QI C J. lyengar, Ed.

I nternet-Draft I. Swett, Ed.
I ntended status: Standards Track Googl e
Expi res: Septenber 14, 2017 March 13, 2017

QUI C Loss Detection and Congestion Control
draft-ietf-quic-recovery-02

Abst r act

QU Cis a new nultiplexed and secure transport atop UDP. QUIC builds
on decades of transport and security experience, and inplenments
mechani sms that meke it attractive as a nodern general - purpose
transport. QU C inplenments the spirit of known TCP | oss detection
mechani sns, described in RFCs, various Internet-drafts, and al so
those prevalent in the Linux TCP inplenentation. This docunent
describes QU C | oss detection and congestion control, and attributes
the TCP equivalent in RFCs, Internet-drafts, academ c papers, and TCP
i mpl enent ati ons.

Note to Readers

Di scussion of this draft takes place on the QU C working group
mailing list (quic@etf.org), which is archived at
https://mailarchive.ietf.org/arch/search/?email _|ist=quic .

Working Group information can be found at https://github. con quicwy ;
source code and issues list for this draft can be found at
https://github. com qui cwy/ base-drafts/| abel s/recovery .

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute

wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 14, 2017.

lyengar & Swett Expi res Septenber 14, 2017 [Page 1]

Internet-Draft QUI C Loss Detection

Copyright Notice

March 2017

Copyright (c) 2017 |IETF Trust and the persons identified as the

docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Sinplified BSD License.
Tabl e of Contents

1. Introduction .
1.1. Not at i onal Oonventl ons

2. Design of the QU C Transm ssi oﬁ MiChI nery .
Rel evant Differences Between QU C and TCP
Monotoni cal Iy I ncreasing Packet Nunbers .

1.1,
.1.2. No Reneging . .
.1.3. Mre ACK Ranges .
.1. 4.
ss Detection

Constants of int erest

Vari abl es of interest

Initialization . .

On Sendi ng a Packet

On Ack Recei pt

On Packet Acknow edgrrent

Setting the Loss Detection Alarm
.1. Handshake Packets .

0

WWOoOWWww~No,rwNRITNNNNE

~N NN

2
.3. Early Retransnit
4. Pseudocode
On AlarmFiring . .
Det ecti ng Lost Packets
9.1. Handshake Packets .
9.2. Pseudocode
4. Congestion Control .
5. | ANA Consi derations .
6. References
6.1. Normative Ref erences
6.2. Informative References
Appendi x A, Acknow edgnents
Appendi x B. Change Log .

lyengar & Swett Expi res Septenber 14, 2017

Explicit Correction For Del aye.d Aci(s.

Tail Loss Probe and Retransm SSI on T| rTeout

Qoo ~N~NoCTTUooahbSA,PhwWwww

Internet-Draft QUI C Loss Detection March 2017

B.1 Since draft-ietf-quic-recovery-01.. 14
B.2. Since draft-ietf-quic-recovery-00: . . .
B.3 Since draft-iyengar- qU|c | oss-recovery- 01 P
Aut hors’ Addresses e
1. Introduction

QU Cis a newnultiplexed and secure transport atop UDP. QU C builds
on decades of transport and security experience, and inplenents
mechani sns that nake it attractive as a nodern general - purpose
transport. The QUIC protocol is described in [QU C TRANSPORT] .

QUIC inplenents the spirit of known TCP | oss recovery nechani sns,
described in RFCs, various Internet-drafts, and al so those preval ent
in the Linux TCP inplenmentation. This docunment describes QU C
congestion control and | oss recovery, and where appli cabl e,
attributes the TCP equivalent in RFCs, Internet-drafts, academnic
papers, and/or TCP inpl enentations.

This docunment first describes pre-requisite parts of the QU C
transm ssi on machi nery, then discusses QU C s default congestion
control and | oss detection nechanisns, and finally lists the various
TCP mechani sns that QUIC | oss detection inplenents (in spirit.)

1.1. Notational Conventions

The words "MJST", "MJST NOI*, "SHOULD', and "MAY" are used in this
docunent. [It’s not shouting; when they are capitalized, they have
t he special neaning defined in [RFC2119].

