
TAPS S. Gjessing
Internet-Draft M. Welzl
Intended status: Informational University of Oslo
Expires: September 14, 2017 March 13, 2017

 A Minimal Set of Transport Services for TAPS Systems
 draft-gjessing-taps-minset-04

Abstract

 This draft recommends a minimal set of IETF Transport Services
 offered by end systems supporting TAPS, and gives guidance on
 choosing among the available mechanisms and protocols. It is based
 on the set of transport features given in the TAPS document
 draft-ietf-taps-transports-usage-03.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Gjessing & Welzl Expires September 14, 2017 [Page 1]

Internet-Draft Minimal TAPS Transport Services March 2017

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Step 1: Categorization -- The Superset of Transport
 Features . 5
 3.1. CONNECTION Related Transport Features 7
 3.2. DATA Transfer Related Transport Features 18
 3.2.1. Sending Data . 18
 3.2.2. Receiving Data . 20
 3.2.3. Errors . 21
 4. Step 2: Reduction -- The Reduced Set of Transport Features . . 22
 4.1. CONNECTION Related Transport Features 23
 4.2. DATA Transfer Related Transport Features 24
 4.2.1. Sending Data . 24
 4.2.2. Receiving Data . 24
 4.2.3. Errors . 24
 5. Step 3: Discussion . 24
 5.1. Sending Messages, Receiving Bytes 24
 5.2. Stream Schedulers Without Streams 26
 5.3. Early Data Transmission 27
 5.4. Sender Running Dry . 27
 5.5. Capacity Profile . 28
 5.6. Security . 28
 5.7. Packet Size . 29
 6. Step 4: Construction -- the Minimal Set of Transport
 Features . 29
 6.1. Flow Creation, Connection and Termination 30
 6.2. Flow Group Configuration 31
 6.3. Flow Configuration . 32
 6.4. Data Transfer . 32
 6.4.1. The Sender . 32
 6.4.2. The Receiver . 34
 7. Conclusion . 34
 8. Acknowledgements . 35
 9. IANA Considerations . 35
 10. Security Considerations 36
 11. References . 36
 11.1. Normative References 36
 11.2. Informative References 36
 Appendix A. Revision information 37
 Authors’ Addresses . 38

Gjessing & Welzl Expires September 14, 2017 [Page 2]

Internet-Draft Minimal TAPS Transport Services March 2017

1. Introduction

 An application has an intended usage and demands for transport
 services, and the task of any system that implements TAPS is to offer
 these services to its applications, i.e. the applications running on
 top of TAPS, without binding them to a particular transport protocol.
 Currently, the set of transport services that most applications use
 is based on TCP and UDP; this limits the ability for the network
 stack to make use of features of other protocols. For example, if a
 protocol supports out-of-order message delivery but applications
 always assume that the network provides an ordered bytestream, then
 the network stack can never utilize out-of-order message delivery:
 doing so would break a fundamental assumption of the application.

 By exposing the transport services of multiple transport protocols, a
 TAPS system can make it possible to use these services without having
 to statically bind an application to a specific transport protocol.
 The first step towards the design of such a system was taken by
 [RFC8095], which surveys a large number of transports, and [TAPS2],
 which identifies the specific transport features that are exposed to
 applications by the protocols TCP, MPTCP, UDP(-Lite) and SCTP as well
 as the LEDBAT congestion control mechanism. The present draft is
 based on these documents and follows the same terminology (also
 listed below).

 The number of transport features of current IETF transports is large,
 and exposing all of them has a number of disadvantages: generally,
 the more functionality is exposed, the less freedom a TAPS system has
 to automate usage of the various functions of its available set of
 transport protocols. Some functions only exist in one particular
 protocol, and if an application would use them, this would statically
 tie the application to this protocol, counteracting the purpose of a
 TAPS system. Also, if the number of exposed features is exceedingly
 large, a TAPS system might become very hard to use for an application
 programmer. Taking [TAPS2] as a basis, this document therefore
 develops a minimal set of transport features, removing the ones that
 could be harmful to the purpose of a TAPS system but keeping the ones
 that must be retained for applications to benefit from useful
 transport functionality.

 Applications use a wide variety of APIs today. The point of this
 document is to identify transport features that must be reflected in
 all network APIs in order for the underlying functionality to
 become usable everywhere. For example, it does not help an
 application that talks to a middleware if only the Berkeley Sockets
 API is extended to offer "unordered message delivery". Instead, the
 middleware would have to expose the "unordered message delivery"
 transport feature to its applications (alternatively, there may be

Gjessing & Welzl Expires September 14, 2017 [Page 3]

Internet-Draft Minimal TAPS Transport Services March 2017

 interesting ways for certain types of middleware to try to use some
 of the transport features that we describe here without exposing them
 to applications, based on knowledge about the applications -- but
 this is not the general case). In most situations, in the interest
 of being as flexible and efficient as possible, the best choice will
 be for a middleware or library to expose all of the transport
 features that are recommended as a "minimal set" here. As an example
 considering only TCP and UDP, a middleware or library that only
 exposes TCP’s reliable bytestream cannot make use of UDP (unless it
 implements extra functionality on top of UDP) -- doing so could break
 a fundamental assumption that applications make about the data they
 send and receive.

 This document approaches the construction of a minimal set of
 transport features in the following way:
 1. Categorization: the superset of transport features from [TAPS2]
 is presented, and transport features are categorized for later
 reduction.
 2. Reduction: a shorter list of transport features is derived from
 the categorization in the first step. This removes all transport
 features that do not require application-specific knowledge or
 cannot be implemented with TCP.
 3. Discussion: the resulting list shows a number of peculiarities
 that are discussed, to provide a basis for constructing the
 minimal set.
 4. Construction: Based on the reduced set and the discussion of the
 transport features therein, a minimal set is constructed.

2. Terminology

 The following terms are used throughout this document, and in
 subsequent documents produced by TAPS that describe the composition
 and decomposition of transport services.

 Transport Feature: a specific end-to-end feature that the transport
 layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.
 Transport Service: a set of Transport Features, without an
 association to any given framing protocol, which provides a
 complete service to an application.
 Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire.

Gjessing & Welzl Expires September 14, 2017 [Page 4]

Internet-Draft Minimal TAPS Transport Services March 2017

 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implements a single transport service, e.g., a protocol stack (RTP
 over UDP).
 Application: an entity that uses the transport layer for end-to-end
 delivery data across the network (this may also be an upper layer
 protocol or tunnel encapsulation).
 Application-specific knowledge: knowledge that only applications
 have.
 Endpoint: an entity that communicates with one or more other
 endpoints using a transport protocol.
 Connection: shared state of two or more endpoints that persists
 across messages that are transmitted between these endpoints.
 Socket: the combination of a destination IP address and a
 destination port number.

3. Step 1: Categorization -- The Superset of Transport Features

 Following [TAPS2], we divide the transport features into two main
 groups as follows:
 1. CONNECTION related transport features
 - ESTABLISHMENT
 - AVAILABILITY
 - MAINTENANCE
 - TERMINATION
 2. DATA Transfer Related transport features
 - Sending Data
 - Receiving Data
 - Errors

 Because QoS is out of scope of TAPS, this document assumes a "best
 effort" service model [RFC5290], [RFC7305]. Applications using a
 TAPS system can therefore not make any assumptions about e.g. the
 time it will take to send a message. We also assume that TAPS
 applications have no specific requirements that need knowledge about
 the network, e.g. regarding the choice of network interface or the
 end-to-end path. Even with these assumptions, there are certain
 requirements that are strictly kept by transport protocols today, and
 these must also be kept by a TAPS system. Some of these requirements
 relate to transport features that we call "Functional".

 Functional transport features provide functionality that cannot be
 used without the application knowing about them, or else they violate
 assumptions that might cause the application to fail. For example,
 unordered message delivery is a functional transport feature: it
 cannot be used without the application knowing about it because the
 application’s assumption could be that messages arrive in order.

Gjessing & Welzl Expires September 14, 2017 [Page 5]

Internet-Draft Minimal TAPS Transport Services March 2017

 Failure includes any change of the application behavior that is not
 performance oriented, e.g. security.

