TAPS Wor ki ng G oup B. Trammel |

I nternet-Draft ETH Zuri ch
I ntended status: |nformational C. Perkins
Expi res: Septenber 9, 2017 Uni versity of d asgow
T. Pauly

Appl e Inc.

M Kuehl ewi nd

ETH Zuri ch

March 08, 2017

Post Sockets, An Abstract Progranming Interface for the Transport Layer
draft-tranmel | -taps- post-socket s-00

Abstract

Thi s docunent describes Post Sockets, an asynchronous abstract
programm ng interface for the atonic transm ssion of nmessages in an
i nherently nultipath environment. Post replaces connections with

I ong-lived associ ati ons between endpoints, with the possibility to
cache cryptographic state in order to reduce anortized connection

| atency. We present this abstract interface as an illustration of
what is possible with present devel opnents in transport protocols
when freed fromthe strictures of the current sockets AP

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on Septenber 9, 2017

Copyright Notice

Copyright (c) 2017 |IETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 1]

Internet-Draft Post Sockets

Thi s docunent
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info)
publication of this docunent. Please r

March 2017

is subject to BCP 78 and the | ETF Trust’s Lega

in effect on the date of
evi ew t hese docunents

careful ly,

to this docunent.

as they describe your rights and restrictions with respect

Code Conponents extracted fromthis docunent nust

include Sinplified BSD Li cense text as described in Section 4.e of

the Trust Legal

Provi sions and are provided wi thout warranty as

described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 3
2. Abstractions and Ternlnology 5
2.1. Message Carrier . 6
2.1.1. Listener 7
2.1.2. Source 8
2.1.3. Sink 8
2.1.4. Responder 8
2.1.5. Stream 8
2.2. Message . e e 8
2.2. 1. L|fet|ne and PartlaI ReIiabiIity 9
2.2.2. Priority e 10
2.2.3. Dependence 10
2.2.4. ldenpotence . 10
2.2.5. I mediacy . . 10
2.2.6. Additional Events . 10
2.3. Association . 11
2.4. Renote 11
2.5. Local 12
2.6. Transient 12
2.7. Path 12
2.8. Policy Cbntext 13
3. Abstract Progranmn ng Interface 14
3.1. Exanple Connection Patterns . 15
3.1.1. dient-Server . . 15
3.1.2. dient-Server mnth Fbppy Eyeballs and 0 RTT
est abl i shnment . . 16
3.1.3 Peer to Peer with hbtmork Address Translatlon . 17
3.1.4. Milticast Receiver . 17
3.2. Inplenentation Considerations . 17
3.2.1 Message Framing and Defram ng . 18
3.2.2. Message Size Linmtations 18
3.2.3. Backpressure 18
4. Acknow edgnents . 19
5. References 19
5.1. Nornmtive References 19
5.2. Informative References 19
Tramel |, et al. Expi res Septenber 9, 2017 [Page 2]

Internet-Draft Post Sockets March 2017

Appendi x A APl sketch in Glang 21
Aut hors’ Addresses 25

1. Introduction

The BSD Uni x Sockets API’s SOCK _STREAM abstraction, by bringing
network sockets into the UN X programmi ng nodel, allow ng anyone who
knew how to wite prograns that dealt with sequential -access files to
also wite network applications, was a revolution in sinplicity. It
woul d not be an overstatenent to say that this sinple APl is the
reason the Internet won the protocol wars of the 1980s. SOCK STREAM
is tied to the Transnission Control Protocol (TCP), specified in 1981
[RFC0793]. TCP has scaled remarkably well over the past three and a
hal f decades, but its total ubiquity has hidden an unconfortabl e
fact: the network is not really a file, and stream abstractions are
too sinplistic for many nodern application programing nodels.

In the nmeantine, the nature of Internet access, and the variety of
Internet transport protocols, is evolving. The challenges that new
protocol s and access paradi gns present to the sockets APl and to
progranmm ng nodel s based on theminspire the design elenments of a new
approach

Many end-user devices are connected to the Internet via nultiple
interfaces, which suggests it is time to pronote the paths by which
two endpoints are connected to each other to a first-order object.
VWhile inplicit multipath conmunication is avail able for these

mul ti honed nodes in the present Internet architecture with the

Mul tipath TCP extension (MPTCP) [RRFC6824], MPTCP was specifically
designed to hide multipath comunication fromthe application for

pur poses of conpatibility. Since many nul ti honed nodes are connected
to the Internet through access paths with widely different properties
with respect to bandw dth, | atency and cost, adding explicit path
control to MPTCP's APl would be useful in nmany situations
Applications also need control over cooperation with path el enents
via mechani snms such as that proposed by the Path Layer UDP Substrate
(PLUS) effort (see [I-D.tranmell-plus-stateful ness] and
[1-D.tramrel | - pl us-abstract-nech]).

Another trend straining the traditional layering of the transport
stack associated with the SOCK STREAM interface is the w despread
interest in ubiquitous deploynment of encryption to guarantee
confidentiality, authenticity, and integrity, in the face of
pervasi ve surveillance [RFC7258]. Layering the nost w dely depl oyed
encryption technol ogy, Transport Layer Security (TLS), strictly atop
TCP (i.e., via a TLS library such as OpenSSL that uses the sockets
APl) requires the encryption-|layer handshake to happen after the
transport-Ilayer handshake, which increases connection setup |atency

Tramel |, et al. Expi res Septenber 9, 2017 [Page 3]

Internet-Draft Post Sockets March 2017

on the order of one or two round-trip tines, an unacceptabl e del ay
for many applications. |Integrating cryptographic state setup and
mai nt enance into the path abstraction naturally conplenents efforts
in new protocols (e.g. QUCI[I-D.ietf-quic-transport]) to nitigate
this strict |ayering.