2. Design of the QU C Transm ssi on Machi nery

Al'l transmissions in QU C are sent with a packet-1evel header, which
i ncludes a packet sequence nunber (referred to bel ow as a packet
nunber). These packet nunbers never repeat in the lifetinme of a
connection, and are nonotonically increasing, which nmakes duplicate
detection trivial. This fundanental design decision obviates the
need for disanbiguating between transm ssions and retransni ssions and
elimnates significant conplexity fromQUJC s interpretation of TCP

| oss detection nechani sns.

Every packet may contain several franes. W outline the franes that
are inportant to the loss detection and congestion control machinery
bel ow.

0 Retransnmittable franes are franmes requiring reliable delivery.

The nost conmon are STREAM frames, which typically contain
appl i cation data.

lyengar & Swett Expi res Septenber 14, 2017 [Page 3]

Internet-Draft QUI C Loss Detection March 2017

o0 Cypto handshake data is al so sent as STREAM data, and uses the
reliability machi nery of QU C underneat h.

0 ACK franmes contain acknow edgnent information. QU C uses a SACK-
based schene, where acks express up to 256 ranges. The ACK franme
al so includes a receive tinestanp for each packet new y acked.

2.1. Relevant Differences Between QUI C and TCP

There are sone notable differences between QU C and TCP which are
i mportant for reasoning about the differences between the |oss
recovery mechani sns enpl oyed by the two protocols. W briefly
descri be these differences bel ow.

2.1.1. Monotonically Increasing Packet Numbers

TCP confl ates transni ssion sequence nunber at the sender with
delivery sequence nunber at the receiver, which results in

retransm ssions of the sane data carrying the same sequence nunber,
and consequently to problens caused by "retransm ssion anbiguity".
QUI C separates the two: QU C uses a packet sequence number (referred
to as the "packet nunber") for transmi ssions, and any data that is to
be delivered to the receiving application(s) is sent in one or nore
streams, with stream of fsets encoded within STREAM franes inside of
packets that determine delivery order.

QUI C s packet nunmber is strictly increasing, and directly encodes
transm ssion order. A higher QU C packet nunber signifies that the
packet was sent later, and a | ower QU C packet nunber signifies that
the packet was sent earlier. Wen a packet containing franes is
deenmed lost, QU C rebundl es necessary frames in a new packet with a
new packet nunber, renoving amnbi guity about which packet is

acknow edged when an ACK is received. Consequently, nore accurate
RTT neasurenents can be nmade, spurious retransm ssions are trivially
detected, and nechani sns such as Fast Retransmit can be applied

uni versal ly, based only on packet nunber.

This design point significantly sinplifies | oss detection nechani sns
for QUC. Mst TCP nmechanisns inplicitly attenpt to infer
transm ssi on ordering based on TCP sequence nunbers - a non-trivial
task, especially when TCP tinestanps are not avail abl e.

2.1.2. No Reneging
QUI C ACKs contain information that is equivalent to TCP SACK, but
QUI C does not allow any acked packet to be reneged, greatly

simplifying inplenentati ons on both sides and reduci ng nenory
pressure on the sender.

lyengar & Swett Expi res Septenber 14, 2017 [Page 4]

Internet-Draft QUI C Loss Detection March 2017

2.1.3. Mre ACK Ranges

QUI C supports up to 256 ACK ranges, opposed to TCP's 3 SACK ranges.
In high loss environnments, this speeds recovery.

2.1.4. Explicit Correction For Del ayed Acks

QUI C ACKs explicitly encode the delay incurred at the receiver

bet ween when a packet is received and when the corresponding ACK is
sent. This allows the receiver of the ACK to adjust for receiver

del ays, specifically the del ayed ack tiner, when estinmating the path
RTT. This mechanismalso allows a receiver to neasure and report the
del ay fromwhen a packet was received by the OS kernel, which is
useful in receivers which may incur delays such as context-sw tch

| at ency before a userspace QU C receiver processes a received packet.

3. Loss Detection

We now describe QU C s |oss detection as functions that should be
call ed on packet transm ssion, when a packet is acked, and tiner
expiration events.