 "Change DSCP" and "Disable Nagle algorithm" are examples of transport
 features that we call "Optimizing": if a TAPS system autonomously
 decides to enable or disable them, an application will not fail, but
 a TAPS system may be able to communicate more efficiently if the
 application is in control of this optimizing transport feature.
 These transport features require application-specific knowledge
 (e.g., about delay/bandwidth requirements or the length of future
 data blocks that are to be transmitted).

 The transport features of IETF transport protocols that do not
 require application-specific knowledge and could therefore be
 transparently utilized by a TAPS system are called "Automatable".

 Finally, some transport features are aggregated and/or slightly
 changed in the TAPS API. These transport features are marked as
 "ADDED". The corresponding transport features are automatable, and
 they are listed immediately below the "ADDED" transport feature.

 In this description, transport services are presented following the
 nomenclature "CATEGORY.[SUBCATEGORY].SERVICENAME.PROTOCOL",
 equivalent to "pass 2" in [TAPS2]. The PROTOCOL name "UDP(-Lite)" is
 used when transport features are equivalent for UDP and UDP-Lite; the
 PROTOCOL name "TCP" refers to both TCP and MPTCP. We also sketch how
 some of the TAPS transport services can be implemented. For all
 transport features that are categorized as "functional" or
 "optimizing", and for which no matching TCP primitive exists in "pass
 2" of [TAPS2], a brief discussion on how to fall back to TCP is
 included.

 We designate some transport features as "automatable" on the basis of
 a broader decision that affects multiple transport features:
 o Most transport features that are related to multi-streaming were
 designated as "automatable". This was done because the decision
 on whether to use multi-streaming or not does not depend on
 application-specific knowledge. This means that a connection that
 is exhibited to an application could be implemented by using a
 single stream of an SCTP association instead of mapping it to a
 complete SCTP association or TCP connection. This could be
 achieved by using more than one stream when an SCTP association is
 first established (CONNECT.SCTP parameter "outbound stream
 count"), maintaining an internal stream number, and using this
 stream number when sending data (SEND.SCTP parameter "stream
 number"). Closing or aborting a connection could then simply free
 the stream number for future use. This is discussed further in
 Section 5.2.

Gjessing & Welzl Expires September 14, 2017 [Page 6]

Internet-Draft Minimal TAPS Transport Services March 2017

 o All transport features that are related to using multiple paths or
 the choice of the network interface were designated as
 "automatable". Choosing a path or an interface does not depend on
 application-specific knowledge. For example, "Listen" could
 always listen on all available interfaces and "Connect" could use
 the default interface for the destination IP address.

3.1. CONNECTION Related Transport Features

 ESTABLISHMENT:
 o Connect
 Protocols: TCP, SCTP, UDP(-Lite)
 Functional because the notion of a connection is often reflected
 in applications as an expectation to be able to communicate after
 a "Connect" succeeded, with a communication sequence relating to
 this transport feature that is defined by the application
 protocol.
 Implementation: via CONNECT.TCP, CONNECT.SCTP or CONNECT.UDP(-
 Lite).

 o Specify which IP Options must always be used
 Protocols: TCP
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Request multiple streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Section 5.2.

 o Limit the number of inbound streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Section 5.2.

 o Specify number of attempts and/or timeout for the first
 establishment message
 Protocols: TCP, SCTP
 Functional because this is closely related to potentially assumed
 reliable data delivery for data that is sent before or during
 connection establishment.
 Implementation: Using a parameter of CONNECT.TCP and CONNECT.SCTP.

 o Obtain multiple sockets
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to

Gjessing & Welzl Expires September 14, 2017 [Page 7]

Internet-Draft Minimal TAPS Transport Services March 2017

 the same end host relates to knowledge about the network, not the
 application.

 o Disable MPTCP
 Protocols: MPTCP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.
 Implementation: via a boolean parameter in CONNECT.MPTCP.
 Fall-back to TCP: Do nothing.

 o Specify which chunk types must always be authenticated
 Protocols: SCTP
 Functional because this has a direct influence on security.
 Implementation: via a parameter in CONNECT.SCTP.
 Fall-back to TCP: TBD: this relates to the TCP Authentication
 Option in Section 7.1 of [RFC5925], which is not currently covered
 by [TAPS2].

 o Indicate (and/or obtain upon completion) an Adaptation Layer via
 an adaptation code point
 Protocols: SCTP
 Functional because it allows to send extra data for the sake of
 identifying an adaptation layer, which by itself is application-
 specific.
 Implementation: via a parameter in CONNECT.SCTP.
 Fall-back to TCP: not possible.

 o Request to negotiate interleaving of user messages
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via a parameter in CONNECT.SCTP.

 o Hand over a message to transfer (possibly multiple times) before
 connection establishment
 Protocols: TCP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via a parameter in CONNECT.TCP.

 o Hand over a message to transfer during connection establishment
 Protocols: SCTP
 Functional because this can only work if the message is limited in
 size, making it closely tied to properties of the data that an
 application sends or expects to receive.
 Implementation: via a parameter in CONNECT.SCTP.

Gjessing & Welzl Expires September 14, 2017 [Page 8]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Enable UDP encapsulation with a specified remote UDP port number
 Protocols: SCTP
 Automatable because UDP encapsulation relates to knowledge about
 the network, not the application.

 AVAILABILITY:
 o Listen
 Protocols: TCP, SCTP, UDP(-Lite)
 Functional because the notion of accepting connection requests is
 often reflected in applications as an expectation to be able to
 communicate after a "Listen" succeeded, with a communication
 sequence relating to this transport feature that is defined by the
 application protocol.
 ADDED. This differs from the 3 automatable transport features
 below in that it leaves the choice of interfaces for listening
 open.
 Implementation: by listening on all interfaces via LISTEN.TCP (not
 providing a local IP address) or LISTEN.SCTP (providing SCTP port
 number / address pairs for all local IP addresses).

 o Listen, 1 specified local interface
 Protocols: TCP, SCTP, UDP(-Lite)
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Listen, N specified local interfaces
 Protocols: SCTP, UDP(-Lite)
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Listen, all local interfaces
 Protocols: TCP, SCTP, UDP(-Lite)
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Specify which IP Options must always be used
 Protocols: TCP
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Disable MPTCP
 Protocols: MPTCP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the

Gjessing & Welzl Expires September 14, 2017 [Page 9]

Internet-Draft Minimal TAPS Transport Services March 2017

 application.

 o Specify which chunk types must always be authenticated
 Protocols: SCTP
 Functional because this has a direct influence on security.
 Implementation: via a parameter in CONNECT.SCTP.
 Fall-back to TCP: TBD: this relates to the TCP Authentication
 Option in Section 7.1 of [RFC5925], which is not currently covered
 by [TAPS2].

 o Obtain requested number of streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Section 5.2.

 o Limit the number of inbound streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Section 5.2.

 o Indicate (and/or obtain upon completion) an Adaptation Layer via
 an adaptation code point
 Protocols: SCTP
 Functional because it allows to send extra data for the sake of
 identifying an adaptation layer, which by itself is application-
 specific.
 Implementation: via a parameter in LISTEN.SCTP.
 Fall-back to TCP: not possible.

 o Request to negotiate interleaving of user messages
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via a parameter in LISTEN.SCTP.

 MAINTENANCE:
 o Change timeout for aborting connection (using retransmit limit or
 time value)
 Protocols: TCP, SCTP
 Functional because this is closely related to potentially assumed
 reliable data delivery.
 Implementation: via CHANGE-TIMEOUT.TCP or CHANGE-TIMEOUT.SCTP.

Gjessing & Welzl Expires September 14, 2017 [Page 10]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Suggest timeout to the peer
 Protocols: TCP
 Functional because this is closely related to potentially assumed
 reliable data delivery.
 Implementation: via CHANGE-TIMEOUT.TCP.

 o Disable Nagle algorithm
 Protocols: TCP, SCTP
 Optimizing because this decision depends on knowledge about the
 size of future data blocks and the delay between them.
 Implementation: via DISABLE-NAGLE.TCP and DISABLE-NAGLE.SCTP.

 o Request an immediate heartbeat, returning success/failure
 Protocols: SCTP
 Automatable because this informs about network-specific knowledge.

