
TRANS L. Nordberg
Internet-Draft NORDUnet
Intended status: Experimental D. Gillmor
Expires: July 18, 2018 ACLU
 T. Ritter
 January 14, 2018

 Gossiping in CT
 draft-ietf-trans-gossip-05

Abstract

 The logs in Certificate Transparency are untrusted in the sense that
 the users of the system don’t have to trust that they behave
 correctly since the behavior of a log can be verified to be correct.

 This document tries to solve the problem with logs presenting a
 "split view" of their operations or failing to incorporate a
 submission within MMD. It describes three gossiping mechanisms for
 Certificate Transparency: SCT Feedback, STH Pollination and Trusted
 Auditor Relationship.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 18, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Nordberg, et al. Expires July 18, 2018 [Page 1]

Internet-Draft Gossiping in CT January 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Defining the problem . 4
 3. Overview . 4
 4. Terminology . 5
 4.1. Pre-Loaded vs Locally Added Anchors 5
 5. Who gossips with whom . 5
 6. What to gossip about and how 6
 7. Data flow . 6
 8. Gossip Mechanisms . 7
 8.1. SCT Feedback . 7
 8.1.1. SCT Feedback data format 8
 8.1.2. HTTPS client to server 9
 8.1.3. HTTPS server operation 11
 8.1.4. HTTPS server to auditors 13
 8.2. STH pollination . 14
 8.2.1. HTTPS Clients and Proof Fetching 16
 8.2.2. STH Pollination without Proof Fetching 17
 8.2.3. Auditor Action 17
 8.2.4. STH Pollination data format 18
 8.3. Trusted Auditor Stream 18
 8.3.1. Trusted Auditor data format 19
 9. 3-Method Ecosystem . 20
 9.1. SCT Feedback . 20
 9.2. STH Pollination . 20
 9.3. Trusted Auditor Relationship 21
 9.4. Interaction . 22
 10. Security considerations 23
 10.1. Attacks by actively malicious logs 23
 10.2. Dual-CA Compromise 23
 10.3. Censorship/Blocking considerations 24
 10.4. Flushing Attacks . 25
 10.4.1. STHs . 25
 10.4.2. SCTs & Certificate Chains on HTTPS Servers 26
 10.4.3. SCTs & Certificate Chains on HTTPS Clients 27
 10.5. Privacy considerations 27
 10.5.1. Privacy and SCTs 27
 10.5.2. Privacy in SCT Feedback 27
 10.5.3. Privacy for HTTPS clients performing STH Proof
 Fetching . 28

Nordberg, et al. Expires July 18, 2018 [Page 2]

Internet-Draft Gossiping in CT January 2018

 10.5.4. Privacy in STH Pollination 29
 10.5.5. Privacy in STH Interaction 29
 10.5.6. Trusted Auditors for HTTPS Clients 30
 10.5.7. HTTPS Clients as Auditors 30
 11. Policy Recommendations 31
 11.1. Blocking Recommendations 31
 11.1.1. Frustrating blocking 31
 11.1.2. Responding to possible blocking 31
 11.2. Proof Fetching Recommendations 33
 11.3. Record Distribution Recommendations 33
 11.3.1. Mixing Algorithm 34
 11.3.2. The Deletion Algorithm 35
 11.4. Concrete Recommendations 36
 11.4.1. STH Pollination 36
 11.4.2. SCT Feedback . 40
 12. IANA considerations . 53
 13. Contributors . 53
 14. ChangeLog . 53
 14.1. Changes between ietf-04 and ietf-05 54
 14.2. Changes between ietf-03 and ietf-04 54
 14.3. Changes between ietf-02 and ietf-03 54
 14.4. Changes between ietf-01 and ietf-02 54
 14.5. Changes between ietf-00 and ietf-01 54
 14.6. Changes between -01 and -02 55
 14.7. Changes between -00 and -01 55
 15. References . 55
 15.1. Normative References 55
 15.2. Informative References 56
 Authors’ Addresses . 57

1. Introduction

 The purpose of the protocols in this document, collectively referred
 to as CT Gossip, is to detect certain misbehavior by CT logs. In
 particular, CT Gossip aims to detect logs that are providing
 inconsistent views to different log clients, and logs failing to
 include submitted certificates within the time period stipulated by
 MMD.

 One of the major challenges of any gossip protocol is limiting damage
 to user privacy. The goal of CT gossip is to publish and distribute
 information about the logs and their operations, but not to expose
 any additional information about the operation of any of the other
 participants. Privacy of consumers of log information (in
 particular, of web browsers and other TLS clients) should not be
 undermined by gossip.

Nordberg, et al. Expires July 18, 2018 [Page 3]

Internet-Draft Gossiping in CT January 2018

 This document presents three different, complementary mechanisms for
 non-log elements of the CT ecosystem to exchange information about
 logs in a manner that preserves the privacy of HTTPS clients. They
 should provide protective benefits for the system as a whole even if
 their adoption is not universal.

2. Defining the problem

 When a log provides different views of the log to different clients
 this is described as a partitioning attack. Each client would be
 able to verify the append-only nature of the log but, in the extreme
 case, each client might see a unique view of the log.

 The CT logs are public, append-only and untrusted and thus have to be
 audited for consistency, i.e., they should never rewrite history.
 Additionally, auditors and other log clients need to exchange
 information about logs in order to be able to detect a partitioning
 attack (as described above).

 Gossiping about log behavior helps address the problem of detecting
 malicious or compromised logs with respect to a partitioning attack.
 We want some side of the partitioned tree, and ideally all sides, to
 see at least one other side.

 Disseminating information about a log poses a potential threat to the
 privacy of end users. Some data of interest (e.g., SCTs) is linkable
 to specific log entries and thereby to specific websites, which makes
 sharing them with others a privacy concern. Gossiping about this
 data has to take privacy considerations into account in order not to
 expose associations between users of the log (e.g., web browsers) and
 certificate holders (e.g., web sites). Even sharing STHs (which do
 not link to specific log entries) can be problematic - user tracking
 by fingerprinting through rare STHs is one potential attack (see
 Section 8.2).

3. Overview

 This document presents three gossiping mechanisms: SCT Feedback, STH
 Pollination, and a Trusted Auditor Relationship.

 SCT Feedback enables HTTPS clients to share Signed Certificate
 Timestamps (SCTs) (Section 4.8 of [RFC-6962-BIS-27]) with CT auditors
 in a privacy-preserving manner by sending SCTs to originating HTTPS
 servers, which in turn share them with CT auditors.

 In STH Pollination, HTTPS clients use HTTPS servers as pools to share
 Signed Tree Heads (STHs) (Section 4.10 of [RFC-6962-BIS-27]) with

Nordberg, et al. Expires July 18, 2018 [Page 4]

Internet-Draft Gossiping in CT January 2018

 other connecting clients in the hope that STHs will find their way to
 CT auditors.

 HTTPS clients in a Trusted Auditor Relationship share SCTs and STHs
 with trusted CT auditors directly, with expectations of privacy
 sensitive data being handled according to whatever privacy policy is
 agreed on between client and trusted party.

 Despite the privacy risks with sharing SCTs there is no loss in
 privacy if a client sends SCTs for a given site to the site
 corresponding to the SCT. This is because the site’s cookies could
 already indicate that the client had accessed that site. In this way
 a site can accumulate records of SCTs that have been issued by
 various logs for that site, providing a consolidated repository of
 SCTs that could be shared with auditors. Auditors can use this
 information to detect a misbehaving log that fails to include a
 certificate within the time period stipulated by its MMD log
 parameter.

 Sharing an STH is considered reasonably safe from a privacy
 perspective as long as the same STH is shared by a large number of
 other log clients. This safety in numbers can be achieved by only
 allowing gossiping of STHs issued in a certain window of time, while
 also refusing to gossip about STHs from logs with too high an STH
 issuance frequency (see Section 8.2).

4. Terminology

 This document relies on terminology and data structures defined in
 [RFC-6962-BIS-27], including MMD, STH, SCT, Version, LogID, SCT
 timestamp, CtExtensions, SCT signature, Merkle Tree Hash.

 This document relies on terminology defined in
 [draft-ietf-trans-threat-analysis-12], including Auditing.

4.1. Pre-Loaded vs Locally Added Anchors

 Through the document, we refer to both Trust Anchors (Certificate
 Authorities) and Logs. Both Logs and Trust Anchors may be locally
 added by an administrator. Unless otherwise clarified, in both cases
 we refer to the set of Trust Anchors and Logs that come pre-loaded
 and pre-trusted in a piece of client software.

5. Who gossips with whom

 o HTTPS clients and servers (SCT Feedback and STH Pollination)

 o HTTPS servers and CT auditors (SCT Feedback and STH Pollination)

Nordberg, et al. Expires July 18, 2018 [Page 5]

Internet-Draft Gossiping in CT January 2018

 o CT auditors (Trusted Auditor Relationship)

 Additionally, some HTTPS clients may engage with an auditor which
 they trust with their privacy:

 o HTTPS clients and CT auditors (Trusted Auditor Relationship)

6. What to gossip about and how

 There are three separate gossip streams:

 o SCT Feedback - transporting SCTs and certificate chains from HTTPS
 clients to CT auditors via HTTPS servers.

 o STH Pollination - HTTPS clients and CT auditors using HTTPS
 servers as STH pools for exchanging STHs.

 o Trusted Auditor Stream - HTTPS clients communicating directly with
 trusted CT auditors sharing SCTs, certificate chains and STHs.

 It is worthwhile to note that when an HTTPS client or CT auditor
 interacts with a log, they may equivalently interact with a log
 mirror or cache that replicates the log.

7. Data flow

 The following picture shows how certificates, SCTs and STHs flow
 through a CT system with SCT Feedback and STH Pollination. It does
 not show what goes in the Trusted Auditor Relationship stream.

Nordberg, et al. Expires July 18, 2018 [Page 6]

Internet-Draft Gossiping in CT January 2018

 +- Cert ---- +----------+
 | | CA | ----------+
 | + SCT -> +----------+ |
 v | Cert [& SCT]
 +----------+ |
 | Log | ---------- SCT -----------+
 +----------+ v
 | ^ +----------+
 | | SCTs & Certs --- | Website |
 | |[1] | +----------+
 | |[2] STHs ^ |
 | |[3] v | HTTPS traffic
 | | +----------+ | |
 | +--------> | Auditor | | SCT & Cert
 | +----------+ | |
 STH | STH & Inclusion proof
 | | |
 Log entries SCTs & Certs |
 | | |
 v STHs |
 +----------+ | v
 | Monitor | +----------+
 +----------+ | Browser |
 +----------+

 # Auditor Log
 [1] |--- get-sth ------------------->|
 |<-- STH ------------------------|
 [2] |--- leaf hash + tree size ----->|
 |<-- index + inclusion proof --->|
 [3] |--- tree size 1 + tree size 2 ->|
 |<-- consistency proof ----------|

8. Gossip Mechanisms

8.1. SCT Feedback

 The goal of SCT Feedback is for clients to share SCTs and certificate
 chains with CT auditors while still preserving the privacy of the end
 user. The sharing of SCTs contribute to the overall goal of
 detecting misbehaving logs by providing auditors with SCTs from many
 vantage points, making it more likely to catch a violation of a log’s
 MMD or a log presenting inconsistent views. The sharing of
 certificate chains is beneficial to HTTPS server operators interested
 in direct feedback from clients for detecting bogus certificates
 issued in their name and therefore incentivizes server operators to
 take part in SCT Feedback.

Nordberg, et al. Expires July 18, 2018 [Page 7]

Internet-Draft Gossiping in CT January 2018

 SCT Feedback is the most privacy-preserving gossip mechanism, as it
 does not directly expose any links between an end user and the sites
 they’ve visited to any third party.

 HTTPS clients store SCTs and certificate chains they see, and later
 send them to the originating HTTPS server by posting them to a well-
 known URL (associated with that server), as described in
 Section 8.1.2. Note that clients will send the same SCTs and chains
 to a server multiple times with the assumption that any man-in-the-
 middle attack eventually will cease, and an honest server will
 eventually receive collected malicious SCTs and certificate chains.

 HTTPS servers store SCTs and certificate chains received from
 clients, as described in Section 8.1.3. They later share them with
 CT auditors by either posting them to auditors or making them
 available via a well-known URL. This is described in Section 8.1.4.

8.1.1. SCT Feedback data format

 The data shared between HTTPS clients and servers, as well as between
 HTTPS servers and CT auditors, is a JSON array [RFC7159]. Each item
 in the array is a JSON object containing at least the first of the
 following members:

 o "x509_chain" : An array of PEM-encoded X.509 certificates. The
 first element is the end-entity certificate, the second certifies
 the first and so on. The "x509_chain" member is mandatory to
 include.

 o "sct_data_v1" : An array of base64 encoded
 "SignedCertificateTimestampList"s as defined in [RFC6962] section
 3.3. The "sct_data_v1" member is optional.

 o "sct_data_v2" : An array of base64 encoded "TransItem" structures
 of type "x509_sct_v2" or "precert_sct_v2" as defined in
 [RFC-6962-BIS-27] section 4.8. The "sct_data_v2" member is
 optional.

 We will refer to this object as ’sct_feedback’.

 The x509_chain element always contains a full chain from a leaf
 certificate to a self-signed trust anchor.

 See Section 8.1.2 for details on what the sct_data element contains
 as well as more details about the x509_chain element.

Nordberg, et al. Expires July 18, 2018 [Page 8]

Internet-Draft Gossiping in CT January 2018

8.1.2. HTTPS client to server

 When an HTTPS client connects to an HTTPS server, the client receives
 a set of SCTs as part of the TLS handshake. SCTs are included in the
 TLS handshake using one or more of the three mechanisms described in
 [RFC-6962-BIS-27] section 6 - in the server certificate, in a TLS
 extension, or in an OCSP extension. The client MUST discard SCTs
 that are not signed by a log known to the client and SHOULD store the
 remaining SCTs together with a locally constructed certificate chain
 which is trusted (i.e., terminated in a pre-loaded or locally
 installed Trust Anchor) in an sct_feedback object or equivalent data
 structure for later use in SCT Feedback.

 The SCTs stored on the client MUST be keyed by the exact domain name
 the client contacted. They MUST NOT be sent to the well-known URI of
 any domain not matching the original domain (e.g., if the original
 domain is sub.example.com they must not be sent to
 sub.sub.example.com or to example.com.) In particular, they MUST NOT
 be sent to the well-known URI of any Subject Alternate Names
 specified in the certificate. In the case of certificates that
 validate multiple domain names, after visiting a second domain name
 specified in the certificate, the same SCT is expected to be stored
 once under each domain name’s key. If Connection Reuse as defined in
 [RFC7540] is available, reusing an existing connection to
 sub.example.com to send data to sub.sub.example.com is permitted.

 Not following these constraints would increase the risk for two types
 of privacy breaches. First, the HTTPS server receiving the SCT would
 learn about other sites visited by the HTTPS client. Second,
 auditors receiving SCTs from the HTTPS server would learn information
 about other HTTPS servers visited by its clients.

 If the client later again connects to the same HTTPS server, it again
 receives a set of SCTs and calculates a certificate chain, and again
 creates an sct_feedback or similar object. If this object does not
 exactly match an existing object in the store, then the client MUST
 add this new object to the store, associated with the exact domain
 name contacted, as described above. An exact comparison is needed to
 ensure that attacks involving alternate chains are detected. An
 example of such an attack is described in
 [dual-ca-compromise-attack]. However, at least one optimization is
 safe and MAY be performed: If the certificate chain exactly matches
 an existing certificate chain, the client MAY store the union of the
 SCTs from the two objects in the first (existing) object.

 If the client does connect to the same HTTPS server a subsequent
 time, it MUST send to the server sct_feedback objects in the store
 that are associated with that domain name. However, it is not

Nordberg, et al. Expires July 18, 2018 [Page 9]

Internet-Draft Gossiping in CT January 2018

 necessary to send an sct_feedback object constructed from the current
 TLS session, and if the client does so, it MUST NOT be marked as sent
 in any internal tracking done by the client.

 Refer to Section 11.3 for recommendations for implementation.

 Because SCTs can be used as a tracking mechanism (see
 Section 10.5.2), they deserve special treatment when they are
 received from (and provided to) domains that are loaded as
 subresources from an origin domain. Such domains are commonly called
 ’third party domains’. An HTTPS client SHOULD store SCT Feedback
 using a ’double-keying’ approach, which isolates third party domains
 by the first party domain. This is described in [double-keying].
 Gossip would be performed normally for third party domains only when
 the user revisits the first party domain. In lieu of ’double-
 keying’, an HTTPS client MAY treat SCT Feedback in the same manner it
 treats other security mechanisms that can enable tracking (such as
 HSTS and HPKP.)

 SCT Feedback is only performed when a user connects to a site via
 intentional web browsing or normal third party resource inclusion.
 It MUST NOT be performed automatically as part of some sort of
 background process.

 Finally, if the HTTPS client has configuration options for not
 sending cookies to third parties, SCTs of third parties MUST be
 treated as cookies with respect to this setting. This prevents third
 party tracking through the use of SCTs/certificates, which would
 bypass the cookie policy. For domains that are only loaded as third
 party domains, the client may never perform SCT Feedback; however the
 client may perform STH Pollination after fetching an inclusion proof,
 as specified in Section 8.2.

 SCTs and corresponding certificates are POSTed to the originating
 HTTPS server at the well-known URL:

 https://<domain>/.well-known/ct-gossip/v1/sct-feedback

 The data sent in the POST is defined in Section 8.1.1. This data
 SHOULD be sent in an already-established TLS session. This makes it
 hard for an attacker to disrupt SCT Feedback without also disturbing
 ordinary secure browsing (https://). This is discussed more in
 Section 11.1.1.

 The HTTPS server SHOULD respond with an HTTP 200 response code and an
 empty body if it was able to process the request. An HTTPS client
 which receives any other response SHOULD consider it an error.

Nordberg, et al. Expires July 18, 2018 [Page 10]

Internet-Draft Gossiping in CT January 2018

 Some clients have trust anchors or logs that are locally added (e.g.,
 by an administrator or by the user themselves). These additions are
 potentially privacy-sensitive because they can carry information
 about the specific configuration, computer, or user.

 Certificates validated by locally added trust anchors will commonly
 have no SCTs associated with them, so in this case no action is
 needed with respect to CT Gossip. SCTs issued by locally added logs
 MUST NOT be reported via SCT Feedback.

 If a certificate is validated by SCTs that are issued by publicly
 trusted logs, but chains to a local trust anchor, the client MAY
 perform SCT Feedback for this SCT and certificate chain bundle. If
 it does so, the client MUST include the full chain of certificates
 chaining to the local trust anchor in the x509_chain array.
 Performing SCT Feedback in this scenario may be advantageous for the
 broader internet and CT ecosystem, but may also disclose information
 about the client. If the client elects to omit SCT Feedback, it can
 choose to perform STH Pollination after fetching an inclusion proof,
 as specified in Section 8.2.

 We require the client to send the full chain (or nothing at all) for
 two reasons. Firstly, it simplifies the operation on the server if
 there are not two code paths. Secondly, omitting the chain does not
 actually preserve user privacy. The Issuer field in the certificate
 describes the signing certificate. And if the certificate is being
 submitted at all, it means the certificate is logged, and has SCTs.
 This means that the Issuer can be queried and obtained from the log,
 so omitting the signing certificate from the client’s submission does
 not actually help user privacy.

8.1.3. HTTPS server operation

 HTTPS servers can be configured (or omit configuration), resulting
 in, broadly, two modes of operation. In the simpler mode, the server
 will only track leaf certificates and SCTs applicable to those leaf
 certificates. In the more complex mode, the server will confirm the
 client’s chain validation and store the certificate chain. The
 latter mode requires more configuration, but is necessary to prevent
 denial of service (DoS) attacks on the server’s storage space.

 In the simple mode of operation, upon receiving a submission at the
 sct-feedback well-known URL, an HTTPS server will perform a set of
 operations, checking on each sct_feedback object before storing it:

 o (1) the HTTPS server MAY modify the sct_feedback object, and
 discard all items in the x509_chain array except the first item
 (which is the end-entity certificate)

Nordberg, et al. Expires July 18, 2018 [Page 11]

Internet-Draft Gossiping in CT January 2018

 o (2) if a bit-wise compare of the sct_feedback object matches one
 already in the store, this sct_feedback object SHOULD be discarded

 o (3) if the leaf cert is not for a domain for which the server is
 authoritative, the SCT MUST be discarded

 o (4) if an SCT in the sct_data array can’t be verified to be a
 valid SCT for the accompanying leaf cert, and issued by a known
 log, the individual SCT SHOULD be discarded

 The modification in step number 1 is necessary to prevent a malicious
 client from exhausting the server’s storage space. A client can
 generate their own issuing certificate authorities, and create an
 arbitrary number of chains that terminate in an end-entity
 certificate with an existing SCT. By discarding all but the end-
 entity certificate, we prevent a simple HTTPS server from storing
 this data. Note that operation in this mode will not prevent the
 attack described in [dual-ca-compromise-attack]. Skipping this step
 requires additional configuration as described below.

 The check in step 2 is for detecting duplicates and minimizing
 processing and storage by the server. As on the client, an exact
 comparison is needed to ensure that attacks involving alternate
 chains are detected. Again, at least one optimization is safe and
 MAY be performed. If the certificate chain exactly matches an
 existing certificate chain, the server MAY store the union of the
 SCTs from the two objects in the first (existing) object. If the
 validity check on any of the SCTs fails, the server SHOULD NOT store
 the union of the SCTs.

 The check in step 3 is to help malfunctioning clients from exposing
 which sites they visit. It additionally helps prevent DoS attacks on
 the server.

 The check in step 4 is to prevent DoS attacks where an adversary
 fills up the store prior to attacking a client (thus preventing the
 client’s feedback from being recorded), or an attack where an
 adversary simply attempts to fill up server’s storage space.

 The above describes the simpler mode of operation. In the more
 advanced server mode, the server will detect the attack described in
 [dual-ca-compromise-attack]. In this configuration the server will
 not modify the sct_feedback object prior to performing checks 2, 3,
 and 4. Instead, to prevent a malicious client from filling the
 server’s data store, the HTTPS server SHOULD perform an additional
 check in the more advanced mode:

Nordberg, et al. Expires July 18, 2018 [Page 12]

Internet-Draft Gossiping in CT January 2018

 o (5) if the x509_chain consists of an invalid certificate chain, or
 the culminating trust anchor is not recognized by the server, the
 server SHOULD modify the sct_feedback object, discarding all items
 in the x509_chain array except the first item

 The HTTPS server MAY choose to omit checks 4 or 5. This will place
 the server at risk of having its data store filled up by invalid
 data, but can also allow a server to identify interesting certificate
 or certificate chains that omit valid SCTs, or do not chain to a
 trusted root. This information may enable an HTTPS server operator
 to detect attacks or unusual behavior of Certificate Authorities even
 outside the Certificate Transparency ecosystem.