3.1. Constants of interest

Constants used in | oss recovery and congestion control are based on a
combi nati on of RFCs, papers, and conmon practice. Sonme may need to
be changed or negotiated in order to better suit a variety of

envi ronment s.

kMaxTLPs (default 2): Maxi num nunber of tail |oss probes before an
RTO fires.

kReor deri ngThreshold (default 3): Maxi mumreordering in packet
nunber space before FACK style | oss detection considers a packet
| ost.

kTi neReor deri ngFraction (default 1/8): Maxinmumreordering in timne
sapce before time based | oss detection considers a packet |ost.
In fraction of an RTT.

KM nTLPTi neout (default 10nms): Mninmumtine in the future a tai
| oss probe alarm may be set for

kM nRTOTi meout (default 200nms): Mnimumtime in the future an RTO
al arm may be set for.

kDel ayedAckTi meout (default 25ns): The length of the peer’s del ayed
ack tiner.

lyengar & Swett Expi res Septenber 14, 2017 [Page 5]

Internet-Draft QUI C Loss Detection March 2017

kDefaultlnitial Rtt (default 100ns): The default RTT used before an
RTT sample is taken

3.2. Variables of interest

We first describe the variables required to inplenent the |oss
detection mechani snms described in this section

| oss_detection_alarm Milti-nodal alarmused for |oss detection

handshake count: The nunber of tinmes the handshake packets have been
retransmtted without receiving an ack

tl p_count: The number of times a tail |oss probe has been sent
wi t hout receiving an ack.

rto_count: The nunber of tines an rto has been sent without
receiving an ack.

snoot hed_rtt: The smoothed RTT of the connection, conputed as
described in [RFC6298]

rttvar: The RTT variance, conputed as described in [RFC6298]

initial _rtt: The initial RTT used before any RTT neasurenents have
been made.

reordering threshold: The |largest delta between the | argest acked
retransmttabl e packet and a packet containing retransnittable
franes before it’'s declared |ost.

time_reordering fraction: The reordering wi ndow as a fraction of
max(snoothed_rtt, latest _rtt).

loss_ tine: The time at which the next packet will be considered | ost
based on early transmt or exceeding the reordering wi ndow in
time.

sent _packets: An association of packet nunmbers to information about
them including a nunber field indicating the packet nunber, a
time field indicating the tine a packet was sent, and a bytes
field indicating the packet’'s size. sent_packets is ordered by
packet nunber, and packets remain in sent_packets unti
acknow edged or | ost.

lyengar & Swett Expi res Septenber 14, 2017 [Page 6]

Internet-Draft QUI C Loss Detection March 2017

3. 3. Initialization

At the beginning of the connection, initialize the | oss detection
vari abl es as foll ows:

| oss_detection_alarmreset()

handshake count = 0

tlp_count =0

rto_count =0

i f (UsingTineLossDetection())
reordering threshold = infinite
time_reordering_fraction = kTi meReorderingFraction

el se:
reordering_threshold = kReorderingThreshol d
time_reordering fraction = infinite

loss tinme = 0

snoot hed_rtt = 0

rttvar = 0

initial _rtt = kDefaultlnitial Rt

3.4. On Sending a Packet

After any packet is sent, be it a new transm ssion or a rebundled
transm ssion, the followi ng OnPacket Sent function is called. The
paraneters to OnPacket Sent are as foll ows:

o packet _nunber: The packet nunber of the sent packet.

0 is retransnittble: A boolean that indicates whether the packet
contains at least one frame requiring reliable deliver. The
retransmttability of various QU C franes is described in
[QUI G TRANSPORT]. If false, it is still acceptable for an ack to
be received for this packet. However, a caller MJST NOT set
is retransnmttable to true if an ack is not expected.

0 sent_bytes: The nunber of bytes sent in the packet.
Pseudocode for OnPacket Sent foll ows:

OnPacket Sent (packet _nunber, is _retransnittable, sent_bytes):
sent _packet s[packet _nunber]. packet nunber = packet nunber
sent packet s[packet _nunber].tine = now
if is_retransnittable:

sent _packet s[packet _nunber].bytes = sent_bytes
Set LossDet ecti onAl arm()

lyengar & Swett Expi res Septenber 14, 2017 [Page 7]

Internet-Draft QUI C Loss Detection

3.5. On Ack Recei pt

March 2017

When an ack is received, it may acknowl edge O or nore packets.