 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 Protocols: TCP
 Optimizing because it is an early warning to the application,
 informing it of an impending functional event.
 Implementation: via ERROR.TCP.

 o Add path
 Protocols: MPTCP, SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port
 SCTP Parameters: local IP address
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Remove path
 Protocols: MPTCP, SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port
 SCTP Parameters: local IP address
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Set primary path
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

Gjessing & Welzl Expires September 14, 2017 [Page 11]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Suggest primary path to the peer
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Configure Path Switchover
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Obtain status (query or notification)
 Protocols: SCTP, MPTCP
 SCTP parameters: association connection state; destination
 transport address list; destination transport address reachability
 states; current local and peer receiver window size; current local
 congestion window sizes; number of unacknowledged DATA chunks;
 number of DATA chunks pending receipt; primary path; most recent
 SRTT on primary path; RTO on primary path; SRTT and RTO on other
 destination addresses; MTU per path; interleaving supported yes/no
 MPTCP parameters: subflow-list (identified by source-IP; source-
 Port; destination-IP; destination-Port)
 Automatable because these parameters relate to knowledge about the
 network, not the application.

 o Specify DSCP field
 Protocols: TCP, SCTP, UDP(-Lite)
 Optimizing because choosing a suitable DSCP value requires
 application-specific knowledge.
 Implementation: via SET_DSCP.TCP / SET_DSCP.SCTP / SET_DSCP.UDP(-
 Lite)

 o Notification of ICMP error message arrival
 Protocols: TCP, UDP(-Lite)
 Optimizing because these messages can inform about success or
 failure of functional transport features (e.g., host unreachable
 relates to "Connect")
 Implementation: via ERROR.TCP or ERROR.UDP(-Lite).

 o Obtain information about interleaving support
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via a parameter in GETINTERL.SCTP.

Gjessing & Welzl Expires September 14, 2017 [Page 12]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Change authentication parameters
 Protocols: SCTP
 Functional because this has a direct influence on security.
 Implementation: via SETAUTH.SCTP.
 Fall-back to TCP: TBD: this relates to the TCP Authentication
 Option in Section 7.1 of [RFC5925], which is not currently covered
 by [TAPS2].

 o Obtain authentication information
 Protocols: SCTP
 Functional because authentication decisions may have been made by
 the peer, and this has an influence on the necessary application-
 level measures to provide a certain level of security.
 Implementation: via GETAUTH.SCTP.
 Fall-back to TCP: TBD: this relates to the TCP Authentication
 Option in Section 7.1 of [RFC5925], which is not currently covered
 by [TAPS2].

 o Reset Stream
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Section 5.2.

 o Notification of Stream Reset
 Protocols: STCP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Section 5.2.

 o Reset Association
 Protocols: SCTP
 Functional because it affects "Obtain a message delivery number",
 which is functional.
 Implementation: via RESETASSOC.SCTP.
 Fall-back to TCP: not possible.

 o Notification of Association Reset
 Protocols: STCP
 Functional because it affects "Obtain a message delivery number",
 which is functional.
 Implementation: via RESETASSOC-EVENT.SCTP.
 Fall-back to TCP: not possible.

 o Add Streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.

Gjessing & Welzl Expires September 14, 2017 [Page 13]

Internet-Draft Minimal TAPS Transport Services March 2017

 Implementation: see Section 5.2.

 o Notification of Added Stream
 Protocols: STCP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Section 5.2.

 o Choose a scheduler to operate between streams of an association
 Protocols: SCTP
 Optimizing because the scheduling decision requires application-
 specific knowledge. However, if a TAPS system would not use this,
 or wrongly configure it on its own, this would only affect the
 performance of data transfers; the outcome would still be correct
 within the "best effort" service model.
 Implementation: using SETSTREAMSCHEDULER.SCTP.
 Fall-back to TCP: do nothing.

 o Configure priority or weight for a scheduler
 Protocols: SCTP
 Optimizing because the priority or weight requires application-
 specific knowledge. However, if a TAPS system would not use this,
 or wrongly configure it on its own, this would only affect the
 performance of data transfers; the outcome would still be correct
 within the "best effort" service model.
 Implementation: using CONFIGURESTREAMSCHEDULER.SCTP.
 Fall-back to TCP: do nothing.

 o Configure send buffer size
 Protocols: SCTP
 Automatable because this decision relates to knowledge about the
 network and the Operating System, not the application (see also
 the discussion in Section 5.4).

 o Configure receive buffer (and rwnd) size
 Protocols: SCTP
 Automatable because this decision relates to knowledge about the
 network and the Operating System, not the application.

 o Configure message fragmentation
 Protocols: SCTP
 Automatable because fragmentation relates to knowledge about the
 network and the Operating System, not the application.
 Implementation: by always enabling it with
 CONFIG_FRAGMENTATION.SCTP and auto-setting the fragmentation size
 based on network or Operating System conditions.

Gjessing & Welzl Expires September 14, 2017 [Page 14]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Configure PMTUD
 Protocols: SCTP
 Automatable because Path MTU Discovery relates to knowledge about
 the network, not the application.

 o Configure delayed SACK timer
 Protocols: SCTP
 Automatable because the receiver-side decision to delay sending
 SACKs relates to knowledge about the network, not the application
 (it can be relevant for a sending application to request not to
 delay the SACK of a message, but this is a different transport
 feature).

 o Set Cookie life value
 Protocols: SCTP
 Functional because it relates to security (possibly weakened by
 keeping a cookie very long) versus the time between connection
 establishment attempts. Knowledge about both issues can be
 application-specific.
 Fall-back to TCP: the closest TCP functionality is the cookie in
 TCP Fast Open; for this, [RFC7413] states that the server "can
 expire the cookie at any time to enhance security" and section
 4.1.2 describes an example implementation where updating the key
 on the server side causes the cookie to expire; however, this is
 different from this transport feature because SCTP’s cookie life
 value is set on the client side, not the server side. The TCP
 client has no control of this value. Thus, the recommended fall-
 back implementation is to do nothing.

 o Set maximum burst
 Protocols: SCTP
 Automatable because it relates to knowledge about the network, not
 the application.

 o Configure size where messages are broken up for partial delivery
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Fall-back to TCP: do nothing. Since TCP does not deliver
 messages, partial or not, this will have no effect on TCP.

 o Disable checksum when sending
 Protocols: UDP
 Functional because application-specific knowledge is necessary to
 decide whether it can be acceptable to lose data integrity.
 Implementation: via CHECKSUM.UDP.
 Fall-back to TCP: do nothing.

Gjessing & Welzl Expires September 14, 2017 [Page 15]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Disable checksum requirement when receiving
 Protocols: UDP
 Functional because application-specific knowledge is necessary to
 decide whether it can be acceptable to lose data integrity.
 Implementation: via CHECKSUM_REQUIRED.UDP.
 Fall-back to TCP: do nothing.

 o Specify checksum coverage used by the sender
 Protocols: UDP-Lite
 Functional because application-specific knowledge is necessary to
 decide for which parts of the data it can be acceptable to lose
 data integrity.
 Implementation: via SET_CHECKSUM_COVERAGE.UDP-Lite.
 Fall-back to TCP: do nothing.

 o Specify minimum checksum coverage required by receiver
 Protocols: UDP-Lite
 Functional because application-specific knowledge is necessary to
 decide for which parts of the data it can be acceptable to lose
 data integrity.
 Implementation: via SET_MIN_CHECKSUM_COVERAGE.UDP-Lite.
 Fall-back to TCP: do nothing.

 o Specify DF field
 Protocols: UDP(-Lite)
 Optimizing because the DF field can be used to carry out Path MTU
 Discovery, which can lead an application to choose message sizes
 that can be transmitted more efficiently.
 Implementation: via MAINTENANCE.SET_DF.UDP(-Lite) and
 SEND_FAILURE.UDP(-Lite).
 Fall-back to TCP: do nothing. With TCP the sender is not in
 control of transport message sizes, making this functionality
 irrelevant.

 o Specify TTL/Hop count field
 Protocols: UDP(-Lite)
 Automatable because a TAPS system can use a large enough system
 default to avoid communication failures. Allowing an application
 to configure it differently can produce notifications of ICMP
 error message arrivals that yield information which only relates
 to knowledge about the network, not the application.

 o Obtain TTL/Hop count field
 Protocols: UDP(-Lite)
 Automatable because the TTL/Hop count field relates to knowledge
 about the network, not the application.

