue<0. .2"16-1>

} Transport Paramneter;

struct {
sel ect (Handshake.nsg type) {
case client_hello:
Qui cVer si on negoti at ed_versi on
QuicVersion initial_version;

case encrypt ed_extensions:
Qui cVer si on supported_versions<2..2"8-4>;
1
Transport Paranmet er par anet er s<30..2716- 1>
} Transport Paraneters;

Figure 6: Definition of TransportParaneters

The "extension_data" field of the quic_transport_paraneters extension
defined in [QU CTLS] contains a TransportParaneters value. TLS
encoding rules are therefore used to encode the transport paraneters.

QUI C encodes transport paraneters into a sequence of octets, which
are then included in the cryptographi c handshake. Once the handshake
compl etes, the transport paraneters declared by the peer are
avai l abl e. Each endpoint validates the value provided by its peer.
In particular, version negotiation MIJST be validated (see

Section 7.3.4) before the connection establishnent is considered
properly conpl ete.

Definitions for each of the defined transport paraneters are included
in Section 7.3. 1.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 23]

Internet-Draft QUI C Transport Protocol March 2017

7.3.1. Transport Paraneter Definitions

An endpoi nt MJST include the followi ng parameters in its encoded
Transport Par anet er s:

stream fc_offset (0x0000): The initial streamlevel flow control
of fset paraneter is encoded as an unsigned 32-bit integer in units
of octets. The sender of this paraneter indicates that the fl ow
control offset for all streamdata sent toward it is this value.

connection _fc_offset (0x0001): The connection level flow contro
of fset paraneter contains the initial connection flow contro
wi ndow encoded as an unsigned 32-bit integer in units of 1024
octets. That is, the value here is multiplied by 1024 to
determ ne the actual flow control offset. The sender of this
paraneter sets the byte offset for connection |evel flow contro
to this value. This is equivalent to sending a W NDOW UPDATE
(Section 8.3) for the connection imedi ately after conpleting the
handshake.

concurrent _streanms (0x0002): The maxi num nunber of concurrent
streans paraneter is encoded as an unsigned 32-bit integer

idle_tineout (0x0003): The idle tineout is a value in seconds that
is encoded as an unsigned 16-bit integer. The nmaxi numvalue is
600 seconds (10 mi nutes).

An endpoi nt MAY use the follow ng transport paraneters:

truncate_connection_id (0x0004): The truncated connection identifier
paraneter indicates that packets sent to the peer can onit the
connection ID. This can be used by an endpoint where the 5-tuple
is sufficient to identify a connection. This paranmeter is zero
length. Onitting the paraneter indicates that the endpoint relies
on the connection ID being present in every packet.

7.3.2. Values of Transport Paraneters for O-RTT

Transport paranmeters fromthe server SHOULD be renenbered by the
client for use with O-RTT data. A client that doesn't renenber

val ues from a previous connection can instead assune the follow ng
val ues: streamfc_offset (65535), connection_fc_offset (65535),
concurrent _streams (10), idle_tineout (600), truncate_connection_id
(absent).

I f assunmed val ues change as a result of conpleting the handshake, the
client is expected to respect the new values. This introduces sone

I yengar & Thonson Expi res Septenber 14, 2017 [Page 24]

Internet-Draft QUI C Transport Protocol March 2017

potential problems, particularly with respect to transport parameters
that establish limts:

0 Aclient nmght exceed a newy declared connection or stream fl ow
control limt with O-RTT data. |If this occurs, the client ceases
transm ssion as though the flow control linit was reached. Once
W NDOW_UPDATE franes indicating an increase to the affected fl ow
control offsets is received, the client can reconmence sendi ng.

o Simlarly, a client m ght exceed the concurrent streamlint
decl ared by the server. A client MJST reset any streans that
exceed this Iimt. A server SHOULD reset any streans it cannot
handle with a code that allows the client to retry any application
action bound to those streans.

A server MAY close a connection if renenbered or assuned O-RTT
transport paraneters cannot be supported, using an error code that is
appropriate to the specific condition. For exanple, a

QUI C_FLOW CONTROL_RECEI VED_TOO_MJCH_DATA mi ght be used to indicate
that exceeding flow control limts caused the error. A client that
has a connection closed due to an error condition SHOULD NOT attenpt
0-RTT when attenpting to create a new connection

7.3.3. New Transport Paraneters

New transport paraneters can be used to negotiate new protoco
behavior. An endpoint MJST ignore transport paraneters that it does
not support. Absence of a transport paraneter therefore disables any
optional protocol feature that is negotiated using the paraneter.

The definition of a transport parameter SHOULD include a default
value that a client can use when establishing a new connection. If
no default is specified, the value can be assuned to be absent when
attenpting O-RTT.

New transport paraneters can be regi stered according to the rules in
Section 14.1.

7.3.4. Version Negotiation Validation
The transport paraneters include three fields that encode version
informati on. These retroactively authenticate the version
negotiation (see Section 7.1) that is perforned prior to the
crypt ographi ¢ handshake.

The cryptographi ¢ handshake provides integrity protection for the
negoti ated version as part of the transport paraneters (see

I yengar & Thonson Expi res Septenber 14, 2017 [Page 25]

Internet-Draft QUI C Transport Protocol March 2017

Section 7.3). As aresult, nodification of version negotiation
packets by an attacker can be detected.

The client includes two fields in the transport paraneters:

0 The negotiated_version is the version that was finally selected
for use. This MJST be identical to the value that is on the
packet that carries the ClientHello. A server that receives a
negoti ated_version that does not match the version of QUC that is
in use MIST termi nate the connection with a
QUI C_VERSI ON_NEGOTI ATI ON_M SMATCH error code.

o0 The initial _version is the version that the client initially
attenpted to use. |If the server did not send a version
negoti ati on packet Section 5.3, this will be identical to the
negoti at ed_versi on

A server that processes all packets in a stateful fashion can
remenber how version negotiati on was perforned and validate the
initial _version val ue.

A server that does not nmaintain state for every packet it receives

(i.e., a stateless server) uses a different process. |If the initia
and negoti ated versions are the sane, a stateless server can accept
t he val ue.

If the initial version is different fromthe negotiated_version, a
statel ess server MUST check that it would have sent a version

negoti ati on packet if it had received a packet with the indicated
initial _version. |If a server would have accepted the version
included in the initial _version and the value differs fromthe val ue
of negotiated version, the server MJST term nate the connection wth
a QUI C_VERSI ON_NEGOTI ATI ON_M SMATCH error

The server includes a list of versions that it would send in any
versi on negotiation packet (Section 5.3) in supported versions. This
value is set even if it did not send a version negotiation packet.

The client can validate that the negotiated version is included in
the supported versions list and - if version negotiation was
performed - that it would have sel ected the negotiated version. A
client MIUST term nate the connection with a

QUI C_VERSI ON_NEGOTI ATI ON_M SMATCH error code if the

negoti ated_version value is not included in the supported_versions
list. A-client MIST termnate with a

QUI C_VERSI ON_NEGOTI ATI ON_M SMATCH error code if version negotiation
occurred but it would have selected a different version based on the
val ue of the supported versions |ist.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 26]

I nt

7. 4.

7. 4.

lye

ernet-Draft QUI C Transport Protocol March 2017

Proof of Source Address Oanership

Transport protocols comonly spend a round trip checking that a
client owns the transport address (I P and port) that it clains.
Verifying that a client can receive packets sent to its clained
transport address protects agai nst spoofing of this information by
mal i ci ous clients.

This technique is used primarily to avoid QUIC from being used for
traffic anplification attack. |In such an attack, a packet is sent to
a server with spoofed source address information that identifies a
victim |If a server generates nore or |arger packets in response to
that packet, the attacker can use the server to send nore data toward
the victimthan it would be able to send on its own.

Several nethods are used in QUCto nitigate this attack. Firstly,
the initial handshake packet froma client is padded to at | east 1280
octets. This allows a server to send a simlar amount of data

wi t hout risking causing an anplication attack toward an unproven
renot e address.

A server eventually confirns that a client has received its nessages
when t he cryptographi ¢ handshake successfully conpletes. This night
be insufficient, either because the server wi shes to avoid the

comput ational cost of conpleting the handshake, or it mght be that
the size of the packets that are sent during the handshake is too
large. This is especially inportant for O-RTT, where the server

m ght wish to provide application data traffic - such as a response
to a request - in response to the data carried in the early data from
the client.

To send additional data prior to conpleting the cryptographic
handshake, the server then needs to validate that the client owns the
address that it clains.

Source address validation is therefore performed during the

establi shment of a connection. TLS provides the tools that support
the feature, but basic validation is performed by the core transport
pr ot ocol

1. dient Address Validation Procedure

QUI C uses token-based address validation. Any tine the server w shes
to validate a client address, it provides the client with a token

As |l ong as the token cannot be easily guessed (see Section 7.4.3), if
the client is able to return that token, it proves to the server that
it received the token

ngar & Thonson Expi res Septenber 14, 2017 [Page 27]

Internet-Draft QUI C Transport Protocol March 2017

During the processing of the cryptographi c handshake nessages from a
client, TLS will request that QU C nake a deci sion about whether to
proceed based on the information it has. TLS will provide QUCwth
any token that was provided by the client. For an initial packet,
QUI C can decide to abort the connection, allowit to proceed, or
request address validation

If QUIC decides to request address validation, it provides the

crypt ographi ¢ handshake with a token. The contents of this token are
consuned by the server that generates the token, so there is no need

for a single well-defined format. A token could include infornmation

about the clained client address (IP and port), a tinestanp, and any

ot her suppl enentary information the server will need to validate the

token in the future.

The cryptographi ¢ handshake is responsible for enacting validation by
sendi ng the address validation token to the client. A legitimate
client will include a copy of the token when it attenpts to continue
t he handshake. The cryptographi c handshake extracts the token then
asks QUIC a second tinme whether the token is acceptable. In
response, QUIC can either abort the connection or permt it to
proceed.

A connection MAY be accepted wi thout address validation - or with
only limted validation - but a server SHOULD Iinit the data it sends
toward an unval i dated address. Successful conpletion of the

crypt ographi ¢ handshake inplicitly provides proof that the client has
recei ved packets fromthe server

7.4.2. Address Validation on Session Resunption

A server MAY provide clients with an address validation token during
one connection that can be used on a subsequent connection. Address
validation is especially inportant with 0-RTT because a server
potentially sends a significant anpbunt of data to a client in
response to 0-RTT dat a.