To neet these chall enges, we present the Post-Socket Application
Programm ng Interface (APlI), described in detail in this work. Post
is designed to be | anguage, transport protocol, and architecture

i ndependent, allowi ng applications to be witten to a comobn abstract
interface, easily ported anong different platforms, and used even in
envi ronnments where transport protocol selection nmay be done
dynanically, as proposed in the |ETF s Transport Services worKking

gr oup.

Post replaces the traditional SOCK STREAM abstraction with an Message
abstraction, which can be seen as a generalization of the Stream
Control Transm ssion Protocol’s [RFC4960] SOCK SEQPACKET servi ce.
Messages are sent and received on Carriers, which logically group
Messages for transm ssion and reception. For backward conpatibility,
these Carriers can also be opened as Streans, presenting a file-Ilike
interface to the network as with SOCK STREAM

Post replaces the notions of a socket address and connected socket
with an Association with a renote endpoint via set of Paths.

I mpl enentation and wire format for transport protocol (s) inplenmenting
the Post APl are explicitly out of scope for this work; these
abstractions need not nap directly to inplenentation-|evel concepts,
and i ndeed with various anounts of shinming and gl ue could be

i mpl emented with varying success atop any sufficiently flexible
transport protocol

The key features of Post as conmpared with the existing sockets AP
are:

0 Explicit Message orientation, with franm ng and atomicity
guarantees for Message transm ssion

0 Asynchronous reception, allowing all receiver-side interactions to
be event-driven

o Explicit support for nmultistreanmng and nultipath transport
protocol s and network architectures.

0 Long-lived Associations, whose lifetines may not be bound to
underlying transport connections. This allows associations to
cache state and cryptographic key nmaterial to enable fast
resunption of communi cation, and for the inplenentation of the AP

Tramel |, et al. Expi res Septenber 9, 2017 [Page 4]

Internet-Draft Post Sockets March 2017

to explicitly take care of connection establishnment mechanics such
as connection racing [RFC6555] and peer-to-peer rendezvous
[RFC5245] .

o Transport protocol stack independence, allow ng applications to be
witten in terns of the semantics best for the application’ s own
design, separate fromthe protocol (s) used on the wire to achieve
them This enables applications witten to a single APl to nake
use of transport protocols in terns of the features they provide,
as in [I-Dietf-taps-transports].

This work is the synthesis of many years of Internet transport
protocol research and developnent. It is inspired by concepts from
the Stream Control Transmi ssion Protocol (SCTP) [RFC4960], TCP M nion
[1-D.iyengar-mnion-protocol], and M ni maLT[M ni maLT], anong ot her
transport protocol nodernization efforts. W present Post Sockets as
an illustration of what is possible with present devel opnents in
transport protocols when freed fromthe strictures of the current
sockets API. VWhile nuch of the work for building parts of the
protocol s needed to inplenent Post are already ongoing in other |ETF
wor ki ng groups (e.g. MPTCP, QU C, TLS), we argue that an abstract
programm ng interface unifying access all these efforts is necessary
to fully exploit their potential

2. Abstractions and Ter mi nol ogy

Tramel |, et al. Expi res Septenber 9, 2017 [Page 5]

Internet-Draft Post Sockets March 2017

+ +
| Message |
+ +
n initiate() listen()
send() ready() |
\/ | \/ \/
+ + accept() t====—==—====—=—4
| | < bemm e | | |
| Carrier | | | Listener |
| |- | |
+ + ‘=== =4
I I I
I I I
| + +
| | | durable end-to-end
| | Associ ati on | state via nany paths/
| | policies and prefs
| + +
I I I
I I I
| + + + +
[| Local | | Renpte |
| + + o+ +
I I I
=== === ====4
epheneral | | | |
transport & | Transient |[------- >| Pat h | properties of
crypto state | [[| address pair
‘=== ‘=== ====4

Figure 1: Abstractions and rel ationships in Post Sockets

Post is based on a snall set of abstractions, centered around a
Message Carrier as the entry point for an application to the
networking APlI. The rel ationshi ps anong them are shown in
Figure Figure 1 and detailed in this section.

.1. Message Carrier

A Message Carrier (or sinply Carrier) is a transport protocol stack-
i ndependent interface for sending and receiving nmessages between an
application and a renote endpoint; it is roughly anal ogous to a
socket in the present sockets API.

Sendi ng a Message over a Carrier is driven by the application, while
receipt is driven by the arrival of the |last packet that allows the
Message to be assenbl ed, decrypted, and passed to the application.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 6]

Internet-Draft Post Sockets March 2017

Recei pt is therefore asynchronous; given the different nodels for
asynchronous |/ 0O and concurrency supported by different platforms, it
may be inplenented in any nunber of ways. The abstract APl provides
only for a way for the application to register howit wants to handl e
i ncom ng nmessages.

Al'l the Messages sent to a Message Carrier will be received on the
correspondi ng Message Carrier at the renote endpoint, though not
necessarily reliably or in order, depending on Message properties and
the underlying transport protocol stack

A Message Carrier that is backed by current transport protocol stack
state (such as a TCP connection; see Section 2.6) is said to be
"active": messages can be sent and received over it. A Message
Carrier can also be "dormant": there is long-termstate associ ated
with it (via the underlying Association; see Section 2.3), and it may
be able to reactivated, but nessages cannot be sent and received

i mredi atel y.