8.1.4. HTTPS server to auditors

 HTTPS servers receiving SCTs from clients SHOULD share SCTs and
 certificate chains with CT auditors by either serving them on the
 well-known URL:

 https://<domain>/.well-known/ct-gossip/v1/collected-sct-feedback

 or by HTTPS POSTing them to a set of preconfigured auditors. This
 allows an HTTPS server to choose between an active push model or a
 passive pull model.

 The data received in a GET of the well-known URL or sent in the POST
 is defined in Section 8.1.1 with the following difference: The
 x509_chain element may contain only he end-entity certificate, as
 described below.

 HTTPS servers SHOULD share all sct_feedback objects they see that
 pass the checks in Section 8.1.3. If this is an infeasible amount of
 data, the server MAY choose to expire submissions according to an
 undefined policy. Suggestions for such a policy can be found in
 Section 11.3.

 HTTPS servers MUST NOT share any other data that they may learn from
 the submission of SCT Feedback by HTTPS clients, like the HTTPS
 client IP address or the time of submission.

 As described above, HTTPS servers can be configured (or omit
 configuration), resulting in two modes of operation. In one mode,
 the x509_chain array will contain a full certificate chain. This
 chain may terminate in a trust anchor the auditor may recognize, or
 it may not. (One scenario where this could occur is if the client
 submitted a chain terminating in a locally added trust anchor, and
 the server kept this chain.) In the other mode, the x509_chain array

Nordberg, et al. Expires July 18, 2018 [Page 13]

Internet-Draft Gossiping in CT January 2018

 will consist of only a single element, which is the end-entity
 certificate.

 Auditors SHOULD provide the following URL accepting HTTPS POSTing of
 SCT feedback data:

 https://<auditor>/ct-gossip/v1/sct-feedback

 Auditors SHOULD regularly poll HTTPS servers at the well-known
 collected-sct-feedback URL. The frequency of the polling and how to
 determine which domains to poll is outside the scope of this
 document. However, the selection MUST NOT be influenced by potential
 HTTPS clients connecting directly to the auditor. For example, if a
 poll to example.com occurs directly after a client submits an SCT for
 example.com, an adversary observing the auditor can trivially
 conclude the activity of the client.

8.2. STH pollination

 The goal of sharing Signed Tree Heads (STHs) through pollination is
 to share STHs between HTTPS clients and CT auditors while still
 preserving the privacy of the end user. The sharing of STHs
 contribute to the overall goal of detecting misbehaving logs by
 providing CT auditors with STHs from many vantage points, making it
 possible to detect logs that are presenting inconsistent views.

 HTTPS servers supporting the protocol act as STH pools. HTTPS
 clients and CT auditors in the possession of STHs can pollinate STH
 pools by sending STHs to them, and retrieving new STHs to send to
 other STH pools. CT auditors can improve the value of their auditing
 by retrieving STHs from pools.

 HTTPS clients send STHs to HTTPS servers by POSTing them to the well-
 known URL:

 https://<domain>/.well-known/ct-gossip/v1/sth-pollination

 The data sent in the POST is defined in Section 8.2.4. This data
 SHOULD be sent in an already established TLS session. This makes it
 hard for an attacker to disrupt STH gossiping without also disturbing
 ordinary secure browsing (https://). This is discussed more in
 Section 11.1.1.

 On a successful connection to an HTTPS server implementing STH
 Pollination, the response code will be 200, and the response body is
 application/json, containing zero or more STHs in the same format, as
 described in Section 8.2.4.

Nordberg, et al. Expires July 18, 2018 [Page 14]

Internet-Draft Gossiping in CT January 2018

 An HTTPS client may acquire STHs by several methods:

 o in replies to pollination POSTs;

 o asking logs that it recognizes for the current STH, either
 directly (v2/get-sth) or indirectly (for example over DNS)

 o resolving an SCT and certificate to an STH via an inclusion proof

 o resolving one STH to another via a consistency proof

 HTTPS clients (that have STHs) and CT auditors SHOULD pollinate STH
 pools with STHs. Which STHs to send and how often pollination should
 happen is regarded as undefined policy with the exception of privacy
 concerns explained below. Suggestions for the policy can be found in
 Section 11.3.

 An HTTPS client could be tracked by giving it a unique or rare STH.
 To address this concern, we place restrictions on different
 components of the system to ensure an STH will not be rare.

 o HTTPS clients silently ignore STHs from logs with an STH issuance
 frequency of more than one STH per hour. Logs use the STH
 Frequency Count log parameter to express this ([RFC-6962-BIS-27]
 section 4.1).

 o HTTPS clients silently ignore STHs which are not fresh.

 An STH is considered fresh iff its timestamp is less than 14 days in
 the past. Given a maximum STH issuance rate of one per hour, an
 attacker has 336 unique STHs per log for tracking. Clients MUST
 ignore STHs older than 14 days. We consider STHs within this
 validity window not to be personally identifiable data, and STHs
 outside this window to be personally identifiable.

 When multiplied by the number of logs from which a client accepts
 STHs, this number of unique STHs grow and the negative privacy
 implications grow with it. It’s important that this is taken into
 account when logs are chosen for default settings in HTTPS clients.
 This concern is discussed upon in Section 10.5.5.

 A log may cease operation, in which case there will soon be no STH
 within the validity window. Clients SHOULD perform all three methods
 of gossip about a log that has ceased operation since it is possible
 the log was still compromised and gossip can detect that. STH
 Pollination is the one mechanism where a client must know about a log
 shutdown. A client which does not know about a log shutdown MUST NOT
 attempt any heuristic to detect a shutdown. Instead the client MUST

Nordberg, et al. Expires July 18, 2018 [Page 15]

Internet-Draft Gossiping in CT January 2018

 be informed about the shutdown from a verifiable source (e.g., a
 software update), and be provided the final STH issued by the log.
 The client SHOULD resolve SCTs and STHs to this final STH. If an SCT
 or STH cannot be resolved to the final STH, clients SHOULD follow the
 requirements and recommendations set forth in Section 11.1.2.

8.2.1. HTTPS Clients and Proof Fetching

 There are two types of proofs a client may retrieve; inclusion proofs
 and consistency proofs.

 An HTTPS client will retrieve SCTs together with certificate chains
 from an HTTPS server. Using the timestamp in the SCT together with
 the end-entity certificate and the issuer key hash, it can obtain an
 inclusion proof to an STH in order to verify the promise made by the
 SCT.

 An HTTPS client will have STHs from performing STH Pollination, and
 may obtain a consistency proof to a more recent STH.

 An HTTPS client may also receive an SCT bundled with an inclusion
 proof to a historical STH via an unspecified future mechanism.
 Because this historical STH is considered personally identifiable
 information per above, the client needs to obtain a consistency proof
 to a more recent STH.

 A client SHOULD attempt proof fetching. A client MAY do network
 probing to determine if proof fetching may succeed, and if it learns
 that it does not, SHOULD periodically re-probe (especially after
 network change, if it is aware of these events.) If it does succeed,
 queued events can be processed.

 A client MUST NOT perform proof fetching for any SCTs or STHs issued
 by a locally added log. A client MAY fetch an inclusion proof for an
 SCT (issued by a pre-loaded log) that validates a certificate
 chaining to a locally added trust anchor.

 If a client requested either proof directly from a log or auditor, it
 would reveal the client’s browsing habits to a third party. To
 mitigate this risk, an HTTPS client MUST retrieve the proof in a
 manner that disguises the client.

 Depending on the client’s DNS provider, DNS may provide an
 appropriate intermediate layer that obfuscates the linkability
 between the user of the client and the request for inclusion (while
 at the same time providing a caching layer for oft-requested
 inclusion proofs). See [draft-ct-over-dns] for an example of how
 this can be done.

Nordberg, et al. Expires July 18, 2018 [Page 16]

Internet-Draft Gossiping in CT January 2018

 Anonymity networks such as Tor also present a mechanism for a client
 to anonymously retrieve a proof from an auditor or log.

 Even when using a privacy-preserving layer between the client and the
 log, certain observations may be made about an anonymous client or
 general user behavior depending on how proofs are fetched. For
 example, if a client fetched all outstanding proofs at once, a log
 would know that SCTs or STHs received around the same time are more
 likely to come from a particular client. This could potentially go
 so far as correlation of activity at different times to a single
 client. In aggregate the data could reveal what sites are commonly
 visited together. HTTPS clients SHOULD use a strategy of proof
 fetching that attempts to obfuscate these patterns. A suggestion of
 such a policy can be found in Section 11.2.

 Resolving either SCTs and STHs may result in errors. These errors
 may be routine downtime or other transient errors, or they may be
 indicative of an attack. Clients SHOULD follow the requirements and
 recommendations set forth in Section 11.1.2 when handling these
 errors in order to give the CT ecosystem the greatest chance of
 detecting and responding to a compromise.

8.2.2. STH Pollination without Proof Fetching

 An HTTPS client MAY participate in STH Pollination without fetching
 proofs. In this situation, the client receives STHs from a server,
 applies the same validation logic to them (signed by a known log,
 within the validity window) and will later pass them to another HTTPS
 server.

 When operating in this fashion, the HTTPS client is promoting gossip
 for Certificate Transparency, but derives no direct benefit itself.
 In comparison, a client which resolves SCTs or historical STHs to
 recent STHs and pollinates them is assured that if it was attacked,
 there is a probability that the ecosystem will detect and respond to
 the attack (by distrusting the log).

8.2.3. Auditor Action

 CT auditors participate in STH pollination by retrieving STHs from
 HTTPS servers. They verify that the STH is valid by checking the
 signature, and requesting a consistency proof from the STH to the
 most recent STH.

 After retrieving the consistency proof to the most recent STH, they
 SHOULD pollinate this new STH among participating HTTPS servers. In
 this way, as STHs "age out" and are no longer fresh, their "lineage"
 continues to be tracked in the system.

Nordberg, et al. Expires July 18, 2018 [Page 17]

Internet-Draft Gossiping in CT January 2018

8.2.4. STH Pollination data format

 The data sent from HTTPS clients and CT auditors to HTTPS servers is
 a JSON object [RFC7159] with one or both of the following two
 members:

 o "v1" : array of 0 or more objects each containing an STH as
 returned from ct/v1/get-sth, see [RFC6962] section 4.3

 o "v2" : array of 0 or more objects each containing an STH as
 returned from ct/v2/get-sth, see [RFC-6962-BIS-27] section 5.2

 Note that all STHs MUST be fresh as defined in Section 8.2.

8.3. Trusted Auditor Stream

 HTTPS clients MAY send SCTs and cert chains, as well as STHs,
 directly to auditors. If sent, this data MAY include data that
 reflects locally added logs or trust anchors. Note that there are
 privacy implications in doing so, these are outlined in
 Section 10.5.1 and Section 10.5.6.

 The most natural trusted auditor arrangement arguably is a web
 browser that is "logged in to" a provider of various internet
 services. Another equivalent arrangement is a trusted party like a
 corporation to which an employee is connected through a VPN or by
 other similar means. A third might be individuals or smaller groups
 of people running their own services. In such a setting, retrieving
 proofs from that third party could be considered reasonable from a
 privacy perspective. The HTTPS client may also do its own auditing
 and might additionally share SCTs and STHs with the trusted party to
 contribute to herd immunity. Here, the ordinary [RFC-6962-BIS-27]
 protocol is sufficient for the client to do the auditing while SCT
 Feedback and STH Pollination can be used in whole or in parts for the
 gossip part.

 Another well established trusted party arrangement on the internet
 today is the relation between internet users and their providers of
 DNS resolver services. DNS resolvers are typically provided by the
 internet service provider (ISP) used, which by the nature of name
 resolving already know a great deal about which sites their users
 visit. As mentioned in Section 8.2.1, in order for HTTPS clients to
 be able to retrieve proofs in a privacy preserving manner, logs could
 expose a DNS interface in addition to the ordinary HTTPS interface.
 A specification of such a protocol can be found in
 [draft-ct-over-dns].

Nordberg, et al. Expires July 18, 2018 [Page 18]

Internet-Draft Gossiping in CT January 2018

8.3.1. Trusted Auditor data format

 Trusted Auditors expose a REST API at the fixed URI:

 https://<auditor>/ct-gossip/v1/trusted-auditor

 Submissions are made by sending an HTTPS POST request, with the body
 of the POST in a JSON object. Upon successful receipt the Trusted
 Auditor returns 200 OK.

 The JSON object consists of two top-level keys: ’sct_feedback’ and
 ’sths’. The ’sct_feedback’ value is an array of JSON objects as
 defined in Section 8.1.1. The ’sths’ value is an array of STHs as
 defined in Section 8.2.4.

 Example:

 {
 ’sct_feedback’ :
 [
 {
 ’x509_chain’ :
 [
 ’----BEGIN CERTIFICATE---\n
 AAA...’,
 ’----BEGIN CERTIFICATE---\n
 AAA...’,
 ...
],
 ’sct_data’ :
 [
 ’AAA...’,
 ’AAA...’,
 ...
]
 }, ...
],
 ’sths’ :
 [
 ’AAA...’,
 ’AAA...’,
 ...
]
 }

Nordberg, et al. Expires July 18, 2018 [Page 19]

Internet-Draft Gossiping in CT January 2018

9. 3-Method Ecosystem

 The use of three distinct methods for auditing logs may seem
 excessive, but each represents a needed component in the CT
 ecosystem. To understand why, the drawbacks of each component must
 be outlined. In this discussion we assume that an attacker knows
 which mechanisms an HTTPS client and HTTPS server implement.

9.1. SCT Feedback

 SCT Feedback requires the cooperation of HTTPS clients and more
 importantly HTTPS servers. Although SCT Feedback does require a
 significant amount of server-side logic to respond to the
 corresponding APIs, this functionality does not require
 customization, so it may be pre-provided and work out of the box.
 However, to take full advantage of the system, an HTTPS server would
 wish to perform some configuration to optimize its operation:

 o Minimize its disk commitment by maintaining a list of known SCTs
 and certificate chains (or hashes thereof)

 o Maximize its chance of detecting a misissued certificate by
 configuring a trust store of CAs

 o Establish a "push" mechanism for POSTing SCTs to CT auditors

 These configuration needs, and the simple fact that it would require
 some deployment of software, means that some percentage of HTTPS
 servers will not deploy SCT Feedback.

 If SCT Feedback was the only mechanism in the ecosystem, any server
 that did not implement the feature would open itself and its users to
 attack without any possibility of detection.

 A webserver not deploying SCT Feedback (or an alternative method
 providing equivalent functionality) may never learn that it was a
 target of an attack by a malicious log, as described in Section 10.1,
 although the presence of an attack by the log could be learned
 through STH Pollination. Additionally, users who wish to have the
 strongest measure of privacy protection (by disabling STH Pollination
 Proof Fetching and forgoing a Trusted Auditor) could be attacked
 without risk of detection.

9.2. STH Pollination

 STH Pollination requires the cooperation of HTTPS clients, HTTPS
 servers, and logs.

Nordberg, et al. Expires July 18, 2018 [Page 20]

Internet-Draft Gossiping in CT January 2018

 For a client to fully participate in STH Pollination, and have this
 mechanism detect attacks against it, the client must have a way to
 safely perform Proof Fetching in a privacy preserving manner. (The
 client may pollinate STHs it receives without performing Proof
 Fetching, but we do not consider this option in this section.)

 HTTPS servers must deploy software (although, as in the case with SCT
 Feedback this logic can be pre-provided) and commit some configurable
 amount of disk space to the endeavor.

 Logs (or a third party mirroring the logs) must provide access to
 clients to query proofs in a privacy preserving manner, most likely
 through DNS.

 Unlike SCT Feedback, the STH Pollination mechanism is not hampered if
 only a minority of HTTPS servers deploy it. However, it makes an
 assumption that an HTTPS client performs Proof Fetching (such as the
 DNS mechanism discussed). Unfortunately, any manner that is
 anonymous for some (such as clients which use shared DNS services
 such as a large ISP), may not be anonymous for others.

 For instance, DNS requests expose a considerable amount of sensitive
 information (including what data is already present in the cache) in
 plaintext over the network. For this reason, some percentage of
 HTTPS clients may choose to not enable the Proof Fetching component
 of STH Pollination. (Although they can still request and send STHs
 among participating HTTPS servers, even when this affords them no
 direct benefit.)

 If STH Pollination was the only mechanism deployed, users that
 disable it would be able to be attacked without risk of detection.

 If STH Pollination (or an alternative method providing equivalent
 functionality) was not deployed, HTTPS clients visiting HTTPS Servers
 which did not deploy SCT Feedback could be attacked without risk of
 detection.

9.3. Trusted Auditor Relationship

 The Trusted Auditor Relationship is expected to be the rarest gossip
 mechanism, as an HTTPS client is providing an unadulterated report of
 its browsing history to a third party. While there are valid and
 common reasons for doing so, there is no appropriate way to enter
 into this relationship without retrieving informed consent from the
 user.

 However, the Trusted Auditor Relationship mechanism still provides
 value to a class of HTTPS clients. For example, web crawlers have no

Nordberg, et al. Expires July 18, 2018 [Page 21]

Internet-Draft Gossiping in CT January 2018

 concept of a "user" and no expectation of privacy. Organizations
 already performing network auditing for anomalies or attacks can run
 their own Trusted Auditor for the same purpose with marginal increase
 in privacy concerns.

 The ability to change one’s Trusted Auditor is a form of Trust
 Agility that allows a user to choose who to trust, and be able to
 revise that decision later without consequence. A Trusted Auditor
 connection can be made more confidential than DNS (through the use of
 TLS), and can even be made (somewhat) anonymous through the use of
 anonymity services such as Tor. (Note that this does ignore the de-
 anonymization possibilities available from viewing a user’s browsing
 history.)

 If the Trusted Auditor relationship was the only mechanism deployed,
 users who do not enable it (the majority) would be able to be
 attacked without risk of detection.

 If the Trusted Auditor relationship was not deployed, crawlers and
 organizations would build it themselves for their own needs. By
 standardizing it, users who wish to opt-in (for instance those
 unwilling to participate fully in STH Pollination) can have an
 interoperable standard they can use to choose and change their
 trusted auditor.

9.4. Interaction

 Assuming no other log consistency measures exist, clients who perform
 only a subset of the mechanisms described in this document are
 exposed to the following vulnerabilities:

 HTTPS clients can be attacked without risk of detection if they do
 not participate in any of the three mechanisms.

 HTTPS clients are afforded the greatest chance of detecting an attack
 when they either participate in both SCT Feedback and STH Pollination
 with Proof Fetching or if they have a Trusted Auditor relationship.
 (Participating in SCT Feedback is the only way specified in this
 document to prevent a malicious log from refusing to ever resolve an
 SCT to an STH, as put forward in Section 10.1). Additionally,
 participating in SCT Feedback enables an HTTPS client to assist in
 detecting the exact target of an attack.

 HTTPS servers that omit SCT Feedback enable malicious logs to carry
 out attacks without risk of detection. If these servers are targeted
 specifically, even if the attack is detected, without SCT Feedback
 they may never learn that they were specifically targeted. HTTPS
 servers without SCT Feedback do gain some measure of herd immunity,

Nordberg, et al. Expires July 18, 2018 [Page 22]

Internet-Draft Gossiping in CT January 2018

 but only because their clients participate in STH Pollination (with
 Proof Fetching) or have a Trusted Auditor Relationship.

 When HTTPS servers omit SCT feedback, it allows their users to be
 attacked without detection by a malicious log; the vulnerable users
 are those who do not have a Trusted Auditor relationship.

10. Security considerations

10.1. Attacks by actively malicious logs

 One of the most powerful attacks possible in the CT ecosystem is a
 trusted log that has actively decided to be malicious. It can carry
 out an attack in at least two ways:

 In the first attack, the log can present a split view of the log for
 all time. This attack can be detected by CT auditors, but a naive
 auditor implementation may fail to do so. The simplest, least
 efficient way to detect the attack is to mirror the entire log and
 assert inclusion of every peice of data. If an auditor does not
 mirror the log, one way to detect this attack is to resolve each view
 of the log to the most recent STHs available and then force the log
 to present a consistency proof. (Which it cannot.) We highly
 recommend auditors plan for this attack scenario and ensure it will
 be detected.

 In the second attack, the log can sign an SCT, and refuse to ever
 include the certificate that the SCT refers to in the tree.
 (Alternately, it can include it in a branch of the tree and issue an
 STH, but then abandon that branch.) Whenever someone requests an
 inclusion proof for that SCT (or a consistency proof from that STH),
 the log would respond with an error, and a client may simply regard
 the response as a transient error. This attack can be detected using
 SCT Feedback, or an Auditor of Last Resort, as presented in
 Section 11.1.2.

 Both of these attack variants can be detected by CT auditors who have
 obtained an STH of an ’abnormal’ view of the log. However, they may
 not be able to link the STH to any particular SCT or Certificate.
 This means that while the log misbehavior was successfully detected,
 the target of the attack was not identified. To assertively identify
 the target(s) of the attack, SCT Feedback is necessary.

10.2. Dual-CA Compromise

 [dual-ca-compromise-attack] describes an attack possible by an
 adversary who compromises two Certificate Authorities and a Log. This
 attack is difficult to defend against in the CT ecosystem, and

Nordberg, et al. Expires July 18, 2018 [Page 23]

Internet-Draft Gossiping in CT January 2018

 [dual-ca-compromise-attack] describes a few approaches to doing so.
 We note that Gossip is not intended to defend against this attack,
 but can in certain modes.

 Defending against the Dual-CA Compromise attack requires SCT
 Feedback, and explicitly requires the server to save full certificate
 chains (described in Section 8.1.3 as the ’complex’ configuration.)
 After CT auditors receive the full certificate chains from servers,
 they MAY compare the chain built by clients to the chain supplied by
 the log. If the chains differ significantly, the auditor SHOULD
 raise a concern. A method of determining if chains differ
 significantly is by asserting that one chain is not a subset of the
 other and that the roots of the chains are different.

10.3. Censorship/Blocking considerations

 We assume a network attacker who is able to fully control the
 client’s internet connection for some period of time, including
 selectively blocking requests to certain hosts and truncating TLS
 connections based on information observed or guessed about client
 behavior. In order to successfully detect log misbehavior, the
 gossip mechanisms must still work even in these conditions.