A different type of token is needed when resum ng. Unlike the token
that is created during a handshake, there m ght be sone tine between
when the token is created and when the token is subsequently used.
Thus, a resunption token SHOULD include an expiration tine. It is
also unlikely that the client port number is the sane on two

di fferent connections; validating the port is therefore unlikely to
be successf ul

This token can be provided to the cryptographi c handshake i rmedi ately

after establishing a connection. QU C night also generate an updated
token if significant tinme passes or the client address changes for

I yengar & Thonson Expi res Septenber 14, 2017 [Page 28]

Internet-Draft QUI C Transport Protocol March 2017

any reason (see Section 7.5). The cryptographi c handshake is
responsible for providing the client with the token. In TLS the
token is included in the ticket that is used for resunption and
0-RTT, which is carried in a NewSessi onTi cket nmessage.

7.4.3. Address Validation Token Integrity

An address validation token MIST be difficult to guess. Including a
| arge enough random value in the token would be sufficient, but this
depends on the server renenbering the value it sends to clients.

A token-based schene allows the server to offload any state
associated with validation to the client. For this design to work,
the token MUST be covered by integrity protection against

nmodi fication or falsification by clients. Wthout integrity
protection, malicious clients could generate or guess val ues for
tokens that woul d be accepted by the server. Only the server
requires access to the integrity protection key for tokens.

In TLS the address validation token is often bundled with the
informati on that TLS requires, such as the resunption secret. In
this case, adding integrity protection can be delegated to the
crypt ogr aphi ¢ handshake protocol, avoiding redundant protection. |If
integrity protection is delegated to the cryptographi c handshake, an
integrity failure will result in imrediate cryptographi c handshake
failure. |If integrity protection is performed by QU C, QU C MIJST
abort the connection if the integrity check fails with a

QUI C_ADDRESS_VALI DATI ON_FAI LURE error code.

7.5. Connection Mgration

QUI C connections are identified by their 64-bit Connection ID.

QUI C s consistent connection ID allows connections to survive changes
to the client’s IP and/or port, such as those caused by client or
server mgrating to a new network. QU C al so provides autonatic
cryptographic verification of a client which has changed its IP
address because the client continues to use the sane session key for
encrypting and decrypting packets.

Dl SCUSS: Sinmul taneous migration. 1s this reasonabl e?

TODO Perhaps nove mitigation techniques from Security Considerations
here.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 29]

Internet-Draft QUI C Transport Protocol March 2017

7.6.

Connection Terni nation

Connections should remain open until they becone idle for a pre-
negoti ated period of tinme. A QU C connection, once established, can
be termnated in one of three ways:

1.

Explicit Shutdown: An endpoint sends a CONNECTI ON_CLCSE frane to
initiate a connection term nation. An endpoint may send a GOAVWAY
frane to the peer prior to a CONNECTI ON CLCSE to indicate that
the connection will soon be terminated. A GOAVAY frane signals
to the peer that any active streans will continue to be
processed, but the sender of the GOAWAY will not initiate any
addi tional streans and will not accept any new inconing streans.
On termnation of the active streans, a CONNECTI ON_CLCSE may be
sent. |If an endpoint sends a CONNECTI ON_CLCSE franme while
unterm nated streans are active (no FIN bit or RST_STREAM franes
have been sent or received for one or nore streans), then the
peer nust assunme that the streans were inconplete and were
abnormal Iy term nat ed.

Implicit Shutdown: The default idle timeout for a QU C connection
is 30 seconds, and is a required paraneter in connection
negotiation. The maximumis 10 nminutes. |If there is no network
activity for the duration of the idle tineout, the connection is
closed. By default a CONNECTI ON_CLCSE frane will be sent. A
silent close option can be enabled when it is expensive to send
an explicit close, such as nobile networks that nust wake up the
radi o.

Abrupt Shutdown: An endpoint nay send a Public Reset packet at
any tine during the connection to abruptly term nate an active
connection. A Public Reset packet SHOULD only be used as a fina
recourse. Commonly, a public reset is expected to be sent when a
packet on an established connection is received by an endpoi nt
that is unable decrypt the packet. For instance, if a server
reboots m d-connection and | oses any cryptographic state

associ ated with open connections, and then receives a packet on
an open connection, it should send a Public Reset packet in
return. (TODO articulate rules around when a public reset
shoul d be sent.)

TODO Connections that are terminated are added to a TIME WAIT |i st
at the server, so as to absorb any straggl er packets in the network.
Di scuss TIME WAIT |ist.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 30]

Internet-Draft QUI C Transport Protocol March 2017

8.

8.

Frame Types and Formats

As described in Section 6, Regul ar packets contain one or nore
frames. We now describe the various QU C frane types that can be
present in a Regular packet. The use of these franes and various
frane header bits are described in subsequent sections.

1. STREAM Fr ane

STREAM frames inplicitly create a streamand carry streamdata. The
type byte for a STREAM franme contai ns enbedded flags, and is
formatted as "1FDOOOSS". These bits are parsed as foll ows:

o The leftnost bit nmust be set to 1, indicating that this is a
STREAM f r ane.

o "F'" is the FINDbit, which is used for streamterm nation.

0 The "D' bit indicates whether a Data Length field is present in
the STREAM header. When set to 0, this field indicates that the
Stream Data field extends to the end of the packet. When set to
1, this field indicates that Data Length field contains the |ength
(in bytes) of the StreamData field. The option to onit the
| ength should only be used when the packet is a "full-sized"
packet, to avoid the risk of corruption via padding.

o0 The "OOO'" bits encode the length of the Ofset header field as O,
16, 24, 32, 40, 48, 56, or 64 bits |ong.

0 The "SS" bits encode the I ength of the Stream | D header field as
8, 16, 24, or 32 bits. (D SCUSS: Consider naking this 8, 16, 32,
64.)

A STREAM frane i s shown bel ow.

0 1 2 3
01234567890123456789012345678901
B T T i I T T o S S S e b S S S
| [Data Length (16)] |

R i i T I S N e e i e e et S R R RIS R R R R I S S i el I S
| Stream | D (8/16/ 24/ 32)
+++++++++++++++++++++++++++++++++

[O fset (0/16/24/32/ 40/ 48/ 56/ 64)
T I T S i T i S S s ST i S SR S SR A S A S

| Stream Data (*)
R i i T I S N e e i e e et S R R RIS R R R R I S S i el I S

Fi gure 7: STREAM Frane For mat

I yengar & Thonson Expi res Septenber 14, 2017 [Page 31]

Internet-Draft QUI C Transport Protocol March 2017

The STREAM frane contains the followi ng fields:

Data Length: An optional 16-bit unsigned nunber specifying the
length of the StreamData field in this STREAM frame. This field
is present when the "D' bit is set to 1.

Stream I D: A variabl e-sized unsigned ID unique to this stream

O fset: A variable-sized unsigned nunber specifying the byte offset
in the streamfor the data in this STREAM frane. The first byte
in the stream has an offset of 0. The |argest offset delivered on
a stream- the sumof the re-constructed of fset and data length -
MUST be less than 2"64.

Stream Data: The bytes fromthe designated streamto be delivered.

A STREAM franme MJST have either non-zero data |l ength or the FIN bit
set.

Streammul tiplexing is achieved by interl eaving STREAM franes from
multiple streanms into one or nore QU C packets. A single QU C packet
MAY bundl e STREAM franes fromnultiple streans.

| mpl ement ati on note: One of the benefits of QU C is avoi dance of
head- of -1i ne bl ocking across nmultiple streans. When a packet |oss
occurs, only streams with data in that packet are bl ocked waiting for
a retransm ssion to be received, while other streams can continue
maki ng progress. Note that when data fromnmultiple streans is

bundl ed into a single QU C packet, |oss of that packet blocks all
those streans from naking progress. An inplenentation is therefore
advi sed to bundle as few streans as necessary in outgoing packets

wi t hout | osing transmi ssion efficiency to underfilled packets.

8.2. ACK Franme

Recei vers send ACK franmes to inform senders which packets they have
recei ved and processed, as well as which packets are considered

m ssing. The ACK frame contains between 1 and 256 ACK bl ocks. ACK
bl ocks are ranges of acknow edged packets.

To limt ACK blocks to those that have not yet been received by the
sender, the receiver SHOULD track which ACK frames have been

acknow edged by its peer. Once an ACK frane has been acknow edged,
the packets it acknow edges SHOULD not be acknow edged again. To
handl e cases where the receiver is only sending ACK frames, and hence
will not receive acknow edgnents for its packets, it MAY send a PI NG
frane at nost once per RTT to explicitly request acknow edgnent.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 32]

Internet-Draft QUI C Transport Protocol March 2017

To limt receiver state or the size of ACK frames, a receiver MAY
limt the nunber of ACK blocks it sends. A receiver can do this even
wi t hout receiving acknow edgnent of its ACK franes, with the

know edge this could cause the sender to unnecessarily retransmt
sone dat a.

Unl i ke TCP SACKs, QUI C ACK bl ocks are cumul ative and therefore
irrevocable. Once a packet has been acknow edged, even if it does
not appear in a future ACK frane, it is assunmed to be acknow edged.

QUIC ACK franmes contain a tinmestanp section with up to 255

ti mestanps. Tinestanps enabl e better congestion control, but are not
required for correct | oss recovery, and old tinestanps are | ess
valuable, so it is not guaranteed every tinestanp will be received by
the sender. A receiver SHOULD send a tinmestanp exactly once for each
recei ved packet containing retransmttable franes. A receiver MAY
send timestanps for non-retransnittabl e packets.

A sender MAY intentionally skip packet nunmbers to introduce entropy
into the connection, to avoid opportunistic acknow edgenment attacks.
The sender MUST cl ose the connection if an unsent packet nunber is
acknow edged. The format of the ACK frane is efficient at expressing
bl ocks of nissing packets; skipping packet nunbers between 1 and 255
effectively provides up to 8 bits of efficient entropy on demand,

whi ch shoul d be adequate protection agai nst nost opportunistic

acknow edgenent attacks.

The type byte for a ACK frame contains enbedded flags, and is
formatted as "OINULLMM'. These bits are parsed as foll ows:

o The first two bits nust be set to Ol indicating that this is an
ACK frare.

o0 The "N' bit indicates whether the frane has nore than 1 range of
acknow edged packets (i.e., whether the ACK Bl ock Section contains
a Num Bl ocks field).

0 The "U' bit is unused and MJUST be set to zero.

o0 The two "LL" bits encode the length of the Largest Acknow edged
field as 1, 2, 4, or 6 bytes |ong.

0o The two "MM' bits encode the length of the ACK Bl ock Length fields
as 1, 2, 4, or 6 bytes long.

An ACK frane is shown bel ow.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 33]

Internet-Draft QUI C Transport Protocol March 2017

0 1 2 3
01234567890123456789012345678901
B i S S T s i S T st i S S S S S S S S i

| [Num Bl ocks(8)]| NunTS (8) [

B e i T i i S S R S S e i et ot E S S e S e s S
| Largest Acknow edged (8/16/32/48)

R e R e i i o i B S O e e e i i b NI R D S R S S o S e o
| ACK Del ay (16) |

B i S S T s i S T st i S S S S S S S S i
[ACK Bl ock Section (*)

e e e e e e e e e e e e e m e e e e e e e e e e e b e e e e e et

| Ti mestanp Section (*)
R e R e i i o i B S O e e e i i b NI R D S R S S o S e o

Figure 8: ACK Frane For mat
The fields in the ACK franme are as foll ows:

Num Bl ocks (opt): An optional 8-bit unsigned val ue specifying the
nunber of additional ACK bl ocks (besides the required First ACK
Block) in this ACK frame. Only present if the "N flag bit is 1.