Gjessing & Welzl Expires September 14, 2017 [Page 16]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Specify ECN field
 Protocols: UDP(-Lite)
 Automatable because the ECN field relates to knowledge about the
 network, not the application.

 o Obtain ECN field
 Protocols: UDP(-Lite)
 Automatable because the ECN field relates to knowledge about the
 network, not the application.

 o Specify IP Options
 Protocols: UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Obtain IP Options
 Protocols: UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Enable and configure a "Low Extra Delay Background Transfer"
 Protocols: A protocol implementing the LEDBAT congestion control
 mechanism
 Optimizing because whether this service is appropriate or not
 depends on application-specific knowledge. However, wrongly using
 this will only affect the speed of data transfers (albeit
 including other transfers that may compete with the TAPS transfer
 in the network), so it is still correct within the "best effort"
 service model.
 Implementation: via CONFIGURE.LEDBAT and/or SET_DSCP.TCP /
 SET_DSCP.SCTP / SET_DSCP.UDP(-Lite) [LBE-draft].
 Fall-back to TCP: do nothing.

 TERMINATION:
 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 Protocols: TCP, SCTP
 Functional because the notion of a connection is often reflected
 in applications as an expectation to have all outstanding data
 delivered and no longer be able to communicate after a "Close"
 succeeded, with a communication sequence relating to this
 transport feature that is defined by the application protocol.
 Implementation: via CLOSE.TCP and CLOSE.SCTP.

 o Abort without delivering remaining data, causing an event
 informing the application on the other side
 Protocols: TCP, SCTP

Gjessing & Welzl Expires September 14, 2017 [Page 17]

Internet-Draft Minimal TAPS Transport Services March 2017

 Functional because the notion of a connection is often reflected
 in applications as an expectation to potentially not have all
 outstanding data delivered and no longer be able to communicate
 after an "Abort" succeeded, with a communication sequence relating
 to this transport feature that is defined by the application
 protocol.
 Implementation: via ABORT.TCP and ABORT.SCTP.

 o Timeout event when data could not be delivered for too long
 Protocols: TCP, SCTP
 Functional because this notifies that potentially assumed reliable
 data delivery is no longer provided.
 Implementation: via TIMEOUT.TCP and TIMEOUT.SCTP.

3.2. DATA Transfer Related Transport Features

3.2.1. Sending Data

 o Reliably transfer data, with congestion control
 Protocols: TCP, SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.TCP and SEND.SCTP.

 o Reliably transfer a message, with congestion control
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.SCTP and SEND.TCP. With SEND.TCP,
 messages will not be identifiable by the receiver. Inform the
 application of the result.

 o Unreliably transfer a message
 Protocols: SCTP, UDP(-Lite)
 Optimizing because only applications know about the time
 criticality of their communication, and reliably transfering a
 message is never incorrect for the receiver of a potentially
 unreliable data transfer, it is just slower.
 ADDED. This differs from the 2 automatable transport features
 below in that it leaves the choice of congestion control open.
 Implementation: via SEND.SCTP or SEND.UDP or SEND.TCP. With
 SEND.TCP, messages will not be identifiable by the receiver.
 Inform the application of the result.

 o Unreliably transfer a message, with congestion control
 Protocols: SCTP
 Automatable because congestion control relates to knowledge about

Gjessing & Welzl Expires September 14, 2017 [Page 18]

Internet-Draft Minimal TAPS Transport Services March 2017

 the network, not the application.

 o Unreliably transfer a message, without congestion control
 Protocols: UDP(-Lite)
 Automatable because congestion control relates to knowledge about
 the network, not the application.

 o Configurable Message Reliability
 Protocols: SCTP
 Optimizing because only applications know about the time
 criticality of their communication, and reliably transfering a
 message is never incorrect for the receiver of a potentially
 unreliable data transfer, it is just slower.
 Implementation: via SEND.SCTP.
 Fall-back to TCP: By using SEND.TCP and ignoring this
 configuration: based on the assumption of the best-effort service
 model, unnecessarily delivering data does not violate application
 expectations. Moreover, it is not possible to associate the
 requested reliability to a "message" in TCP anyway.

 o Choice of stream
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable. Implementation: see Section 5.2.

 o Choice of path (destination address)
 Protocols: SCTP
 Automatable because it requires using multiple sockets, but
 obtaining multiple sockets in the CONNECTION.ESTABLISHMENT
 category is automatable.

 o Choice between unordered (potentially faster) or ordered delivery
 of messages
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.SCTP.
 Fall-back to TCP: By using SEND.TCP and always sending data
 ordered: based on the assumption of the best-effort service model,
 ordered delivery may just be slower and does not violate
 application expectations. Moreover, it is not possible to
 associate the requested delivery order to a "message" in TCP
 anyway.

 o Request not to bundle messages
 Protocols: SCTP
 Optimizing because this decision depends on knowledge about the

Gjessing & Welzl Expires September 14, 2017 [Page 19]

Internet-Draft Minimal TAPS Transport Services March 2017

 size of future data blocks and the delay between them.
 Implementation: via SEND.SCTP.
 Fall-back to TCP: By using SEND.TCP and DISABLE-NAGLE.TCP to
 disable the Nagle algorithm when the request is made and enable it
 again when the request is no longer made.

 o Specifying a "payload protocol-id" (handed over as such by the
 receiver)
 Protocols: SCTP
 Functional because it allows to send extra application data with
 every message, for the sake of identification of data, which by
 itself is application-specific.
 Implementation: SEND.SCTP.
 Fall-back to TCP: not possible.

 o Specifying a key id to be used to authenticate a message
 Protocols: SCTP
 Functional because this has a direct influence on security.
 Implementation: via a parameter in SEND.SCTP.
 Fall-back to TCP: TBD: this relates to the TCP Authentication
 Option in Section 7.1 of [RFC5925], which is not currently covered
 by [TAPS2].

 o Request not to delay the acknowledgement (SACK) of a message
 Protocols: SCTP
 Optimizing because only an application knows for which message it
 wants to quickly be informed about success / failure of its
 delivery.
 Fall-back to TCP: do nothing.

3.2.2. Receiving Data

 o Receive data (with no message delineation)
 Protocols: TCP
 Functional because a TAPS system must be able to send and receive
 data.
 Implementation: via RECEIVE.TCP

 o Receive a message
 Protocols: SCTP, UDP(-Lite)
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via RECEIVE.SCTP and RECEIVE.UDP(-Lite).
 Fall-back to TCP: not possible.

Gjessing & Welzl Expires September 14, 2017 [Page 20]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Choice of stream to receive from
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: see Section 5.2.

 o Information about partial message arrival
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via RECEIVE.SCTP.
 Fall-back to TCP: do nothing: this information is not available
 with TCP.

 o Obtain a message delivery number
 Protocols: SCTP
 Functional because this number can let applications detect and, if
 desired, correct reordering. Whether messages are in the correct
 order or not is closely tied to properties of the data that an
 application sends or expects to receive.
 Implementation: via RECEIVE.SCTP.
 Fall-back to TCP: not possible.

3.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to in the "Sending Data" category (Section 3.2.1).

 o Notification of send failures
 Protocols: SCTP, UDP(-Lite)
 Functional because this notifies that potentially assumed reliable
 data delivery is no longer provided.
 ADDED. This differs from the 2 automatable transport features
 below in that it does not distinugish between unsent and
 unacknowledged messages.
 Implementation: via SENDFAILURE-EVENT.SCTP and SEND_FAILURE.UDP(-
 Lite).
 Fall-back to TCP: do nothing: this notification is not available
 and will therefore not occur with TCP.

 o Notification of an unsent (part of a) message
 Protocols: SCTP, UDP(-Lite)
 Automatable because the distinction between unsent and
 unacknowledged is network-specific.