 There are several gossip connections that can be blocked:

 1. Clients sending SCTs to servers in SCT Feedback

 2. Servers sending SCTs to auditors in SCT Feedback (server push
 mechanism)

 3. Servers making SCTs available to auditors (auditor pull
 mechanism)

 4. Clients fetching proofs in STH Pollination

 5. Clients sending STHs to servers in STH Pollination

 6. Servers sending STHs to clients in STH Pollination

 7. Clients sending SCTs to Trusted Auditors

 If a party cannot connect to another party, it can be assured that
 the connection did not succeed. While it may not have been
 maliciously blocked, it knows the transaction did not succeed.
 Mechanisms which result in a positive affirmation from the recipient
 that the transaction succeeded allow confirmation that a connection
 was not blocked. In this situation, the party can factor this into
 strategies suggested in Section 11.3 and in Section 11.1.2.

Nordberg, et al. Expires July 18, 2018 [Page 24]

Internet-Draft Gossiping in CT January 2018

 The connections that allow positive affirmation are 1, 2, 4, 5, and
 7.

 More insidious is blocking the connections that do not allow positive
 confirmation: 3 and 6. An attacker may truncate or drop a response
 from a server to a client, such that the server believes it has
 shared data with the recipient, when it has not. However, in both
 scenarios (3 and 6), the server cannot distinguish the client as a
 cooperating member of the CT ecosystem or as an attacker performing a
 Sybil attack, aiming to flush the server’s data store. Therefore the
 fact that these connections can be undetectably blocked does not
 actually alter the threat model of servers responding to these
 requests. The choice of algorithm to release data is crucial to
 protect against these attacks; strategies are suggested in
 Section 11.3.

 Handling censorship and network blocking (which is indistinguishable
 from network error) is relegated to the implementation policy chosen
 by clients. Suggestions for client behavior are specified in
 Section 11.1.

10.4. Flushing Attacks

 A flushing attack is an attempt by an adversary to flush a particular
 piece of data from a pool. In the CT Gossip ecosystem, an attacker
 may have performed an attack and left evidence of a compromised log
 on a client or server. They would be interested in flushing that
 data, i.e. tricking the target into gossiping or pollinating the
 incriminating evidence with only attacker-controlled clients or
 servers with the hope they trick the target into deleting it.

 Flushing attacks may be defended against differently depending on the
 entity (HTTPS client or HTTPS server) and record (STHs or SCTs with
 Certificate Chains).

10.4.1. STHs

 For both HTTPS clients and HTTPS servers, STHs within the validity
 window SHOULD NOT be deleted. An attacker cannot flush an item from
 the cache if it is never removed so flushing attacks are completely
 mitigated.

 The required disk space for all STHs within the validity window is
 336 STHs per log that is trusted. If 20 logs are trusted, and each
 STH takes 1 Kilobytes, this is 6.56 Megabytes.

 Note that it is important that implementors do not calculate the
 exact size of cache expected - if an attack does occur, a small

Nordberg, et al. Expires July 18, 2018 [Page 25]

Internet-Draft Gossiping in CT January 2018

 number of additional, fraudulent STHs will enter into the cache.
 These STHs will be in addition to the expected set, and will be
 evidence of the attack. Flooding the cache will not work, as an
 attacker would have to include fraudulent STHs in the flood.

 If an HTTPS client or HTTPS server is operating in a constrained
 environment and cannot devote enough storage space to hold all STHs
 within the validity window it is recommended to use the below
 Deletion Algorithm in section Section 11.3.2 to make it more
 difficult for the attacker to perform a flushing attack.

10.4.2. SCTs & Certificate Chains on HTTPS Servers

 An HTTPS server will only accept SCTs and Certificate Chains for
 domains it is authoritative for. Therefore the storage space needed
 is bound by the number of logs it accepts, multiplied by the number
 of domains it is authoritative for, multiplied by the number of
 certificates issued for those domains.

 Imagine a server authoritative for 10,000 domains, and each domain
 has 3 certificate chains, and 10 SCTs. A certificate chain is 5
 Kilobytes in size and an SCT 1 Kilobyte. This yields 732 Megabytes.

 This data can be large, but it is calculable. Web properties with
 more certificates and domains are more likely to be able to handle
 the increased storage need, while small web properties will not seen
 an undue burden. Therefore HTTPS servers SHOULD NOT delete SCTs or
 Certificate Chains. This completely mitigates flushing attacks.

 Again, note that it is important that implementors do not calculate
 the exact size of cache expected - if an attack does occur, the new
 SCT(s) and Certificate Chain(s) will enter into the cache. This data
 will be in addition to the expected set, and will be evidence of the
 attack.

 If an HTTPS server is operating in a constrained environment and
 cannot devote enough storage space to hold all SCTs and Certificate
 Chains it is authoritative for it is recommended to configure the SCT
 Feedback mechanism to allow only certain certificates that are known
 to be valid. These chains and SCTs can then be discarded without
 being stored or subsequently provided to any clients or auditors. If
 the allowlist is not sufficient, the below Deletion Algorithm in
 Section 11.3.2 is recommended to make it more difficult for the
 attacker to perform a flushing attack.

Nordberg, et al. Expires July 18, 2018 [Page 26]

Internet-Draft Gossiping in CT January 2018

10.4.3. SCTs & Certificate Chains on HTTPS Clients

 HTTPS clients will accumulate SCTs and Certificate Chains without
 bound. It is expected they will choose a particular cache size and
 delete entries when the cache size meets its limit. This does not
 mitigate flushing attacks, and such an attack is documented in
 [gossip-mixing].

 The below Deletion Algorithm Section 11.3.2 is recommended to make it
 more difficult for the attacker to perform a flushing attack.

10.5. Privacy considerations

 CT Gossip deals with HTTPS clients which are trying to share
 indicators that correspond to their browsing history. The most
 sensitive relationships in the CT ecosystem are the relationships
 between HTTPS clients and HTTPS servers. Client-server relationships
 can be aggregated into a network graph with potentially serious
 implications for correlative de-anonymization of clients and
 relationship-mapping or clustering of servers or of clients.

 There are, however, certain clients that do not require privacy
 protection. Examples of these clients are web crawlers or robots.
 But even in this case, the method by which these clients crawl the
 web may in fact be considered sensitive information. In general, it
 is better to err on the side of safety, and not assume a client is
 okay with giving up its privacy.

10.5.1. Privacy and SCTs

 An SCT contains information that links it to a particular web site.
 Because the client-server relationship is sensitive, gossip between
 clients and servers about unrelated SCTs is risky. Therefore, a
 client with an SCT for a given server SHOULD NOT transmit that
 information in any other than the following two channels: to the
 server associated with the SCT itself (via a TLS connection with a
 certificate identifying the Domain Name of the web site with a Host
 header specifying the domain name); or to a Trusted Auditor, if one
 exists.

10.5.2. Privacy in SCT Feedback

 SCTs introduce yet another mechanism for HTTPS servers to store state
 on an HTTPS client, and potentially track users. HTTPS clients which
 allow users to clear history or cookies associated with an origin
 MUST clear stored SCTs and certificate chains associated with the
 origin as well.

Nordberg, et al. Expires July 18, 2018 [Page 27]

Internet-Draft Gossiping in CT January 2018

 Auditors should treat all SCTs as sensitive data. SCTs received
 directly from an HTTPS client are especially sensitive, because the
 auditor is a trusted by the client to not reveal their associations
 with servers. Auditors MUST NOT share such SCTs in any way,
 including sending them to an external log, without first mixing them
 with multiple other SCTs learned through submissions from multiple
 other clients. Suggestions for mixing SCTs are presented in
 Section 11.3.

 There is a possible fingerprinting attack where a log issues a unique
 SCT for targeted log client(s). A colluding log and HTTPS server
 operator could therefore be a threat to the privacy of an HTTPS
 client. Given all the other opportunities for HTTPS servers to
 fingerprint clients - TLS session tickets, HPKP and HSTS headers,
 HTTP Cookies, etc. - this is considered acceptable.

 The fingerprinting attack described above would be mitigated by a
 requirement that logs must use a deterministic signature scheme when
 signing SCTs ([RFC-6962-BIS-27] section 2.2). A log signing using
 RSA is not required to use a deterministic signature scheme.

 Since logs are allowed to issue a new SCT for a certificate already
 present in the log, mandating deterministic signatures does not stop
 this fingerprinting attack altogether. It does make the attack
 harder to pull off without being detected though.

 There is another similar fingerprinting attack where an HTTPS server
 tracks a client by using a unique certificate or a variation of cert
 chains. The risk for this attack is accepted on the same grounds as
 the unique SCT attack described above.

10.5.3. Privacy for HTTPS clients performing STH Proof Fetching

 An HTTPS client performing Proof Fetching SHOULD NOT request proofs
 from a CT log that it doesn’t accept SCTs from. An HTTPS client
 SHOULD regularly request an STH from all logs it is willing to
 accept, even if it has seen no SCTs from that log.

 The time between two polls for new STH’s SHOULD NOT be significantly
 shorter than the MMD of the polled log divided by its STH Frequency
 Count ([RFC-6962-BIS-27] section 4.1).

 The actual mechanism by which Proof Fetching is done carries
 considerable privacy concerns. Although out of scope for the
 document, DNS is a mechanism currently discussed. DNS exposes data
 in plaintext over the network (including what sites the user is
 visiting and what sites they have previously visited) and may not be
 suitable for some.

Nordberg, et al. Expires July 18, 2018 [Page 28]

Internet-Draft Gossiping in CT January 2018

10.5.4. Privacy in STH Pollination

 An STH linked to an HTTPS client may indicate the following about
 that client:

 o that the client gossips;

 o that the client has been using CT at least until the time that the
 timestamp and the tree size indicate;

 o that the client is talking, possibly indirectly, to the log
 indicated by the tree hash;

 o which software and software version is being used.

 There is a possible fingerprinting attack where a log issues a unique
 STH for a targeted HTTPS client. This is similar to the
 fingerprinting attack described in Section 10.5.2, but can operate
 cross-origin. If a log (or HTTPS server cooperating with a log)
 provides a unique STH to a client, the targeted client will be the
 only client pollinating that STH cross-origin.

 It is mitigated partially because the log is limited in the number of
 STHs it can issue. It must ’save’ one of its STHs each MMD to
 perform the attack. A log violating its STH Frequency Count
 ([RFC-6962-BIS-27] section 4.1) can be identified as non-compliant by
 CT auditors following the procedure described in [RFC-6962-BIS-27]
 section 8.3.

10.5.5. Privacy in STH Interaction

 An HTTPS client may pollinate any STH within the last 14 days. An
 HTTPS client may also pollinate an STH for any log that it knows
 about. When a client pollinates STHs to a server, it will release
 more than one STH at a time. It is unclear if a server may ’prime’ a
 client and be able to reliably detect the client at a later time.

 It’s clear that a single site can track a user any way they wish, but
 this attack works cross-origin and is therefore more concerning. Two
 independent sites A and B want to collaborate to track a user cross-
 origin. A feeds a client Carol some N specific STHs from the M logs
 Carol trusts, chosen to be older and less common, but still in the
 validity window. Carol visits B and chooses to release some of the
 STHs she has stored, according to some policy.

 Modeling a representation for how common older STHs are in the pools
 of clients, and examining that with a given policy of how to choose
 which of those STHs to send to B, it should be possible to calculate

Nordberg, et al. Expires July 18, 2018 [Page 29]

Internet-Draft Gossiping in CT January 2018

 statistics about how unique Carol looks when talking to B and how
 useful/accurate such a tracking mechanism is.

 Building such a model is likely impossible without some real world
 data, and requires a given implementation of a policy. To combat
 this attack, suggestions are provided in Section 11.3 to attempt to
 minimize it, but follow-up testing with real world deployment to
 improve the policy will be required.

10.5.6. Trusted Auditors for HTTPS Clients

 Some HTTPS clients may choose to use a trusted auditor. This trust
 relationship exposes a large amount of information about the client
 to the auditor. In particular, it will identify the web sites that
 the client has visited to the auditor. Some clients may already
 share this information to a third party, for example, when using a
 server to synchronize browser history across devices in a server-
 visible way, or when doing DNS lookups through a trusted DNS
 resolver. For clients with such a relationship already established,
 sending SCTs to a trusted auditor run by the same organization does
 not appear to expose any additional information to the trusted third
 party.

 Clients which wish to contact a CT auditor without associating their
 identities with their SCTs may wish to use an anonymizing network
 like Tor to submit SCT Feedback to the auditor. Auditors SHOULD
 accept SCT Feedback that arrives over such anonymizing networks.

 Clients sending feedback to an auditor may prefer to reduce the
 temporal granularity of the history exposure to the auditor by
 caching and delaying their SCT Feedback reports. This is elaborated
 upon in Section 11.3. This strategy is only as effective as the
 granularity of the timestamps embedded in the SCTs and STHs.

10.5.7. HTTPS Clients as Auditors

 Some HTTPS clients may choose to act as CT auditors themselves. A
 Client taking on this role needs to consider the following:

 o an Auditing HTTPS client potentially exposes its history to the
 logs that they query. Querying the log through a cache or a proxy
 with many other users may avoid this exposure, but may expose
 information to the cache or proxy, in the same way that a non-
 Auditing HTTPS Client exposes information to a Trusted Auditor.

 o an effective CT auditor needs a strategy about what to do in the
 event that it discovers misbehavior from a log. Misbehavior from
 a log involves the log being unable to provide either (a) a

Nordberg, et al. Expires July 18, 2018 [Page 30]

Internet-Draft Gossiping in CT January 2018

 consistency proof between two valid STHs or (b) an inclusion proof
 for a certificate to an STH any time after the log’s MMD has
 elapsed from the issuance of the SCT. The log’s inability to
 provide either proof will not be externally cryptographically-
 verifiable, as it may be indistinguishable from a network error.

11. Policy Recommendations

 This section is intended as suggestions to implementors of HTTPS
 Clients, HTTPS servers, and CT auditors. It is not a requirement for
 technique of implementation, so long as the privacy considerations
 established above are obeyed.

11.1. Blocking Recommendations

11.1.1. Frustrating blocking

 When making gossip connections to HTTPS servers or Trusted Auditors,
 it is desirable to minimize the plaintext metadata in the connection
 that can be used to identify the connection as a gossip connection
 and therefore be of interest to block. Additionally, introducing
 some randomness into client behavior may be important. We assume
 that the adversary is able to inspect the behavior of the HTTPS
 client and understand how it makes gossip connections.

 As an example, if a client, after establishing a TLS connection (and
 receiving an SCT, but not making its own HTTP request yet),
 immediately opens a second TLS connection for the purpose of gossip,
 the adversary can reliably block this second connection to block
 gossip without affecting normal browsing. For this reason it is
 recommended to run the gossip protocols over an existing connection
 to the server, making use of connection multiplexing such as HTTP
 Keep-Alive or SPDY.

 Truncation is also a concern. If a client always establishes a TLS
 connection, makes a request, receives a response, and then always
 attempts a gossip communication immediately following the first
 response, truncation will allow an attacker to block gossip reliably.

 For these reasons, we recommend that, if at all possible, clients
 SHOULD send gossip data in an already established TLS session. This
 can be done through the use of HTTP Pipelining, SPDY, or HTTP/2.

11.1.2. Responding to possible blocking

 In some circumstances a client may have a piece of data that they
 have attempted to share (via SCT Feedback or STH Pollination), but

Nordberg, et al. Expires July 18, 2018 [Page 31]

Internet-Draft Gossiping in CT January 2018

 have been unable to do so: with every attempt they receive an error.
 These situations are:

 1. The client has an SCT and a certificate, and attempts to retrieve
 an inclusion proof - but receives an error on every attempt.

 2. The client has an STH, and attempts to resolve it to a newer STH
 via a consistency proof - but receives an error on every attempt.

 3. The client has attempted to share an SCT and constructed
 certificate via SCT Feedback - but receives an error on every
 attempt.

 4. The client has attempted to share an STH via STH Pollination -
 but receives an error on every attempt.

 5. The client has attempted to share a specific piece of data with a
 Trusted Auditor - but receives an error on every attempt.

 In the case of 1 or 2, it is conceivable that the reason for the
 errors is that the log acted improperly, either through malicious
 actions or compromise. A proof may not be able to be fetched because
 it does not exist (and only errors or timeouts occur). One such
 situation may arise because of an actively malicious log, as
 presented in Section 10.1. This data is especially important to
 share with the broader internet to detect this situation.

 If an SCT has attempted to be resolved to an STH via an inclusion
 proof multiple times, and each time has failed, this SCT might very
 well be a compromising proof of an attack. However the client MUST
 NOT share the data with any other third party (excepting a Trusted
 Auditor should one exist).

 If an STH has attempted to be resolved to a newer STH via a
 consistency proof multiple times, and each time has failed, a client
 MAY share the STH with an "Auditor of Last Resort" even if the STH in
 question is no longer within the validity window. This auditor may
 be pre-configured in the client, but the client SHOULD permit a user
 to disable the functionality or change whom data is sent to. The
 Auditor of Last Resort itself represents a point of failure and
 privacy concerns, so if implemented, it SHOULD connect using public
 key pinning and not consider an item delivered until it receives a
 confirmation.

 In the cases 3, 4, and 5, we assume that the webserver(s) or trusted
 auditor in question is either experiencing an operational failure, or
 being attacked. In both cases, a client SHOULD retain the data for
 later submission (subject to Private Browsing or other history-

Nordberg, et al. Expires July 18, 2018 [Page 32]

Internet-Draft Gossiping in CT January 2018

 clearing actions taken by the user.) This is elaborated upon more in
 Section 11.3.

11.2. Proof Fetching Recommendations

 Proof fetching (both inclusion proofs and consistency proofs) SHOULD
 be performed at random time intervals. If proof fetching occurred
 all at once, in a flurry of activity, a log would know that SCTs or
 STHs received around the same time are more likely to come from a
 particular client. While proof fetching is required to be done in a
 manner that attempts to be anonymous from the perspective of the log,
 the correlation of activity to a single client would still reveal
 patterns of user behavior we wish to keep confidential. These
 patterns could be recognizable as a single user, or could reveal what
 sites are commonly visited together in the aggregate.

11.3. Record Distribution Recommendations

 In several components of the CT Gossip ecosystem, the recommendation
 is made that data from multiple sources be ingested, mixed, stored
 for an indeterminate period of time, provided (multiple times) to a
 third party, and eventually deleted. The instances of these
 recommendations in this draft are:

 o When a client receives SCTs during SCT Feedback, it should store
 the SCTs and Certificate Chain for some amount of time, provide
 some of them back to the server at some point, and may eventually
 remove them from its store

 o When a client receives STHs during STH Pollination, it should
 store them for some amount of time, mix them with other STHs,
 release some of them them to various servers at some point,
 resolve some of them to new STHs, and eventually remove them from
 its store

 o When a server receives SCTs during SCT Feedback, it should store
 them for some period of time, provide them to auditors some number
 of times, and may eventually remove them

 o When a server receives STHs during STH Pollination, it should
 store them for some period of time, mix them with other STHs,
 provide some of them to connecting clients, may resolve them to
 new STHs via Proof Fetching, and eventually remove them from its
 store

 o When a Trusted Auditor receives SCTs or historical STHs from
 clients, it should store them for some period of time, mix them

Nordberg, et al. Expires July 18, 2018 [Page 33]

Internet-Draft Gossiping in CT January 2018

 with SCTs received from other clients, and act upon them at some
 period of time

 Each of these instances have specific requirements for user privacy,
 and each have options that may not be invoked. As one example, an
 HTTPS client should not mix SCTs from server A with SCTs from server
 B and release server B’s SCTs to Server A. As another example, an
 HTTPS server may choose to resolve STHs to a single more current STH
 via proof fetching, but it is under no obligation to do so.

 These requirements should be met, but the general problem of
 aggregating multiple pieces of data, choosing when and how many to
 release, and when to remove them is shared. This problem has
 previously been considered in the case of Mix Networks and Remailers,
 including papers such as [trickle].

 There are several concerns to be addressed in this area, outlined
 below.

11.3.1. Mixing Algorithm

 When SCTs or STHs are recorded by a participant in CT Gossip and
 later used, it is important that they are selected from the datastore
 in a non-deterministic fashion.

 This is most important for servers, as they can be queried for SCTs
 and STHs anonymously. If the server used a predictable ordering
 algorithm, an attacker could exploit the predictability to learn
 information about a client. One such method would be by observing
 the (encrypted) traffic to a server. When a client of interest
 connects, the attacker makes a note. They observe more clients
 connecting, and predicts at what point the client-of-interest’s data
 will be disclosed, and ensures that they query the server at that
 point.

 Although most important for servers, random ordering is still
 strongly recommended for clients and Trusted Auditors. The above
 attack can still occur for these entities, although the circumstances
 are less straightforward. For clients, an attacker could observe
 their behavior, note when they receive an STH from a server, and use
 javascript to cause a network connection at the correct time to force
 a client to disclose the specific STH. Trusted Auditors are stewards
 of sensitive client data. If an attacker had the ability to observe
 the activities of a Trusted Auditor (perhaps by being a log, or
 another auditor), they could perform the same attack - noting the
 disclosure of data from a client to the Trusted Auditor, and then
 correlating a later disclosure from the Trusted Auditor as coming
 from that client.

Nordberg, et al. Expires July 18, 2018 [Page 34]

Internet-Draft Gossiping in CT January 2018

 Random ordering can be ensured by several mechanisms. A datastore
 can be shuffled, using a secure shuffling algorithm such as Fisher-
 Yates. Alternately, a series of random indexes into the data store
 can be selected (if a collision occurs, a new index is selected.) A
 cryptographically secure random number generator must be used in
 either case. If shuffling is performed, the datastore must be marked
 ’dirty’ upon item insertion, and at least one shuffle operation
 occurs on a dirty datastore before data is retrieved from it for use.

11.3.2. The Deletion Algorithm

 No entity in CT Gossip is required to delete records at any time,
 except to respect user’s wishes such as private browsing mode or
 clearing history. However, it is likely that over time the
 accumulated storage will grow in size and need to be pruned.

 While deletion of data will occur, proof fetching can ensure that any
 misbehavior from a log will still be detected, even after the direct
 evidence from the attack is deleted. Proof fetching ensures that if
 a log presents a split view for a client, they must maintain that
 split view in perpetuity. An inclusion proof from an SCT to an STH
 does not erase the evidence - the new STH is evidence itself. A
 consistency proof from that STH to a new one likewise - the new STH
 is every bit as incriminating as the first. (Client behavior in the
 situation where an SCT or STH cannot be resolved is suggested in
 Section 11.1.2.) Because of this property, we recommend that if a
 client is performing proof fetching, that they make every effort to
 not delete data until it has been successfully resolved to a new STH
 via a proof.