Num Ti mestanps: An unsigned 8-bit nunber specifying the total nunber
of <packet nunber, tinmestanp> pairs in the Tinmestanp Section

Largest Acknow edged: A variabl e-sized unsigned val ue representing
the | argest packet nunber the peer is acknow edging in this packet
(typically the largest that the peer has seen thus far.)

ACK Del ay: The time fromwhen the | argest acknow edged packet, as
indicated in the Largest Acknow edged field, was received by this
peer to when this ACK was sent.

ACK Bl ock Section: Contains one or nore blocks of packet nunbers
whi ch have been successfully received, see Section 8.2.1

Ti mestanp Section: Contains zero or nore tinmestanps reporting
transit delay of received packets. See Section 8.2.2.

8.2.1. ACK Block Section

The ACK Bl ock Section contains between one and 256 bl ocks of packet
nunbers whi ch have been successfully received. |f the Num Bl ocks
field is absent, only the First ACK Block length is present in this
section. Oherwi se, the Num Bl ocks field indicates how many

addi tional blocks follow the First ACK Block Length field.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 34]

Internet-Draft QUI C Transport Protocol March 2017

0 1 2 3
01234567890123456789012345678901
B i S S T s i S T st i S S S S S S S S i
[First ACK Block Length (8/16/32/48)
+++++++++++++++++++++++++++++++++

| [Gap 1 (8)] | [ACK Block 1 Length (8/16/32/48)]
R R e R e s s e o S S e R e o o
| [Gap 2 (8)] | [ACK Bl ock 2 Length (8/16/32/48)]
B i S S T s i S T st i S S S S S S S S i
+-+-+-+-+-+-+-++++++++++++++++++++++++++
| [Gap N (8)] | [ACK Bl ock N Length (8/16/32/48)]
B e o i T o S e i T e e e S i s ot o S R TR S

Figure 9: ACK Bl ock Section
The fields in the ACK Bl ock Section are:

First ACK Block Length: An unsigned packet nunber delta that
i ndi cates the nunber of contiguous additional packets being
acknow edged starting at the Largest Acknow edged.

Gap To Next Block (opt, repeated): An unsigned nunber specifying the
nunber of contiguous mi ssing packets fromthe end of the previous
ACK block to the start of the next. Repeated "Num Bl ocks" tines.

ACK Bl ock Length (opt, repeated): An unsigned packet nunber delta
that indicates the nunber of contiguous packets being acknow edged
starting after the end of the previous gap. Repeated "Num Bl ocks"
times.

8.2.2. Timestanp Section

The Tinestanp Section contains between zero and 255 neasurenents of
packet receive tines relative to the beginning of the connection

I yengar & Thonson Expi res Septenber 14, 2017 [Page 35]

Internet-Draft QUI C Transport Protocol March 2017

0 1 2 3
01234567890123456789012345678901
B el o e e O
| [Delta LA (8)]]
T R e i i e s s o i S SR S S
| [First Tinmestanmp (32)]
e e et i e S S e e e R eEC e o
|[[Delta LA 1(8)]| [Tine Since Previous 1 (16)] |
B i i S S I T i i T S R
|[[Delta LA 2(8)]| [Time Since Previous 2 (16)] |
i i S S S i R e e r s
e e o T T o e e S R e e e R e
|[[Delta LA N(8)]| [Tine Since Previous N (16)] |
B i i S S I T i i T S R

Fi gure 10: Tinestanp Section
The fields in the Tinmestanp Section are:

Delta Largest Acknow edged (opt): An optional 8-bit unsigned packet
nunber delta specifying the delta between the | argest acknow edged
and the first packet whose tinmestanp is being reported. |n other
words, this first packet nunber nay be conputed as (Largest
Acknow edged - Delta Largest Acknow edged.)

First Tinmestanp (opt): An optional 32-bit unsigned val ue specifying
the tine delta in microseconds, fromthe begi nning of the
connection to the arrival of the packet indicated by Delta Largest
Acknow edged.

Delta Largest Acked 1..N (opt, repeated): This field has the sane
semantics and format as "Delta Largest Acknow edged". Repeated
"Num Ti mestanps - 1" tines

Time Since Previous Timestanp 1..N(opt, repeated): An optiona
16-bit unsigned value specifying time delta fromthe previous
reported tinmestanp. It is encoded in the sanme format as the ACK
Del ay. Repeated "Num Ti mestanps - 1" ti nes.

The tinestanp section |ists packet receipt tinestanps ordered by
ti mest anp.

8.2.2.1. Tine Format

DI SCUSS AND REPLACE: Perhaps nake this format sinpler.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 36]

Internet-Draft QUI C Transport Protocol March 2017

The tine format used in the ACK frame above is a 16-bit unsigned
float with 11 explicit bits of mantissa and 5 bits of explicit
exponent, specifying time in mcroseconds. The bit format is |oosely
nodel ed after | EEE 754. For exanple, 1 microsecond is represented as
0x1, which has an exponent of zero, presented in the 5 high order
bits, and nmantissa of 1, presented in the 11 | ow order bits. Wen
the explicit exponent is greater than zero, an inplicit high-order
12th bit of 1 is assuned in the mantissa. For exanple, a floating
val ue of 0x800 has an explicit exponent of 1, as well as an explicit
manti ssa of 0, but then has an effective nantissa of 4096 (12th bit
is assuned to be 1). Additionally, the actual exponent is one-I|ess
than the explicit exponent, and the val ue represents 4096

nm croseconds. Any values larger than the representable range are

cl anmped to OxFFFF.

8.2.3. ACK Franes and Packet Protection

ACK franmes that acknow edge protected packets MJIST be carried in a
packet that has an equivalent or greater |evel of packet protection

Packets that are protected with 1-RTT keys MJST be acknow edged in
packets that are also protected with 1-RTT keys.

A packet that is not protected and clainms to acknow edge a packet
nunber that was sent with packet protection is not valid. An
unpr ot ect ed packet that carries acknow edgments for protected packets
MUST be discarded in its entirety.

Packets that a client sends with 0-RTT packet protection MJST be
acknow edged by the server in packets protected by 1-RTT keys. This
can nmean that the client is unable to use these acknow edgnents if
the server cryptographi c handshake nmessages are del ayed or |ost.
Note that the sanme linmtation applies to other data sent by the
server protected by the 1-RTT keys.

Unprot ect ed packets, such as those that carry the initial
crypt ogr aphi ¢ handshake nessages, MAY be acknow edged in unprotected
packets. Unprotected packets are vulnerable to falsification or

nmodi fication. Unprotected packets can be acknow edged al ong with
protected packets in a protected packet.

An endpoi nt SHOULD acknowl edge packets containing cryptographic
handshake nessages in the next unprotected packet that it sends,
unless it is able to acknow edge those packets in | ater packets
protected by 1-RTT keys. At the conpletion of the cryptographic
handshake, both peers send unprotected packets contai ning

crypt ographi ¢ handshake nessages foll owed by packets protected by
1-RTT keys. An endpoint SHOULD acknow edge the unprotected packets

I yengar & Thonson Expi res Septenber 14, 2017 [Page 37]

Internet-Draft QUI C Transport Protocol March 2017

that conplete the cryptographi c handshake in a protected packet,
because its peer is guaranteed to have access to 1-RTT packet
protection keys.

For instance, a server acknow edges a TLS ClientHello in the packet
that carries the TLS ServerHello; sinmilarly, a client can acknow edge
a TLS Hell oRetryRequest in the packet containing a second TLS
ClientHell o. The conplete set of server handshake nessages (TLS
ServerHell o through to Finished) m ght be acknow edged by a client in
protected packets, because it is certain that the server is able to
deci pher the packet.

8.3. W NDOW UPDATE Fr ame

The W NDOW UPDATE frane (type=0x04) inforns the peer of an increase
in an endpoint’s flow control receive window for either a single
stream or the entire connection as a whol e.

The frame is as foll ows:

0 1 2 3
01234567890123456789012345678901
B i i S S i I e i S S R L e e e e
[Stream | D (32) [
R R e R e s s e o S S e R e o o

I I
+ Fl ow Control O fset (64) +
I I
B i i S S i I e i S S R L e e e e
The fields in the WNDOW UPDATE franme are as foll ows:

Stream I D: ID of the stream whose flow control w ndows is being
updated, or 0 to specify the connection-level flow control w ndow.

Fl ow Control Offset: A 64-bit unsigned integer indicating the flow
control offset for the given stream (for a stream|D other than 0)
or the entire connection

The flow control offset is expressed in units of octets for
i ndi vidual streans (for streamidentifiers other than 0).

The connection-level flow control offset is expressed in units of
1024 octets (for a streamidentifier of 0). That is, the connection-
I evel flow control offset is determned by nultiplying the encoded
val ue by 1024.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 38]

Internet-Draft QUI C Transport Protocol March 2017

An endpoi nt accounts for the maxi num offset of data that is sent or
received on a stream Loss or reordering can nean that the maxi num
offset is greater than the total size of data received on a stream
Simlarly, receiving STREAM frames m ght not increase the maxi num
offset on a stream A STREAMfranme with a FIN bit set or RST_STREAM
causes the final offset for a streamto be fixed.

The maxi num data of fset on a stream MUST NOT exceed the stream fl ow
control offset advertised by the receiver. The sumof the maxi num
data offsets of all streans (including closed streans) MJST NOT
exceed the connection flow control offset advertised by the receiver.
An endpoint MJST terminate a connection with a

QUI C_FLOW CONTROL_RECEI VED TOO MJCH DATA error if it receives nore
data than the largest flow control offset that it has sent, unless
this is a result of a change in the initial offsets (see

Section 7.3.2).

8.4. BLOCKED Frane

A sender sends a BLOCKED franme (type=0x05) when it is ready to send
data (and has data to send), but is currently flow control bl ocked.
BLOCKED frames are purely informational franmes, but extrenely useful
for debuggi ng purposes. A receiver of a BLOCKED frane should sinply
discard it (after possibly printing a helpful |og nessage). The
frame is as follows:

0 1 2 3

01234567890123456789012345678901
B i i S S i I e i S S R L e e e e
[Stream | D (32) [
R R e R e s s e o S S e R e o o

The BLOCKED franme contains a single field:

Stream I D: A 32-bit unsigned nunber indicating the streamwhich is
flow control blocked. A non-zero Stream|ID field specifies the
streamthat is flow control blocked. Wen zero, the StreamI|D
field indicates that the connection is flow control bl ocked.