If supported by the underlying transport protocol stack, a Message
Carrier may be forked: creating a new Message Carrier associated with
a new Message Carrier at the sane renpote endpoint. The semantics of
the usage of nultiple Message Carriers based on the sanme Association
are application-specific. Wen a Message Carrier is forked, its
correspondi ng Message Carrier at the renote endpoint receives a fork
request, which it nust accept in order to fully establish the new
carrier. Miltiple nessage carriers between endpoints are inpl enented
differently by different transport protocol stacks, either using

mul tiple separate transport-|ayer connections, or using multiple
streams of nultistream ng transport protocols.

To exchange nmessages with a given renote endpoint, an application my
initiate a Message Carrier given its renote (see Section 2.4 and

| ocal (see Section 2.5) identities; this is an equivalent to an
active open. There are five special cases of Message Carriers, as
wel |, supporting different initiation and interaction patterns,
defined in the subsections bel ow

2.1.1. Li st ener

A Listener is a special case of Message Carrier which only responds
to requests to create a new Carrier froma renote endpoint, anal ogous
to a server or listening socket in the present sockets API. Instead
of being bound to a specific renote endpoint, it is bound only to a

| ocal identity; however, its interface for accepting fork requests is
identical to that for fully fledged Message Carriers.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 7]

Internet-Draft Post Sockets March 2017

2.1.2. Source

A Source is a special case of Message Carrier over which nessages can
only be sent, intended for unidirectional applications such as

mul ticast transmitters. Sources cannot be forked, and need not
accept forks.

2.1.3. Sink

A Sink is a special case of Message Carrier over which nessages can
only be received, intended for unidirectional applications such as
mul ticast receivers. Sinks cannot be forked, and need not accept
forks.

2.1.4. Responder

A Responder is a special case of Message Carrier which may receive
nmessages from many renote sources, for cases in which an application
will only ever send Messages in reply back to the source fromwhich a
Message was received. This is a comon inplenentation pattern for
servers in client-server applications. A Responder’s receiver gets a
Message, as well as a Source to send replies to. Responders cannot
be forked, and need not accept forks.

2.1.5. Stream

A Message Carrier may be irreversibly nmorphed into a Stream in order
to provide a strictly ordered, reliable service as with SOCK STREAM
Mor phing a Message Carrier into a Streamshould return a "file-Ilike
object" as appropriate for the platforminplenenting the API.
Typically, both ends of a comunication using a streamservice w |l
mor ph their respective Message Carriers independently before sending
any Messages.

Witing a byte to a Streamwi ||l cause it to be received by the
remote, in order, or will cause an error condition and termnation of
the streamif the byte cannot be delivered. Due to the strong
sequenti al dependence on a stream streans nust always be reliable
and ordered. A Message Carrier may only be norphed to a Streamif it
uses transport protocol stack that provides reliable, ordered
service, and only before it is used to send a Message.

2.2. Message

A Message is an atomic unit of comunication between applications. A
Message that cannot be delivered inits entirety within the
constraints of the network connectivity and the requirenents of the
application is not delivered at all.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 8]

Internet-Draft Post Sockets March 2017

Messages can represent both relatively small structures, such as
requests in a request/response protocol such as HITP;, as well as
relatively large structures, such as files of arbitrary size in a
filesystem

In the general case, there is no mappi ng between a Message and
packets sent by the underlying protocol stack on the wire: the
transport protocol may freely segment messages and/or conbine
messages i nto packets. However, a nessage may be marked as

i mediate, which will cause it to be sent in a single packet, if it
will fit.

This inplies that both the sending and receiving endpoint, whether in
the application |ayer or the transport |ayer, must guarantee storage
for the full size of an Message

Messages are sent over and received from Message Carriers (see
Section 2.1).

On sendi ng, Messages have properties that allow the application to
specify its requirenents with respect to reliability, ordering,
priority, idenpotence, and inmedi acy; these are described in detai

bel ow. Messages may al so have arbitrary properties which provide
additional information to the underlying transport protocol stack on
how t hey shoul d be handled, in a protocol-specific way. These stacks
may al so deliver or set properties on received nmessages, but in the
general case a received nessages contains only a sequence of ordered
byt es.

2.2.1. Lifetime and Partial Reliability

A Message may have a "lifetime" - a wallclock duration before which
the Message nmust be available to the application |layer at the renote
end. If alifetine cannot be net, the Message is discarded as soon

as possible. Mssages without lifetines are sent reliably if
supported by the transport protocol stack. Lifetines are also used
to prioritize Message delivery.

There is no guarantee that a Message will not be delivered after the
end of its lifetine; for exanple, a Message delivered over a strictly
reliable transport will be delivered regardless of its lifetine.
Dependi ng on the transport protocol stack used to transnit the
message, these lifetinmes may al so be signaled to path el enents by the
underlying transport, so that path elenents that realize a lifetime
cannot be met can discard frames containing the Messages instead of
forwardi ng them

Tramel |, et al. Expi res Septenber 9, 2017 [Page 9]

Internet-Draft Post Sockets March 2017

2.2.2. Priority

Messages have a "niceness" - a priority anong ot her nessages sent
over the sane Message Carrier in an unbounded hierarchy nost
naturally represented as a non-negative integer. By default,
Messages are in niceness class 0, or highest priority. N ceness
class 1 Messages will yield to niceness class 0 Messages sent over
the sane Carrier, class 2 to class 1, and so on. Niceness may be
translated to a priority signal for exposure to path elenents (e.g.
DSCP codepoint) to allow prioritization along the path as well as at
the sender and receiver. This inversion of normal schenes for
expressing priority has a convenient property: priority increases as
both niceness and lifetime decrease. A Message may have both a

ni ceness and a lifetime - Messages with higher niceness classes will
yield to I ower classes if resource constraints nean only one can neet
the lifetine.