 When it is time to delete a record, it can be done in a way that
 makes it more difficult for a successful flushing attack to to be
 performed.

 1. When the record cache has reached a certain size that is yet
 under the limit, aggressively perform proof fetching. This
 should resolve records to a small set of STHs that can be
 retained. Once a proof has been fetched, the record is safer to
 delete.

 2. If proof fetching has failed, or is disabled, begin by deleting
 SCTs and Certificate Chains that have been successfully reported.
 Deletion from this set of SCTs should be done at random. For a
 client, a submission is not counted as being reported unless it
 is sent over a connection using a different SCT, so the attacker
 is faced with a recursive problem. (For a server, this step does
 not apply.)

Nordberg, et al. Expires July 18, 2018 [Page 35]

Internet-Draft Gossiping in CT January 2018

 3. Attempt to save any submissions that have failed proof fetching
 repeatedly, as these are the most likely to be indicative of an
 attack.

 4. Finally, if the above steps have been followed and have not
 succeeded in reducing the size sufficiently, records may be
 deleted at random.

 Note that if proof fetching is disabled (which is expected although
 not required for servers) - the algorithm collapses down to ’delete
 at random’.

 The decision to delete records at random is intentional. Introducing
 non-determinism in the decision is absolutely necessary to make it
 more difficult for an adversary to know with certainty or high
 confidence that the record has been successfully flushed from a
 target.

11.4. Concrete Recommendations

 We present the following pseudocode as a concrete outline of our
 policy recommendations.

 Both suggestions presented are applicable to both clients and
 servers. Servers may not perform proof fetching, in which case large
 portions of the pseudocode are not applicable. But it should work in
 either case.

 Note that we use a function ’rand()’ in the pseudocode, this function
 is assumed to be a cryptographically secure pseudorandom number
 generator. Additionally, when N unique items are needed, they are
 chosen at random by drawing a random index repeatedly until the N
 unique items from an array have been chosen. Although simple, when
 the array is N or near-N items in length this is inefficient. A
 secure shuffle algorithm followed by selecting the first N items may
 be more efficient, especially when N is large.

11.4.1. STH Pollination

 The STH class contains data pertaining specifically to the STH
 itself.

Nordberg, et al. Expires July 18, 2018 [Page 36]

Internet-Draft Gossiping in CT January 2018

 class STH
 {
 uint16 proof_attempts
 uint16 proof_failure_count
 uint32 num_reports_to_thirdparty
 datetime timestamp
 byte[] data
 }

 The broader STH store itself would contain all the STHs known by an
 entity participating in STH Pollination (either client or server).
 This simplistic view of the class does not take into account the
 complicated locking that would likely be required for a data
 structure being accessed by multiple threads. Something to note
 about this pseudocode is that it does not remove STHs once they have
 been resolved to a newer STH. Doing so might make older STHs within
 the validity window rarer and thus enable tracking.

 class STHStore
 {
 STH[] sth_list

 // This function is run after receiving a set of STHs from
 // a third party in response to a pollination submission
 def insert(STH[] new_sths) {
 foreach(new in new_sths) {
 if(this.sth_list.contains(new))
 continue
 this.sth_list.insert(new)
 }
 }

 // This function is called to delete the given STH
 // from the data store
 def delete_now(STH s) {
 this.sth_list.remove(s)
 }

 // When it is time to perform STH Pollination, the HTTPS client
 // calls this function to get a selection of STHs to send as
 // feedback
 def get_pollination_selection() {
 if(len(this.sth_list) < MAX_STH_TO_GOSSIP)
 return this.sth_list
 else {
 indexes = set()
 modulus = len(this.sth_list)
 outdated_sths = 0

Nordberg, et al. Expires July 18, 2018 [Page 37]

Internet-Draft Gossiping in CT January 2018

 while(len(indexes) + outdated_sths < MAX_STH_TO_GOSSIP) {
 r = randomInt() % modulus
 if(r not in indexes)
 // Ignore STHs that are past the validity window but not
 // yet removed.
 if(now() - this.sth_list[i].timestamp < TWO_WEEKS)
 outdated_sths++;
 else
 indexes.insert(r)
 }

 return_selection = []
 foreach(i in indexes) {
 return_selection.insert(this.sth_list[i])
 }
 return return_selection
 }
 }
 }

 We also suggest a function that will be called periodically in the
 background, iterating through the STH store, performing a cleaning
 operation and queuing consistency proofs. This function can live as
 a member functions of the STHStore class.

Nordberg, et al. Expires July 18, 2018 [Page 38]

Internet-Draft Gossiping in CT January 2018

//Just a suggestion:
#define MIN_PROOF_FAILURES_CONSIDERED_SUSPICIOUS 3

def clean_list() {
 foreach(sth in this.sth_list) {

 if(now() - sth.timestamp > TWO_WEEKS) {
 //STH is too old, we must remove it
 if(proof_fetching_enabled
 && auditor_of_last_resort_enabled
 && sth.proof_failure_count
 > MIN_PROOF_FAILURES_CONSIDERED_SUSPICIOUS) {
 queue_for_auditor_of_last_resort(sth,
 auditor_of_last_resort_callback)
 } else {
 delete_now(sth)
 }
 }

 else if(proof_fetching_enabled
 && now() - sth.timestamp > LOG_MMD
 && sth.proof_attempts != UINT16_MAX
 // Only fetch a proof is we have never received a proof
 // before. (This also avoids submitting something
 // already in the queue.)
 && sth.proof_attempts == sth.proof_failure_count) {
 sth.proof_attempts++
 queue_consistency_proof(sth, consistency_proof_callback)
 }
 }
}

 These functions also exist in the STHStore class.

Nordberg, et al. Expires July 18, 2018 [Page 39]

Internet-Draft Gossiping in CT January 2018

// This function is called after successfully pollinating STHs
// to a third party. It is passed the STHs sent to the third
// party, which is the output of get_gossip_selection(), as well
// as the STHs received in the response.
def successful_thirdparty_submission_callback(STH[] submitted_sth_list,
 STH[] new_sths)
{
 foreach(sth in submitted_sth_list) {
 sth.num_reports_to_thirdparty++
 }

 this.insert(new_sths);
}

// Attempt auditor of last resort submissions until it succeeds
def auditor_of_last_resort_callback(original_sth, error) {
 if(!error) {
 delete_now(original_sth)
 }
}

def consistency_proof_callback(consistency_proof, original_sth, error) {
 if(!error) {
 insert(consistency_proof.current_sth)
 } else {
 original_sth.proof_failure_count++
 }
}

11.4.2. SCT Feedback

 The SCT class contains data pertaining specifically to an SCT itself.

 class SCT
 {
 uint16 proof_failure_count
 bool has_been_resolved_to_sth
 bool proof_outstanding
 byte[] data
 }

 The SCT bundle will contain the trusted certificate chain the HTTPS
 client built (chaining to a trusted root certificate.) It also
 contains the list of associated SCTs, the exact domain it is
 applicable to, and metadata pertaining to how often it has been
 reported to the third party.

Nordberg, et al. Expires July 18, 2018 [Page 40]

Internet-Draft Gossiping in CT January 2018

 class SCTBundle
 {
 X509[] certificate_chain
 SCT[] sct_list
 string domain
 uint32 num_reports_to_thirdparty

 def equals(sct_bundle) {
 if(sct_bundle.domain != this.domain)
 return false
 if(sct_bundle.certificate_chain != this.certificate_chain)
 return false
 if(sct_bundle.sct_list != this.sct_list)
 return false

 return true
 }
 def approx_equals(sct_bundle) {
 if(sct_bundle.domain != this.domain)
 return false
 if(sct_bundle.certificate_chain != this.certificate_chain)
 return false

 return true
 }

 def insert_scts(sct[] sct_list) {
 this.sct_list.union(sct_list)
 this.num_reports_to_thirdparty = 0
 }

 def has_been_fully_resolved_to_sths() {
 foreach(s in this.sct_list) {
 if(!s.has_been_resolved_to_sth && !s.proof_outstanding)
 return false
 }
 return true
 }

 def max_proof_failures() {
 uint max = 0
 foreach(sct in this.sct_list) {
 if(sct.proof_failure_count > max)
 max = sct.proof_failure_count
 }
 return max
 }
 }

Nordberg, et al. Expires July 18, 2018 [Page 41]

Internet-Draft Gossiping in CT January 2018

 For each domain, we store a SCTDomainEntry that holds the SCTBundles
 seen for that domain, as well as encapsulating some logic relating to
 SCT Feedback for that particular domain. In particular, this data
 structure also contains the logic that handles domains not supporting
 SCT Feedback. Its behavior is:

 1. When a user visits a domain, SCT Feedback is attempted for it.
 If it fails, it will retry after a month (configurable). If it
 succeeds, excellent. SCT Feedback data is still collected and
 stored even if SCT Feedback failed.

 2. After 3 month-long waits between failures, the domain will be
 marked as failing long-term. No SCT Feedback data will be stored
 beyond meta-data, but SCT Feedback will still be attempted after
 month-long waits

 3. If at any point in time, SCT Feedback succeeds, all failure
 counters are reset

 4. If a domain succeeds, but then begins failing, it must fail more
 than 90% of the time (configurable) and then the process begins
 at (2).

 If a domain is visited infrequently (say, once every 7 months) then
 it will be evicted from the cache and start all over again (according
 to the suggestion values in the below pseudocode).

//Suggestions:
// After concluding a domain doesn’t support feedback, we try again
// after WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS amount of time to see if
// they added support
#define WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS 1 month

// If we’ve waited MIN_SCT_FEEDBACK_ATTEMPTS_BEFORE_OMITTING_STORAGE
// multiplied by WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS amount of time, we
// still attempt SCT Feedback, but no longer bother storing any data
// until the domain supports SCT Feedback
#define MIN_SCT_FEEDBACK_ATTEMPTS_BEFORE_OMITTING_STORAGE 3

// If this percentage of SCT Feedback attempts previously succeeded,
// we consider the domain as supporting feedback and is just having
// transient errors
#define MIN_RATIO_FOR_SCT_FEEDBACK_TO_BE_WORKING .10

class SCTDomainEntry
{
 // This is the primary key of the object, the exact domain name it
 // is valid for

Nordberg, et al. Expires July 18, 2018 [Page 42]

Internet-Draft Gossiping in CT January 2018

 string domain

 // This is the last time the domain was contacted. For client
 // operations it is updated whenever the client makes any request
 // (not just feedback) to the domain. For server operations, it is
 // updated whenever any client contacts the domain. Responsibility
 // for updating lies OUTSIDE of the class
 public datetime last_contact_for_domain

 // This is the last time SCT Feedback was attempted for the domain.
 // It is updated whenever feedback is attempted - responsibility for
 // updating lies OUTSIDE of the class
 // This is not used when this algorithm runs on servers
 public datetime last_sct_feedback_attempt

 // This is the number of times we have waited an
 // WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS amount of time, and still failed
 // e.g., 10 months of failures
 // This is not used when this algorithm runs on servers
 private uint16 num_feedback_loop_failures

 // This is whether or not SCT Feedback has failed enough times that we
 // should not bother storing data for it anymore. It is a small
 // function used for illustrative purposes.
 // This is not used when this algorithm runs on servers
 private bool sct_feedback_failing_longterm()
 { num_feedback_loop_failures >=
 MIN_SCT_FEEDBACK_ATTEMPTS_BEFORE_OMITTING_STORAGE }

 // This is the number of SCT Feedback submissions attempted.
 // Responsibility for incrementing lies OUTSIDE of the class
 // (And watch for integer overflows)
 // This is not used when this algorithm runs on servers
 public uint16 num_submissions_attempted

 // This is the number of successful SCT Feedback submissions. This
 // variable is updated by the class.
 // This is not used when this algorithm runs on servers
 private uint16 num_submissions_succeeded

 // This contains all the bundles of SCT data we have observed for
 // this domain
 SCTBundle[] observed_records

 // This function can be called to determine if we should attempt
 // SCT Feedback for this domain.
 def should_attempt_feedback() {

Nordberg, et al. Expires July 18, 2018 [Page 43]

Internet-Draft Gossiping in CT January 2018

 // Servers always perform feedback!
 if(operator_is_server)
 return true

 // If we have not tried in a month, try again
 if(now() - last_sct_feedback_attempt >
 WAIT_BETWEEN_SCT_FEEDBACK_ATTEMPTS)
 return true

 // If we have tried recently, and it seems to be working, go for it!
 if((num_submissions_succeeded / num_submissions_attempted) >
 MIN_RATIO_FOR_SCT_FEEDBACK_TO_BE_WORKING)
 return true

 // Otherwise don’t try
 return false
 }

 // For Clients, this function is called after a successful
 // connection to an HTTPS server, with a single SCTBundle
 // constructed from that connection’s certificate chain and SCTs.
 // For Servers, this is called after receiving SCT Feedback with
 // all the bundles sent in the feedback.
 def insert(SCTBundle[] bundles) {
 // Do not store data for long-failing domains
 if(sct_feedback_failing_longterm()) {
 return
 }

 foreach(b in bundles) {
 if(operator_is_server) {
 if(!passes_validity_checks(b))
 return
 }

 bool have_inserted = false
 foreach(e in this.observed_records) {
 if(e.equals(b))
 return
 else if(e.approx_equals(b)) {
 have_inserted = true
 e.insert_scts(b.sct_list)
 }
 }
 if(!have_inserted)
 this.observed_records.insert(b)
 }
 SCTStoreManager.update_cache_percentage()

Nordberg, et al. Expires July 18, 2018 [Page 44]

Internet-Draft Gossiping in CT January 2018

 }

 // When it is time to perform SCT Feedback, the HTTPS client
 // calls this function to get a selection of SCTBundles to send
 // as feedback
 def get_gossip_selection() {
 if(len(observed_records) > MAX_SCT_RECORDS_TO_GOSSIP) {
 indexes = set()
 modulus = len(observed_records)
 while(len(indexes) < MAX_SCT_RECORDS_TO_GOSSIP) {
 r = randomInt() % modulus
 if(r not in indexes)
 indexes.insert(r)
 }

 return_selection = []
 foreach(i in indexes) {
 return_selection.insert(this.observed_records[i])
 }

 return return_selection
 }
 else
 return this.observed_records
 }

 def passes_validity_checks(SCTBundle b) {
 // This function performs the validity checks specified in
 // {{feedback-srvop}}
 }
}

 The SCTDomainEntry is responsible for handling the outcome of a
 submission report for that domain using its member function:

// This function is called after providing SCT Feedback
// to a server. It is passed the feedback sent to the other party, which
// is the output of get_gossip_selection(), and also the SCTBundle
// representing the connection the data was sent on.
// (When this code runs on the server, connectionBundle is NULL)
// If the Feedback was not sent successfully, error is True
def after_submit_to_thirdparty(error, SCTBundle[] submittedBundles,
 SCTBundle connectionBundle)
{
 // Server operation in this instance is exceedingly simple
 if(operator_is_server) {
 if(error)
 return

Nordberg, et al. Expires July 18, 2018 [Page 45]

Internet-Draft Gossiping in CT January 2018

 foreach(bundle in submittedBundles)
 bundle.num_reports_to_thirdparty++
 return
 }

 // Client behavior is much more complicated
 if(error) {
 if(sct_feedback_failing_longterm()) {
 num_feedback_loop_failures++
 }
 else if((num_submissions_succeeded / num_submissions_attempted)
 > MIN_RATIO_FOR_SCT_FEEDBACK_TO_BE_WORKING) {
 // Do nothing. num_submissions_succeeded will not be incremented
 // After enough of these failures, the ratio will fall beyond
 // acceptable
 } else {
 // The domain has begun its three-month grace period. We will
 // attempt submissions once a month
 num_feedback_loop_failures++
 }
 return
 }
 // We succeeded, so reset all of our failure states
 // Note, there is a race condition here if clear_old_data() is called
 // while this callback is outstanding.
 num_feedback_loop_failures = 0
 if(num_submissions_succeeded != UINT16_MAX)
 num_submissions_succeeded++

 foreach(bundle in submittedBundles)
 {
 // Compare Certificate Chains, if they do not match, it counts as a
 // submission.
 if(!connectionBundle.approx_equals(bundle))
 bundle.num_reports_to_thirdparty++
 else {
 // This check ensures that a SCT Bundle is not considered reported
 // if it is submitted over a connection with the same SCTs. This
 // satisfies the constraint in Paragraph 5 of {{feedback-clisrv}}
 // Consider three submission scenarios:
 // Submitted SCTs Connection SCTs Considered Submitted
 // A, B A, B No - no new information
 // A A, B Yes - B is a new SCT
 // A, B A No - no new information
 if(connectionBundle.sct_list is NOT a subset of bundle.sct_list)
 bundle.num_reports_to_thirdparty++
 }

Nordberg, et al. Expires July 18, 2018 [Page 46]

Internet-Draft Gossiping in CT January 2018

 }
}

 Instances of the SCTDomainEntry class are stored as part of a larger
 class that manages the entire SCT Cache, storing them in a hashmap
 keyed by domain. This class also tracks the current size of the
 cache, and will trigger cache eviction.

Nordberg, et al. Expires July 18, 2018 [Page 47]

Internet-Draft Gossiping in CT January 2018

//Suggestions:
#define CACHE_PRESSURE_SAFE .50
#define CACHE_PRESSURE_IMMINENT .70
#define CACHE_PRESSURE_ALMOST_FULL .85
#define CACHE_PRESSURE_FULL .95
#define WAIT_BETWEEN_IMMINENT_CACHE_EVICTION 5 minutes

class SCTStoreManager
{
 hashmap<String, SCTDomainEntry> all_sct_entries
 uint32 current_cache_size
 datetime imminent_cache_pressure_check_performed

 float current_cache_percentage() {
 return current_cache_size / MAX_CACHE_SIZE;
 }

 static def update_cache_percentage() {
 // This function calculates the current size of the cache
 // and updates current_cache_size
 /* ... perform calculations ... */
 current_cache_size = /* new calculated value */

 // Perform locking to prevent multiple of these functions being
 // called concurrently or unnecessarily
 if(current_cache_percentage() > CACHE_PRESSURE_FULL) {
 cache_is_full()
 }

 else if(current_cache_percentage() > CACHE_PRESSURE_ALMOST_FULL) {
 cache_pressure_almost_full()
 }

 else if(current_cache_percentage() > CACHE_PRESSURE_IMMINENT) {
 // Do not repeatedly perform the imminent cache pressure operation
 if(now() - imminent_cache_pressure_check_performed >
 WAIT_BETWEEN_IMMINENT_CACHE_EVICTION) {
 cache_pressure_is_imminent()
 }
 }
 }
}

 The SCTStoreManager contains a function that will be called
 periodically in the background, iterating through all SCTDomainEntry
 objects and performing maintenance tasks. It removes data for
 domains we have not contacted in a long time. This function is not

Nordberg, et al. Expires July 18, 2018 [Page 48]

Internet-Draft Gossiping in CT January 2018

 intended to clear data if the cache is getting full, separate
 functions are used for that.

 // Suggestions:
 #define TIME_UNTIL_OLD_SUBMITTED_SCTDATA_ERASED 3 months
 #define TIME_UNTIL_OLD_UNSUBMITTED_SCTDATA_ERASED 6 months

 def clear_old_data()
 {
 foreach(domainEntry in all_sct_stores)
 {
 // Queue proof fetches
 if(proof_fetching_enabled) {
 foreach(sctBundle in domainEntry.observed_records) {
 if(!sctBundle.has_been_fully_resolved_to_sths()) {
 foreach(s in bundle.sct_list) {
 if(!s.has_been_resolved_to_sth && !s.proof_outstanding) {
 sct.proof_outstanding = True
 queue_inclusion_proof(sct, inclusion_proof_callback)
 }
 }
 }
 }
 }

 // Do not store data for domains who are not supporting SCT
 if(!operator_is_server
 && domainEntry.sct_feedback_failing_longterm())
 {
 // Note that reseting these variables every single time is
 // necessary to avoid a bug
 all_sct_stores[domainEntry].num_submissions_attempted = 0
 all_sct_stores[domainEntry].num_submissions_succeeded = 0
 delete all_sct_stores[domainEntry].observed_records
 all_sct_stores[domainEntry].observed_records = NULL
 }

 // This check removes successfully submitted data for
 // old domains we have not dealt with in a long time
 if(domainEntry.num_submissions_succeeded > 0
 && now() - domainEntry.last_contact_for_domain
 > TIME_UNTIL_OLD_SUBMITTED_SCTDATA_ERASED)
 {
 all_sct_stores.remove(domainEntry)
 }

 // This check removes unsuccessfully submitted data for
 // old domains we have not dealt with in a very long time

Nordberg, et al. Expires July 18, 2018 [Page 49]

Internet-Draft Gossiping in CT January 2018

 if(now() - domainEntry.last_contact_for_domain
 > TIME_UNTIL_OLD_UNSUBMITTED_SCTDATA_ERASED)
 {
 all_sct_stores.remove(domainEntry)
 }

 SCTStoreManager.update_cache_percentage()
 }

 Inclusion Proof Fetching is handled fairly independently

 // This function is a callback invoked after an inclusion proof
 // has been retrieved. It can exist on the SCT class or independently,
 // so long as it can modify the SCT class’ members
 def inclusion_proof_callback(inclusion_proof, original_sct, error)
 {
 // Unlike the STH code, this counter must be incremented on the
 // callback as there is a race condition on using this counter in the
 // cache_* functions.
 original_sct.proof_attempts++
 original_sct.proof_outstanding = False
 if(!error) {
 original_sct.has_been_resolved_to_sth = True
 insert_to_sth_datastore(inclusion_proof.new_sth)
 } else {
 original_sct.proof_failure_count++
 }
 }

 If the cache is getting full, these three member functions of the
 SCTStoreManager class will be used.