Gjessing & Welzl Expires September 14, 2017 [Page 21]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Notification of an unacknowledged (part of a) message
 Protocols: SCTP
 Automatable because the distinction between unsent and
 unacknowledged is network-specific.

 o Notification that the stack has no more user data to send
 Protocols: SCTP
 Optimizing because reacting to this notification requires the
 application to be involved, and ensuring that the stack does not
 run dry of data (for too long) can improve performance.
 Fall-back to TCP: do nothing. See also the discussion in
 Section 5.4.

 o Notification to a receiver that a partial message delivery has
 been aborted
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Fall-back to TCP: do nothing. This notification is not available
 and will therefore not occur with TCP.

4. Step 2: Reduction -- The Reduced Set of Transport Features

 By hiding automatable transport features from the application, a TAPS
 system can gain opportunities to automate the usage of network-
 related functionality. This can facilitate using the TAPS system for
 the application programmer and it allows for optimizations that may
 not be possible for an application. For instance, system-wide
 configurations regarding the usage of multiple interfaces can better
 be exploited if the choice of the interface is not entirely up to the
 application. Therefore, since they are not strictly necessary to
 expose in a TAPS system, we do not include automatable transport
 features in the reduced set of transport features. This leaves us
 with only the transport features that are either optimizing or
 functional.

 A TAPS system should be able to fall back to TCP or UDP if
 alternative transport protocols are found not to work. Here we only
 consider falling back to TCP. For some transport features, it was
 identified that no fall-back to TCP is possible. This eliminates the
 possibility to use TCP whenever an application makes use of one of
 these transport features. Thus, we only keep the functional and
 optimizing transport features for which a fall-back to TCP is
 possible in our reduced set. "Reset Association" and "Notification
 of Association Reset" are only functional because of their
 relationship to "Obtain a message delivery number", which is

Gjessing & Welzl Expires September 14, 2017 [Page 22]

Internet-Draft Minimal TAPS Transport Services March 2017

 functional. Because "Obtain a message delivery number" does not have
 a fall-back to TCP, none of these three transport features are
 included in the reduced set.

4.1. CONNECTION Related Transport Features

 ESTABLISHMENT:
 o Connect
 o Specify number of attempts and/or timeout for the first
 establishment message
 o Specify which chunk types must always be authenticated
 o Hand over a message to transfer (possibly multiple times) before
 connection establishment
 o Hand over a message to transfer during connection establishment

 AVAILABILITY:
 o Listen
 o Specify which chunk types must always be authenticated

 MAINTENANCE:
 o Change timeout for aborting connection (using retransmit limit or
 time value)
 o Suggest timeout to the peer
 o Disable Nagle algorithm
 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 o Specify DSCP field
 o Notification of ICMP error message arrival
 o Change authentication parameters
 o Obtain authentication information
 o Choose a scheduler to operate between streams of an association
 o Configure priority or weight for a scheduler
 o Set Cookie life value
 o Configure size where messages are broken up for partial delivery
 o Disable checksum when sending
 o Disable checksum requirement when receiving
 o Specify checksum coverage used by the sender
 o Specify minimum checksum coverage required by receiver
 o Specify DF field
 o Enable and configure a "Low Extra Delay Background Transfer"

 TERMINATION:
 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 o Abort without delivering remaining data, causing an event
 informing the application on the other side

Gjessing & Welzl Expires September 14, 2017 [Page 23]

Internet-Draft Minimal TAPS Transport Services March 2017

 o Timeout event when data could not be delivered for too long

4.2. DATA Transfer Related Transport Features

4.2.1. Sending Data

 o Reliably transfer data, with congestion control
 o Reliably transfer a message, with congestion control
 o Unreliably transfer a message
 o Configurable Message Reliability
 o Choice between unordered (potentially faster) or ordered delivery
 of messages
 o Request not to bundle messages
 o Specifying a key id to be used to authenticate a message
 o Request not to delay the acknowledgement (SACK) of a message

4.2.2. Receiving Data

 o Receive data (with no message delineation)
 o Information about partial message arrival

4.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to in the "Sending Data" category (Section 3.2.1).

 o Notification of send failures
 o Notification that the stack has no more user data to send
 o Notification to a receiver that a partial message delivery has
 been aborted

5. Step 3: Discussion

 The reduced set in the previous section exhibits a number of
 peculiarities, which we will discuss in the following.

5.1. Sending Messages, Receiving Bytes

 There are several transport features related to sending, but only a
 single transport feature related to receiving: "Receive data (with no
 message delineation)" (and, strangely, "information about partial
 message arrival"). Notably, the transport feature "Receive a
 message" is also the only non-automatable transport feature of UDP(-
 Lite) that had to be removed because no fall-back to TCP is possible.
 It is also represents the only way that UDP(-Lite) applications can
 receive data today.

Gjessing & Welzl Expires September 14, 2017 [Page 24]

Internet-Draft Minimal TAPS Transport Services March 2017

 For the transport to operate on messages, it only needs be informed
 about them as they are handed over by a sending application; on the
 receiver side, receiving a message only differs from receiving a
 bytestream in that the application is told where messages begin and
 end in the former case but not in the latter. The receiving
 application can still operate on these messages as long as it does
 not rely on the transport layer to inform it about message
 boundaries.

 For example, if an application requests to transfer fixed-size
 messages of 100 bytes with partial reliability, this needs the
 receiving application to be prepared to accept data in chunks of 100
 bytes. If, then, some of these 100 byte messages are missing (e.g.,
 if SCTP with Configurable Reliability is used), this is the expected
 application behavior. With TCP, no messages would be missing, but
 this is also correct for the application, and possible retransmission
 delay is acceptable within the best effort service model. Still, the
 receiving application would separate the byte stream into 100-byte
 chunks.

 Note that this usage of messages does not require all messages to be
 equal in size. Many application protocols use some form of Type-
 Length-Value (TLV) encoding, e.g. by defining a header including
 length fields; another alternative is the use of byte stuffing
 methods such as COBS [COBS]. If an application needs message
 numbers, e.g. to restore the correct sequence of messages, these must
 also be encoded by the application itself, as the sequence number
 related transport features of SCTP are no longer provided (in the
 interest of enabling a fall-back to TCP).

 For the implementation of a TAPS system, this has the following
 consequences:
 o Because the receiver-side transport leaves it up to the
 application to delineate messages, messages must always remain
 intact as they are handed over by the transport receiver. Data
 can be handed over at any time as they arrive, but the byte stream
 must never "skip ahead" to the beginning of the next message.
 o With SCTP, a "partial flag" informs a receiving application that a
 message is incomplete. Then, the next receive calls will only
 deliver remaining parts of the same message (i.e., no messages or
 partial messages will arrive on other streams until the message is
 complete) (see Section 8.1.20 in [RFC6458]). This can facilitate
 the implementation of the receiver buffer in the receiving
 application, but then such an application does not support message
 interleaving (which is required by stream schedulers). However,
 receiving a byte stream from multiple SCTP streams requires a per-
 stream receiver buffer anyway, so this potential benefit is lost
 and the "partial flag" (the transport feature "Information about

Gjessing & Welzl Expires September 14, 2017 [Page 25]

Internet-Draft Minimal TAPS Transport Services March 2017

 partial message arrival") becomes unnecessary for a TAPS system.
 With it, the transport features "Configure size where messages are
 broken up for partial delivery" and "Notification to a receiver
 that a partial message delivery has been aborted" become
 unnecessary too.
 o From the above, a TAPS system should always support message
 interleaving because it enables the use of stream schedulers and
 comes at no additional implementation cost on the receiver side.
 Stream schedulers operate on the sender side. Hence, because a
 TAPS sender-side application may talk to an SCTP receiver that
 does not support interleaving, it cannot assume that stream
 schedulers will always work as expected.