8.5. RST_STREAM Frane

An endpoint may use a RST_STREAM franme (type=0x01) to abruptly
terminate a stream The frame is as follows:

I yengar & Thonson Expi res Septenber 14, 2017 [Page 39]

Internet-Draft QUI C Transport Protocol March 2017

8.

8.

8.

0 1 2 3
01234567890123456789012345678901
B i S S T s i S T st i S S S S S S S S i
[Error Code (32) |
B i I S i i S S i S S e
| Stream | D (32) |
B e i I i S T e i i e R S S I S S S S

+ Final Ofset (64) +
B R e i s T e S T S S N e i i i S S S e T S
The fields are:

Error code: A 32-bit error code which indicates why the streamis
bei ng cl osed.

Stream I D: The 32-bit Stream | D of the stream being term nated.

Final offset: A 64-bit unsigned integer indicating the absolute byte
of fset of the end of data witten on this stream by the RST_STREAM
sender.

6. PADDI NG Fr ane

The PADDI NG franme (type=0x00) has no semantic value. PADDI NG franes
can be used to increase the size of a packet. Padding can be used to
increase an initial client packet to the mininumrequired size, or to
provi de protection against traffic analysis for protected packets.

A PADDI NG frane has no content. That is, a PADDI NG frame consists of
the single octet that identifies the frame as a PADDI NG frane.

7. PING frame

Endpoi nts can use PING franes (type=0x07) to verify that their peers
are still alive or to check reachability to the peer. The PING frame
contains no additional fields. The receiver of a PING frane sinply
needs to acknow edge the packet containing this frame. The PING
frame SHOULD be used to keep a connection alive when a streamis
open. The default is to send a PING frane after 15 seconds of

qui escence. A PING frame has no additional fields.

8. CONNECTI ON_CLCSE frane
An endpoi nt sends a CONNECTI ON _CLCSE franme (type=0x02) to notify its

peer that the connection is being closed. |f there are open streans
that haven't been explicitly closed, they are inplicitly closed when

I yengar & Thonson Expi res Septenber 14, 2017 [Page 40]

Internet-Draft QUI C Transport Protocol March 2017

the connection is closed. (ldeally, a GOAWAY frame woul d be sent
with enough tine that all streans are torn down.) The frane is as
fol | ows:

0 1 2 3

01234567890123456789012345678901
R R e R e s s e o S S e R e o o
| Error Code (32) |
B i S S T s i S T st i S S S S S S S S i
[Reason Phrase Length (16) [[Reason Phrase (*)]
B i i S S i I e i S S R L e e e e

The fields of a CONNECTI ON CLOSE franme are as foll ows:

Error Code: A 32-bit error code which indicates the reason for
closing this connection.

Reason Phrase Length: A 16-bit unsigned nunber specifying the length
of the reason phrase. This may be zero if the sender chooses to
not give details beyond the Error Code.

Reason Phrase: An optional hunman-readabl e expl anation for why the
connection was cl osed.

8.9. GOAVAY Frame

An endpoi nt uses a GOAVWAY frane (type=0x03) to initiate a graceful
shut down of a connection. The endpoints will continue to use any
active streans, but the sender of the GOAWAY will not initiate or
accept any additional streans beyond those indicated. The GOAVWAY
frane is as follows:

0 1 2 3

01234567890123456789012345678901
B T i it T s i S e i SR SR
| Largest dient Stream|D (32) |
e Tl e i e s s e e e C e e e
| Largest Server Stream | D (32) |
B i S S T s i S T st i S S S S S S S S i

The fields of a GOAVWAY frane are:

Largest dient Stream|D: The highest-nunbered, client-initiated
stream on which the endpoint sending the GOAVWAY frane either sent
data, or received and delivered data. All higher-nunbered,
client-initiated streans (that is, odd-nunbered streans) are
implicitly reset by sending or receiving the GOAVAY frane.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 41]

Internet-Draft QUI C Transport Protocol March 2017

Largest Server Stream | D: The highest-nunbered, server-initiated
stream on which the endpoint sending the GOAVWAY frane either sent
data, or received and delivered data. All higher-nunbered
server-initiated streans (that is, even-nunbered streans) are
implicitly reset by sending or receiving the GOAVAY frane.

A GOAVWAY frame indicates that any application |layer actions on
streans with higher nunbers than those indicated can be safely
retried because no data was exchanged. An endpoint MJST set the
value of the Largest Cient or Server StreamID to be at |east as
hi gh as the hi ghest-nunbered streamon which it either sent data or
recei ved and delivered data to the application protocol that uses

Qi C

An endpoi nt MAY choose a larger streamidentifier if it wishes to
all ow for a nunber of streans to be created. This is especially
val uabl e for peer-initiated streans where packets creating new
streams could be in transit; using a |arger stream nunber allows
those streans to conplete.

In addition to initiating a graceful shutdown of a connection, GOAVAY
MAY be sent immediately prior to sending a CONNECTI ON CLCSE frane

that is sent as a result of detecting a fatal error. Higher-nunbered
streans than those indicated in the GOAWAY frame can then be retried.

9. Packetization and Reliability

The Pat h Maxi mum Transni ssion Unit (PTMJ) is the nmaxi num size of the
entire | P header, UDP header, and UDP payl oad. The UDP payl oad

i ncludes the QU C public header, encrypted payl oad, and any

aut hentication fields.

Al'l QU C packets SHOULD be sized to fit within the estimted PMIU to
avoid I P fragnentation or packet drops. To optim ze bandw dth

ef ficiency, endpoints SHOULD use Packetization Layer PMIU Di scovery
([RFC4821]) and MAY use PMIU Discovery ([RFC1191], [RFC1981]) for
detecting the PMIU, setting the PMIU appropriately, and storing the
result of previous PMIU determ nations.

In the absence of these mechani sns, QU C endpoints SHOULD NOT send I P
packets | arger than 1280 octets. Assuming the mninumI|P header

size, this results in a UDP payl oad | ength of 1232 octets for |Pv6
and 1252 octets for |Pv4.

QUI C endpoi nts that inplenent any kind of PMIU di scovery SHOULD

mai ntain an estimate for each combi nation of |ocal and renote IP
addresses (as each pairing could have a different maxi nrum MU in the
pat h) .

I yengar & Thonson Expi res Septenber 14, 2017 [Page 42]

Internet-Draft QUI C Transport Protocol March 2017

QUI C depends on the network path supporting a MU of at |east 1280
octets. This is the IPv6 mininumand therefore al so supported by
nmost nodern | Pv4 networks. An endpoint MJUST NOT reduce their MIU
bel ow this nunber, even if it receives signals that indicate a
smaller limt mght exist.

Clients MJST ensure that the first packet in a connection, and any
retransm ssions of those octets, has a total size (including IP and
UDP headers) of at |east 1280 bytes. This might require inclusion of
PADDI NG frames. It is RECOMVENDED that a packet be padded to exactly
1280 octets unless the client has a reasonabl e assurance that the
PMIU is larger. Sending a packet of this size ensures that the
network path supports an MIU of this size and helps nmitigate
anplification attacks caused by server responses toward an unverified
client address.

Servers MJST reject the first plaintext packet received froma client
if it its total size is less than 1280 octets, to nmitigate
anplification attacks.

If a QU C endpoi nt deternines that the PMIU between any pair of |oca
and renote | P addresses has fallen bel ow 1280 octets, it MJST

i medi ately cease sendi ng QU C packets between those | P addresses.
This may result in abrupt term nation of the connection if all pairs
are affected. 1In this case, an endpoint SHOULD send a Public Reset
packet to indicate the failure. The application SHOULD attenpt to
use TLS over TCP i nstead.

A sender bundl es one or nore franes in a Regular QU C packet (see
Section 6).

A sender SHOULD m ni mi ze per-packet bandw dth and conputational costs
by bundling as many frames as possible within a QU C packet. A
sender MAY wait for a short period of tine to bundle nmultiple franes
bef ore sending a packet that is not naxinally packed, to avoid
sendi ng out | arge nunbers of snall packets. An inplenentation rmay
use heuristics about expected application sending behavior to
determ ne whether and for howlong to wait. This waiting period is
an i npl ementati on decision, and an inplenentation should be carefu

to del ay conservatively, since any delay is likely to increase
application-visible | atency.

Regul ar QUI C packets are "containers" of franes; a packet is never
retransmtted whole. How an endpoint handles the |oss of the frame
depends on the type of the frane. Sone franes are sinply
retransmtted, sonme have their contents noved to new frames, and
others are never retransnitted.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 43]

Internet-Draft QUI C Transport Protocol March 2017

When a packet is detected as lost, the sender re-sends any frames as
necessary:

o Al application data sent in STREAM frames MJST be retransnmitted,
unl ess the endpoint has sent a RST_STREAM for that stream \Wen
an endpoi nt sends a RST_STREAM frane, data outstandi ng on that
stream SHOULD NOT be retransnitted, since subsequent data on this
streamis expected to not be delivered by the receiver.

0 ACK and PADDI NG frames MJUST NOT be retransmtted. ACK frames are
cumul ative, so new franes containing updated information wll be
sent as described in Section 8. 2.

o Al other franes MJST be retransmtted.

Upon detecting | osses, a sender MJST take appropriate congestion
control action. The details of |oss detection and congestion contro
are described in [QU G RECOVERY] .

A packet MJST NOT be acknow edged until packet protection has been
successfully removed and all franes contained in the packet have been
processed. For STREAM frames, this neans the data has been queued
(but not necessarily delivered to the application). This also neans
that any streamstate transitions triggered by STREAM or RST_STREAM
franes have occurred. Once the packet has been fully processed, a
recei ver acknow edges recei pt by sending one or nore ACK franes
cont ai ni ng the packet number of the received packet.

To avoid creating an indefinite feedback | oop, an endpoi nt MJST NOT
generate an ACK frame in response to a packet containing only ACK or
PADDI NG f r anes.

Strategies and inplications of the frequency of generating
acknow edgnents are discussed in nore detail in [QU C RECOVERY].

9.1. Special Considerations for PMIU Di scovery

Tradi tional |CVP-based path MIU di scovery in |IPv4 ([RFCL191] is
potentially vulnerable to off-path attacks that successfully guess
the I P/port 4-tuple and reduce the MIU to a bandwi dt h-i neffi cient
value. TCP connections nitigate this risk by using the (at m ninun
8 bytes of transport header echoed in the | CMP nessage to validate
the TCP sequence nunber as valid for the current connection

However, as QUI C operates over UDP, in |IPv4d the echoed information
could consist only of the I P and UDP headers, which usually has
insufficient entropy to nmitigate off-path attacks.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 44]

Internet-Draft QUI C Transport Protocol March 2017

10.

10.