2.2.3. Dependence

A Message may have "antecedents" - other Messages on which it

depends, which nmust be delivered before it (the "successor") is
delivered. The sending transport uses deadlines, niceness, and

ant ecedents, along with informati on about the properties of the Paths
avai l abl e, to deternine when to send whi ch Message down whi ch Pat h.

2.2.4. ldenpotence

A sending application may mark a Message as "idenpotent” to signal to
the underlying transport protocol stack that its application
semantics nmake it safe to send in situations that nmay cause it to be
received nore than once (i.e., for O-RTT session resunption as in TCP
Fast Open, TLS 1.3, and QU Q).

2.2.5. | mediacy

A sending application may mark a Message as "inmmediate" to signal to
the underlying transport protocol stack that its application
semantics require it to be placed in a single packet, on its own,
instead of waiting to be conbined with other nmessages or parts
thereof (i.e., for nedia transports and interactive sessions wth
smal | nessages).

2.2.6. Additional Events
Senders may al so be asynchronously notified of three events on

Messages they have sent: that the Message has been transnmitted, that
the Message has been acknow edged by the receiver, or that the

Tramel |, et al. Expi res Septenber 9, 2017 [Page 10]

Internet-Draft Post Sockets March 2017

Message has expired before transm ssion/acknow edgnent. Not al
transport protocol stacks will support all of these events.

2.3. Association

An Association contains the long-termstate necessary to support
communi cati ons between a Local (see Section 2.5) and a Renpte (see
Section 2.4) endpoint, such as cryptographic session resunption
paraneters or rendezvous information; information about the policies
constraining the selection of transport protocols and | oca
interfaces to create Transients (see Section 2.6) to carry Messages;
and i nformation about the paths through the network avail abl e
avai | abl e between them (see Section 2.7).

Al'l Message Carriers are bound to an Associ ation. New Message
Carriers will reuse an Association if they can be carried fromthe
sane Local to the sanme Renpte over the sane Paths; this re-use of an
Association may inplies the creation of a new Transient.

2. 4. Renot e

A Renpte represents information required to establish and naintain a
connection with the far end of an Association: nane(s), address(es),
and transport protocol parameters that can be used to establish a
Transient; transport protocols to use; information about public keys
or certificate authorities used to identify the renote on connection
establishnent; and so on. Each Association is associated with a
single Renote, either explicitly by the application (when created by
the initiation of a Message Carrier) or a Listener (when created by
forking a Message Carrier on passive open).

A Remote may be resolved, which results in zero or nore Renotes with
more specific information. For exanple, an application my want to
establish a connection to a website identified by a URL
https://ww. exanpl e.com This URL would be wrapped in a Renpte and
passed to a call to initiate a Message Carrier. The first pass
resol ution m ght parse the URL, deconmposing it into a name, a
transport port, and a transport protocol to try connecting with. A
second pass resolution would then | ook up network-1layer addresses
associated with that name through DNS, and store any certificates
avail able from DANE. Once a Renote has been resolved to the point
that a transport protocol stack can use it to create a Transient, it
is considered fully resol ved

Tramel |, et al. Expi res Septenber 9, 2017 [Page 11]

Internet-Draft Post Sockets March 2017

2.5. Loca

A Local represents all the information about the |ocal endpoint
necessary to establish an Association or a Listener: interface, port,
and transport protocol stack information, as well as certificates and
associ ated private keys to use to identify this endpoint.

2.6. Transient

A Transient represents a binding between a Message Carrier and the
i nstance of the transport protocol stack that inplenents it. As an
Associ ation contains long-termstate for communi cati ons between two
endpoi nts, a Transient contains epheneral state for a single
transport protocol over a single Path at a given point in tine.

A Message Carrier may be served by nultiple Transients at once, e.g.
when i npl enmenting nmultipath conmunication such that the separate
pat hs are exposed to the APl by the underlying transport protoco
stack. Each Transient serves only one Message Carrier, although
multiple Transients may share the sane underlying protocol stack
e.g. when multiplexing Carriers over streans in a multistream ng

pr ot ocol

Transients are generally not exposed by the APl to the application
t hough they may be accessible for debuggi ng and | oggi ng purposes.

2.7. Path

A Path represents information about a single path through the network
used by an Association, in terns of source and destinati on network
and transport |ayer addresses within an addressing context, and the
provi sioni ng domai n [RFC7556] of the local interface. This

i nformati on may be | earned through a resolution, discovery, or
rendezvous process (e.g. DNS, ICE), by neasurenents taken by the
transport protocol stack, or by sone other path information discovery
mechanism It is used by the transport protocol stack to maintain
and/or (re-)establish comunications for the Association.

The set of available properties is a function of the transport
protocol stacks in use by an association. However, the follow ng
core properties are generally useful for applications and transport
| ayer protocols to choose anong paths for specific Messages:

0 Maxi mum Transmi ssion Unit (MIU): the maxi mum size of an Message’s
payl oad (subtracting transport, network, and link |ayer overhead)
which will likely fit into a single franme. Derived fromsignals
sent by path el enents, where available, and/or path MIU di scovery
processes run by the transport |ayer

Tramel |, et al. Expi res Septenber 9, 2017 [Page 12]

Internet-Draft Post Sockets March 2017

0 Latency Expectation: expected one-way del ay al ong the Path.
General ly provided by inline measurenents performed by the
transport |ayer, as opposed to signaled by path el ements.

0 Loss Probability Expectation: expected probability of a | oss of
any given single frame along the Path. Generally provided by
i nline neasurenments perfornmed by the transport |ayer, as opposed
to signal ed by path el ements.

0 Available Data Rate Expectation: expected maxi num data rate al ong
the Path. May be derived from passive neasurenents by the
transport layer, or fromsignals frompath el ements.