5.2. Stream Schedulers Without Streams

 We have already stated that multi-streaming does not require
 application-specific knowledge. Potential benefits or disadvantages
 of, e.g., using two streams over an SCTP association versus using two
 separate SCTP associations or TCP connections are related to
 knowledge about the network and the particular transport protocol in
 use, not the application. However, the transport features "Choose a
 scheduler to operate between streams of an association" and
 "Configure priority or weight for a scheduler" operate on streams.
 Here, streams identify communication channels between which a
 scheduler operates, and they can be assigned a priority. Moreover,
 the transport features in the MAINTENANCE category all operate on
 assocations in case of SCTP, i.e. they apply to all streams in that
 assocation.

 With only these semantics necessary to represent, the interface to a
 TAPS system becomes easier if we rename connections into "TAPS flows"
 (the TAPS equivalent of a connection which may be a transport
 connection or association, but could also become a stream of an
 existing SCTP association, for example) and allow assigning a "Group
 Number" to a TAPS flow. Then, all MAINTENANCE transport features can
 be said to operate on flow groups, not connections, and a scheduler
 also operates on the flows within a group.

 For the implementation of a TAPS system, this has the following
 consequences:
 o Streams may be identified in different ways across different
 protocols. The only multi-streaming protocol considered in this
 document, SCTP, uses a stream id. The transport association below
 still uses a Transport Address (which includes one port number)
 for each communicating endpoint. To implement a TAPS system
 without exposed streams, an application must be given an
 identifier for each TAPS flow (akin to a socket), and depending on
 whether streams are used or not, there will be a 1:1 mapping

Gjessing & Welzl Expires September 14, 2017 [Page 26]

Internet-Draft Minimal TAPS Transport Services March 2017

 between this identifier and local ports or not.
 o In SCTP, a fixed number of streams exists from the beginning of an
 association; streams are not "established", there is no handshake
 or any other form of signaling to create them: they can just be
 used. They are also not "gracefully shut down" -- at best, an
 "SSN Reset Request Parameter" in a "RE-CONFIG" chunk [RFC6525] can
 be used to inform the peer that of a "Stream Reset", as a rough
 equivalent of an "Abort". This has an impact on the semantics
 connection establishment and teardown (see Section 6.1).
 o To support stream schedulers, a receiver-side TAPS system should
 always support message interleaving because it comes at no
 additional implementation cost (because of the receiver-side
 stream reception discussed in Section 5.1). Note, however, that
 Stream schedulers operate on the sender side. Hence, because a
 TAPS sender-side application may talk to a native TCP-based
 receiver-side application, it cannot assume that stream schedulers
 will always work as expected.

5.3. Early Data Transmission

 There are two transport features related to transferring a message
 early: "Hand over a message to transfer (possibly multiple times)
 before connection establishment", which relates to TCP Fast Open
 [RFC7413], and "Hand over a message to transfer during connection
 establishment", which relates to SCTP’s ability to transfer data
 together with the COOKIE-Echo chunk. Also without TCP Fast Open, TCP
 can transfer data during the handshake, together with the SYN packet
 -- however, the receiver of this data may not hand it over to the
 application until the handshake has completed. This functionality is
 commonly available in TCP and supported in several implementations,
 but the TCP specification does not specify how to provide it to
 applications.

 The amount of data that can successfully be transmitted before or
 during the handshake depends on various factors: the transport
 protocol, the use of header options, the choice of IPv4 and IPv6 and
 the Path MTU. A TAPS system should therefore allow a sending
 application to query the maximum amount of data it can possibly
 transmit before or during connection establishment, respectively.

5.4. Sender Running Dry

 The transport feature "Notification that the stack has no more user
 data to send" relates to SCTP’s "SENDER DRY" notification. Such
 notifications can, in principle, be used to avoid having an
 unnecessarily large send buffer, yet ensure that the transport sender
 always has data available when it has an opportunity to transmit it.
 This has been found to be very beneficial for some applications

Gjessing & Welzl Expires September 14, 2017 [Page 27]

Internet-Draft Minimal TAPS Transport Services March 2017

 [WWDC2015]. However, "SENDER DRY" truly means that the buffer has
 emptied -- i.e., when it notifies the sender, it is already too late,
 the transport protocol already missed an opportunity to send data.
 Some modern TCP implementations now include the unspecified
 "TCP_NOTSENT_LOWAT" socket option proposed in [WWDC2015], which
 limits the amount of unsent data that TCP can keep in the socket
 buffer; this allows to specify at which buffer filling level the
 socket becomes writable, rather than waiting for the buffer to run
 empty.

 SCTP has means to configure the sender-side buffer too: the
 automatable Transport Feature "Configure send buffer size" provides
 this functionality, but only for the complete buffer, which includes
 both unsent and unacknowledged data. SCTP does not allow to control
 these two sizes separately. A TAPS system should allow for uniform
 access to "TCP_NOTSENT_LOWAT" as well as the "SENDER DRY"
 notification.

5.5. Capacity Profile

 The transport features:
 o Disable Nagle algorithm
 o Enable and configure a "Low Extra Delay Background Transfer"
 o Specify DSCP field
 all relate to a QoS-like application need such as "low latency" or
 "scavenger". In the interest of flexibility of a TAPS system, they
 could therefore be offered in a uniform, more abstract way, where a
 TAPS system could e.g. decide by itself how to use combinations of
 LEDBAT-like congestion control and certain DSCP values, and an
 application would only specify a general "capacity profile" (a
 description of how it wants to use the available capacity). A need
 for "lowest possible latency at the expense of overhead" could then
 translate into automatically disabling the Nagle algorithm.

 In some cases, the Nagle algorithm is best controlled directly by the
 application because it is not only related to a general profile but
 also to knowledge about the size of future messages. For fine-grain
 control over Nagle-like functionality, the "Request not to bundle
 messages" is available.

5.6. Security

 Both TCP and SCTP offer authentication. SCTP allows to configure
 which of SCTP’s chunk types must always be authenticated -- if this
 is exposed as such, it creates an undesirable dependency on the
 transport protocol. Generally, to an application it is relevant
 whether the transport protocol authenticates its own control data,
 the user data, or both, and a TAPS system should therefore allow to

Gjessing & Welzl Expires September 14, 2017 [Page 28]

Internet-Draft Minimal TAPS Transport Services March 2017

 configure and query these three cases.

 TBD -- more to come in the next version. This relates to the TCP
 Authentication Option in Section 7.1 of [RFC5925], which is not
 currently covered.

 Set Cookie life value -- TBD in the next version: SCTP is client-
 side, TCP is server-side.

5.7. Packet Size

 UDP(-Lite) has a transport feature called "Specify DF field". This
 yields an error message in case of sending a message that exceeds the
 Path MTU, which is necessary for a UDP-based application to be able
 to implement Path MTU Discovery (a function that UDP-based
 applications must do by themselves). This is the only transport
 feature related to packet sizes. UDP applications typically make use
 of IP-layer functionality to obtain the size of the link MTU; it
 would therefore seem that offering such functionality to TAPS
 applications could be useful, albeit in a transport protocol
 independent way.

 This also relates to the fact that the choice of path is automatable:
 if a TAPS system can switch a path at any time, unknown to an
 application, yet the application intends to do Path MTU Discovery,
 this could yield very inefficient behavior. Thus, a TAPS system
 should probably avoid automatically switching paths, and inform the
 application about any unavoidable path changes, when applications
 request to disallow fragmentation with the "Specify DF field"
 feature.

6. Step 4: Construction -- the Minimal Set of Transport Features

 Based on the categorization, reduction and discussion in the previous
 sections, this section presents the minimal set of transport features
 that is offered by end systems supporting TAPS. They are described
 in an abstract fashion, i.e. they can be implemented in various
 different ways. For example, information that is provided to an
 application can either be offered via a primitive that is polled, or
 via an asynchronous notification.