As a result, endpoints that inplement PMIUD in | Pv4 SHOULD t ake steps
to mtigate this risk. For instance, an application coul d:

0 Set the IPv4 Don’t Fragnent (DF) bit on a snmall proportion of
packets, so that nost invalid | CMP nessages arrive when there are
no DF packets outstanding, and can therefore be identified as
spuri ous.

0 Store additional information fromthe IP or UDP headers from DF
packets (for exanple, the IP ID or UDP checksum) to further
aut henti cate inconi ng Datagram Too Bi g nessages.

0 Any reduction in PMIU due to a report contained in an | CVMP packet
is provisional until QU C s |oss detection algorithm determn nes
that the packet is actually |ost.

Streans: QUIC s Data Structuring Abstraction

Streanms in QU C provide a |ightweight, ordered, and bidirectiona
byt e-stream abstracti on nodel ed cl osely on HITP/ 2 streams [RFC7540].

Streans can be created either by the client or the server, can
concurrently send data interleaved with other streans, and can be
cancel | ed.

Data that is received on a streamis delivered in order within that
stream but there is no particular delivery order across streans.
Transmit ordering anong streans is left to the inplenentation

The creation and destruction of streans are expected to have m ni nal
bandwi dt h and conputational cost. A single STREAM frane nmay create,
carry data for, and termnate a stream or a streammay |ast the
entire duration of a connection

Streans are individually flow controlled, allowi ng an endpoint to
limt nmenmory conmitnent and to apply back pressure.

An alternative view of QU C streans is as an el astic "nmessage"
abstraction, simlar to the way ephenmeral streans are used in SST
[SST], which may be a nore appealing description for sone
appl i cations.

1. Life of a Stream

The senmantics of QU C streans is based on HITP/ 2 streans, and the
lifecycle of a QUC streamtherefore closely follows that of an
HTTP/ 2 stream [RFC7540], with sonme differences to accomopdate the
possibility of out-of-order delivery due to the use of nmultiple

I yengar & Thonson Expi res Septenber 14, 2017 [Page 45]

Internet-Draft

streams in QU

Hom e e oo - +
I
idle |
I
-------- +
I
| send data/
| recv data/
| recv higher stream
I
v
-------- +
recv FIN | send FI'N
R open |----------- .
/ | \

v Fee------ + \Y
S + | S +
| hal f | | | hal f |
| closed | | send RST/ | closed
| (renote) | | recv RST | (local)
Fomm e + | Fomm e

I I I
| send FIN | recv FIN |
| send RST/ \ send RST/
| recv RST +-------- + recv RST |
e eeeaaaas >| I ’
cl osed |
........ L

send:
recv:

endpoi nt

QUI C Transport Protoco

March 2017

C. The lifecycle of a QUC streamis shown in the
followi ng figure and described bel ow

endpoi nt sends this frame
receives this franme

data: application data in a STREAM frane
FIN. FINflag in a STREAM frane
RST: RST_STREAM frane

Figure 11: Lifecycle of a stream

Note that this diagram shows stream state transitions and the franes

and flags that affect those transitions only.
state transitions,

the frame that

bears it;

cause two state transitions.

I yengar & Thonson

Expi res Sept enber

For the purpose of
the FIN flag is processed as a separate event to
a STREAM frane with the FIN flag set can

When the FIN flag is sent on an enpty

14, 2017

[Page 46]

Internet-Draft QUI C Transport Protocol March 2017

10.

10.

STREAM frane, the offset in the STREAM frame MJST be one greater than
the | ast data byte sent on this stream

The recipient of a frame which changes streamstate will have a

del ayed view of the state of a streamwhile the frane is in transit.
Endpoi nts do not coordinate the creation of streams; they are created
unilaterally by either endpoint. The negative consequences of a

m smatch in states are limted to the "closed" state after sending
RST_STREAM where franmes might be received for sone tinme after
closing. Endpoints can use acknow edgnents to understand the peer’s
subj ective view of streamstate at any given tine.

Streans have the following states

1.1. idle

Al streams start in the "idle" state.

The following transitions are valid fromthis state

Sendi ng or receiving a STREAM frane causes the streamto becone
"open". The streamidentifier is selected as described in
Section 10.2. The sane STREAM franme can al so cause a streamto
i medi atel y becone "hal f-cl osed".

Receiving a STREAM franme on a peer-initiated stream (that is, a
packet sent by a server on an even-nunbered streamor a client packet
on an odd-nunbered stream) al so causes all |ower-nunbered "idle"
streans in the sane direction to becone "open". This could occur if
a peer begins sending on streans in a different order to their
creation, or it could happen if packets are lost or reordered in
transit.

Recei ving any frane ot her than STREAM or RST_STREAM on a streamin
this state MUST be treated as a connection error (Section 12) of type
YYYY.

1.2. open

A streamin the "open" state may be used by both peers to send franes
of any type. In this state, a sending peer nust observe the flow
control limt advertised by its receiving peer (Section 11).

Fromthis state, either endpoint can send a frane with the FIN flag
set, which causes the streamto transition into one of the "half-

cl osed" states. An endpoint sending an FIN flag causes the stream

state to becone "hal f-closed (local)". An endpoint receiving a FIN
flag causes the streamstate to becone "hal f-closed (renote)" once

I yengar & Thonson Expi res Septenber 14, 2017 [Page 47]

Internet-Draft QUI C Transport Protocol March 2017

10.

10.

10.

all preceding data has arrived. The receiving endpoint MJST NOT
consider the streamstate to have changed until all data has arrived

Ei t her endpoint can send a RST _STREAM franme fromthis state, causing
it to transition inmediately to "cl osed"

1.3. half-closed (local)

A streamthat is in the "half-closed (local)" state MUST NOT be used
for sending STREAM franmes; W NDOW UPDATE and RST_STREAM MAY be sent
inthis state.

A streamtransitions fromthis state to "closed" when a STREAM frane
that contains a FIN flag is received and all prior data has arrived,
or when either peer sends a RST_STREAM frane.

An endpoint that closes a stream MJST NOT send data beyond the fina
of fset that it has chosen, see Section 10.1.5 for details.

An endpoint can receive any type of frame in this state. Providing
flow control credit using WNDOWUPDATE frames is necessary to
continue receiving flowcontrolled franes. 1In this state, a receiver
MAY i gnore W NDOW UPDATE franes for this stream which nmight arrive
for a short period after a frame bearing the FINflag is sent.

1.4. half-closed (renote)

A streamthat is "half-closed (renpte)” is no |onger being used by
the peer to send any data. 1In this state, a sender is no |onger
obligated to nmaintain a receiver stream|evel flow control w ndow

A streamthat is in the "half-closed (renote)" state will have a
final offset for received data, see Section 10.1.5 for details.

A streamin this state can be used by the endpoint to send franmes of
any type. In this state, the endpoint continues to observe
advertised stream |l evel and connection-level flowcontrol linits
(Section 11).

A streamcan transition fromthis state to "closed" by sending a
frane that contains a FIN flag or when either peer sends a RST_STREAM
frane.

1.5. closed

The "cl osed"” state is the term nal state.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 48]

Internet-Draft QUI C Transport Protocol March 2017

An endpoint will learn the final offset of the data it receives on a
stream when it enters the "half-closed (renmpte)” or "cl osed" state.
The final offset is carried explicitly in the RST_STREAM fr ane;
otherwi se, the final offset is the offset of the end of the data
carried in STREAM frame marked with a FIN fl ag.

An endpoi nt MJUST NOT send data on a stream at or beyond the final
of f set.

Once a final offset for a streamis known, it cannot change. |If a
RST_STREAM or STREAM frame causes the final offset to change for a
stream an endpoint SHOULD respond with a

QUI C_STREAM DATA AFTER TERM NATI ON error (see Section 12). A

recei ver SHOULD treat receipt of data at or beyond the final offset
as a QU C_STREAM DATA AFTER_TERM NATION error. GCenerating these
errors is not mandatory, but only because requiring that an endpoint
generate these errors also neans that the endpoint needs to maintain
the final offset state for closed streanms, which could nmean a
significant state conmmitnent.

An endpoint that receives a RST_STREAM frane (and whi ch has not sent
a FIN or a RST_STREAM MJST i medi ately respond with a RST_STREAM
franme, and MUST NOT send any nore data on the stream This endpoint
may continue receiving frames for the streamon which a RST_STREAM i s
recei ved.

If this state is reached as a result of sending a RST_STREAM frane,
the peer that receives the RST_STREAM frane m ght have al ready sent -
or enqueued for sending - franes on the streamthat cannot be

wi t hdrawmn. An endpoint MJST ignore frames that it receives on closed
streanms after it has sent a RST_STREAM frane. An endpoi nt MAY choose
tolimt the period over which it ignores franes and treat franes
that arrive after this time as being in error.

STREAM franes received after sending RST_STREAM are counted toward
the connection and stream fl ow control wi ndows. Even though these
frames night be ignored, because they are sent before their sender
receives the RST_STREAM the sender will consider the franmes to count
against its flow control w ndows.

In the absence of nore specific guidance el sewhere in this docunent,
i mpl ement ati ons SHOULD treat the receipt of a frame that is not
expressly permitted in the description of a state as a connection
error (Section 12). Frames of unknown types are ignored.

(TODO. QUIC_STREAM NO ERROR is a special case. Wite it up.)

I yengar & Thonson Expi res Septenber 14, 2017 [Page 49]

Internet-Draft QUI C Transport Protocol March 2017

10.

10.

2. Streamldentifiers

Streans are identified by an unsigned 32-bit integer, referred to as
the StreamiD. To avoid Streami D collision, clients MIST initiate
streans usi nge odd-nunbered Stream Ds; streans initiated by the
server MJST use even-nunbered Strean Ds.

A Stream D of zero (0x0) is reserved and used for connection-I|eve
flow control franes (Section 11); the Stream D of zero cannot be used
to establish a new stream

Stream D 1 (0x1) is reserved for the cryptographi c handshake.
Stream D 1 MJUST NOT be used for application data, and MJST be the
first client-initiated stream

A QUI C endpoi nt cannot reuse a Streaml D on a given connection
Streans MJST be created in sequential order. Open streams can be
used in any order. Streans that are used out of order result in

| ower - nunmbered streans in the sanme direction being counted as open

Al'l streanms, including stream 1, count toward this limt. Thus, a
concurrent streamlinmt of O will cause a connection to be unusable.
Application protocols that use QU C nmight require a certain m ni mum
nunber of streans to function correctly. |f a peer advertises an
concurrent streamlinmt (concurrent_streans) that is too small for
the selected application protocol to function, an endpoint MJST
term nate the connection with an error of type

QUI C_TOO_MANY_OPEN_STREAMS (Section 12).