Pseudocode for OnAckReceived and UpdateRtt follow

OnAckRecei ved(ack):

/1 If the largest acked is newly acked, update the RTT.

i f (sent_packets[ack.|argest_acked]):

rtt_sanple = now - sent_packets[ack.|largest acked].tine

if (rtt_sanple > ack.ack_del ay):
rtt_sanpl e -= ack. del ay
UpdateRtt (rtt_sanpl e)
/1 Find all newly acked packets.

for acked_packet _nunber in Deterni neNew yAckedPacket s():

OnPacket Acked(acked_packet nunber)

Det ect Lost Packet s(ack. | argest _acked_packet)
Set LossDet ecti onAl arn()

UpdateRtt (rtt_sanple):
/1 Based on {{RFC6298}}.
if (snmoothed rtt == 0):
smoothed_rtt = rtt_sanple
rttvar = rtt_sanple / 2
el se:

rttvar = 3/4 * rttvar + 1/4 * (snoothed rtt - rtt_sanple)

snoot hed rtt = 7/8 * snoothed rtt + 1/8 * rtt_sanple

3.6. On Packet Acknow edgnent

When a packet is acked for the first tine, the follow ng

OnPacket Acked function is called. Note that a single ACK frane may
newl y acknow edge several packets. OnPacket Acked nust be call ed once

for each of these newy acked packets.

OnPacket Acked t akes one parameter, acked_packet, which is the packet
nunber of the newy acked packet, and returns a list of packet

nunbers that are detected as | ost.
Pseudocode for OnPacket Acked fol | ows:

OnPacket Acked(acked_packet _number):
handshake _count = 0
tlp_count =0
rto_count =0
sent packets. renmpove(acked packet nunber)

lyengar & Swett Expi res Septenber 14, 2017

[Page 8]

Internet-Draft QUI C Loss Detection March 2017

3.7. Setting the Loss Detection Alarm

QUIC | oss detection uses a single alarmfor all tinmer-based |oss
detection. The duration of the alarmis based on the alarnis node,
which is set in the packet and tinmer events further bel ow. The
function SetLossDetectionAl arm defined bel ow shows how the single
timer is set based on the al arm node.

3.7.1. Handshake Packets

The initial flight has no prior RTT sanmple. A client SHOULD renenber
the previous RTT it observed when resunption is attenpted and use
that for an initial RTT value. |If no previous RTT is available, the
initial RTT defaults to 200ns. Once an RTT neasurenent is taken, it
MUST replace initial _rtt.

Endpoi nts MUST retransnit handshake franes if not acknow edged within
atine limt. Thistine limt will start as the largest of twice the
rtt value and M nTLPTi meout. Each consecutive handshake

retransm ssion doubles the time limt, until an acknow edgenent is
recei ved.

Handshake franes nmay be cancell ed by handshake state transitions. In
particular, all non-protected frames SHOULD be no | onger be
transmitted once packet protection is avail able.

When stateless rejects are in use, the connection is considered
i medi ately closed once a reject is sent, so no tiner is set to
retransmt the reject.

Ver si on negotiati on packets are always statel ess, and MJST be sent
once per per handshake packet that uses an unsupported QU C version
and MAY be sent in response to ORTT packets.

3.7.2. Tail Loss Probe and Retransni ssion Ti meout

Tail |oss probes [I|-D.dukkipati-tcpmtcp-Ioss-probe] and

retransm ssion tineouts[RFC6298] are an al arm based nechanismto
recover from cases when there are outstanding retransmittable
packets, but an acknow edgenent has not been received in a tinely
manner .