 Future versions of this document will probably describe the transport
 features in this section in greater detail; for now, we only specify
 how they differ from the transport features they are based upon. We
 carry out an additional simplification: CONNECTION.ESTABLISHMENT
 "Specify number of attempts and/or timeout for the first
 establishment message" and CONNECTION.MAINTENANCE "Change timeout for

Gjessing & Welzl Expires September 14, 2017 [Page 29]

Internet-Draft Minimal TAPS Transport Services March 2017

 aborting connection (using retransmit limit or time value)" are
 essentially the same, just applied upon connection establishment or
 during the lifetime of a connection. The same is the case for
 CONNECTION.ESTABLISHMENT "Specify which chunk types must always be
 authenticated" and CONNECTION.MAINTENANCE "Change authentication
 parameters". We therefore state that connections (called TAPS flows)
 must be instantiated before connecting them, and allow configurations
 to be carried out before connecting (in cases where this is not
 allowed by the transport protocol, a TAPS system will have to
 internall delay this configuration until the flow has been
 connected).

6.1. Flow Creation, Connection and Termination

 A TAPS flow must be "created" before it is connected, to allow for
 initial configurations to be carried out. All configuration
 parameters in Section 6.2 and Section 6.3 can be used initially,
 although some of them may only take effect when the flow has been
 connected. Configuring a flow early helps a TAPS system make the
 right decisions. In particular, the "group number" can influence the
 the TAPS system to implement a TAPS flow as a stream of a multi-
 streaming protocol’s existing association or not.

 A created flow can be queried for the maximum amount of data that an
 application can possibly expect to have transmitted before or during
 connection establishment. An application can also give the flow a
 message for transmission before or during connection establishment,
 and specify which case is preferred (before / during). In case of
 transmission before establishment, the receiving application must be
 prepared to potentially receive multiple copies of the message.

 To be compatible with multiple transports, including streams of a
 multi-streaming protocol (used as if they were transports
 themselves), the semantics of opening and closing need to be the most
 restrictive subset of all of them. For example, TCP’s support of
 half-closed connections can be seen as a feature on top of the more
 restrictive "ABORT"; this feature cannot be supported because not all
 protocols used by a TAPS system (including streams of an association)
 support half-closed connections.

 After creation, a flow can be actively connected to the other side
 using "Connect", or passively listen for incoming connection requests
 with "Listen". Note that "Connect" may or may not trigger a
 notification on the listening side. It is possible that the first
 notification on the listening side is the arrival of the first data
 that the active side sends (a receiver-side TAPS system could handle
 this by continuing a blocking "Listen" call, immediately followed by
 issuing "Receive", for example). This also means that the active

Gjessing & Welzl Expires September 14, 2017 [Page 30]

Internet-Draft Minimal TAPS Transport Services March 2017

 opening side is assumed to be the first side sending data.

 A flow can be actively closed, i.e. terminated after reliably
 delivering all remaining data, or aborted, i.e. terminated without
 delivering remaining data. A timeout can be configured to abort a
 flow when data could not be delivered for too long. Because half-
 closed connections are not supported, when a TAPS host receives a
 notification that the peer is closing or aborting the flow, the other
 side may not be able to read outstanding data. This means that
 unacknowledged data residing in the TAPS system’s send buffer may
 have to be dropped from that buffer upon arrival of a notification to
 close or abort the flow from the peer. In case of SCTP streams,
 "Stream Reset" (a "SSN Reset Request Parameter" in a "RE-CONFIG"
 chunk [RFC6525]) can be used to notify a peer of an intention to
 close a flow.

6.2. Flow Group Configuration

 A flow group can be configured with a number of transport features,
 and there are some notifications to applications about a flow group.
 Here we list transport features and notifications that are taken from
 Section 4 unchanged, with the exception that some of them can also be
 applied initially (before a flow is connected).

 Timeout, error notifications:
 o Change timeout for aborting connection (using retransmit limit or
 time value)
 o Suggest timeout to the peer
 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 o Notification of ICMP error message arrival

 Checksums:
 o Disable checksum when sending
 o Disable checksum requirement when receiving
 o Specify checksum coverage used by the sender
 o Specify minimum checksum coverage required by receiver

 Others:
 o Choose a scheduler to operate between flows of a group

 The following transport features are new or changed, based on the
 discussion in Section 5:
 o Capacity profile
 This describes how an application wants to use its available
 capacity. Choices can be "lowest possible latency at the expense
 of overhead", "scavenger", and some more values that help
 determine the DSCP value for a flow (e.g. similar to table 1 in

Gjessing & Welzl Expires September 14, 2017 [Page 31]

Internet-Draft Minimal TAPS Transport Services March 2017

 [I-D.ietf-tsvwg-rtcweb-qos]). (details TBD)

 o Authentication
 TBD in the next version: Different from SCTP’s original transport
 features, this will only allow to configure authenticating the
 whole transport, all control information, or user data (not to
 distinguish between various SCTP chunks, to avoid this protocol
 dependency). It will also have to be made in line with TCP
 Authentication [RFC5925]. For SCTP, this functionality will be
 based on the transport features "Change authentication
 parameters", "Obtain authentication information" and the initially
 available "Specify which chunk types must always be
 authenticated". Note that SCTP also allows per-message
 configuration via "Specifying a key id to be used to authenticate
 a message", which may affect Section 6.4.

 o Set Cookie life value
 TBD in the next version (not yet sure how to handle the client vs.
 server semantics of SCTP and TCP, respectively)

6.3. Flow Configuration

 A flow can be assigned a priority or weight for a scheduler.

6.4. Data Transfer

6.4.1. The Sender

 This section discusses how to send data after flow establishment.
 Section 6.1 discusses the possiblity to hand over a message to send
 before or during establishment.

 For compatibility with TCP receiver semantics, we define an
 "Application-Framed Bytestream". This is a bytestream where the
 sending application optionally informs the transport about frame
 boundaries and required properties per frame (configurable order and
 reliability, or embedding a request not to delay the acknowledgement
 of a frame). Whenever the sending application specifies per-frame
 properties that relax the notion of reliable in-order delivery of
 bytes, it must assume that the receiving application is 1) able to
 determine frame boundaries, provided that frames are always kept
 intact, and 2) able to accept these relaxed per-frame properties.
 Any signaling of such information to the peer is up to an
 application-layer protocol and considered out of scope of this
 document.

 Here we list per-frame properties that a sender can optionally

Gjessing & Welzl Expires September 14, 2017 [Page 32]

Internet-Draft Minimal TAPS Transport Services March 2017

 configure if it hands over a delimited frame for sending with
 congestion control, taken from Section 4:
 o Configurable Message Reliability
 o Choice between unordered (potentially faster) or ordered delivery
 of messages
 o Request not to bundle messages
 o Request not to delay the acknowledgement (SACK) of a message

 Additionally, an application can hand over delimited frames for
 unreliable transmission without congestion control (note that such
 applications should perform congestion control in accordance with
 [RFC2914]). Then, none of the per-frame properties listed above have
 any effect, but it is possible to use the transport feature "Specify
 DF field" to allow/disallow fragmentation.

 AUTHOR’S NOTE: do folks agree with this design? It ties
 fragmentation to UDP only, because we called SCTP’s "Configure
 message fragmentation" transport feature "automatable". It is indeed
 questionable whether applications need control over fragmentation
 when they work with SCTP -- doing so creates a complication for app
 writers that may not be necessary, especially when messages can be
 interleaved.

 Following Section 5.7, there are two new transport features and a
 notification:
 o Query maximum unfragmented frame size
 This is optional for a TAPS system to offer, and if it is offered,
 it informs the sender about the maximum expected size of a data
 frame that it can send without fragmentation. This can aid
 applications implementing Path MTU Discovery.

 o Query maximum transport frame size
 Irrespective of fragmentation, there is a size limit for the
 messages that can be handed over to SCTP or UDP(-Lite); because a
 TAPS system is independent of the transport, it must allow a TAPS
 application to query this value -- the maximum size of a frame in
 an Application-Framed-Bytestream.

 o Notify the application of a path change
 If an application has disallowed fragmentation via the "Specify DF
 field" transport feature, this notification may optionally tell it
 that a path has changed (with a means to identify the path, so
 that the application can e.g. tell two flipping paths apart from
 completely diverse path changes). This informs the application
 that it may have to repeat Path MTU Discovery, and it can have
 relevance for application-level congestion control. For MPTCP and
 SCTP, a TAPS system can implement this functionality using the
 "Obtain status (query or notification)" transport feature.