 // ---
 // This function is called when the cache is not yet full, but is
 // nearing it. It prioritizes deleting data that should be safe
 // to delete (because it has been shared with the site or resolved
 // to an STH)
 def cache_pressure_is_imminent()
 {
 bundlesToDelete = []
 foreach(domainEntry in all_sct_stores) {
 foreach(sctBundle in domainEntry.observed_records) {

 if(proof_fetching_enabled) {
 // First, queue proofs for anything not already queued.
 if(!sctBundle.has_been_fully_resolved_to_sths()) {
 foreach(sct in bundle.sct_list) {
 if(!sct.has_been_resolved_to_sth

Nordberg, et al. Expires July 18, 2018 [Page 50]

Internet-Draft Gossiping in CT January 2018

 && !sct.proof_outstanding) {
 sct.proof_outstanding = True
 queue_inclusion_proof(sct, inclusion_proof_callback)
 }
 }
 }

 // Second, consider deleting entries that have been fully
 // resolved.
 else {
 bundlesToDelete.append(Struct(domainEntry, sctBundle))
 }
 }

 // Third, consider deleting entries that have been successfully
 // reported
 if(sctBundle.num_reports_to_thirdparty > 0) {
 bundlesToDelete.append(Struct(domainEntry, sctBundle))
 }
 }
 }

 // Third, delete the eligible entries at random until the cache is
 // at a safe level
 uint recalculateIndex = 0
 #define RECALCULATE_EVERY_N_OPERATIONS 50

 while(bundlesToDelete.length > 0 &&
 current_cache_percentage() > CACHE_PRESSURE_SAFE) {
 uint rndIndex = rand() % bundlesToDelete.length
 bundlesToDelete[rndIndex].domainEntry.observed_records.remove(
 bundlesToDelete[rndIndex].sctBundle)
 bundlesToDelete.removeAt(rndIndex)

 recalculateIndex++
 if(recalculateIndex % RECALCULATE_EVERY_N_OPERATIONS == 0) {
 update_cache_percentage()
 }
 }

 // Finally, tell the proof fetching engine to go faster
 if(proof_fetching_enabled) {
 // This function would speed up proof fetching until an
 // arbitrary time has passed. Perhaps until it has fetched
 // proofs for the number of items currently in its queue? Or
 // a percentage of them?
 proof_fetch_faster_please()
 }

Nordberg, et al. Expires July 18, 2018 [Page 51]

Internet-Draft Gossiping in CT January 2018

 update_cache_percentage();
 }

 // ---
 // This function is called when the cache is almost full. It will
 // evict entries at random, while attempting to save entries that
 // appear to have proof fetching failures
 def cache_pressure_almost_full()
 {
 uint recalculateIndex = 0
 uint savedRecords = 0
 #define RECALCULATE_EVERY_N_OPERATIONS 50

 while(all_sct_stores.length > savedRecords &&
 current_cache_percentage() > CACHE_PRESSURE_SAFE) {
 uint rndIndex1 = rand() % all_sct_stores.length
 uint rndIndex2 = rand() %
 all_sct_stores[rndIndex1].observed_records.length

 if(proof_fetching_enabled) {
 if(all_sct_stores[rndIndex1].observed_records[
 rndIndex2].max_proof_failures() >
 MIN_PROOF_FAILURES_CONSIDERED_SUSPICIOUS) {
 savedRecords++
 continue
 }
 }

 // If proof fetching is not enabled we need some other logic
 else {
 if(sctBundle.num_reports_to_thirdparty == 0) {
 savedRecords++
 continue
 }
 }

 all_sct_stores[rndIndex1].observed_records.removeAt(rndIndex2)
 if(all_sct_stores[rndIndex1].observed_records.length == 0) {
 all_sct_stores.removeAt(rndIndex1)
 }

 recalculateIndex++
 if(recalculateIndex % RECALCULATE_EVERY_N_OPERATIONS == 0) {
 update_cache_percentage()
 }
 }

 update_cache_percentage();

Nordberg, et al. Expires July 18, 2018 [Page 52]

Internet-Draft Gossiping in CT January 2018

 }

 // ---
 // This function is called when the cache is full, and will evict
 // cache entries at random
 def cache_is_full()
 {
 uint recalculateIndex = 0
 #define RECALCULATE_EVERY_N_OPERATIONS 50

 while(all_sct_stores.length > 0 &&
 current_cache_percentage() > CACHE_PRESSURE_SAFE) {
 uint rndIndex1 = rand() % all_sct_stores.length
 uint rndIndex2 = rand() %
 all_sct_stores[rndIndex1].observed_records.length

 all_sct_stores[rndIndex1].observed_records.removeAt(rndIndex2)
 if(all_sct_stores[rndIndex1].observed_records.length == 0) {
 all_sct_stores.removeAt(rndIndex1)
 }

 recalculateIndex++
 if(recalculateIndex % RECALCULATE_EVERY_N_OPERATIONS == 0) {
 update_cache_percentage()
 }
 }

 update_cache_percentage();
 }

12. IANA considerations

 There are no IANA considerations.

13. Contributors

 The authors would like to thank the following contributors for
 valuable suggestions: Al Cutter, Andrew Ayer, Ben Laurie, Benjamin
 Kaduk, Graham Edgecombe, Josef Gustafsson, Karen Seo, Magnus Ahltorp,
 Steven Kent, Yan Zhu.

14. ChangeLog

Nordberg, et al. Expires July 18, 2018 [Page 53]

Internet-Draft Gossiping in CT January 2018

14.1. Changes between ietf-04 and ietf-05

 o STH and SCT data formats changed to support CT v1 and v2.

 o Address ED review comments.

14.2. Changes between ietf-03 and ietf-04

 o No changes.

14.3. Changes between ietf-02 and ietf-03

 o TBD’s resolved.

 o References added.

 o Pseduocode changed to work for both clients and servers.

14.4. Changes between ietf-01 and ietf-02

 o Requiring full certificate chain in SCT Feedback.

 o Clarifications on what clients store for and send in SCT Feedback
 added.

 o SCT Feedback server operation updated to protect against DoS
 attacks on servers.

 o Pre-Loaded vs Locally Added Anchors explained.

 o Base for well-known URL’s changed.

 o Remove all mentions of monitors - gossip deals with auditors.

 o New sections added: Trusted Auditor protocol, attacks by actively
 malicious log, the Dual-CA compromise attack, policy
 recommendations,

14.5. Changes between ietf-00 and ietf-01

 o Improve language and readability based on feedback from Stephen
 Kent.

 o STH Pollination Proof Fetching defined and indicated as optional.

 o 3-Method Ecosystem section added.

 o Cases with Logs ceasing operation handled.

Nordberg, et al. Expires July 18, 2018 [Page 54]

Internet-Draft Gossiping in CT January 2018

 o Text on tracking via STH Interaction added.

 o Section with some early recommendations for mixing added.

 o Section detailing blocking connections, frustrating it, and the
 implications added.

14.6. Changes between -01 and -02

 o STH Pollination defined.

 o Trusted Auditor Relationship defined.

 o Overview section rewritten.

 o Data flow picture added.

 o Section on privacy considerations expanded.

14.7. Changes between -00 and -01

 o Add the SCT feedback mechanism: Clients send SCTs to originating
 web server which shares them with auditors.

 o Stop assuming that clients see STHs.

 o Don’t use HTTP headers but instead .well-known URL’s - avoid that
 battle.

 o Stop referring to trans-gossip and trans-gossip-transport-https -
 too complicated.

 o Remove all protocols but HTTPS in order to simplify - let’s come
 back and add more later.

 o Add more reasoning about privacy.

 o Do specify data formats.

15. References

15.1. Normative References

 [RFC-6962-BIS-27]
 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency", October 2017,
 <https://datatracker.ietf.org/doc/draft-ietf-trans-
 rfc6962-bis/>.

Nordberg, et al. Expires July 18, 2018 [Page 55]

Internet-Draft Gossiping in CT January 2018

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015, <https://www.rfc-
 editor.org/info/rfc7540>.

15.2. Informative References

 [double-keying]
 Perry, M., Clark, E., and S. Murdoch, "Cross-Origin
 Identifier Unlinkability", May 2015,
 <https://www.torproject.org/projects/torbrowser/
 design/#identifier-linkability>.

 [draft-ct-over-dns]
 Laurie, B., Phaneuf, P., and A. Eijdenberg, "Certificate
 Transparency over DNS", February 2016,
 <https://github.com/google/certificate-transparency-
 rfcs/blob/master/dns/draft-ct-over-dns.md>.

 [draft-ietf-trans-threat-analysis-12]
 Kent, S., "Attack and Threat Model for Certificate
 Transparency", October 2017,
 <https://datatracker.ietf.org/doc/draft-ietf-trans-threat-
 analysis/>.

 [dual-ca-compromise-attack]
 Gillmor, D., "can CT defend against dual CA compromise?",
 n.d., <https://www.ietf.org/mail-
 archive/web/trans/current/msg01984.html>.

 [gossip-mixing]
 Ritter, T., "A Bit on Certificate Transparency Gossip",
 June 2016, <https://ritter.vg/blog-
 a_bit_on_certificate_transparency_gossip.html>.

 [trickle] Serjantov, A., Dingledine, R., and . Paul Syverson, "From
 a Trickle to a Flood: Active Attacks on Several Mix
 Types", October 2002,
 <http://freehaven.net/doc/batching-taxonomy/taxonomy.pdf>.

Nordberg, et al. Expires July 18, 2018 [Page 56]

Internet-Draft Gossiping in CT January 2018

Authors’ Addresses

 Linus Nordberg
 NORDUnet

 Email: linus@nordu.net

 Daniel Kahn Gillmor
 ACLU

 Email: dkg@fifthhorseman.net

 Tom Ritter

 Email: tom@ritter.vg

Nordberg, et al. Expires July 18, 2018 [Page 57]

TRANS (Public Notary Transparency) B. Laurie
Internet-Draft A. Langley
Obsoletes: 6962 (if approved) E. Kasper
Intended status: Standards Track E. Messeri
Expires: September 6, 2018 Google
 R. Stradling
 Comodo CA
 March 05, 2018

 Certificate Transparency Version 2.0
 draft-ietf-trans-rfc6962-bis-28

Abstract

 This document describes version 2.0 of the Certificate Transparency
 (CT) protocol for publicly logging the existence of Transport Layer
 Security (TLS) server certificates as they are issued or observed, in
 a manner that allows anyone to audit certification authority (CA)
 activity and notice the issuance of suspect certificates as well as
 to audit the certificate logs themselves. The intent is that
 eventually clients would refuse to honor certificates that do not
 appear in a log, effectively forcing CAs to add all issued
 certificates to the logs.

 Logs are network services that implement the protocol operations for
 submissions and queries that are defined in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Laurie, et al. Expires September 6, 2018 [Page 1]

Internet-Draft Certificate Transparency Version 2.0 March 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Requirements Language 5
 1.2. Data Structures . 5
 1.3. Major Differences from CT 1.0 5
 2. Cryptographic Components 7
 2.1. Merkle Hash Trees . 7
 2.1.1. Definition of the Merkle Tree 7
 2.1.2. Verifying a Tree Head Given Entries 8
 2.1.3. Merkle Inclusion Proofs 8
 2.1.4. Merkle Consistency Proofs 10
 2.1.5. Example . 12
 2.2. Signatures . 13
 3. Submitters . 13
 3.1. Certificates . 14
 3.2. Precertificates . 14
 4. Log Format and Operation 15
 4.1. Log Parameters . 16
 4.2. Accepting Submissions 17
 4.3. Log Entries . 18
 4.4. Log ID . 18
 4.5. TransItem Structure 19
 4.6. Log Artifact Extensions 20
 4.7. Merkle Tree Leaves 20
 4.8. Signed Certificate Timestamp (SCT) 21
 4.9. Merkle Tree Head . 22
 4.10. Signed Tree Head (STH) 22
 4.11. Merkle Consistency Proofs 23
 4.12. Merkle Inclusion Proofs 24
 4.13. Shutting down a log 24
 5. Log Client Messages . 25
 5.1. Submit Entry to Log 26

Laurie, et al. Expires September 6, 2018 [Page 2]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 5.2. Retrieve Latest Signed Tree Head 29
 5.3. Retrieve Merkle Consistency Proof between Two Signed Tree
 Heads . 29
 5.4. Retrieve Merkle Inclusion Proof from Log by Leaf Hash . . 30
 5.5. Retrieve Merkle Inclusion Proof, Signed Tree Head and
 Consistency Proof by Leaf Hash 31
 5.6. Retrieve Entries and STH from Log 32
 5.7. Retrieve Accepted Trust Anchors 34
 6. TLS Servers . 34
 6.1. Multiple SCTs . 35
 6.2. TransItemList Structure 35
 6.3. Presenting SCTs, inclusions proofs and STHs 36
 6.4. transparency_info TLS Extension 36
 6.5. cached_info TLS Extension 37
 7. Certification Authorities 37
 7.1. Transparency Information X.509v3 Extension 37
 7.1.1. OCSP Response Extension 37
 7.1.2. Certificate Extension 38
 7.2. TLS Feature X.509v3 Extension 38
 8. Clients . 38
 8.1. TLS Client . 38
 8.1.1. Receiving SCTs and inclusion proofs 38
 8.1.2. Reconstructing the TBSCertificate 39
 8.1.3. Validating SCTs 39
 8.1.4. Fetching inclusion proofs 39
 8.1.5. Validating inclusion proofs 40
 8.1.6. Evaluating compliance 40
 8.1.7. cached_info TLS Extension 40
 8.2. Monitor . 40
 8.3. Auditing . 42
 9. Algorithm Agility . 43
 10. IANA Considerations . 43
 10.1. New Entry to the TLS ExtensionType Registry 43
 10.2. New Entry to the TLS CachedInformationType registry . . 43
 10.3. Hash Algorithms . 44
 10.3.1. Expert Review guidelines 44
 10.4. Signature Algorithms 44
 10.4.1. Expert Review guidelines 45
 10.5. VersionedTransTypes 45
 10.5.1. Expert Review guidelines 46
 10.6. Log Artifact Extension Registry 46
 10.6.1. Expert Review guidelines 47
 10.7. Object Identifiers 47
 10.7.1. Log ID Registry 47
 11. Security Considerations 48
 11.1. Misissued Certificates 49
 11.2. Detection of Misissue 49
 11.3. Misbehaving Logs . 49

Laurie, et al. Expires September 6, 2018 [Page 3]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 11.4. Preventing Tracking Clients 50
 11.5. Multiple SCTs . 50
 12. Acknowledgements . 50
 13. References . 50
 13.1. Normative References 50
 13.2. Informative References 52
 Appendix A. Supporting v1 and v2 simultaneously 53
 Authors’ Addresses . 54

1. Introduction

 Certificate Transparency aims to mitigate the problem of misissued
 certificates by providing append-only logs of issued certificates.
 The logs do not themselves prevent misissuance, but they ensure that
 interested parties (particularly those named in certificates) can
 detect such misissuance. Note that this is a general mechanism that
 could be used for transparently logging any form of binary data,
 subject to some kind of inclusion criteria. In this document, we
 only describe its use for public TLS server certificates (i.e., where
 the inclusion criteria is a valid certificate issued by a public
 certification authority (CA)).

 Each log contains certificate chains, which can be submitted by
 anyone. It is expected that public CAs will contribute all their
 newly issued certificates to one or more logs; however certificate
 holders can also contribute their own certificate chains, as can
 third parties. In order to avoid logs being rendered useless by the
 submission of large numbers of spurious certificates, it is required
 that each chain ends with a trust anchor that is accepted by the log.
 When a chain is accepted by a log, a signed timestamp is returned,
 which can later be used to provide evidence to TLS clients that the
 chain has been submitted. TLS clients can thus require that all
 certificates they accept as valid are accompanied by signed
 timestamps.

 Those who are concerned about misissuance can monitor the logs,
 asking them regularly for all new entries, and can thus check whether
 domains for which they are responsible have had certificates issued
 that they did not expect. What they do with this information,
 particularly when they find that a misissuance has happened, is
 beyond the scope of this document. However, broadly speaking, they
 can invoke existing business mechanisms for dealing with misissued
 certificates, such as working with the CA to get the certificate
 revoked, or with maintainers of trust anchor lists to get the CA
 removed. Of course, anyone who wants can monitor the logs and, if
 they believe a certificate is incorrectly issued, take action as they
 see fit.

Laurie, et al. Expires September 6, 2018 [Page 4]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 Similarly, those who have seen signed timestamps from a particular
 log can later demand a proof of inclusion from that log. If the log
 is unable to provide this (or, indeed, if the corresponding
 certificate is absent from monitors’ copies of that log), that is
 evidence of the incorrect operation of the log. The checking
 operation is asynchronous to allow clients to proceed without delay,
 despite possible issues such as network connectivity and the vagaries
 of firewalls.

 The append-only property of each log is achieved using Merkle Trees,
 which can be used to efficiently prove that any particular instance
 of the log is a superset of any particular previous instance and to
 efficiently detect various misbehaviors of the log (e.g., issuing a
 signed timestamp for a certificate that is not subsequently logged).

 It is necessary to treat each log as a trusted third party, because
 the log auditing mechanisms described in this document can be
 circumvented by a misbehaving log that shows different, inconsistent
 views of itself to different clients. Whilst it is anticipated that
 additional mechanisms could be developed to address these
 shortcomings and thereby avoid the need to blindly trust logs, such
 mechanisms are outside the scope of this document.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Data Structures

 Data structures are defined and encoded according to the conventions
 laid out in Section 3 of [I-D.ietf-tls-tls13].

1.3. Major Differences from CT 1.0

 This document revises and obsoletes the experimental CT 1.0 [RFC6962]
 protocol, drawing on insights gained from CT 1.0 deployments and on
 feedback from the community. The major changes are:

 o Hash and signature algorithm agility: permitted algorithms are now
 specified in IANA registries.

 o Precertificate format: precertificates are now CMS objects rather
 than X.509 certificates, which avoids violating the certificate
 serial number uniqueness requirement in Section 4.1.2.2 of
 [RFC5280].

Laurie, et al. Expires September 6, 2018 [Page 5]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 o Removed precertificate signing certificates and the precertificate
 poison extension: the change of precertificate format means that
 these are no longer needed.

 o Logs IDs: each log is now identified by an OID rather than by the
 hash of its public key. OID allocations are managed by an IANA
 registry.

 o "TransItem" structure: this new data structure is used to
 encapsulate most types of CT data. A "TransItemList", consisting
 of one or more "TransItem" structures, can be used anywhere that
 "SignedCertificateTimestampList" was used in [RFC6962].

 o Merkle tree leaves: the "MerkleTreeLeaf" structure has been
 replaced by the "TransItem" structure, which eases extensibility
 and simplifies the leaf structure by removing one layer of
 abstraction.

 o Unified leaf format: the structure for both certificate and
 precertificate entries now includes only the TBSCertificate
 (whereas certificate entries in [RFC6962] included the entire
 certificate).

 o Log Artifact Extensions: these are now typed and managed by an
 IANA registry, and they can now appear not only in SCTs but also
 in STHs.

 o API outputs: complete "TransItem" structures are returned, rather
 than the constituent parts of each structure.

 o get-all-by-hash: new client API for obtaining an inclusion proof
 and the corresponding consistency proof at the same time.

 o submit-entry: new client API, replacing add-chain and add-pre-
 chain.

 o Presenting SCTs with proofs: TLS servers may present SCTs together
 with the corresponding inclusion proofs using any of the
 mechanisms that [RFC6962] defined for presenting SCTs only.
 (Presenting SCTs only is still supported).

 o CT TLS extension: the "signed_certificate_timestamp" TLS extension
 has been replaced by the "transparency_info" TLS extension.

 o Other TLS extensions: "status_request_v2" may be used (in the same
 manner as "status_request"); "cached_info" may be used to avoid
 sending the same complete SCTs and inclusion proofs to the same
 TLS clients multiple times.

Laurie, et al. Expires September 6, 2018 [Page 6]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 o Verification algorithms: added detailed algorithms for verifying
 inclusion proofs, for verifying consistency between two STHs, and
 for verifying a root hash given a complete list of the relevant
 leaf input entries.

 o Extensive clarifications and editorial work.

2. Cryptographic Components

2.1. Merkle Hash Trees

2.1.1. Definition of the Merkle Tree

 The log uses a binary Merkle Hash Tree for efficient auditing. The
 hash algorithm used is one of the log’s parameters (see Section 4.1).
 We have established a registry of acceptable hash algorithms (see
 Section 10.3). Throughout this document, the hash algorithm in use
 is referred to as HASH and the size of its output in bytes as
 HASH_SIZE. The input to the Merkle Tree Hash is a list of data
 entries; these entries will be hashed to form the leaves of the
 Merkle Hash Tree. The output is a single HASH_SIZE Merkle Tree Hash.
 Given an ordered list of n inputs, D_n = {d[0], d[1], ..., d[n-1]},
 the Merkle Tree Hash (MTH) is thus defined as follows:

 The hash of an empty list is the hash of an empty string:

 MTH({}) = HASH().

 The hash of a list with one entry (also known as a leaf hash) is:

 MTH({d[0]}) = HASH(0x00 || d[0]).

 For n > 1, let k be the largest power of two smaller than n (i.e., k
 < n <= 2k). The Merkle Tree Hash of an n-element list D_n is then
 defined recursively as

 MTH(D_n) = HASH(0x01 || MTH(D[0:k]) || MTH(D[k:n])),

 Where || is concatenation and D[k1:k2] = D’_(k2-k1) denotes the list
 {d’[0] = d[k1], d’[1] = d[k1+1], ..., d’[k2-k1-1] = d[k2-1]} of
 length (k2 - k1). (Note that the hash calculations for leaves and
 nodes differ; this domain separation is required to give second
 preimage resistance).

 Note that we do not require the length of the input list to be a
 power of two. The resulting Merkle Tree may thus not be balanced;
 however, its shape is uniquely determined by the number of leaves.
 (Note: This Merkle Tree is essentially the same as the history tree

Laurie, et al. Expires September 6, 2018 [Page 7]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 [CrosbyWallach] proposal, except our definition handles non-full
 trees differently).

2.1.2. Verifying a Tree Head Given Entries

 When a client has a complete list of n input "entries" from "0" up to
 "tree_size - 1" and wishes to verify this list against a tree head
 "root_hash" returned by the log for the same "tree_size", the
 following algorithm may be used:

 1. Set "stack" to an empty stack.

 2. For each "i" from "0" up to "tree_size - 1":

 1. Push "HASH(0x00 || entries[i])" to "stack".

 2. Set "merge_count" to the lowest value ("0" included) such
 that "LSB(i >> merge_count)" is not set. In other words, set
 "merge_count" to the number of consecutive "1"s found
 starting at the least significant bit of "i".

 3. Repeat "merge_count" times:

 1. Pop "right" from "stack".

 2. Pop "left" from "stack".

 3. Push "HASH(0x01 || left || right)" to "stack".

 3. If there is more than one element in the "stack", repeat the same
 merge procedure (Step 2.3 above) until only a single element
 remains.