3.7.3. Early Retransmit
Early retransmt [RFC5827] is inplemented with a 1/4 RTT tinmer. It

is part of QU C s tine based | oss detection, but is always enabl ed,
even when only packet reordering | oss detection is enabl ed.

lyengar & Swett Expi res Septenber 14, 2017 [Page 9]

Internet-Draft QUI C Loss Detection

3.7.4. Pseudocode
Pseudocode for SetLossDetectionAl armfoll ows:

Set LossDet ecti onAl arm():

March 2017

if (retransnittable packets are not outstanding):

| oss_detection_al arm cancel ();
return

i f (handshake packets are outstanding):
/'l Handshake retransm ssion al arm
if (snmoothed rtt == 0):
alarmduration = 2 * initial _rtt
el se:
alarmduration = 2 * snoothed rtt

al arm duration = nax(al armduration, kM nTLPTi neout)
al arm duration = alarmduration << handshake_count

else if (loss tinme !'= 0):

/] Early retransmit timer or time |oss detection

alarmduration = loss_tine - now
se if (tlp_count < kKMaxTLPs):
/] Tail Loss Probe

e

if (retransmittabl e packets outstanding = 1):

alarmduration = 1.5 * snoothed rtt + kDel ayedAckTi neout

el se:
al arm durati on = kM nTLPTi neout

al arm duration = max(alarmduration, 2 * snmoothed_rtt)

el se:
/1l RTO al arm
if (rto_count = 0):
al arm durati on
al arm duration
el se:
al arm duration

| oss_detection_alarmset (now + al arm duration)
3.8. On AlarmFiring

QUI C uses one | oss recovery alarm which when set,

snoot hed_rtt + 4 * rttvar
max(al arm durati on, kM nRTOTi meout)

| oss_detection_alarmget _delay() << 1

can be in one of

several nodes. Wien the alarmfires, the node determ nes the action

to be perforned.

Pseudocode for OnLossDetectionAlarmfoll ows:

lyengar & Swett Expi res Septenber 14, 2017

[Page 10]

Internet-Draft QUI C Loss Detection March 2017

OnLossDet ecti onAl arn():
i f (handshake packets are outstanding):
/'l Handshake retransm ssion al arm
Retransmi t Al | HandshakePacket s() ;
handshake count ++;
[l TODO Carify early retransnit and tinme |oss
else if (loss_tinme !'= 0):
/1 EBarly retransmit or Time Loss Detection
Det ect Lost Packet s(| argest _acked_packet)
else if (tlp_count < kMaxTLPs):
/'l Tail Loss Probe.
i f (HasNewDat aToSend()):
SendOnePacket OF NewDat a()
el se:
Retransm t A dest Packet ()
tl p_count ++
el se:
/'l RTO
Ret ransmi t O dest TwoPacket s()
rto_count ++

Set LossDet ecti onAl arm()
3.9. Detecting Lost Packets
Packets in QU C are only considered | ost once a | arger packet nunber
i s acknow edged. DetectlLostPackets is called every tine an ack is
received. |If the |loss detection alarmfires and the loss tine is
set, the previous |argest acked packet is supplied.
3.9.1. Handshake Packets
The recei ver MIST ignore unprotected packets that ack protected
packets. The receiver MJST trust protected acks for unprotected
packets, however. Aside fromthis, |oss detection for handshake
packets when an ack is processed is identical to other packets.
3.9.2. Pseudocode

Det ect Lost Packet s takes one paranmeter, acked, which is the |argest
acked packet.

Pseudocode for DetectlLostPackets foll ows:

lyengar & Swett Expi res Septenber 14, 2017 [Page 11]

Internet-Draft QUI C Loss Detection March 2017

Det ect Lost Packet s(| ar gest _acked):
loss tine = 0
| ost _packets = {}

delay until _lost = infinite;
if (time_reordering fraction !=infinite):
delay until _lost =
(1 +tine_reordering_fraction) * max(latest_rtt, snmoothed rtt)
el se if (largest_acked. packet _nunber == | argest_sent _packet):
/1 Early retransmt al arm
delay until lost = 9/8 * max(latest _rtt, snoothed rtt)

foreach (unacked | ess than | argest_acked. packet nunber):
time_since_sent = nowm) - unacked.tinme_sent
packet delta = | argest_acked. packet _nunber - unacked. packet nunber
if (time_since_sent > delay_until _lost):
| ost _packets.insert (unacked)
el se if (packet _delta > reordering threshold)
| ost _packets.insert(unacked)
else if (loss_time == 0 && delay_until _lost !'=infinite):
loss_tine = delay_until _|ost - time_since_sent