0 Reserved Data Rate: Conmitted, reserved data rate for the given
Associ ation along the Path. Requires a bandw dth reservation
service in the underlying transport protocol stack

o Path El ement Menbership: ldentifiers for sone or all nodes al ong
the path, depending on the capabilities of the underlying network
| ayer protocol to provide this.

Path properties are generally read-only. MU is a property of the
underlying link-1ayer technology on each link in the path; |atency,

| oss, and rate expectations are dynam c properties of the network
configuration and network traffic conditions; path el enent nmenbership
is a function of network topology. In an explicitly multipath
architecture, application and transport |ayer requirenents can be net
by having nultiple paths with different properties to select from
Transport protocol stacks can al so provide signaling to devices al ong
the path, but this signaling is derived frominformation provided to
the Message abstraction

2.8. Policy Context

A Local and a Renote is not necessarily enough to establish a Message
Carrier between two endpoints. For instance, an application may
require or prefer certain transport features (see
[I-D.ietf-taps-transports]) in the transport protocol stacks used by
the Transients underlying the Carrier; it may al so prefer Paths over
one interface to those over another (e.g. WFi access over LTE when
roaming on a foreign LTE network, due to cost). These policies are
expressed in a Policy Context bound to an Association. Miltiple
policy contexts may be active at once; e.g. a system Policy Context
expressing admini strative preferences about interface and protoco

sel ection, an application Policy Context expressing transport feature
informati on. The expression of policy contexts and the resol ution of
conflicts anong Policy Contexts is currently inplenentation-specific;

Tramel |, et al. Expi res Septenber 9, 2017 [Page 13]

Internet-Draft Post Sockets March 2017

note that these are equivalent to the Policy APl in the NEAT
architeture [NEAT].

3. Abstract Programming Interface

We now turn to the design of an abstract programrng interface to
provide a sinple interface to Post’s abstractions, constrained by the
foll owi ng design principles:

0 Flexibility is paranpbunt. So is sinplicity. Applications nust be
given as nmany controls and as nuch information as they nmay need,
but they nmust be able to ignore controls and information
irrelevant to their operation. This inplies that the "default”
interface nust be no nore conplicated than BSD sockets, and nust
do sonet hi ng reasonabl e.

0 Reception is an inherently asynchronous activity. Wile the API
is designed to be as platformindependent as possible, one key
insight it is based on is that an Message receiver’s behavior in a
packet -swi tched network is inherently asynchronous, driven by the
recei pt of packets, and that this asynchronicity nust be reflected
in the API. The actual inplenentation of receive and event
handling will need to be aligned to the nethod a given platform
provi des for asynchronous |/0O

0 A new APl cannot be bound to a single transport protocol and
expect wi de deployment. As the APl is transport-independent and
may support runtine transport selection, it nust inpose the
m ni mum possi bl e set of constraints on its underlying transports,
t hough sonme APl features may require underlying transport features
to work optimally. It nust be possible to inplenent Post over
vanilla TCP in the present Internet architecture.

The APl we design fromthese principles is centered around a Carrier
whi ch can be created actively via initiate() or passively via a
listen(); the latter creates a Listener from which new Carriers can
be accept()ed. Messages may be created explicitly and passed to this
Carrier, or implicitly through a sinplified interface which uses
default nmessage properties (reliable transport w thout priority or
deadl i ne, which guarantees ordered delivery over a single Carrier
when the underlying transport protocol stack supports it).

The current state of APl developnent is illustrated as a set of
interfaces and function prototypes in the Go progranm ng | anguage in
Appendi x A; future revisions of this docunment will give nore a nore
abstract specification of the APl as devel opment conpl et es.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 14]

Internet-Draft Post Sockets March 2017

3.1. Exanple Connection Patterns

Here, we illustrate the usage of the APl outlined in Appendix A for
common connection patterns. Note that error handling is ignored in
these illustrations for ease of reading.

3.1.1. dient-Server

Here’s an exanple client-server application. The server echoes
messages. The client sends a nessage and prints what it receives.

The client in Figure 2 connects, sends a nessage, and sets up a
receiver to print nmessages received in response. The carrier is
inactive after the Initiate() call; the Send() call blocks until the
carrier can be activat ed.

/1 connect to a server given a renote
func sayHello() {

carrier :=1Initiate(local, renote)

carrier.Send([]byte("Hello!"))

carrier.Ready(func (nmsg | nMessage) {
frmt.Println(string([]byte(nsg))
return fal se

1)

carrier.d ose()

Fi gure 2: Exanple client
The server in Figure 3 creates a Listener, which accepts Carriers and

passes themto a server. The server echos the content of each
message it receives.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 15]

Internet-Draft Post Sockets March 2017

/1 run a server for a specific carrier, echo all its nessages
func runMyServerOn(carrier Carrier) {
carrier.Ready(func (nmsg I nMessage) {
carrier. Send(nsg)
})

}

/'l accept connections forever, spawn servers for them
func accept Connections() {
|istener := Listen(local)
|istener. Accept(func(carrier Carrier) bool {
go runMyServerOn(carrier)
return true

)

Fi gure 3: Exanpl e server

The Responder allows the server to be significantly sinplified, as
shown in Figure 4.

func echo(msg I nMessage, reply Sink) {

reply. Send(nsg)
}
Respond(| ocal , echo)

Fi gure 4: Exanpl e responder
3.1.2. dient-Server with Happy Eyeballs and O-RTT establishnent

The fundanmental design of a client need not change at all for happy
eyebal | s [RFC6555] (selection of multiple potential protocol stacks
t hrough connection racing); this is handl ed by the Post Sockets
i mpl ementation autonmatically. |If this connection racing is to use

O-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client
must mark the outgoi ng nessage as i denpotent.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 16]