 4. The remaining element in "stack" is the Merkle Tree hash for the
 given "tree_size" and should be compared by equality against the
 supplied "root_hash".

2.1.3. Merkle Inclusion Proofs

 A Merkle inclusion proof for a leaf in a Merkle Hash Tree is the
 shortest list of additional nodes in the Merkle Tree required to
 compute the Merkle Tree Hash for that tree. Each node in the tree is
 either a leaf node or is computed from the two nodes immediately
 below it (i.e., towards the leaves). At each step up the tree
 (towards the root), a node from the inclusion proof is combined with
 the node computed so far. In other words, the inclusion proof
 consists of the list of missing nodes required to compute the nodes
 leading from a leaf to the root of the tree. If the root computed

Laurie, et al. Expires September 6, 2018 [Page 8]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 from the inclusion proof matches the true root, then the inclusion
 proof proves that the leaf exists in the tree.

2.1.3.1. Generating an Inclusion Proof

 Given an ordered list of n inputs to the tree, D_n = {d[0], d[1],
 ..., d[n-1]}, the Merkle inclusion proof PATH(m, D_n) for the (m+1)th
 input d[m], 0 <= m < n, is defined as follows:

 The proof for the single leaf in a tree with a one-element input list
 D[1] = {d[0]} is empty:

 PATH(0, {d[0]}) = {}

 For n > 1, let k be the largest power of two smaller than n. The
 proof for the (m+1)th element d[m] in a list of n > m elements is
 then defined recursively as

 PATH(m, D_n) = PATH(m, D[0:k]) : MTH(D[k:n]) for m < k; and

 PATH(m, D_n) = PATH(m - k, D[k:n]) : MTH(D[0:k]) for m >= k,

 The : operator and D[k1:k2] are defined the same as in Section 2.1.1.

2.1.3.2. Verifying an Inclusion Proof

 When a client has received an inclusion proof (e.g., in a "TransItem"
 of type "inclusion_proof_v2") and wishes to verify inclusion of an
 input "hash" for a given "tree_size" and "root_hash", the following
 algorithm may be used to prove the "hash" was included in the
 "root_hash":

 1. Compare "leaf_index" against "tree_size". If "leaf_index" is
 greater than or equal to "tree_size" then fail the proof
 verification.

 2. Set "fn" to "leaf_index" and "sn" to "tree_size - 1".

 3. Set "r" to "hash".

 4. For each value "p" in the "inclusion_path" array:

 If "sn" is 0, stop the iteration and fail the proof verification.

 If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

 1. Set "r" to "HASH(0x01 || p || r)"

Laurie, et al. Expires September 6, 2018 [Page 9]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:

 1. Set "r" to "HASH(0x01 || r || p)"

 Finally, right-shift both "fn" and "sn" one time.

 5. Compare "sn" to 0. Compare "r" against the "root_hash". If "sn"
 is equal to 0, and "r" and the "root_hash" are equal, then the
 log has proven the inclusion of "hash". Otherwise, fail the
 proof verification.

2.1.4. Merkle Consistency Proofs

 Merkle consistency proofs prove the append-only property of the tree.
 A Merkle consistency proof for a Merkle Tree Hash MTH(D_n) and a
 previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n,
 is the list of nodes in the Merkle Tree required to verify that the
 first m inputs D[0:m] are equal in both trees. Thus, a consistency
 proof must contain a set of intermediate nodes (i.e., commitments to
 inputs) sufficient to verify MTH(D_n), such that (a subset of) the
 same nodes can be used to verify MTH(D[0:m]). We define an algorithm
 that outputs the (unique) minimal consistency proof.

2.1.4.1. Generating a Consistency Proof

 Given an ordered list of n inputs to the tree, D_n = {d[0], d[1],
 ..., d[n-1]}, the Merkle consistency proof PROOF(m, D_n) for a
 previous Merkle Tree Hash MTH(D[0:m]), 0 < m < n, is defined as:

 PROOF(m, D_n) = SUBPROOF(m, D_n, true)

 In SUBPROOF, the boolean value represents whether the subtree created
 from D[0:m] is a complete subtree of the Merkle Tree created from
 D_n, and, consequently, whether the subtree Merkle Tree Hash
 MTH(D[0:m]) is known. The initial call to SUBPROOF sets this to be
 true, and SUBPROOF is then defined as follows:

 The subproof for m = n is empty if m is the value for which PROOF was
 originally requested (meaning that the subtree created from D[0:m] is
 a complete subtree of the Merkle Tree created from the original D_n
 for which PROOF was requested, and the subtree Merkle Tree Hash
 MTH(D[0:m]) is known):

 SUBPROOF(m, D[m], true) = {}

Laurie, et al. Expires September 6, 2018 [Page 10]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 Otherwise, the subproof for m = n is the Merkle Tree Hash committing
 inputs D[0:m]:

 SUBPROOF(m, D[m], false) = {MTH(D[m])}

 For m < n, let k be the largest power of two smaller than n. The
 subproof is then defined recursively.

 If m <= k, the right subtree entries D[k:n] only exist in the current
 tree. We prove that the left subtree entries D[0:k] are consistent
 and add a commitment to D[k:n]:

 SUBPROOF(m, D_n, b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n])

 If m > k, the left subtree entries D[0:k] are identical in both
 trees. We prove that the right subtree entries D[k:n] are consistent
 and add a commitment to D[0:k].

 SUBPROOF(m, D_n, b) = SUBPROOF(m - k, D[k:n], false) : MTH(D[0:k])

 The number of nodes in the resulting proof is bounded above by
 ceil(log2(n)) + 1.

 The : operator and D[k1:k2] are defined the same as in Section 2.1.1.

2.1.4.2. Verifying Consistency between Two Tree Heads

 When a client has a tree head "first_hash" for tree size "first", a
 tree head "second_hash" for tree size "second" where "0 < first <
 second", and has received a consistency proof between the two (e.g.,
 in a "TransItem" of type "consistency_proof_v2"), the following
 algorithm may be used to verify the consistency proof:

 1. If "first" is an exact power of 2, then prepend "first_hash" to
 the "consistency_path" array.

 2. Set "fn" to "first - 1" and "sn" to "second - 1".

 3. If "LSB(fn)" is set, then right-shift both "fn" and "sn" equally
 until "LSB(fn)" is not set.

 4. Set both "fr" and "sr" to the first value in the
 "consistency_path" array.

 5. For each subsequent value "c" in the "consistency_path" array:

 If "sn" is 0, stop the iteration and fail the proof verification.

Laurie, et al. Expires September 6, 2018 [Page 11]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

 1. Set "fr" to "HASH(0x01 || c || fr)"
 Set "sr" to "HASH(0x01 || c || sr)"

 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:

 1. Set "sr" to "HASH(0x01 || sr || c)"

 Finally, right-shift both "fn" and "sn" one time.

 6. After completing iterating through the "consistency_path" array
 as described above, verify that the "fr" calculated is equal to
 the "first_hash" supplied, that the "sr" calculated is equal to
 the "second_hash" supplied and that "sn" is 0.

2.1.5. Example

 The binary Merkle Tree with 7 leaves:

 hash
 / \
 / \
 / \
 / \
 / \
 k l
 / \ / \
 / \ / \
 / \ / \
 g h i j
 / \ / \ / \ |
 a b c d e f d6
 | | | | | |
 d0 d1 d2 d3 d4 d5

 The inclusion proof for d0 is [b, h, l].

 The inclusion proof for d3 is [c, g, l].

 The inclusion proof for d4 is [f, j, k].

 The inclusion proof for d6 is [i, k].

 The same tree, built incrementally in four steps:

Laurie, et al. Expires September 6, 2018 [Page 12]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 hash0 hash1=k
 / \ / \
 / \ / \
 / \ / \
 g c g h
 / \ | / \ / \
 a b d2 a b c d
 | | | | | |
 d0 d1 d0 d1 d2 d3

 hash2 hash
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 k i k l
 / \ / \ / \ / \
 / \ e f / \ / \
 / \ | | / \ / \
 g h d4 d5 g h i j
 / \ / \ / \ / \ / \ |
 a b c d a b c d e f d6
 | | | | | | | | | |
 d0 d1 d2 d3 d0 d1 d2 d3 d4 d5

 The consistency proof between hash0 and hash is PROOF(3, D[7]) = [c,
 d, g, l]. c, g are used to verify hash0, and d, l are additionally
 used to show hash is consistent with hash0.

 The consistency proof between hash1 and hash is PROOF(4, D[7]) = [l].
 hash can be verified using hash1=k and l.

 The consistency proof between hash2 and hash is PROOF(6, D[7]) = [i,
 j, k]. k, i are used to verify hash2, and j is additionally used to
 show hash is consistent with hash2.

2.2. Signatures

 Various data structures Section 1.2 are signed. A log MUST use one
 of the signature algorithms defined in Section 10.4.

3. Submitters

 Submitters submit certificates or preannouncements of certificates
 prior to issuance (precertificates) to logs for public auditing, as
 described below. In order to enable attribution of each logged
 certificate or precertificate to its issuer, each submission MUST be

Laurie, et al. Expires September 6, 2018 [Page 13]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 accompanied by all additional certificates required to verify the
 chain up to an accepted trust anchor (Section 5.7). The trust anchor
 (a root or intermediate CA certificate) MAY be omitted from the
 submission.

 If a log accepts a submission, it will return a Signed Certificate
 Timestamp (SCT) (see Section 4.8). The submitter SHOULD validate the
 returned SCT as described in Section 8.1 if they understand its
 format and they intend to use it directly in a TLS handshake or to
 construct a certificate. If the submitter does not need the SCT (for
 example, the certificate is being submitted simply to make it
 available in the log), it MAY validate the SCT.

3.1. Certificates

 Any entity can submit a certificate (Section 5.1) to a log. Since it
 is anticipated that TLS clients will reject certificates that are not
 logged, it is expected that certificate issuers and subjects will be
 strongly motivated to submit them.

3.2. Precertificates

 CAs may preannounce a certificate prior to issuance by submitting a
 precertificate (Section 5.1) that the log can use to create an entry
 that will be valid against the issued certificate. The CA MAY
 incorporate the returned SCT in the issued certificate. One example
 of where the returned SCT is not incorporated in the issued
 certificate is when a CA sends the precertificate to multiple logs,
 but only incorporates the SCTs that are returned first.

 A precertificate is a CMS [RFC5652] "signed-data" object that
 conforms to the following profile:

 o It MUST be DER encoded.

 o "SignedData.version" MUST be v3(3).

 o "SignedData.digestAlgorithms" MUST only include the
 "SignerInfo.digestAlgorithm" OID value (see below).

 o "SignedData.encapContentInfo":

 * "eContentType" MUST be the OID 1.3.101.78.

 * "eContent" MUST contain a TBSCertificate [RFC5280] that will be
 identical to the TBSCertificate in the issued certificate,
 except that the Transparency Information (Section 7.1)
 extension MUST be omitted.

Laurie, et al. Expires September 6, 2018 [Page 14]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 o "SignedData.certificates" MUST be omitted.

 o "SignedData.crls" MUST be omitted.

 o "SignedData.signerInfos" MUST contain one "SignerInfo":

 * "version" MUST be v3(3).

 * "sid" MUST use the "subjectKeyIdentifier" option.

 * "digestAlgorithm" MUST be one of the hash algorithm OIDs listed
 in Section 10.3.

 * "signedAttrs" MUST be present and MUST contain two attributes:

 + A content-type attribute whose value is the same as
 "SignedData.encapContentInfo.eContentType".

 + A message-digest attribute whose value is the message digest
 of "SignedData.encapContentInfo.eContent".

 * "signatureAlgorithm" MUST be the same OID as
 "TBSCertificate.signature".

 * "signature" MUST be from the same (root or intermediate) CA
 that will ultimately issue the certificate. This signature
 indicates the CA’s intent to issue the certificate. This
 intent is considered binding (i.e., misissuance of the
 precertificate is considered equivalent to misissuance of the
 corresponding certificate).

 * "unsignedAttrs" MUST be omitted.

 "SignerInfo.signedAttrs" is included in the message digest
 calculation process (see Section 5.4 of [RFC5652]), which ensures
 that the "SignerInfo.signature" value will not be a valid X.509v3
 signature that could be used in conjunction with the TBSCertificate
 (from "SignedData.encapContentInfo.eContent") to construct a valid
 certificate.

4. Log Format and Operation

 A log is a single, append-only Merkle Tree of submitted certificate
 and precertificate entries.

 When it receives and accepts a valid submission, the log MUST return
 an SCT that corresponds to the submitted certificate or
 precertificate. If the log has previously seen this valid

Laurie, et al. Expires September 6, 2018 [Page 15]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 submission, it SHOULD return the same SCT as it returned before (to
 reduce the ability to track clients as described in Section 11.4).
 If different SCTs are produced for the same submission, multiple log
 entries will have to be created, one for each SCT (as the timestamp
 is a part of the leaf structure). Note that if a certificate was
 previously logged as a precertificate, then the precertificate’s SCT
 of type "precert_sct_v2" would not be appropriate; instead, a fresh
 SCT of type "x509_sct_v2" should be generated.

 An SCT is the log’s promise to append to its Merkle Tree an entry for
 the accepted submission. Upon producing an SCT, the log MUST fulfil
 this promise by performing the following actions within a fixed
 amount of time known as the Maximum Merge Delay (MMD), which is one
 of the log’s parameters (see Section 4.1):

 o Allocate a tree index to the entry representing the accepted
 submission.

 o Calculate the root of the tree.

 o Sign the root of the tree (see Section 4.10).

 The log may append multiple entries before signing the root of the
 tree.

 Log operators SHOULD NOT impose any conditions on retrieving or
 sharing data from the log.

4.1. Log Parameters

 A log is defined by a collection of parameters, which are used by
 clients to communicate with the log and to verify log artifacts.

 Base URL: The URL to substitute for <log server> in Section 5.

 Hash Algorithm: The hash algorithm used for the Merkle Tree (see
 Section 10.3).

 Signature Algorithm: The signature algorithm used (see Section 2.2).

 Public Key: The public key used to verify signatures generated by
 the log. A log MUST NOT use the same keypair as any other log.

 Log ID: The OID that uniquely identifies the log.

 Maximum Merge Delay: The MMD the log has committed to.

Laurie, et al. Expires September 6, 2018 [Page 16]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 Version: The version of the protocol supported by the log (currently
 1 or 2).

 Maximum Chain Length: The longest chain submission the log is
 willing to accept, if the log imposes any limit.

 STH Frequency Count: The maximum number of STHs the log may produce
 in any period equal to the "Maximum Merge Delay" (see
 Section 4.10).

 Final STH: If a log has been closed down (i.e., no longer accepts
 new entries), existing entries may still be valid. In this case,
 the client should know the final valid STH in the log to ensure no
 new entries can be added without detection. The final STH should
 be provided in the form of a TransItem of type
 "signed_tree_head_v2".

 [JSON.Metadata] is an example of a metadata format which includes the
 above elements.

4.2. Accepting Submissions

 To set clear expectations for what monitors would find in a log, and
 to avoid being overloaded by invalid submissions, the log MUST NOT
 accept any submission until it has verified that the submitted
 certificate or precertificate chains to an accepted trust anchor.
 While there are no security implications to a log accepting a
 submission that does not chain to one of its accepted trust anchors,
 doing so would put additional burden on monitors that inspect log
 entries. Additionally, there are no provisions in the protocol for a
 log to indicate that a particular submission was erroneously
 accepted.

 The log MUST NOT use other sources of intermediate CA certificates to
 attempt certification path construction; instead, it MUST only use
 the intermediate CA certificates provided in the submission, in the
 order provided.

 Logs SHOULD accept certificates and precertificates that are fully
 valid according to RFC 5280 [RFC5280] verification rules and are
 submitted with such a chain. (A log may decide, for example, to
 temporarily reject valid submissions to protect itself against
 denial-of-service attacks).

 Logs MAY accept certificates and precertificates that have expired,
 are not yet valid, have been revoked, or are otherwise not fully
 valid according to RFC 5280 verification rules in order to
 accommodate quirks of CA certificate-issuing software. However, logs

Laurie, et al. Expires September 6, 2018 [Page 17]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 MUST reject submissions without a valid signature chain to an
 accepted trust anchor. Logs MUST also reject precertificates that do
 not conform to the requirements in Section 3.2.

 Logs SHOULD limit the length of chain they will accept. The maximum
 chain length is one of the log’s parameters (see Section 4.1).

 The log SHALL allow retrieval of its list of accepted trust anchors
 (see Section 5.7), each of which is a root or intermediate CA
 certificate. This list might usefully be the union of root
 certificates trusted by major browser vendors.

4.3. Log Entries

 If a submission is accepted and an SCT issued, the accepting log MUST
 store the entire chain used for verification. This chain MUST
 include the certificate or precertificate itself, the zero or more
 intermediate CA certificates provided by the submitter, and the trust
 anchor used to verify the chain (even if it was omitted from the
 submission). The log MUST present this chain for auditing upon
 request (see Section 5.6). This prevents the CA from avoiding blame
 by logging a partial or empty chain. Each log entry is a "TransItem"
 structure of type "x509_entry_v2" or "precert_entry_v2". However, a
 log may store its entries in any format. If a log does not store
 this "TransItem" in full, it must store the "timestamp" and
 "sct_extensions" of the corresponding
 "TimestampedCertificateEntryDataV2" structure. The "TransItem" can
 be reconstructed from these fields and the entire chain that the log
 used to verify the submission.

4.4. Log ID

 Each log is identified by an OID, which is one of the log’s
 parameters (see Section 4.1) and which MUST NOT be used to identify
 any other log. A log’s operator MUST either allocate the OID
 themselves or request an OID from the Log ID Registry (see
 Section 10.7.1). Various data structures include the DER encoding of
 this OID, excluding the ASN.1 tag and length bytes, in an opaque
 vector:

 opaque LogID<2..127>;

 Note that the ASN.1 length and the opaque vector length are identical
 in size (1 byte) and value, so the DER encoding of the OID can be
 reproduced simply by prepending an OBJECT IDENTIFIER tag (0x06) to
 the opaque vector length and contents.

Laurie, et al. Expires September 6, 2018 [Page 18]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 OIDs used to identify logs are limited such that the DER encoding of
 their value is less than or equal to 127 octets.

4.5. TransItem Structure

 Various data structures are encapsulated in the "TransItem" structure
 to ensure that the type and version of each one is identified in a
 common fashion:

 enum {
 reserved(0),
 x509_entry_v2(1), precert_entry_v2(2),
 x509_sct_v2(3), precert_sct_v2(4),
 signed_tree_head_v2(5), consistency_proof_v2(6),
 inclusion_proof_v2(7),
 (65535)
 } VersionedTransType;

 struct {
 VersionedTransType versioned_type;
 select (versioned_type) {
 case x509_entry_v2: TimestampedCertificateEntryDataV2;
 case precert_entry_v2: TimestampedCertificateEntryDataV2;
 case x509_sct_v2: SignedCertificateTimestampDataV2;
 case precert_sct_v2: SignedCertificateTimestampDataV2;
 case signed_tree_head_v2: SignedTreeHeadDataV2;
 case consistency_proof_v2: ConsistencyProofDataV2;
 case inclusion_proof_v2: InclusionProofDataV2;
 } data;
 } TransItem;

 "versioned_type" is a value from the IANA registry in Section 10.5
 that identifies the type of the encapsulated data structure and the
 earliest version of this protocol to which it conforms. This
 document is v2.

 "data" is the encapsulated data structure. The various structures
 named with the "DataV2" suffix are defined in later sections of this
 document.

 Note that "VersionedTransType" combines the v1 [RFC6962] type
 enumerations "Version", "LogEntryType", "SignatureType" and
 "MerkleLeafType". Note also that v1 did not define "TransItem", but
 this document provides guidelines (see Appendix A) on how v2
 implementations can co-exist with v1 implementations.

 Future versions of this protocol may reuse "VersionedTransType"
 values defined in this document as long as the corresponding data

Laurie, et al. Expires September 6, 2018 [Page 19]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 structures are not modified, and may add new "VersionedTransType"
 values for new or modified data structures.

4.6. Log Artifact Extensions

 enum {
 reserved(65535)
 } ExtensionType;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 The "Extension" structure provides a generic extensibility for log
 artifacts, including Signed Certificate Timestamps (Section 4.8) and
 Signed Tree Heads (Section 4.10). The interpretation of the
 "extension_data" field is determined solely by the value of the
 "extension_type" field.

 This document does not define any extensions, but it does establish a
 registry for future "ExtensionType" values (see Section 10.6). Each
 document that registers a new "ExtensionType" must specify the
 context in which it may be used (e.g., SCT, STH, or both) and
 describe how to interpret the corresponding "extension_data".

4.7. Merkle Tree Leaves

 The leaves of a log’s Merkle Tree correspond to the log’s entries
 (see Section 4.3). Each leaf is the leaf hash (Section 2.1) of a
 "TransItem" structure of type "x509_entry_v2" or "precert_entry_v2",
 which encapsulates a "TimestampedCertificateEntryDataV2" structure.
 Note that leaf hashes are calculated as HASH(0x00 || TransItem),
 where the hash algorithm is one of the log’s parameters.

 opaque TBSCertificate<1..2^24-1>;

 struct {
 uint64 timestamp;
 opaque issuer_key_hash<32..2^8-1>;
 TBSCertificate tbs_certificate;
 Extension sct_extensions<0..2^16-1>;
 } TimestampedCertificateEntryDataV2;

 "timestamp" is the NTP Time [RFC5905] at which the certificate or
 precertificate was accepted by the log, measured in milliseconds
 since the epoch (January 1, 1970, 00:00 UTC), ignoring leap seconds.

Laurie, et al. Expires September 6, 2018 [Page 20]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 Note that the leaves of a log’s Merkle Tree are not required to be in
 strict chronological order.

 "issuer_key_hash" is the HASH of the public key of the CA that issued
 the certificate or precertificate, calculated over the DER encoding
 of the key represented as SubjectPublicKeyInfo [RFC5280]. This is
 needed to bind the CA to the certificate or precertificate, making it
 impossible for the corresponding SCT to be valid for any other
 certificate or precertificate whose TBSCertificate matches
 "tbs_certificate". The length of the "issuer_key_hash" MUST match
 HASH_SIZE.

 "tbs_certificate" is the DER encoded TBSCertificate from the
 submission. (Note that a precertificate’s TBSCertificate can be
 reconstructed from the corresponding certificate as described in
 Section 8.1.2).

 "sct_extensions" matches the SCT extensions of the corresponding SCT.