3. Stream Concurrency

An endpoint linmts the nunmber of concurrently active incom ng streans
by setting the concurrent streamlimt (see Section 7.3.1) in the
transport paraneters. The naxi mum concurrent streans setting is
specific to each endpoint and applies only to the peer that receives
the setting. That is, clients specify the nmaxi mum nunber of
concurrent streans the server can initiate, and servers specify the
maxi mum nunber of concurrent streams the client can initiate.

Streans that are in the "open" state or in either of the "half-

cl osed" states count toward the maxi mum nunber of streans that an
endpoint is pernmitted to open. Streanms in any of these three states
count toward the limt advertised in the concurrent streamlimt.

A recently cl osed stream MJUST al so be considered to count toward this
limt until packets containing all franmes required to close the
stream have been acknow edged. For a stream which cl osed cl eanly,
this means all STREAM franmes have been acknow edged; for a stream

I yengar & Thonson Expi res Septenber 14, 2017 [Page 50]

Internet-Draft QUI C Transport Protocol March 2017

10.

10.

whi ch cl osed abruptly, this neans the RST_STREAM frane has been
acknow edged.

Endpoi nts MJUST NOT exceed the limt set by their peer. An endpoint
that receives a STREAM frame that causes its advertised concurrent
streamlinmt to be exceeded MJST treat this as a streamerror of type
QUI C_TOO MANY_OPEN STREAMS (Section 12).

4. Sendi ng and Receiving Data

Once a streamis created, endpoints may use the streamto send and
receive data. Each endpoint may send a series of STREAM franes
encapsul ating data on a streamuntil the streamis termnated in that
direction. Streans are an ordered byte-stream abstraction, and they
have no other structure within them STREAM franme boundaries are not
expected to be preserved in retransm ssions fromthe sender or during
delivery to the application at the receiver

When new data is to be sent on a stream a sender MJST set the
encapsul ating STREAM frane’s offset field to the stream offset of the
first byte of this new data. The first byte of data that is sent on
a stream has the streamoffset 0. The largest offset delivered on a
stream MUST be | ess than 2764. A receiver MJIST ensure that received
streamdata is delivered to the application as an ordered byte-
stream Data received out of order MJST be buffered for later
delivery, as long as it is not in violation of the receiver’s flow
control limts.

The cryptographi ¢ handshake stream Stream 1, MJST NOT be subject to
congestion control or connection-level flow control, but MJST be
subject to streamlevel flow control. An endpoint MJUST NOT send data
on any other streamw thout consulting the congestion controller and
the flow controller.

Fl ow control is described in detail in Section 11, and congestion
control is described in the conpanion docunent [QU C RECOVERY].

5. Stream Prioritization

Streamnul tipl exing has a significant effect on application
performance if resources allocated to streans are correctly
prioritized. Experience with other multiplexed protocols, such as
HTTP/ 2 [RFC7540], shows that effective prioritization strategies have
a significant positive inmpact on performance.

QUI C does not provide frames for exchanging priotization information
Instead it relies on receiving priority information fromthe
application that uses QUC Protocols that use QU C are able to

I yengar & Thonson Expi res Septenber 14, 2017 [Page 51]

Internet-Draft QUI C Transport Protocol March 2017

11.

define any prioritization schene that suits their application
semantics. A protocol mght define explicit nessages for signaling
priority, such as those defined in HITP/2; it could define rules that
all ow an endpoint to deternmine priority based on context; or it could
| eave the deternmination to the application

A QU C inplenmentation SHOULD provi de ways in which an application can
indicate the relative priority of streams. Wen deciding which
streans to dedicate resources to, QU C SHOULD use the information
provided by the application. Failure to account for priority of
streans can result in suboptiml perfornmance

Streampriority is nost rel evant when deci di ng which streamdata wll
be transmtted. Oten, there will be limts on what can be
transmtted as a result of connection flow control or the current
congestion controller state.

G ving preference to the transmi ssion of its own managenent franes
ensures that the protocol functions efficiently. That is,
prioritizing frames other than STREAM franes ensures that |oss
recovery, congestion control, and flow control operate effectively.

Stream 1 MJUST be prioritized over other streans prior to the
compl etion of the cryptographi c handshake. This includes the
retransm ssion of the second flight of client handshake nessages,
that is, the TLS Finished and any client authentication nessages.

STREAM franmes that are determined to be | ost SHOULD be retransnitted
bef ore sending new data, unless application priorities indicate
otherwi se. Retransnitting | ost STREAM franes can fill in gaps, which
all ows the peer to consune already received data and free up flow
control w ndow.

Fl ow Contr ol

It is necessary to linit the amount of data that a sender may have
outstanding at any time, so as to prevent a fast sender from
overwhelming a slow receiver, or to prevent a nmalicious sender from
consum ng significant resources at a receiver. This section
describes QUIC s flow control nechani sns.

QUI C enpl oys a credit-based flowcontrol schene simlar to HITP/2's
flow control [RFC7540]. A receiver advertises the nunber of octets
it is prepared to receive on a given streamand for the entire
connection. This leads to two levels of flow control in QUC (i)
Connection flow control, which prevents senders from exceeding a
receiver’'s buffer capacity for the connection, and (ii) Streamfl ow

I yengar & Thonson Expi res Septenber 14, 2017 [Page 52]

Internet-Draft QUI C Transport Protocol March 2017

control, which prevents a single streamfrom consuning the entire
receive buffer for a connection

A receiver sends W NDOW UPDATE franes to the sender to advertise
additional credit by sending the absolute byte offset in the stream
or in the connection which it is willing to receive.

The initial flow control credit is 65536 bytes for both the stream
and connection flow controllers.

A receiver MAY advertise a larger offset at any point in the
connection by sending a W NDOW UPDATE frame. A receiver MJST NOT
renege on an advertisenment; that is, once a receiver advertises an

of fset via a W NDOW UPDATE frane, it MJST NOT subsequently adverti se
a smaller offset. A sender may recei ve W NDOW UPDATE frames out of
order; a sender MJST therefore ignore any W NDOW UPDATE t hat does not
nove the wi ndow forward

A receiver MJIST close the connection with a

QUI C_FLOW CONTROL_RECEI VED TOO MJCH DATA error (Section 12) if the
peer violates the advertised stream or connection flow contro

wi ndows.

A sender MUST send BLOCKED frames to indicate it has data to wite
but is bl ocked by I ack of connection or streamflow control credit.
BLOCKED frames are expected to be sent infrequently in comon cases,
but they are considered useful for debuggi ng and nonitoring purposes.

A receiver advertises credit for a stream by sending a W NDOW UPDATE
franme with the Stream D set appropriately. A receiver nmay use the
current offset of data consuned to deternine the flow control offset
to be advertised. A receiver MAY send copies of a W NDOW UPDATE
frame in nmultiple packets in order to make sure that the sender
receives it before running out of flow control credit, even if one of
the packets is |ost.

Connection flow control is alinit to the total bytes of stream data
sent in STREAM frames on all streans contributing to connection flow
control. A receiver advertises credit for a connection by sending a
W NDOW UPDATE frame with the Stream D set to zero (0x00). A receiver
mai ntains a curul ati ve sum of bytes received on all streans
contributing to connection-level flow control, to check for flow
control violations. A receiver may maintain a cunul ative sum of
byt es consunmed on all contributing streans to determ ne the
connection-level flow control offset to be advertised.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 53]

Internet-Draft QUI C Transport Protocol March 2017

11.

11.

11.

11.

1. Edge Cases and Ot her Considerations

There are some edge cases which nust be considered when dealing with
stream and connection |evel flow control. G ven enough tinme, both
endpoi nts nust agree on flow control state. |If one end believes it
can send nore than the other end is willing to receive, the
connection will be torn down when too nuch data arrives. Conversely
if a sender believes it is blocked, while endpoint B expects nore
data can be received, then the connection can be in a deadl ock, with
the sender waiting for a W NDOW UPDATE which will never cone.

1.1. Md-stream RST_STREAM

On receipt of a RST_STREAM frane, an endpoint will tear down state
for the matching stream and ignore further data arriving on that
stream This could result in the endpoints getting out of sync,
since the RST_STREAM franme nmay have arrived out of order and there
may be further bytes in flight. The data sender woul d have counted
the data against its connection |evel flow control budget, but a
recei ver that has not received these bytes would not know to include
themas well. The receiver nust |learn the nunber of bytes that were
sent on the streamto nake the same adjustnment in its connection flow
controller.

To avoid this de-synchronization, a RST_STREAM sender MJST i ncl ude
the final byte offset sent on the streamin the RST_STREAM frame. On
receiving a RST_STREAM frame, a receiver definitively knows how many
bytes were sent on that stream before the RST_STREAM frane, and the
recei ver MJST use the final offset to account for all bytes sent on
the streamin its connection level flow controller.

1.2. Response to a RST_STREAM

Since streans are bidirectional, a sender of a RST_STREAM needs to
know how many bytes the peer has sent on the stream |If an endpoint
receives a RST_STREAM frane and has sent neither a FIN nor a
RST_STREAM it MJST send a RST_STREAM in response, bearing the of fset
of the last byte sent on this streamas the final offset.

1.3. O fset |Increnent

Thi s docunent | eaves when and how many bytes to advertise in a

W NDOW_UPDATE to the inplenentation, but offers a few considerations.
W NDOW UPDATE frames constitute overhead, and therefore, sending a
W NDOW UPDATE with small offset increnents is undesirable. At the
same tinme, sending WNDOW UPDATES with |arge offset increnments
requires the sender to commt to that amount of buffer.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 54]

Internet-Draft QUI C Transport Protocol March 2017

11.

12.

12.

I mpl ement ations nust find the correct tradeoff between these sides to
determ ne how | arge an offset increnent to send in a W NDOW UPDATE.

A receiver MAY use an autotuning nechanismto tune the size of the

of fset increnent to advertise based on a roundtrip tine estimte and
the rate at which the receiving application consunes data, sinilar to
common TCP i npl enent ati ons.

1. 4. BLOCKED f r anes

If a sender does not receive a WNDOW UPDATE franme when it has run
out of flow control credit, the sender will be bl ocked and MJUST send
a BLOCKED frame. A BLOCKED frame is expected to be useful for
debugging at the receiver. A receiver SHOULD NOT wait for a BLOCKED
frame before sending a W NDOW UPDATE, since doing so will cause at

| east one roundtrip of quiescence. For snooth operation of the
congestion controller, it is generally considered best to not let the
sender go into quiescence if avoidable. To avoid blocking a sender
and to reasonably account for the possibiity of |oss, a receiver
shoul d send a W NDOW UPDATE franme at |east two roundtrips before it
expects the sender to get bl ocked.

Error Handling

An endpoint that detects an error SHOULD signal the existence of that
error to its peer. FErrors can affect an entire connection (see
Section 12.1), or a single stream (see Section 12.2).

The nost appropriate error code (Section 12.3) SHOULD be included in
the frame that signals the error. Were this specification
identifies error conditions, it also identifies the error code that
is used.