Internet-Draft Post Sockets March 2017

/] connect to a server given a renote
func sayHel | oQui ckly() {

carrier := Initiate(local, renote)

carrier. Sendvsg(Qut Message{Content: []byte("Hello!"), Ildenpotent: true}, ni
, hil, nil)
carrier.Ready(func (nmsg | nMessage) {
frm.Println(string([]byte(nsg)))
return fal se

})
carrier.d ose()
}
3.1.3. Peer to Peer with Network Address Transl ation

In the client-server exanples shown above, the Renpbte given to the
Initiate call refers to the nanme and port of the server to connect
to. This need not be the case, however; a Renpte nay also refer to
an identity and a rendezvous point for rendezvous as in |ICE

[RFC5245]. Here, each peer does its own Initiate cal

simul taneously, and the result on each side is a Carrier attached to
an appropriate Association

3.1.4. Milticast Receiver

A multicast receiver is inplenented using a Sink attached to a Local
encapsul ating a multicast address on which to receive nulticast
datagrans. The follow ng exanple prints nessages received on the
nmul ti cast address forever.

func receiveMiulticast() {
si nk = NewSi nk(| ocal)
si nk. Ready(func (nsg | nMessage) {
frmt.Println(string([]byte(nsg)))
return true
})
}

3.2. Inplenentation Considerations
Here we discuss an inconplete list of APl inplenmentation

consi derations that have arisen with experinentation with the
prototype in Appendi x A

Trammel |, et al. Expi res Septenber 9, 2017 [Page 17]

Internet-Draft Post Sockets March 2017

3.2.1. Message Franing and Defranming

An obvi ous goal of Post Sockets is interoperability with non-Post
Sockets endpoints: a Post Sockets endpoint using a given protoco
stack nust be able to comuni cate with another endpoint using the
same protocol stack, but not using Post Sockets. This inplies that
the underlying transport protocol stack nust support object fram ng,
in order to delimt Messages carried by protocol stacks that are not
t hensel ves nessage-ori ented

Anot her goal of Post Sockets is to work over unnodified TCP. W
could sinply define a Message Carrier over TCP to support only stream
nmor phing, but this would fall far short of our goal to transport

i ndependence. Anot her approach is to recognize that al nost every
protocol using TCP already has its own nessage delimters, and to

all ow the receiver of a Message to provide a deframing primtive to
the API. Experinentation with the best way to achieve this within
Post Sockets is underway.

3.2.2. Message Size Limtations

I deal | y, Messages can be of infinite size. However, protocol stacks
and protocol stack inplenentations nmay i npose their own limits on
nmessage sizing; For exanple, SCTP [RFC4960] and TLS
[I-Dietf-tls-tlsl13] inpose record size linmitations of 64kB and 16kB
respectively. Message sizes may also be limted by the avail able
buffer at the receiver, since a Message nust be fully assenbl ed by
the transport layer before it can be passed on to the application

| ayer. Since not every transport protocol stack inplenents the
signaling necessary to negotiate or expose nessage size limtations,
these are currently configured out of band, and are probably best
exposed through the policy context.

Atruly infinite nmessage service - e.g. large file transfer where
bot h endpoi nts have comitted persistent storage to the nessage - is
probably best realized as a | ayer above Post Sockets, and nmay be
added as a new type of Message Carrier to a future revision of this
docurnent .

3.2.3. Backpressure

Regar dl ess of how asynchronous reception is inplenmented, it is

i mportant for an application to be able to apply receiver
backpressure, to allow the protocol stack to performreceiver flow
control. Depending on how asynchronous I/O works in the platform
this could be inplenented by having a maxi num nunber of concurrent
recei ve cal | backs, for exanple.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 18]

Internet-Draft Post Sockets March 2017

4. Acknow edgnent s

Many thanks to Laurent Chuat and Jason Lee at the Network Security
Goup at ETH Zurich for contributions to the initial design of Post
Sockets. Thanks to Joe Hildebrand, Martin Thomson, and M chael Wl zl
for their feedback, as well as the attendees of the Post Sockets

wor kshop in February 2017 in Zurich for the discussions, which have
i mproved the design described herein.

This work is partially supported by the European Conmi ssi on under
Hori zon 2020 grant agreenment no. 688421 Measurenent and Architecture
for a Mddl eboxed Internet (MAM), and by the Swiss State Secretariat
for Education, Research, and Innovation under contract no. 15.0268.
Thi s support does not inply endorsenent.

5. References
5.1. Normative References

[I-D.ietf-taps-transports]
Fairhurst, G, Tramrell, B., and M Kuehl ewi nd, "Services
provi ded by | ETF transport protocols and congestion
control nechanisms", draft-ietf-taps-transports-14 (work
in progress), Decenber 2016.

5. 2. I nformati ve References

[I-D.ietf-quic-transport]
lyengar, J. and M Thonson, "QU C. A UDP-Based Ml ti pl exed
and Secure Transport", draft-ietf-quic-transport-01 (work
in progress), January 2017.

[I-Dietf-tls-tlsl3]
Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", draft-ietf-tls-tlsl13-18 (work in progress),
Cct ober 2016.

[1-D.iyengar-m ni on-protocol]
Jana, J., Cheshire, S., and J. Graessley, "Mnion - Wre
Protocol ", draft-iyengar-m nion-protocol-02 (work in
progress), Cctober 2013.

[I-D.tramrel | - pl us-abstract - nech]
Tramrel |, B., "Abstract Mechanisns for a Cooperative Path
Layer under Endpoint Control", draft-trammell-plus-
abstract-nech-00 (work in progress), Septenber 2016.