 The type of the "TransItem" corresponds to the value of the "type"
 parameter supplied in the Section 5.1 call.

4.8. Signed Certificate Timestamp (SCT)

 An SCT is a "TransItem" structure of type "x509_sct_v2" or
 "precert_sct_v2", which encapsulates a
 "SignedCertificateTimestampDataV2" structure:

 struct {
 LogID log_id;
 uint64 timestamp;
 Extension sct_extensions<0..2^16-1>;
 opaque signature<0..2^16-1>;
 } SignedCertificateTimestampDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector as
 described in Section 4.4.

 "timestamp" is equal to the timestamp from the corresponding
 "TimestampedCertificateEntryDataV2" structure.

 "sct_extensions" is a vector of 0 or more SCT extensions. This
 vector MUST NOT include more than one extension with the same
 "extension_type". The extensions in the vector MUST be ordered by
 the value of the "extension_type" field, smallest value first. If an
 implementation sees an extension that it does not understand, it
 SHOULD ignore that extension. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

Laurie, et al. Expires September 6, 2018 [Page 21]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 "signature" is computed over a "TransItem" structure of type
 "x509_entry_v2" or "precert_entry_v2" (see Section 4.7) using the
 signature algorithm declared in the log’s parameters (see
 Section 4.1).

4.9. Merkle Tree Head

 The log stores information about its Merkle Tree in a
 "TreeHeadDataV2":

 opaque NodeHash<32..2^8-1>;

 struct {
 uint64 timestamp;
 uint64 tree_size;
 NodeHash root_hash;
 Extension sth_extensions<0..2^16-1>;
 } TreeHeadDataV2;

 The length of NodeHash MUST match HASH_SIZE of the log.

 "timestamp" is the current NTP Time [RFC5905], measured in
 milliseconds since the epoch (January 1, 1970, 00:00 UTC), ignoring
 leap seconds.

 "tree_size" is the number of entries currently in the log’s Merkle
 Tree.

 "root_hash" is the root of the Merkle Hash Tree.

 "sth_extensions" is a vector of 0 or more STH extensions. This
 vector MUST NOT include more than one extension with the same
 "extension_type". The extensions in the vector MUST be ordered by
 the value of the "extension_type" field, smallest value first. If an
 implementation sees an extension that it does not understand, it
 SHOULD ignore that extension. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

4.10. Signed Tree Head (STH)

 Periodically each log SHOULD sign its current tree head information
 (see Section 4.9) to produce an STH. When a client requests a log’s
 latest STH (see Section 5.2), the log MUST return an STH that is no
 older than the log’s MMD. However, since STHs could be used to mark
 individual clients (by producing a new STH for each query), a log
 MUST NOT produce STHs more frequently than its parameters declare
 (see Section 4.1). In general, there is no need to produce a new STH
 unless there are new entries in the log; however, in the event that a

Laurie, et al. Expires September 6, 2018 [Page 22]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 log does not accept any submissions during an MMD period, the log
 MUST sign the same Merkle Tree Hash with a fresh timestamp.

 An STH is a "TransItem" structure of type "signed_tree_head_v2",
 which encapsulates a "SignedTreeHeadDataV2" structure:

 struct {
 LogID log_id;
 TreeHeadDataV2 tree_head;
 opaque signature<0..2^16-1>;
 } SignedTreeHeadDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector as
 described in Section 4.4.

 The "timestamp" in "tree_head" MUST be at least as recent as the most
 recent SCT timestamp in the tree. Each subsequent timestamp MUST be
 more recent than the timestamp of the previous update.

 "tree_head" contains the latest tree head information (see
 Section 4.9).

 "signature" is computed over the "tree_head" field using the
 signature algorithm declared in the log’s parameters (see
 Section 4.1).

4.11. Merkle Consistency Proofs

 To prepare a Merkle Consistency Proof for distribution to clients,
 the log produces a "TransItem" structure of type
 "consistency_proof_v2", which encapsulates a "ConsistencyProofDataV2"
 structure:

 struct {
 LogID log_id;
 uint64 tree_size_1;
 uint64 tree_size_2;
 NodeHash consistency_path<1..2^16-1>;
 } ConsistencyProofDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector as
 described in Section 4.4.

 "tree_size_1" is the size of the older tree.

 "tree_size_2" is the size of the newer tree.

Laurie, et al. Expires September 6, 2018 [Page 23]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 "consistency_path" is a vector of Merkle Tree nodes proving the
 consistency of two STHs.

4.12. Merkle Inclusion Proofs

 To prepare a Merkle Inclusion Proof for distribution to clients, the
 log produces a "TransItem" structure of type "inclusion_proof_v2",
 which encapsulates an "InclusionProofDataV2" structure:

 struct {
 LogID log_id;
 uint64 tree_size;
 uint64 leaf_index;
 NodeHash inclusion_path<1..2^16-1>;
 } InclusionProofDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector as
 described in Section 4.4.

 "tree_size" is the size of the tree on which this inclusion proof is
 based.

 "leaf_index" is the 0-based index of the log entry corresponding to
 this inclusion proof.

 "inclusion_path" is a vector of Merkle Tree nodes proving the
 inclusion of the chosen certificate or precertificate.

4.13. Shutting down a log

 Log operators may decide to shut down a log for various reasons, such
 as deprecation of the signature algorithm. If there are entries in
 the log for certificates that have not yet expired, simply making TLS
 clients stop recognizing that log will have the effect of
 invalidating SCTs from that log. To avoid that, the following
 actions are suggested:

 o Make it known to clients and monitors that the log will be frozen.

 o Stop accepting new submissions (the error code "shutdown" should
 be returned for such requests).

 o Once MMD from the last accepted submission has passed and all
 pending submissions are incorporated, issue a final STH and
 publish it as one of the log’s parameters. Having an STH with a
 timestamp that is after the MMD has passed from the last SCT
 issuance allows clients to audit this log regularly without

Laurie, et al. Expires September 6, 2018 [Page 24]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 special handling for the final STH. At this point the log’s
 private key is no longer needed and can be destroyed.

 o Keep the log running until the certificates in all of its entries
 have expired or exist in other logs (this can be determined by
 scanning other logs or connecting to domains mentioned in the
 certificates and inspecting the SCTs served).

5. Log Client Messages

 Messages are sent as HTTPS GET or POST requests. Parameters for
 POSTs and all responses are encoded as JavaScript Object Notation
 (JSON) objects [RFC7159]. Parameters for GETs are encoded as order-
 independent key/value URL parameters, using the "application/x-www-
 form-urlencoded" format described in the "HTML 4.01 Specification"
 [HTML401]. Binary data is base64 encoded [RFC4648] as specified in
 the individual messages.

 Clients are configured with a base URL for a log and construct URLs
 for requests by appending suffixes to this base URL. This structure
 places some degree of restriction on how log operators can deploy
 these services, as noted in [RFC7320]. However, operational
 experience with version 1 of this protocol has not indicated that
 these restrictions are a problem in practice.

 Note that JSON objects and URL parameters may contain fields not
 specified here. These extra fields SHOULD be ignored.

 The <log server> prefix, which is one of the log’s parameters, MAY
 include a path as well as a server name and a port.

 In practice, log servers may include multiple front-end machines.
 Since it is impractical to keep these machines in perfect sync,
 errors may occur that are caused by skew between the machines. Where
 such errors are possible, the front-end will return additional
 information (as specified below) making it possible for clients to
 make progress, if progress is possible. Front-ends MUST only serve
 data that is free of gaps (that is, for example, no front-end will
 respond with an STH unless it is also able to prove consistency from
 all log entries logged within that STH).

 For example, when a consistency proof between two STHs is requested,
 the front-end reached may not yet be aware of one or both STHs. In
 the case where it is unaware of both, it will return the latest STH
 it is aware of. Where it is aware of the first but not the second,
 it will return the latest STH it is aware of and a consistency proof
 from the first STH to the returned STH. The case where it knows the

Laurie, et al. Expires September 6, 2018 [Page 25]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 second but not the first should not arise (see the "no gaps"
 requirement above).

 If the log is unable to process a client’s request, it MUST return an
 HTTP response code of 4xx/5xx (see [RFC7231]), and, in place of the
 responses outlined in the subsections below, the body SHOULD be a
 JSON structure containing at least the following field:

 error_message: A human-readable string describing the error which
 prevented the log from processing the request.

 In the case of a malformed request, the string SHOULD provide
 sufficient detail for the error to be rectified.

 error_code: An error code readable by the client. Other than the
 generic codes detailed here, each error code is specific to the
 type of request. Specific errors are specified in the respective
 sections below. Error codes are fixed text strings.

 +---------------+---+
 | Error Code | Meaning |
 +---------------+---+
 | not compliant | The request is not compliant with this RFC. |
 +---------------+---+

 e.g., In response to a request of "/ct/v2/get-
 entries?start=100&end=99", the log would return a "400 Bad Request"
 response code with a body similar to the following:

 {
 "error_message": "’start’ cannot be greater than ’end’",
 "error_code": "not compliant",
 }

 Clients SHOULD treat "500 Internal Server Error" and "503 Service
 Unavailable" responses as transient failures and MAY retry the same
 request without modification at a later date. Note that as per
 [RFC7231], in the case of a 503 response the log MAY include a
 "Retry-After:" header in order to request a minimum time for the
 client to wait before retrying the request.

5.1. Submit Entry to Log

 POST https://<log server>/ct/v2/submit-entry

 Inputs:

 submission: The base64 encoded certificate or precertificate.

Laurie, et al. Expires September 6, 2018 [Page 26]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 type: The "VersionedTransType" integer value that indicates the
 type of the "submission": 1 for "x509_entry_v2", or 2 for
 "precert_entry_v2".

 chain: An array of zero or more base64 encoded CA certificates.
 The first element is the certifier of the "submission"; the
 second certifies the first; etc. The last element of "chain"
 (or, if "chain" is an empty array, the "submission") is
 certified by an accepted trust anchor.

 Outputs:

 sct: A base64 encoded "TransItem" of type "x509_sct_v2" or
 "precert_sct_v2", signed by this log, that corresponds to the
 "submission".

 If the submitted entry is immediately appended to (or already
 exists in) this log’s tree, then the log SHOULD also output:

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 inclusion: A base64 encoded "TransItem" of type
 "inclusion_proof_v2" whose "inclusion_path" array of Merkle
 Tree nodes proves the inclusion of the "submission" in the
 returned "sth".

 Error codes:

Laurie, et al. Expires September 6, 2018 [Page 27]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 +-------------+---+
 | Error Code | Meaning |
 +-------------+---+
bad	"submission" is neither a valid certificate nor a
submission	valid precertificate.
bad type	"type" is neither 1 nor 2.
bad chain	The first element of "chain" is not the certifier
	of the "submission", or the second element does not
	certify the first, etc.
bad	One or more certificates in the "chain" are not
certificate	valid (e.g., not properly encoded).
unknown	The last element of "chain" (or, if "chain" is an
anchor	empty array, the "submission") both is not, and is
	not certified by, an accepted trust anchor.
shutdown	The log is no longer accepting submissions.
 +-------------+---+

 If the version of "sct" is not v2, then a v2 client may be unable to
 verify the signature. It MUST NOT construe this as an error. This
 is to avoid forcing an upgrade of compliant v2 clients that do not
 use the returned SCTs.

 If a log detects bad encoding in a chain that otherwise verifies
 correctly then the log MUST either log the certificate or return the
 "bad certificate" error. If the certificate is logged, an SCT MUST
 be issued. Logging the certificate is useful, because monitors
 (Section 8.2) can then detect these encoding errors, which may be
 accepted by some TLS clients.

 If "submission" is an accepted trust anchor whose certifier is
 neither an accepted trust anchor nor the first element of "chain",
 then the log MUST return the "unknown anchor" error. A log cannot
 generate an SCT for a submission if it does not have access to the
 issuer’s public key.

 If the returned "sct" is intended to be provided to TLS clients, then
 "sth" and "inclusion" (if returned) SHOULD also be provided to TLS
 clients (e.g., if "type" was 2 (for "precert_sct_v2") then all three
 "TransItem"s could be embedded in the certificate).

Laurie, et al. Expires September 6, 2018 [Page 28]

Internet-Draft Certificate Transparency Version 2.0 March 2018

5.2. Retrieve Latest Signed Tree Head

 GET https://<log server>/ct/v2/get-sth

 No inputs.

 Outputs:

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log, that is no older than the log’s MMD.

5.3. Retrieve Merkle Consistency Proof between Two Signed Tree Heads

 GET https://<log server>/ct/v2/get-sth-consistency

 Inputs:

 first: The tree_size of the older tree, in decimal.

 second: The tree_size of the newer tree, in decimal (optional).

 Both tree sizes must be from existing v2 STHs. However, because
 of skew, the receiving front-end may not know one or both of the
 existing STHs. If both are known, then only the "consistency"
 output is returned. If the first is known but the second is not
 (or has been omitted), then the latest known STH is returned,
 along with a consistency proof between the first STH and the
 latest. If neither are known, then the latest known STH is
 returned without a consistency proof.

 Outputs:

 consistency: A base64 encoded "TransItem" of type
 "consistency_proof_v2", whose "tree_size_1" MUST match the
 "first" input. If the "sth" output is omitted, then
 "tree_size_2" MUST match the "second" input. If "first" and
 "second" are equal and correspond to a known STH, the returned
 consistency proof MUST be empty (a "consistency_path" array
 with zero elements).

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 Note that no signature is required for the "consistency" output as
 it is used to verify the consistency between two STHs, which are
 signed.

 Error codes:

Laurie, et al. Expires September 6, 2018 [Page 29]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 +-------------+---+
 | Error Code | Meaning |
 +-------------+---+
first	"first" is before the latest known STH but is not
unknown	from an existing STH.
second	"second" is before the latest known STH but is not
unknown	from an existing STH.
 +-------------+---+

 See Section 2.1.4.2 for an outline of how to use the "consistency"
 output.

5.4. Retrieve Merkle Inclusion Proof from Log by Leaf Hash

 GET https://<log server>/ct/v2/get-proof-by-hash

 Inputs:

 hash: A base64 encoded v2 leaf hash.

 tree_size: The tree_size of the tree on which to base the proof,
 in decimal.

 The "hash" must be calculated as defined in Section 4.7. The
 "tree_size" must designate an existing v2 STH. Because of skew,
 the front-end may not know the requested STH. In that case, it
 will return the latest STH it knows, along with an inclusion proof
 to that STH. If the front-end knows the requested STH then only
 "inclusion" is returned.

 Outputs:

 inclusion: A base64 encoded "TransItem" of type
 "inclusion_proof_v2" whose "inclusion_path" array of Merkle
 Tree nodes proves the inclusion of the chosen certificate in
 the selected STH.

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 Note that no signature is required for the "inclusion" output as
 it is used to verify inclusion in the selected STH, which is
 signed.

 Error codes:

Laurie, et al. Expires September 6, 2018 [Page 30]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 +-----------+---+
 | Error | Meaning |
 | Code | |
 +-----------+---+
hash	"hash" is not the hash of a known leaf (may be caused
unknown	by skew or by a known certificate not yet merged).
tree_size	"hash" is before the latest known STH but is not from
unknown	an existing STH.
 +-----------+---+

 See Section 2.1.3.2 for an outline of how to use the "inclusion"
 output.

5.5. Retrieve Merkle Inclusion Proof, Signed Tree Head and Consistency
 Proof by Leaf Hash

 GET https://<log server>/ct/v2/get-all-by-hash

 Inputs:

 hash: A base64 encoded v2 leaf hash.

 tree_size: The tree_size of the tree on which to base the proofs,
 in decimal.

 The "hash" must be calculated as defined in Section 4.7. The
 "tree_size" must designate an existing v2 STH.

 Because of skew, the front-end may not know the requested STH or the
 requested hash, which leads to a number of cases:

 +--------------------+--+
 | Case | Response |
 +--------------------+--+
latest STH <	Return latest STH
requested STH	
latest STH >	Return latest STH and a consistency proof
requested STH	between it and the requested STH (see
	Section 5.3)
index of requested	Return "inclusion"
hash < latest STH	
 +--------------------+--+

Laurie, et al. Expires September 6, 2018 [Page 31]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 Note that more than one case can be true, in which case the returned
 data is their union. It is also possible for none to be true, in
 which case the front-end MUST return an empty response.

 Outputs:

 inclusion: A base64 encoded "TransItem" of type
 "inclusion_proof_v2" whose "inclusion_path" array of Merkle
 Tree nodes proves the inclusion of the chosen certificate in
 the returned STH.

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 consistency: A base64 encoded "TransItem" of type
 "consistency_proof_v2" that proves the consistency of the
 requested STH and the returned STH.

 Note that no signature is required for the "inclusion" or
 "consistency" outputs as they are used to verify inclusion in and
 consistency of STHs, which are signed.

 Errors are the same as in Section 5.4.

 See Section 2.1.3.2 for an outline of how to use the "inclusion"
 output, and see Section 2.1.4.2 for an outline of how to use the
 "consistency" output.

5.6. Retrieve Entries and STH from Log

 GET https://<log server>/ct/v2/get-entries

 Inputs:

 start: 0-based index of first entry to retrieve, in decimal.

 end: 0-based index of last entry to retrieve, in decimal.

 Outputs:

 entries: An array of objects, each consisting of

 log_entry: The base64 encoded "TransItem" structure of type
 "x509_entry_v2" or "precert_entry_v2" (see Section 4.3).

 submitted_entry: JSON object representing the inputs that were
 submitted to "submit-entry", with the addition of the trust

Laurie, et al. Expires September 6, 2018 [Page 32]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 anchor to the "chain" field if the submission did not
 include it.

 sct: The base64 encoded "TransItem" of type "x509_sct_v2" or
 "precert_sct_v2" corresponding to this log entry.

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 Note that this message is not signed -- the "entries" data can be
 verified by constructing the Merkle Tree Hash corresponding to a
 retrieved STH. All leaves MUST be v2. However, a compliant v2
 client MUST NOT construe an unrecognized TransItem type as an error.
 This means it may be unable to parse some entries, but note that each
 client can inspect the entries it does recognize as well as verify
 the integrity of the data by treating unrecognized leaves as opaque
 input to the tree.

 The "start" and "end" parameters SHOULD be within the range 0 <= x <
 "tree_size" as returned by "get-sth" in Section 5.2.

 The "start" parameter MUST be less than or equal to the "end"
 parameter.

 Each "submitted_entry" output parameter MUST include the trust anchor
 that the log used to verify the "submission", even if that trust
 anchor was not provided to "submit-entry" (see Section 5.1). If the
 "submission" does not certify itself, then the first element of
 "chain" MUST be present and MUST certify the "submission".

 Log servers MUST honor requests where 0 <= "start" < "tree_size" and
 "end" >= "tree_size" by returning a partial response covering only
 the valid entries in the specified range. "end" >= "tree_size" could
 be caused by skew. Note that the following restriction may also
 apply:

 Logs MAY restrict the number of entries that can be retrieved per
 "get-entries" request. If a client requests more than the permitted
 number of entries, the log SHALL return the maximum number of entries
 permissible. These entries SHALL be sequential beginning with the
 entry specified by "start".

 Because of skew, it is possible the log server will not have any
 entries between "start" and "end". In this case it MUST return an
 empty "entries" array.

 In any case, the log server MUST return the latest STH it knows
 about.

Laurie, et al. Expires September 6, 2018 [Page 33]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 See Section 2.1.2 for an outline of how to use a complete list of
 "log_entry" entries to verify the "root_hash".

5.7. Retrieve Accepted Trust Anchors

 GET https://<log server>/ct/v2/get-anchors

 No inputs.

 Outputs:

 certificates: An array of base64 encoded trust anchors that are
 acceptable to the log.

 max_chain_length: If the server has chosen to limit the length of
 chains it accepts, this is the maximum number of certificates
 in the chain, in decimal. If there is no limit, this is
 omitted.

6. TLS Servers

 CT-using TLS servers MUST use at least one of the three mechanisms
 listed below to present one or more SCTs from one or more logs to
 each TLS client during full TLS handshakes, where each SCT
 corresponds to the server certificate. They SHOULD also present
 corresponding inclusion proofs and STHs.

 Three mechanisms are provided because they have different tradeoffs.

 o A TLS extension (Section 7.4.1.4 of [RFC5246]) with type
 "transparency_info" (see Section 6.4). This mechanism allows TLS
 servers to participate in CT without the cooperation of CAs,
 unlike the other two mechanisms. It also allows SCTs and
 inclusion proofs to be updated on the fly.

 o An Online Certificate Status Protocol (OCSP) [RFC6960] response
 extension (see Section 7.1.1), where the OCSP response is provided
 in the "CertificateStatus" message, provided that the TLS client
 included the "status_request" extension in the (extended)
 "ClientHello" (Section 8 of [RFC6066]). This mechanism, popularly
 known as OCSP stapling, is already widely (but not universally)
 implemented. It also allows SCTs and inclusion proofs to be
 updated on the fly.

 o An X509v3 certificate extension (see Section 7.1.2). This
 mechanism allows the use of unmodified TLS servers, but the SCTs
 and inclusion proofs cannot be updated on the fly. Since the logs
 from which the SCTs and inclusion proofs originated won’t

Laurie, et al. Expires September 6, 2018 [Page 34]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 necessarily be accepted by TLS clients for the full lifetime of
 the certificate, there is a risk that TLS clients will
 subsequently consider the certificate to be non-compliant and in
 need of re-issuance.

 Additionally, a TLS server which supports presenting SCTs using an
 OCSP response MAY provide it when the TLS client included the
 "status_request_v2" extension ([RFC6961]) in the (extended)
 "ClientHello", but only in addition to at least one of the three
 mechanisms listed above.

6.1. Multiple SCTs

 CT-using TLS servers SHOULD send SCTs from multiple logs, because:

 o One or more logs may not have become acceptable to all CT-using
 TLS clients.

 o If a CA and a log collude, it is possible to temporarily hide
 misissuance from clients. When a TLS client requires SCTs from
 multiple logs to be provided, it is more difficult to mount this
 attack.

 o If a log misbehaves or suffers a key compromise, a consequence may
 be that clients cease to trust it. Since the time an SCT may be
 in use can be considerable (several years is common in current
 practice when embedded in a certificate), including SCTs from
 multiple logs reduces the probability of the certificate being
 rejected by TLS clients.

 o TLS clients may have policies related to the above risks requiring
 TLS servers to present multiple SCTs. For example, at the time of
 writing, Chromium [Chromium.Log.Policy] requires multiple SCTs to
 be presented with EV certificates in order for the EV indicator to
 be shown.