Public Reset is not suitable for any error that can be signaled with
a CONNECTI ON_CLCSE or RST_STREAM frame. Public Reset MJST NOT be
sent by an endpoint that has the state necessary to send a franme on
t he connecti on.

1. Connection Errors

Errors that result in the connection being unusable, such as an
obvi ous violation of protocol semantics or corruption of state that
affects an entire connection, MJST be signaled using a

CONNECTI ON_CLCSE frane (Section 8.8). An endpoint MAY cl ose the
connection in this manner, even if the error only affects a single
stream

I yengar & Thonson Expi res Septenber 14, 2017 [Page 55]

Internet-Draft QUI C Transport Protocol March 2017

12.

12.

A CONNECTI ON_CLCSE frame could be sent in a packet that is lost. An
endpoi nt SHOULD be prepared to retransnit a packet containing a
CONNECTI ON_CLCSE frane if it receives nore packets on a term nated
connection. Limting the nunber of retransm ssions and the tinme over
which this final packet is sent |limts the effort expended on

term nated connecti ons.

An endpoi nt that chooses not to retransmit packets containing

CONNECTI ON_CLOSE risks a peer missing the first such packet. The
only nechani sm avail able to an endpoint that continues to receive
data for a termnated connection is to send a Public Reset packet.

2. Stream Errors

If the error affects a single stream but otherw se | eaves the
connection in a recoverable state, the endpoint can sent a RST_STREAM
frane (Section 8.5) with an appropriate error code to term nate just
the affected stream

Stream 1 is critical to the functioning of the entire connection. |If
stream 1l is closed with either a RST_STREAM or STREAM frane bearing
the FIN flag, an endpoint MJST generate a connection error of type
QUI C_CLGCSED_CRI Tl CAL_STREAM

Sone application protocols nmake other streams critical to that
protocol. An application protocol does not need to informthe
transport that a streamis critical; it can instead generate
appropriate errors in response to being notified that the critica
streamis cl osed

An endpoi nt MAY send a RST_STREAM frane in the sanme packet as a
CONNECTI ON_CLOSE fr ame.

3. FError Codes

Error codes are 32 bits long, with the first two bits indicating the
source of the error code:

0x00000000- Ox3FFFFFFF: Application-specific error codes. Defined by
each application-I|ayer protocol

0x40000000- OX7FFFFFFF: Reserved for host-local error codes. These
codes MUST NOT be sent to a peer, but MAY be used in APl return
codes and | ogs.

0x80000000- OXBFFFFFFF: QUI C transport error codes, including packet
protection errors. Applicable to all uses of QU C

I yengar & Thonson Expi res Septenber 14, 2017 [Page 56]

Internet-Draft QUI C Transport Protocol March 2017

0xC0000000- OXFFFFFFFF: Crypt ographic error codes. Defined by the
crypt ogr aphi ¢ handshake protocol in use.

This section lists the defined QU C transport error codes that may be
used in a CONNECTI ON CLOSE or RST_STREAM frane. Error codes share a

common code space. Sone error codes apply only to either streans or

the entire connection and have no defined semantics in the other

cont ext .

QUI C_| NTERNAL_ERROR (0x80000001): Connection has reached an invalid
state.

QUI C_STREAM DATA AFTER_TERM NATI ON (0x80000002): There were data
frames after the a fin or reset.

QUI C | NVALI D_PACKET_HEADER (0x80000003): Control frane is nalforned.
QUI C | NVALI D_FRAME DATA (0x80000004): Frane data is nalforned.

QUI C_MULTI PLE_TERM NATI ON_OFFSETS (0x80000005): Miltiple final
of fset values were received on the sane stream

QUI C_STREAM CANCELLED (0x80000006): The stream was cancel | ed

QUI C_CLOSED _CRI Tl CAL_STREAM (0x80000007): A streamthat is critical
to the protocol was cl osed.

QUI C_M SSI NG _PAYLOAD (0x80000030): The packet contained no payl oad.

QUI C_I NVALI D_STREAM DATA (0x8000002E): STREAM frane data is
mal f or ned.

QUI C_UNENCRYPTED_STREAM DATA (0x8000003D): Received STREAM frane
data is not encrypted.

QUI C_MAYBE_CORRUPTED MEMORY (0x80000059): Received a frame which is
likely the result of menory corruption.

QUI C_I NVALI D_RST_STREAM DATA (0x80000006): RST_STREAM frane data is
mal f or ned.

QUI C_ | NVALI D_CONNECTI ON_CLCOSE_DATA (0x80000007): CONNECTI ON_CLGCSE
frame data is mal f or med.

QUI C_I NVALI D_GOAWAY_DATA (0x80000008): GOAWAY frane data is
mal f or ned.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 57]

Internet-Draft QUI C Transport Protocol March 2017

QUI C_| NVALI D_W NDOW UPDATE_DATA (0x80000039): W NDOW UPDATE frane
data is nal f or ned.

QUI C_ | NVALI D_BLOCKED DATA (0x8000003A): BLOCKED frane data is
mal f or ned.

QUI C_| NVALI D_PATH_CLOSE_DATA (0x8000004E): PATH CLCSE frane data is
mal f or med.

QUI C_I NVALI D_ACK_DATA (0x80000009): ACK frame data is mal for med.

QUI C_| NVALI D_VERSI ON_NEGOTI ATI ON_PACKET (0x8000000A): Version
negoti ati on packet is nalforned.

QUI C_I NVALI D_PUBLI C_RST_PACKET (0x8000000b): Public RST packet is
mal f or ned.

QUI C_DECRYPTI ON_FAI LURE (0x8000000c): There was an error decrypting.
QUI C_ENCRYPTI ON_FAI LURE (0x8000000d): There was an error encrypting.

QUI C_PACKET _TOO LARGE (0x8000000e): The packet exceeded
kMaxPacket Si ze.

QUI C_PEER_GO NG_AWAY (0x80000010): The peer is going away. My be a
client or server.

QUI C_I NVALI D_STREAM | D (0x80000011): A stream|D was invalid.
QUI C_I NVALI D PRIORITY (0x80000031): A priority was invalid.

QUI C_TOO MANY_OPEN STREAMS (0x80000012): Too many streans already
open.

QUI C_TOO MANY_AVAI LABLE STREAMS (0x8000004c): The peer created too
many avail abl e streans.

QUI C_PUBLI C_RESET (0x80000013): Received public reset for this
connecti on.

QUI C | NVALI D_VERSI ON (0x80000014): Invalid protocol version.

QUI C_I NVALI D HEADER | D (0x80000016): The Header ID for a stream was
too far fromthe previous.

QUI C_I NVALI D_NEGOTI ATED_VALUE (0x80000017): Negoti abl e paraneter
recei ved during handshake had invalid val ue.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 58]

Internet-Draft QUI C Transport Protocol March 2017

QUI C_DECOWVPRESSI ON_FAI LURE (0x80000018): There was an error
deconpressi ng dat a.

QUI C_ NETWORK | DLE_TI MEQUT (0x80000019): The connection tined out due
to no network activity.

QUI C_HANDSHAKE_TI MEQUT (0x80000043): The connection tined out
wai ting for the handshake to conplete.

QUI C_ ERRCR_M GRATI NG_ADDRESS (0x8000001a): There was an error
encountered nigrating addresses.

QUI C_ERRCOR M GRATI NG_PORT (0x80000056): There was an error
encountered nigrating port only.

QUI C_EMPTY_STREAM FRAME_NO FI N (0x80000032): W received a
STREAM FRAME with no data and no fin flag set.

QUI C_FLOW CONTROL_RECEI VED_TOO_MJCH_DATA (0x8000003b): The peer
recei ved too much data, violating flow control.

QUI C_FLOW CONTROL_SENT_TOO_MJCH_DATA (0x8000003f): The peer sent too
much data, violating flow control.

QUI C_FLOW CONTROL_I NVALI D_W NDOW (0x80000040): The peer received an
invalid fl ow control w ndow.

QUI C_CONNECTI ON_| P_POCOLED (0x8000003e): The connection has been IP
pool ed into an exi sting connecti on.

QUI C_TOO_MANY_QUTSTANDI NG_SENT_PACKETS (0x80000044): The connection
has too many out standi ng sent packets.

QUI C_TOO_MANY_OUTSTANDI NG_RECEI VED_PACKETS (0x80000045): The
connection has too many outstandi ng recei ved packets.

QUI C_CONNECTI ON_CANCELLED (0x80000046): The QUI C connection has been
cancel | ed.

QUI C_BAD_PACKET_LGSS_RATE (0x80000047): Disabled QU C because of
hi gh packet |oss rate.

QUI C_PUBLI C_RESETS_POST_HANDSHAKE (0x80000049): Disabled QU C
because of too nany PUBLI C RESETs post handshake.

QUI C_TI MEQUTS_W TH_OPEN_STREAMS (0x8000004a): Disabled QU C because
of too many tineouts with streans open.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 59]

Internet-Draft QUI C Transport Protocol March 2017

13.

13.

QUI C_TOO MANY_RTOS (0x80000055): QU C timed out after too many RTGCs.

QUI C_ENCRYPTI ON_LEVEL_| NCORRECT (0x8000002c): A packet was received
with the wong encryption level (i.e. it should have been
encrypted but was not.)

QUI C_VERSI ON_NEGOTI ATI ON_M SMATCH (0x80000037): Thi s connection
i nvol ved a version negotiation which appears to have been tanpered
Wit h.

QUI C | P_ADDRESS CHANGED (0x80000050): | P address changed causi ng
connection cl ose.

QUI C_ADDRESS VALI DATI ON_FAI LURE (0x80000051): dient address
validation fail ed.

QUI C_TOO MANY_FRAME GAPS (0x8000005d): Streamfranmes arrived too
di scontiguously so that stream sequencer buffer maintains too nany

gaps.

QUI C_TOO MANY_SESSI ONS_ON_SERVER (0x80000060): Connection cl osed
because server hit nmax nunber of sessions all owed.

Security and Privacy Considerations
1. Spoofed ACK Attack

An attacker receives an STK fromthe server and then rel eases the IP
address on which it received the STK. The attacker may, in the
future, spoof this sane address (which now presunably addresses a
different endpoint), and initiate a 0-RTT connection with a server on
the victims behalf. The attacker then spoofs ACK franmes to the
server which cause the server to potentially drown the victimin

dat a.

There are two possible mitigations to this attack. The sinplest one
is that a server can unilaterally create a gap in packet-nunber

space. In the non-attack scenario, the client will send an ACK frame
with the | arger value for |argest acknow edged. |In the attack
scenario, the attacker could acknow edge a packet in the gap. |If the

server sees an acknow edgnent for a packet that was never sent, the
connection can be aborted.