Tramel |, et al. Expi res Septenber 9, 2017 [Page 19]

Internet-Draft Post Sockets March 2017

[I-D.trammel | - pl us- st at ef ul ness]

[M ni maLT]

[NEAT]

[RFC0793]

[RFC4960]

[RFC5245]

[RFCB555]

[RFC6824]

[RFC7258]

[RFC7413]

Tranmel |, et

Kuehl ewi nd, M, Tramrell, B., and J. Hil debrand,
"Transport-I| ndependent Path Layer State Managenent",
draft-trammel | - pl us-stateful ness-02 (work in progress),
Decenber 2016.

Petullo, W, Zhang, X., Solworth, J., Bernstein, D., and
T. Lange, "M ninmalLT, M nimal-|atency Networking Through
Better Security", My 2013.

G i nneno, K-J., Tom Jones, ., CGorry Fairhurst, ., David
Ros, ., Anna Brunstrom ., and . Per Hurtig, "Towards a
Fl exi bl e I nternet Transport Layer Architecture", June
2016.

Postel, J., "Transni ssion Control Protocol", STD 7,
RFC 793, DO 10. 17487/ RFC0793, Septenber 1981,
<http://wwmv rfc-editor.org/info/rfc793>.

Stewart, R, Ed., "Stream Control Transm ssion Protocol",
RFC 4960, DO 10.17487/ RFC4960, Septenber 2007,
<http://ww.rfc-editor.org/info/rfc4960>.

Rosenberg, J., "Interactive Connectivity Establishnent
(ICE): A Protocol for Network Address Transl ator (NAT)
Traversal for Ofer/Answer Protocols", RFC 5245,

DO 10. 17487/ RFC5245, April 2010,
<http://ww.rfc-editor.org/infol/rfc5245>.

Wng, D. and A Yourtchenko, "Happy Eyeballs: Success wth
Dual - St ack Hosts", RFC 6555, DO 10.17487/ RFC6555, April
2012, <http://www.rfc-editor.org/info/rfc6555>.

Ford, A, Raiciu, C, Handley, M, and O Bonaventure,
"TCP Extensions for Multipath Operation with Miltiple
Addresses", RFC 6824, DO 10.17487/ RFC6824, January 2013,
<http://ww. rfc-editor.org/info/rfc6824>.

Farrell, S. and H Tschofenig, "Pervasive Mnitoring Is an
Attack", BCP 188, RFC 7258, DO 10.17487/ RFC7258, MNay
2014, <http://www.rfc-editor.org/info/rfc7258>.

Cheng, Y., Chu, J., Radhakrishnan, S., and A Jain, "TCP

Fast Qpen", RFC 7413, DO 10.17487/ RFC7413, Decenber 2014,
<http://ww.rfc-editor.org/info/rfc7413>.

al . Expi res Septenber 9, 2017 [Page 20]

Internet-Draft Post Sockets March 2017

[RFC7556] Ani pko, D., Ed., "Miltiple Provisioning Domain
Architecture", RFC 7556, DO 10.17487/ RFC7556, June 2015,
<http://ww.rfc-editor.org/info/rfc7556>

Appendi x A. APl sketch in Gol ang

The followi ng sketch is a snapshot of an APl currently under

devel opnment in Go, available at https://github.conm mam - project/

post socket. The details of the APl are still under devel opnent; once
the APl definition stabilizes, this will be expanded into prose in a
future revision of this draft.

/1l The interface to path information is TBD
type Path interface{}

/1 An association encapsul ates an endpoi nt pair and the set of paths between the
m
type Association interface {

Local () Local

Renote() Renote

Paths() []Path

/1l A message together with with netadata needed to send it
type Qut Message struct {
/1 The content of this nmessage, as a byte array
Content []byte
/1 The niceness of this nessage. 0 is highest priority.
Ni ceness uint
/1l The lifetine of this message. After this duration, the nmessage may expire

Lifetime time.Duration

/1l Pointers to nmessages that nust be sent before this one.

Ant ecedent []*Qut Message

/1 True if the nessage is safe to send such that it may be received multiple
times (i.e. for O-RTT).

| denpot ent bool
}

/1 A message received froma stream
type I nMessage []byte

/'l A Carrier is a transport protocol stack-independent interface for sending and
/'l receiving nmessages between an application and a renpte endpoint; it is rough

/1 anal ogous to a socket in the present sockets API

type Carrier interface {
/1l Send a byte array on this Carrier as a nessage with default netadata
/1 and no notifications.
Send(buf []byte) error

/1 Send a nmessage on this Carrier. The optional onSent function will be

Tramrel |, et al. Expi res Septenber 9, 2017 [Page 21]

Internet-Draft Post Sockets March 2017

/'l called when the protocol stack instance has sent the nmessage. The

/1 optional onAcked function will be called when the receiver has

/'l acknow edged the message. The optional onExpired function will be

/1 called if the nmessage’s lifetine expired before the nessage coult be

/1 sent. If the Carrier is not active, attenpt to activate the Carrier

/'l before sending.

Sendnsg(nmsg *Qut Message, onSent func(), onAcked func(), onExpired func()) er

ror
/1 Signal that an application is ready to receive nessages via a given callb
ack.
/1l Messages will be given to the callback until it returns false, or until t
he

[l Carrier is closed.
Ready(recei ve func(l nMessage) bool) error

/'l Retrieve the Association over which this Carrier is running.
Associ ation() *Association

/1l Retrieve the active Transients over which this carrier is running, if act
Transients() []Transient

/| Determine whether the Carrier is currently active
I sActive() boo

/1 Ensure that the Carrier is active and ready to send and recei ve nessages.
/1 Attenpts to bring up at |east one Transient.
Activate(isActive func()) error

/!l Terminate the Carrier
Cl ose()

/1 Mutate to a file-like object
AsStrean() io.ReadWited oser

/'l Attenpt to fork a new Carrier for communicating with the sane Renote
Fork() (Carrier, error)

/1 Signal that an application is ready to accept forks via a given callback
/1 Forked carriers will be given to the callback until it returns false or
[l until the Carrier is closed.