/1 Informthe congestion controller of |ost packets and
I/l lets it decide whether to retransmt inmmediately.
OnPacket sLost (| ost _packet s)
foreach (packet in | ost_packets)

sent _packets. rempove(packet. packet _numnber)

4. Congestion Contro
(descri be NewReno-styl e congestion control [RFC6582] for QUIC.)
(describe appropriate byte counting.) (define recovery based on
packet nunmbers.) (describe min_rtt based hystart.) (describe how
QUIC s F-RTO [RFC5682] del ays reducing CAND.) (describe PRR
[RFC6937])

5. | ANA Consi derati ons
Thi s docunent has no | ANA actions. Yet.

6. References

6.1. Normative References
[QUI C- TRANSPORT]

lyengar, J., Ed. and M Thomson, Ed., "QUI C. A UDP-Based
Mul tipl exed and Secure Transport™.

lyengar & Swett Expi res Septenber 14, 2017 [Page 12]

Internet-Draft QUI C Loss Detection March 2017

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<http://ww.rfc-editor.org/info/rfc2119>.

6.2. Informative References

[1-D. dukki pati-tcpmtcp-1oss-probe]
Dukki pati, N., Cardwell, N., Cheng, Y., and M Mathis,
"Tail Loss Probe (TLP): An Al gorithmfor Fast Recovery of
Tai|l Losses", draft-dukkipati-tcpmtcp-I|oss-probe-01 (work
in progress), February 2013.

[RFC5682] Sarolahti, P., Kojo, M, Yamanoto, K, and M Hata,
"Forward RTO Recovery (F-RTO): An Algorithmfor Detecting
Spurious Retransmni ssion Tinmeouts with TCP", RFC 5682,
DA 10. 17487/ RFC5682, Septenber 2009,
<http://wwv. rfc-editor.org/info/rfc5682>.

[RFC5827] Al man, M, Avrachenkov, K, Ayesta, U, Blanton, J., and
P. Hurtig, "Early Retransnmit for TCP and Stream Control
Transm ssion Protocol (SCTP)", RFC 5827,
DO 10.17487/ RFC5827, May 2010,
<http://wwv. rfc-editor.org/info/rfc5827>.

[RFC6298] Paxson, V., Allman, M, Chu, J., and M Sargent,
"Conmputing TCP's Retransmi ssion Tinmer", RFC 6298,
DO 10.17487/ RFC6298, June 2011,
<http://ww.rfc-editor.org/info/rfc6298>.

[RFC6582] Henderson, T., Floyd, S., @Qurtov, A, and Y. N shida, "The
NewReno Modification to TCP's Fast Recovery Al gorithnt,
RFC 6582, DO 10.17487/ RFC6582, April 2012,
<http://ww.rfc-editor.org/info/rfc6582>.

[RFC6937] Mathis, M, Dukkipati, N, and Y. Cheng, "Proportional
Rat e Reduction for TCP', RFC 6937, DO 10.17487/ RFC6937,
May 2013, <http://ww.rfc-editor.org/info/rfc6937>.
Appendi x A, Acknow edgnents
Appendi x B. Change Log

RFC Editor’s Note: Please renpove this section prior to
publication of a final version of this docunent.

lyengar & Swett Expi res Septenber 14, 2017 [Page 13]

Internet-Draft QUI C Loss Detection March 2017

B.1. Since draft-ietf-quic-recovery-01

0 Changes initial default RTT to 100ns

0 Added tine-based | oss detection and fixes early retransmt

o Carified loss recovery for handshake packets

o Fixed references and nade TCP references infornmative
B.2. Since draft-ietf-quic-recovery-00

o |Inproved description of constants and ACK behavi or
B.3. Since draft-iyengar-quic-loss-recovery-01

0 Adopted as base for draft-ietf-quic-recovery.

0 Updated authors/editors list.

0 Added table of contents.
Aut hors’ Addresses

Jana |yengar (editor)
Googl e

Email: jri @oogl e.com
lan Swett (editor)
Googl e

Enai | : ianswett @oogl e. com

lyengar & Swett Expi res Septenber 14, 2017 [Page 14]