The second nmitigation is that the server can require that

acknow edgments for sent packets match the encryption |evel of the
sent packet. This mitigation is useful if the connection has an
epheneral forward-secure key that is generated and used for every new
connection. |f a packet sent is encrypted with a forward-secure key,

I yengar & Thonson Expi res Septenber 14, 2017 [Page 60]

Internet-Draft QUI C Transport Protocol March 2017

14.

14.

then any acknow edgnments that are received for them MJST al so be
forward-secure encrypted. Since the attacker will not have the
forward secure key, the attacker will not be able to generate
forward-secure encrypted packets with ACK franes.

I ANA Consi derations
1. QUIC Transport Paraneter Registry

| ANA [SHALL add/ has added] a registry for "QU C Transport Paraneters"
under a "QUI C Protocol" heading.

The "QUI C Transport Paraneters" registry governs a 16-bit space.
This space is split into two spaces that are governed by different
policies. Values with the first byte in the range 0x00 to Oxfe (in
hexadeci mal) are assigned via the Specification Required policy

[RFC5226]. Values with the first byte Oxff are reserved for Private
Use [RFC5226] .

Regi strations MJST include the follow ng fields:

Val ue: The nuneric value of the assignnent (registrations will be
bet ween 0x0000 and Oxfeff).

Paraneter Nane: A short mmenonic for the paraneter.

Specification: A reference to a publicly avail able specification for
t he val ue.

The noni nated expert(s) verify that a specification exists and is
readily accessible. The expert(s) are encouraged to be biased
towar ds approving regi strations unless they are abusive, frivol ous,
or actively harnful (not nerely aesthetically displeasing, or
architectural ly dubious).

The initial contents of this registry are shown in Table 4.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 61]

Internet-Draft QUI C Transport Protocol March 2017

15.

15.

oo T I +
| Value | Parameter Name | Specification |
Fom e e e - - e e e e e e e e oo e e e o +
| 0x0000 | streamfc_offset | Section 7.3.1 |
I I I I
| Ox0001 | connection_fc_offset | Section 7.3.1 |
I I I I
| Ox0002 | concurrent_streans | Section 7.3.1 |
I I I I
| 0x0003 | idle_tineout | Section 7.3.1 |
I I I I
| Ox0004 | truncate _connection_id | Section 7.3.1 |
oo - e . +

Table 4: Initial QU C Transport Paraneters Entries
Ref erences
1. Normative References

[I-Dietf-tls-tlsl3]
Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", draft-ietf-tls-tlsl13-19 (work in progress),
March 2017.

[QUI C- RECOVERY]
lyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
and Congestion Control".

[QUIC TLS]
Thonson, M, Ed. and S. Turner, Ed., "Using Transport
Layer Security (TLS) to Secure QU C'.

[RFC1191] Mogul, J. and S. Deering, "Path MIU di scovery", RFC 1191,
DO 10.17487/ RFC1191, Novenber 1990,
<http://wwv. rfc-editor.org/info/rfcll91>.

[RFC1981] MCann, J., Deering, S., and J. Mgul, "Path MIU D scovery
for IP version 6", RFC 1981, DO 10.17487/RFC1981, August
1996, <http://ww.rfc-editor.org/info/rfcl981>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997,
<http://ww. rfc-editor.org/info/rfc2119>.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 62]

Internet-Draft

15.

QUI C Transport Protocol March 2017

[RFC4821] WMathis, M and J. Heffner, "Packetization Layer Path MIu
Di scovery", RFC 4821, DO 10.17487/ RFC4821, March 2007,
<http://ww. rfc-editor.org/info/rfc4821>.

[RFC5226] Narten, T. and H Alvestrand, "QGuidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
DO 10.17487/ RFC5226, May 2008,
<http://ww. rfc-editor.org/info/rfc5226>.

2. Informative References

[EARLY- DESI G\]

[RFC2360]

[RFC4086]

[RFC6824]

[RFC7301]

[RFC7540]

[SST]

Roskind, J., "QUIC Miltiplexed Transport Over UDP",
Decenber 2013, <https://goo.gl/dwtFi>.

Scott, G, "Quide for Internet Standards Witers", BCP 22,
RFC 2360, DO 10.17487/ RFC2360, June 1998,
<http://wwmv. rfc-editor.org/info/rfc2360>.

East| ake 3rd, D., Schiller, J., and S. Crocker,
"Randomess Requirenents for Security", BCP 106, RFC 4086,
DA 10.17487/ RFC4086, June 2005,
<http://ww.rfc-editor.org/info/rfc4086>.

Ford, A, Raiciu, C, Handley, M, and O Bonaventure,
"TCP Extensions for Miultipath Operation with Miltiple
Addr esses", RFC 6824, DO 10.17487/ RFC6824, January 2013,
<http://ww.rfc-editor.org/info/rfc6824>.

Friedl, S., Popov, A, Langley, A, and E. Stephan,
"Transport Layer Security (TLS) Application-Layer Protocol
Negoti ati on Extension", RFC 7301, DA 10.17487/ RFC7301,
July 2014, <http://ww.rfc-editor.org/info/rfc7301>.

Bel she, M, Peon, R, and M Thonson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

DA 10.17487/ RFC7540, May 2015,

<http://ww. rfc-editor.org/info/rfc7540>.

Ford, B., "Structured Streans: A New Transport
Abstraction", DO 10.1145/1282427.1282421, ACM

S| GCOW Conput er Conmuni cati on Revi ew Vol ume 37 |ssue 4,
Cct ober 2007.

I yengar & Thonson Expi res Septenber 14, 2017 [Page 63]

Internet-Draft QUI C Transport Protocol March 2017

15.3. URI's
[1] https://github.com qui cwg/ base-drafts/w ki/ QU C Versions
Appendi x A. Contributors

The original authors of this specification were Ryan Hanilton, Jana
lyengar, lan Swett, and Alyssa WIKk.

The original design and rationale behind this protocol draw
significantly fromwork by Jim Roskind [EARLY-DESIGN]. In
al phabetical order, the contributors to the pre-IETF QUI C project at
Googl e are: Britt Cyr, Jereny Dorfrman, Ryan Hamilton, Jana |yengar
Fedor Kouranov, Charles Krasic, Jo Kulik, Adam Langley, Ji m Roskind,
Robbi e Shade, Satyam Shekhar, Cherie Shi, lan Swett, Raman Tenneti,
Victor Vasiliev, Antonio Vicente, Patrik Westin, Alyssa WIlk, Dale
Wirl ey, Fan Yang, Dan Zhang, Daniel Ziegler

Appendi x B. Acknow edgnent s
Speci al thanks are due to the follow ng for hel ping shape pre-1ETF
QUIC and its deploynent: Chris Bentzel, Msha Efinov, Roberto Peon
Alistair Riddoch, Siddharth Vijayakrishnan, and Assar Westerl und.
Thi s docunment has benefited i mrensely from various private
di scussi ons and public ones on the quic@etf.org and proto-
qui c@hromumorg mailing lists. Qur thanks to all

Appendi x C. Change Log

RFC Editor’s Note: Please renpove this section prior to
publication of a final version of this docunent.

I ssue and pull request nunbers are listed with a | eadi ng octothorp
C. 1. Since draft-ietf-quic-transport-01

o Defined short and | ong packet headers (#40, #148, #361)

0 Defined a versioning scheme and stable fields (#51, #361)

o Define reserved version values for "greasing" negotiation (#112
#278)

o The initial packet nunber is random zed (#35, #283)

o Narrow the packet nunber encodi ng range requirenment (#67, #286
#299, #323, #356)

I yengar & Thonson Expi res Septenber 14, 2017 [Page 64]

Internet-Draft QUI C Transport Protocol March 2017

o Defined client address validation (#52, #118, #120, #275)
o Define transport paraneters as a TLS extension (#122)
0 SCUP and COPT paraneters are no |onger valid (#116, #117)

0 Transport paraneters for O-RTT are either renmenbered from before,
or assune default val ues (#126)

o0 The server chooses connection IDs inits final flight (#119, #349,
#361)

0 The server echoes the Connection |ID and packet nunber fields when
sendi ng a Version Negotiation packet (#133, #295, #244)

o Definied a mnimum packet size for the initial handshake packet
fromthe client (#69, #136, #139, #164)

o Path MIU Di scovery (#64, #106)

o The initial handshake packet fromthe client needs to fit in a
singl e packet (#338)

o Forbid acknow edgnent of packets containing only ACK and PADDI NG
(#291)

0 Require that franmes are processed when packets are acknow edged
(#381, #341)

0 Renoved the STOP_WAITI NG frame (#66)

o Don’t require retransm ssion of old timestanps for | ost ACK franes
(#308)

o Carified that franes are not retransmtted, but the information
in them can be (#157, #298)

o FError handling definitions (#335)
o Split error codes into four sections (#74)

0o Forbid the use of Public Reset where CONNECTI ON_CLOSE is possible
(#289)

o Define packet protection rules (#336)

I yengar & Thonson Expi res Septenber 14, 2017 [Page 65]

Internet-Draft QUI C Transport Protocol March 2017

C 2.

Require that streambe entirely delivered or reset, including
acknow edgnment of all STREAM franmes or the RST_STREAM before it
cl oses (#381)

Renove streamreservation fromstate nmachine (#174, #280)

Only stream O does not contributing to connection-level flow
control (#204)

Stream 1 counts towards the nmaxi num concurrent streamlimt (#201
#282)

Renove connection-level flow control exclusion for sone streans
(except 1) (#246)

RST_STREAM af f ects connection-1level flow control (#162, #163)

Fl ow control accounting uses the maxi nrum data of fset on each
stream rather than bytes received (#378)

Moved | ength-determning fields to the start of STREAM and ACK
(#168, #277)

Added the ability to pad between franes (#158, #276)
Renove error code and reason phrase from GOAWAY (#352, #355)
GOAVAY i ncludes a final stream nunber for both directions (#347)

Error codes for RST_STREAM and CONNECTI ON_CLOSE are now at a
consi stent of fset (#249)

Defined priority as the responsibility of the application protoco
(#104, #303)

Since draft-ietf-quic-transport-00:

Repl aced DI VERSI FI CATI ON_NONCE flag with KEY_PHASE fl ag
Defi ned versi oni ng

Rewor ked description of packet and frane | ayout

Error code space is divided into regions for each conponent

Use big endian for all nuneric val ues

I yengar & Thonson Expi res Septenber 14, 2017 [Page 66]

Internet-Draft QUI C Transport Protocol March 2017

C. 3. Since draft-hamilton-quic-transport-protocol-01:

0 Adopted as base for draft-ietf-quic-tls.

0 Updated authors/editors |ist.

0 Added | ANA Consi derations section.

o Mved Contributors and Acknow edgments to appendi ces.
Aut hors’ Addresses

Jana |yengar (editor)
Googl e

Email: jri @oogle.com
Martin Thonson (editor)
Mozill a

Enmai |l : martin.thonmson@nmail.com

I yengar & Thonson Expi res Septenber 14, 2017 [Page 67]