Accept (accept func(Carrier) bool) error

}

/[l Initiate a Carrier froma given Local to a given Renpte. Returns a new
[l Carrier, which may be bound to an existing or a new Associ ation. The
/1 initiated Carrier is not yet active.

func Initiate(local Local, renote Renote) (Carrier, error)

type Listener interface {
/1 Signal that an application is ready to accept forks via a given callback

Tramrel |, et al. Expi res Septenber 9, 2017 [Page 22]

Internet-Draft Post Sockets March 2017

/1 Accept will term nate when the callback returns false, or until the
/1 Listener is closed.
Accept (accept func(Carrier) bool) error

!/l Terminate this Listener
Cl ose()

}

/]l Create a Listener on a given Local which will pass new Carriers to the
/1 given channel until that channel is closed.
func Listen(local Local) (Listener, error)

/1l A Source is a unidirectional, send-only Carrier

type Source interface {
/1l Send a byte array on this Source as a nessage with default netadata
/1 and no notifications.
Send(buf []byte) error

/1l Send a nmessage on this Source. The optional onSent function will be

/1 called when the protocol stack instance has sent the nessage. The

/1 optional onAcked function will be called when the receiver has

/'l acknowl edged the nessage. The optional onExpired function will be

/1 called if the nmessage’s lifetine expired before the nessage coult be

/1 sent. If the Source is not active, attenpt to activate the Source

/'l before sending.

Sendnsg(nsg *CQut Message, onSent func(), onAcked func(), onExpired func()) er
ror

/'l Retrieve the Association over which this Source is running.
Associ ation() *Association

/1 Determ ne whether the Source is currently active
I sActive() bool

/1 Ensure that the Source is active and ready to send nessages.
/1 Attenpts to bring up at |east one Transient.
Activate() error

// Term nate the Source
Cl ose()

}

/1 Initiate a Source froma given Local to a given Renpte. Returns a new
/1 Source, which may be bound to an existing or a new Associ ation. The
/] initiated Source is not yet active.

func NewSource(local Local, renpte Renote) (Source, error)

/1 ASink is a unidirectional, receive-only Carrier, bound only to a | ocal
type Sink interface {

Trammel |, et al. Expi res Septenber 9, 2017 [Page 23]

Internet-Draft Post Sockets March 2017

/1 Signal that an application is ready to receive nessages via a given callb
ack.

/1 Messages will be given to the callback until it returns false, or until t
he

/1 Sink is closed.

Ready(receive func(lnMessage) bool) error

/'l Retrieve the Association over which this Sink is running.
Associ ation() *Association

/!l Terminate the Sink
Cl ose()

}

/1 Initiate a Sink on a given Local. Returns a new
/1 Sink, which nmay be bound to an existing or a new Associ ati on.
func NewSi nk(local Local) (Sink, error)

/1 Initiate a Responder on a given Local. For each inconing Message, calls the
/1 respond function with the Message and a Sink to send replies to. Calls the

/1l Responder until it returns False, then term nates

func Respond(local Local, respond func(msg | nMessage, reply Sink) bool) error

/1 Alocal identity
type Local struct {

/1 A string identifying an interface or set of interfaces to accept nessages
and new carriers on.

Interface string

/1l A transport |ayer port

Port int

Il A set of zero or nore end entity certificates, together with private

/1l keys, to identify this application wth.

Certificates [Jtls.Certificate

}

/'l Encapsulate a renote identity. Since the contents of a Renpte are highly
/'l dependent on its level of resolution; some exanples are bel ow
type Renote interface {
/1l Resolve this Renpte ldentity to a
Resol ve() ([]Renoteldentity, error)
/'l Returns True if the Renpte is conpletely resolved; i.e., cannot be resol
Conpl ete() bool

/1 Renpte consisting of a URL
type URLRenote struct {

URL string
}

/1 Renote encapsul ating a name and port nunber
type NanmedEndpoi nt Renote struct ({

Tramel |, et al. Expi res Septenber 9, 2017 [Page 24]

Internet-Draft Post Sockets March 2017

Host name string
Por t i nt

}

/'l Renote encapsul ating an | P address and port nunber
type | PEndpoi nt Renote struct {

Address net.IP

Por t i nt

}

/'l Renpte encapsul ating an | P address and port nunber, and a set of presented ce
rtificates
type | PEndpoi nt Cert Renote struct {

Addr ess net.|P

Por t i nt

Certificates []Jtls.Certificate

}

Aut hors’ Addr esses

Brian Tramel |
ETH Zuri ch

d oriastrasse 35
8092 Zurich

Swi t zerl and

Enmail: ietf@ramell.ch

Col in Perkins

University of G asgow
School of Conputing Science
G asgow Gl2 8QQ

Uni ted Ki ngdom

Emai | . csp@sperkins.org
Tomy Paul y
Appl e Inc.

1 Infinite Loop
Cupertino, California 95014
United States of Anerica

Emai | : tpaul y@ppl e. com

Trammel |, et al. Expi res Septenber 9, 2017 [Page 25]

Internet-Draft Post Sockets March 2017

M rja Kuehl ewi nd

ETH Zuri ch

d oriastrasse 35

8092 Zurich

Switzerl and

Emai | : mirja. kuehl ewi nd@i k. ee. et hz. ch

Tramel |, et al. Expi res Septenber 9, 2017 [Page 26]