Gjessing & Welzl Expires September 14, 2017 [Page 33]

Internet-Draft Minimal TAPS Transport Services March 2017

 There are two more sender-side notifications. These are unreliable,
 i.e. a TAPS system cannot be assumed to implement them, but they may
 occur:
 o Notification of send failures
 A TAPS system may inform a sender application of a failure to send
 a specific frame. This was taken over unchanged from Section 4.

 o Notification of draining below a low water mark
 A TAPS system can notify a sender application when the TAPS
 system’s filling level of the buffer of unsent data is below a
 configurable threshold in bytes. Even for TAPS systems that do
 implement this notification, supporting thresholds other than 0 is
 optional.

 "Notification of draining below a low water mark" is a generic
 notification that tries to enable uniform access to
 "TCP_NOTSENT_LOWAT" as well as the "SENDER DRY" notification (as
 discussed in Section 5.4 -- SCTP’s "SENDER DRY" is a special case
 where the threshold is 0). Note that this threshold and its
 notification should operate across the buffers of the whole TAPS
 system, i.e. also any potential buffers that the TAPS system itself
 may use on top of the transport’s send buffer.

6.4.2. The Receiver

 A receiving application obtains an Application-Framed Bytestream.
 Similar to TCP’s receiver semantics, it is just stream of bytes. If
 frame boundaries were specified by the sender, a TAPS system will
 still not inform the receiving application about them, but frames
 themselves will always stay intact (partial frames are not supported
 - see Section 5.1). Different from TCP’s semantics, there is no
 guarantee that all bytes in the bytestream are received, and that all
 of them are in the same sequence in which they were handed over by
 the sender. If an application is aware of frame delimiters in the
 bytestream, and if the sender-side application has informed the TAPS
 system about these boundaries and about potentially relaxed
 requirements regarding the sequence of frames or per-frame
 reliability, frames within the receiver-side bytestream may be out-
 of-order or missing.

7. Conclusion

 By decoupling applications from transport protocols, a TAPS system
 provides a different abstraction level than the Berkeley sockets
 interface. As with high- vs. low-level programming languages, a
 higher abstraction level allows more freedom for automation below the
 interface, yet it takes some control away from the application

Gjessing & Welzl Expires September 14, 2017 [Page 34]

Internet-Draft Minimal TAPS Transport Services March 2017

 programmer. This is the design trade-off that a TAPS system
 developer is facing, and this document provides guidance on the
 design of this abstraction level. Some transport features are
 currently rarely offered by APIs, yet they must be offered or they
 can never be used ("functional" transport features). Other transport
 features are offered by the APIs of the protocols covered here, but
 not exposing them in a TAPS API would allow for more freedom to
 automate protocol usage in a TAPS system.

 The minimal set presented in this document is an effort to find a
 middle ground that can be recommended for TAPS systems to implement,
 on the basis of the transport features discussed in [TAPS2]. This
 middle ground eliminates a large number of transport features on the
 basis that they do not require application-specific knowledge, but
 rather rely on knowledge about the network or the Operating System.
 This leaves us with an unanswered question about how exactly a TAPS
 system should automate using all these transport features.

 The answers are different for every case. In some cases, it may be
 best to not entirely automate the decision making, but leave it up to
 a system-wide policy. For example, when multiple paths are
 available, a system policy could guide the decision on whether to
 connect via a WiFi or a cellular interface. Such high-level guidance
 could also be provided by application developers, e.g. via a
 primitive that lets applications specify such preferences. As long
 as this kind of information from applications is treated as advisory,
 it will not lead to a permanent protocol binding and does therefore
 not limit the flexibility of a TAPS system. Decisions to add such
 primitives are therefore left open to TAPS system designers.

8. Acknowledgements

 The authors would like to thank the participants of the TAPS Working
 Group and the NEAT research project for valuable input to this
 document. We especially thank Michael Tuexen for help with TAPS flow
 connection establishment/teardown and Gorry Fairhurst for his
 suggestions regarding fragmentation and packet sizes. This work has
 received funding from the European Union’s Horizon 2020 research and
 innovation programme under grant agreement No. 644334 (NEAT). The
 views expressed are solely those of the author(s).

9. IANA Considerations

 XX RFC ED - PLEASE REMOVE THIS SECTION XXX

 This memo includes no request to IANA.

Gjessing & Welzl Expires September 14, 2017 [Page 35]

Internet-Draft Minimal TAPS Transport Services March 2017

10. Security Considerations

 Authentication, confidentiality protection, and integrity protection
 are identified as transport features by [RFC8095]. As currently
 deployed in the Internet, these features are generally provided by a
 protocol or layer on top of the transport protocol; no current full-
 featured standards-track transport protocol provides all of these
 transport features on its own. Therefore, these transport features
 are not considered in this document, with the exception of native
 authentication capabilities of TCP and SCTP for which the security
 considerations in [RFC5925] and [RFC4895] apply.

11. References

11.1. Normative References

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095, DOI 10.17487/
 RFC8095, March 2017,
 <http://www.rfc-editor.org/info/rfc8095>.

 [TAPS2] Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of
 Transport Features Provided by IETF Transport Protocols",
 draft-ietf-taps-transports-usage-03 (work in progress),
 March 2017.

11.2. Informative References

 [COBS] Cheshire, S. and M. Baker, "Consistent Overhead Byte
 Stuffing", September 1997,
 <http://stuartcheshire.org/papers/COBSforToN.pdf>.

 [I-D.ietf-tsvwg-rtcweb-qos]
 Jones, P., Dhesikan, S., Jennings, C., and D. Druta, "DSCP
 Packet Markings for WebRTC QoS",
 draft-ietf-tsvwg-rtcweb-qos-18 (work in progress),
 August 2016.

 [LBE-draft]
 Bless, R., "A Lower Effort Per-Hop Behavior (LE PHB)",
 draft-tsvwg-le-phb-00 (work in progress), October 2016.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
 RFC 2914, DOI 10.17487/RFC2914, September 2000,
 <http://www.rfc-editor.org/info/rfc2914>.

Gjessing & Welzl Expires September 14, 2017 [Page 36]

Internet-Draft Minimal TAPS Transport Services March 2017

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895,
 August 2007, <http://www.rfc-editor.org/info/rfc4895>.

 [RFC5290] Floyd, S. and M. Allman, "Comments on the Usefulness of
 Simple Best-Effort Traffic", RFC 5290, DOI 10.17487/
 RFC5290, July 2008,
 <http://www.rfc-editor.org/info/rfc5290>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/
 RFC6458, December 2011,
 <http://www.rfc-editor.org/info/rfc6458>.

 [RFC6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
 Transmission Protocol (SCTP) Stream Reconfiguration",
 RFC 6525, DOI 10.17487/RFC6525, February 2012,
 <http://www.rfc-editor.org/info/rfc6525>.

 [RFC7305] Lear, E., Ed., "Report from the IAB Workshop on Internet
 Technology Adoption and Transition (ITAT)", RFC 7305,
 DOI 10.17487/RFC7305, July 2014,
 <http://www.rfc-editor.org/info/rfc7305>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

 [WWDC2015]
 Lakhera, P. and S. Cheshire, "Your App and Next Generation
 Networks", Apple Worldwide Developers Conference 2015, San
 Francisco, USA, June 2015,
 <https://developer.apple.com/videos/wwdc/2015/?id=719>.

Appendix A. Revision information

 XXX RFC-Ed please remove this section prior to publication.

 -02: implementation suggestions added, discussion section added,
 terminology extended, DELETED category removed, various other fixes;
 list of Transport Features adjusted to -01 version of [TAPS2] except

Gjessing & Welzl Expires September 14, 2017 [Page 37]

Internet-Draft Minimal TAPS Transport Services March 2017

 that MPTCP is not included.

 -03: updated to be consistent with -02 version of [TAPS2].

 -04: updated to be consistent with -03 version of [TAPS2].
 Reorganized document, rewrote intro and conclusion, and made a first
 stab at creating a real "minimal set".

Authors’ Addresses

 Stein Gjessing
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Phone: +47 22 85 24 44
 Email: steing@ifi.uio.no

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

Gjessing & Welzl Expires September 14, 2017 [Page 38]