 To select the logs from which to obtain SCTs, a TLS server can, for
 example, examine the set of logs popular TLS clients accept and
 recognize.

6.2. TransItemList Structure

 Multiple SCTs, inclusion proofs, and indeed "TransItem" structures of
 any type, are combined into a list as follows:

Laurie, et al. Expires September 6, 2018 [Page 35]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 opaque SerializedTransItem<1..2^16-1>;

 struct {
 SerializedTransItem trans_item_list<1..2^16-1>;
 } TransItemList;

 Here, "SerializedTransItem" is an opaque byte string that contains
 the serialized "TransItem" structure. This encoding ensures that TLS
 clients can decode each "TransItem" individually (so, for example, if
 there is a version upgrade, out-of-date clients can still parse old
 "TransItem" structures while skipping over new "TransItem" structures
 whose versions they don’t understand).

6.3. Presenting SCTs, inclusions proofs and STHs

 In each "TransItemList" that is sent to a client during a TLS
 handshake, the TLS server MUST include a "TransItem" structure of
 type "x509_sct_v2" or "precert_sct_v2" (except as described in
 Section 6.5).

 Presenting inclusion proofs and STHs in the TLS handshake helps to
 protect the client’s privacy (see Section 8.1.4) and reduces load on
 log servers. Therefore, if the TLS server can obtain them, it SHOULD
 also include "TransItem"s of type "inclusion_proof_v2" and
 "signed_tree_head_v2" in the "TransItemList".

6.4. transparency_info TLS Extension

 Provided that a TLS client includes the "transparency_info" extension
 type in the ClientHello and the TLS server supports the
 "transparency_info" extension:

 o The TLS server MUST verify that the received "extension_data" is
 empty.

 o The TLS server MUST construct a "TransItemList" of relevant
 "TransItem"s (see Section 6.3), which SHOULD omit any "TransItem"s
 that are already embedded in the server certificate or the stapled
 OCSP response (see Section 7.1). If the constructed
 "TransItemList" is not empty, then the TLS server MUST include the
 "transparency_info" extension with the "extension_data" set to
 this "TransItemList".

 TLS servers MUST only include this extension in the following
 messages:

 o the ServerHello message (for TLS 1.2 or earlier).

Laurie, et al. Expires September 6, 2018 [Page 36]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 o the Certificate or CertificateRequest message (for TLS 1.3).

 TLS servers MUST NOT process or include this extension when a TLS
 session is resumed, since session resumption uses the original
 session information.

6.5. cached_info TLS Extension

 When a TLS server includes the "transparency_info" extension, it
 SHOULD NOT include any "TransItem" structures of type "x509_sct_v2"
 or "precert_sct_v2" in the "TransItemList" if all of the following
 conditions are met:

 o The TLS client includes the "cached_info" ([RFC7924]) extension
 type in the ClientHello, with a "CachedObject" of type
 "ct_compliant" (see Section 8.1.7) and at least one "CachedObject"
 of type "cert".

 o The TLS server sends a modified Certificate message (as described
 in section 4.1 of [RFC7924]).

 If the "hash_value" of any "CachedObject" of type "ct_compliant" sent
 by a TLS client is not 1 byte long with the value 0, the CT-using TLS
 server MUST abort the handshake.

7. Certification Authorities

7.1. Transparency Information X.509v3 Extension

 The Transparency Information X.509v3 extension, which has OID
 1.3.101.75 and SHOULD be non-critical, contains one or more
 "TransItem" structures in a "TransItemList". This extension MAY be
 included in OCSP responses (see Section 7.1.1) and certificates (see
 Section 7.1.2). Since RFC5280 requires the "extnValue" field (an
 OCTET STRING) of each X.509v3 extension to include the DER encoding
 of an ASN.1 value, a "TransItemList" MUST NOT be included directly.
 Instead, it MUST be wrapped inside an additional OCTET STRING, which
 is then put into the "extnValue" field:

 TransparencyInformationSyntax ::= OCTET STRING

 "TransparencyInformationSyntax" contains a "TransItemList".

7.1.1. OCSP Response Extension

 A certification authority MAY include a Transparency Information
 X.509v3 extension in the "singleExtensions" of a "SingleResponse" in
 an OCSP response. All included SCTs and inclusion proofs MUST be for

Laurie, et al. Expires September 6, 2018 [Page 37]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 the certificate identified by the "certID" of that "SingleResponse",
 or for a precertificate that corresponds to that certificate.

7.1.2. Certificate Extension

 A certification authority MAY include a Transparency Information
 X.509v3 extension in a certificate. All included SCTs and inclusion
 proofs MUST be for a precertificate that corresponds to this
 certificate.

7.2. TLS Feature X.509v3 Extension

 A certification authority SHOULD NOT issue any certificate that
 identifies the "transparency_info" TLS extension in a TLS feature
 extension [RFC7633], because TLS servers are not required to support
 the "transparency_info" TLS extension in order to participate in CT
 (see Section 6).

8. Clients

 There are various different functions clients of logs might perform.
 We describe here some typical clients and how they should function.
 Any inconsistency may be used as evidence that a log has not behaved
 correctly, and the signatures on the data structures prevent the log
 from denying that misbehavior.

 All clients need various parameters in order to communicate with logs
 and verify their responses. These parameters are described in
 Section 4.1, but note that this document does not describe how the
 parameters are obtained, which is implementation-dependent (see, for
 example, [Chromium.Policy]).

8.1. TLS Client

8.1.1. Receiving SCTs and inclusion proofs

 TLS clients receive SCTs and inclusion proofs alongside or in
 certificates. CT-using TLS clients MUST implement all of the three
 mechanisms by which TLS servers may present SCTs (see Section 6) and
 MAY also accept SCTs via the "status_request_v2" extension
 ([RFC6961]).

 TLS clients that support the "transparency_info" TLS extension (see
 Section 6.4) SHOULD include it in ClientHello messages, with empty
 "extension_data". If a TLS server includes the "transparency_info"
 TLS extension when resuming a TLS session, the TLS client MUST abort
 the handshake.

Laurie, et al. Expires September 6, 2018 [Page 38]

Internet-Draft Certificate Transparency Version 2.0 March 2018

8.1.2. Reconstructing the TBSCertificate

 Validation of an SCT for a certificate (where the "type" of the
 "TransItem" is "x509_sct_v2") uses the unmodified TBSCertificate
 component of the certificate.

 Before an SCT for a precertificate (where the "type" of the
 "TransItem" is "precert_sct_v2") can be validated, the TBSCertificate
 component of the precertificate needs to be reconstructed from the
 TBSCertificate component of the certificate as follows:

 o Remove the Transparency Information extension (see Section 7.1).

 o Remove embedded v1 SCTs, identified by OID 1.3.6.1.4.1.11129.2.4.2
 (see section 3.3 of [RFC6962]). This allows embedded v1 and v2
 SCTs to co-exist in a certificate (see Appendix A).

8.1.3. Validating SCTs

 In addition to normal validation of the server certificate and its
 chain, CT-using TLS clients MUST validate each received SCT for which
 they have the corresponding log’s parameters. To validate an SCT, a
 TLS client computes the signature input by constructing a "TransItem"
 of type "x509_entry_v2" or "precert_entry_v2", depending on the SCT’s
 "TransItem" type. The "TimestampedCertificateEntryDataV2" structure
 is constructed in the following manner:

 o "timestamp" is copied from the SCT.

 o "tbs_certificate" is the reconstructed TBSCertificate portion of
 the server certificate, as described in Section 8.1.2.

 o "issuer_key_hash" is computed as described in Section 4.7.

 o "sct_extensions" is copied from the SCT.

 The SCT’s "signature" is then verified using the public key of the
 corresponding log, which is identified by the "log_id". The required
 signature algorithm is one of the log’s parameters.

8.1.4. Fetching inclusion proofs

 When a TLS client has validated a received SCT but does not yet
 possess a corresponding inclusion proof, the TLS client MAY request
 the inclusion proof directly from a log using "get-proof-by-hash"
 (Section 5.4) or "get-all-by-hash" (Section 5.5).

Laurie, et al. Expires September 6, 2018 [Page 39]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 Note that fetching inclusion proofs directly from a log will disclose
 to the log which TLS server the client has been communicating with.
 This may be regarded as a significant privacy concern, and so it is
 preferable for the TLS server to send the inclusion proofs (see
 Section 6.3).

8.1.5. Validating inclusion proofs

 When a TLS client has received, or fetched, an inclusion proof (and
 an STH), it SHOULD proceed to verifying the inclusion proof to the
 provided STH. The TLS client SHOULD also verify consistency between
 the provided STH and an STH it knows about.

 If the TLS client holds an STH that predates the SCT, it MAY, in the
 process of auditing, request a new STH from the log (Section 5.2),
 then verify it by requesting a consistency proof (Section 5.3). Note
 that if the TLS client uses "get-all-by-hash", then it will already
 have the new STH.

8.1.6. Evaluating compliance

 It is up to a client’s local policy to specify the quantity and form
 of evidence (SCTs, inclusion proofs or a combination) needed to
 achieve compliance and how to handle non-compliance.

 A TLS client can only evaluate compliance if it has given the TLS
 server the opportunity to send SCTs and inclusion proofs by any of
 the three mechanisms that are mandatory to implement for CT-using TLS
 clients (see Section 8.1.1). Therefore, a TLS client MUST NOT
 evaluate compliance if it did not include both the
 "transparency_info" and "status_request" TLS extensions in the
 ClientHello.

8.1.7. cached_info TLS Extension

 If a TLS client uses the "cached_info" TLS extension ([RFC7924]) to
 indicate 1 or more cached certificates, all of which it already
 considers to be CT compliant, the TLS client MAY also include a
 "CachedObject" of type "ct_compliant" in the "cached_info" extension.
 Its "hash_value" field MUST have the value 0 and be 1 byte long (the
 minimum length permitted by [RFC7924]).

8.2. Monitor

 Monitors watch logs to check that they behave correctly, for
 certificates of interest, or both. For example, a monitor may be
 configured to report on all certificates that apply to a specific
 domain name when fetching new entries for consistency validation.

Laurie, et al. Expires September 6, 2018 [Page 40]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 A monitor MUST at least inspect every new entry in every log it
 watches, and it MAY also choose to keep copies of entire logs.

 To inspect all of the existing entries, the monitor SHOULD follow
 these steps once for each log:

 1. Fetch the current STH (Section 5.2).

 2. Verify the STH signature.

 3. Fetch all the entries in the tree corresponding to the STH
 (Section 5.6).

 4. If applicable, check each entry to see if it’s a certificate of
 interest.

 5. Confirm that the tree made from the fetched entries produces the
 same hash as that in the STH.

 To inspect new entries, the monitor SHOULD follow these steps
 repeatedly for each log:

 1. Fetch the current STH (Section 5.2). Repeat until the STH
 changes.

 2. Verify the STH signature.

 3. Fetch all the new entries in the tree corresponding to the STH
 (Section 5.6). If they remain unavailable for an extended
 period, then this should be viewed as misbehavior on the part of
 the log.

 4. If applicable, check each entry to see if it’s a certificate of
 interest.

 5. Either:

 1. Verify that the updated list of all entries generates a tree
 with the same hash as the new STH.

 Or, if it is not keeping all log entries:

 1. Fetch a consistency proof for the new STH with the previous
 STH (Section 5.3).

 2. Verify the consistency proof.

Laurie, et al. Expires September 6, 2018 [Page 41]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 3. Verify that the new entries generate the corresponding
 elements in the consistency proof.

 6. Repeat from step 1.

8.3. Auditing

 Auditing ensures that the current published state of a log is
 reachable from previously published states that are known to be good,
 and that the promises made by the log in the form of SCTs have been
 kept. Audits are performed by monitors or TLS clients.

 In particular, there are four log behavior properties that should be
 checked:

 o The Maximum Merge Delay (MMD).

 o The STH Frequency Count.

 o The append-only property.

 o The consistency of the log view presented to all query sources.

 A benign, conformant log publishes a series of STHs over time, each
 derived from the previous STH and the submitted entries incorporated
 into the log since publication of the previous STH. This can be
 proven through auditing of STHs. SCTs returned to TLS clients can be
 audited by verifying against the accompanying certificate, and using
 Merkle Inclusion Proofs, against the log’s Merkle tree.

 The action taken by the auditor if an audit fails is not specified,
 but note that in general if audit fails, the auditor is in possession
 of signed proof of the log’s misbehavior.

 A monitor (Section 8.2) can audit by verifying the consistency of
 STHs it receives, ensure that each entry can be fetched and that the
 STH is indeed the result of making a tree from all fetched entries.

 A TLS client (Section 8.1) can audit by verifying an SCT against any
 STH dated after the SCT timestamp + the Maximum Merge Delay by
 requesting a Merkle inclusion proof (Section 5.4). It can also
 verify that the SCT corresponds to the server certificate it arrived
 with (i.e., the log entry is that certificate, or is a precertificate
 corresponding to that certificate).

 Checking of the consistency of the log view presented to all entities
 is more difficult to perform because it requires a way to share log

Laurie, et al. Expires September 6, 2018 [Page 42]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 responses among a set of CT-using entities, and is discussed in
 Section 11.3.

9. Algorithm Agility

 It is not possible for a log to change any of its algorithms part way
 through its lifetime:

 Signature algorithm: SCT signatures must remain valid so signature
 algorithms can only be added, not removed.

 Hash algorithm: A log would have to support the old and new hash
 algorithms to allow backwards-compatibility with clients that are
 not aware of a hash algorithm change.

 Allowing multiple signature or hash algorithms for a log would
 require that all data structures support it and would significantly
 complicate client implementation, which is why it is not supported by
 this document.

 If it should become necessary to deprecate an algorithm used by a
 live log, then the log MUST be frozen as specified in Section 4.13
 and a new log SHOULD be started. Certificates in the frozen log that
 have not yet expired and require new SCTs SHOULD be submitted to the
 new log and the SCTs from that log used instead.

10. IANA Considerations

 The assignment policy criteria mentioned in this section refer to the
 policies outlined in [RFC5226].

10.1. New Entry to the TLS ExtensionType Registry

 IANA is asked to add an entry for "transparency_info(TBD)" to the
 "TLS ExtensionType Values" registry defined in [I-D.ietf-tls-tls13],
 citing this document as the "Reference" and setting the "Recommended"
 value to "Yes".

10.2. New Entry to the TLS CachedInformationType registry

 IANA is asked to add an entry for "ct_compliant(TBD)" to the "TLS
 CachedInformationType Values" registry defined in [RFC7924], citing
 this document as the "Reference".

Laurie, et al. Expires September 6, 2018 [Page 43]

Internet-Draft Certificate Transparency Version 2.0 March 2018

10.3. Hash Algorithms

 IANA is asked to establish a registry of hash algorithm values, named
 "CT Hash Algorithms", that initially consists of:

 +--------+------------+------------------------+--------------------+
 | Value | Hash | OID | Reference / |
 | | Algorithm | | Assignment Policy |
 +--------+------------+------------------------+--------------------+
0x00	SHA-256	2.16.840.1.101.3.4.2.1	[RFC6234]
0x01 -	Unassigned		Specification
0xDF			Required and
			Expert Review
0xE0 -	Reserved		Experimental Use
0xEF			
0xF0 -	Reserved		Private Use
0xFF			
 +--------+------------+------------------------+--------------------+

10.3.1. Expert Review guidelines

 The appointed Expert should ensure that the proposed algorithm has a
 public specification and is suitable for use as a cryptographic hash
 algorithm with no known preimage or collision attacks. These attacks
 can damage the integrity of the log.

10.4. Signature Algorithms

 IANA is asked to establish a registry of signature algorithm values,
 named "CT Signature Algorithms", that initially consists of:

Laurie, et al. Expires September 6, 2018 [Page 44]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 +--------------------------------+--------------------+-------------+
SignatureScheme Value	Signature	Reference /
	Algorithm	Assignment
		Policy
+--------------------------------+--------------------+-------------+		
ecdsa_secp256r1_sha256(0x0403)	ECDSA (NIST P-256)	[FIPS186-4]
	with SHA-256	
ecdsa_secp256r1_sha256(0x0403)	Deterministic	[RFC6979]
	ECDSA (NIST P-256)	
	with HMAC-SHA256	
ed25519(0x0807)	Ed25519 (PureEdDSA	[RFC8032]
	with the	
	edwards25519	
	curve)	
private_use(0xFE00..0xFFFF)	Reserved	Private Use
 +--------------------------------+--------------------+-------------+

10.4.1. Expert Review guidelines

 The appointed Expert should ensure that the proposed algorithm has a
 public specification, has a value assigned to it in the TLS
 SignatureScheme Registry (that IANA is asked to establish in
 [I-D.ietf-tls-tls13]) and is suitable for use as a cryptographic
 signature algorithm.

10.5. VersionedTransTypes

 IANA is asked to establish a registry of "VersionedTransType" values,
 named "CT VersionedTransTypes", that initially consists of:

Laurie, et al. Expires September 6, 2018 [Page 45]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 +-------------+----------------------+------------------------------+
 | Value | Type and Version | Reference / Assignment |
 | | | Policy |
 +-------------+----------------------+------------------------------+
0x0000	Reserved	[RFC6962] (*)
0x0001	x509_entry_v2	RFCXXXX
0x0002	precert_entry_v2	RFCXXXX
0x0003	x509_sct_v2	RFCXXXX
0x0004	precert_sct_v2	RFCXXXX
0x0005	signed_tree_head_v2	RFCXXXX
0x0006	consistency_proof_v2	RFCXXXX
0x0007	inclusion_proof_v2	RFCXXXX
0x0008 -	Unassigned	Specification Required and
0xDFFF		Expert Review
0xE000 -	Reserved	Experimental Use
0xEFFF		
0xF000 -	Reserved	Private Use
0xFFFF		
 +-------------+----------------------+------------------------------+

 (*) The 0x0000 value is reserved so that v1 SCTs are distinguishable
 from v2 SCTs and other "TransItem" structures.

 [RFC Editor: please update ’RFCXXXX’ to refer to this document, once
 its RFC number is known.]

10.5.1. Expert Review guidelines

 The appointed Expert should review the public specification to ensure
 that it is detailed enough to ensure implementation interoperability.

10.6. Log Artifact Extension Registry

 IANA is asked to establish a registry of "ExtensionType" values,
 named "CT Log Artifact Extensions", that initially consists of:

Laurie, et al. Expires September 6, 2018 [Page 46]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 +---------------+------------+-----+--------------------------------+
 | ExtensionType | Status | Use | Reference / Assignment Policy |
 +---------------+------------+-----+--------------------------------+
0x0000 -	Unassigned	n/a	Specification Required and
0xDFFF			Expert Review
0xE000 -	Reserved	n/a	Experimental Use
0xEFFF			
0xF000 -	Reserved	n/a	Private Use
0xFFFF			
 +---------------+------------+-----+--------------------------------+

 The "Use" column should contain one or both of the following values:

 o "SCT", for extensions specified for use in Signed Certificate
 Timestamps.

 o "STH", for extensions specified for use in Signed Tree Heads.

10.6.1. Expert Review guidelines

 The appointed Expert should review the public specification to ensure
 that it is detailed enough to ensure implementation interoperability.
 The Expert should also verify that the extension is appropriate to
 the contexts in which it is specified to be used (SCT, STH, or both).

10.7. Object Identifiers

 This document uses object identifiers (OIDs) to identify Log IDs (see
 Section 4.4), the precertificate CMS "eContentType" (see
 Section 3.2), and X.509v3 extensions in certificates (see
 Section 7.1.2) and OCSP responses (see Section 7.1.1). The OIDs are
 defined in an arc that was selected due to its short encoding.

10.7.1. Log ID Registry

 IANA is asked to establish a registry of Log IDs, named "CT Log ID
 Registry", that initially consists of:

Laurie, et al. Expires September 6, 2018 [Page 47]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 +---------------------+------------+--------------------------------+
 | Value | Log | Reference / Assignment Policy |
 +---------------------+------------+--------------------------------+
1.3.101.8192 -	Unassigned	Parameters Required and First
1.3.101.16383		Come First Served
1.3.101.80.0 -	Unassigned	Parameters Required and First
1.3.101.80.*		Come First Served
 +---------------------+------------+--------------------------------+

 All OIDs in the range from 1.3.101.8192 to 1.3.101.16383 have been
 reserved. This is a limited resource of 8,192 OIDs, each of which
 has an encoded length of 4 octets.

 The 1.3.101.80 arc has been delegated. This is an unlimited
 resource, but only the 128 OIDs from 1.3.101.80.0 to 1.3.101.80.127
 have an encoded length of only 4 octets.

 Each application for the allocation of a Log ID should be accompanied
 by all of the required parameters (except for the Log ID) listed in
 Section 4.1.

11. Security Considerations

 With CAs, logs, and servers performing the actions described here,
 TLS clients can use logs and signed timestamps to reduce the
 likelihood that they will accept misissued certificates. If a server
 presents a valid signed timestamp for a certificate, then the client
 knows that a log has committed to publishing the certificate. From
 this, the client knows that monitors acting for the subject of the
 certificate have had some time to notice the misissuance and take
 some action, such as asking a CA to revoke a misissued certificate.
 A signed timestamp does not guarantee this though, since appropriate
 monitors might not have checked the logs or the CA might have refused
 to revoke the certificate.

 In addition, if TLS clients will not accept unlogged certificates,
 then site owners will have a greater incentive to submit certificates
 to logs, possibly with the assistance of their CA, increasing the
 overall transparency of the system.

 [I-D.ietf-trans-threat-analysis] provides a more detailed threat
 analysis of the Certificate Transparency architecture.

Laurie, et al. Expires September 6, 2018 [Page 48]

Internet-Draft Certificate Transparency Version 2.0 March 2018

11.1. Misissued Certificates

 Misissued certificates that have not been publicly logged, and thus
 do not have a valid SCT, are not considered compliant. Misissued
 certificates that do have an SCT from a log will appear in that
 public log within the Maximum Merge Delay, assuming the log is
 operating correctly. Since a log is allowed to serve an STH of any
 age up to the MMD, the maximum period of time during which a
 misissued certificate can be used without being available for audit
 is twice the MMD.

11.2. Detection of Misissue

 The logs do not themselves detect misissued certificates; they rely
 instead on interested parties, such as domain owners, to monitor them
 and take corrective action when a misissue is detected.

11.3. Misbehaving Logs

 A log can misbehave in several ways. Examples include: failing to
 incorporate a certificate with an SCT in the Merkle Tree within the
 MMD; presenting different, conflicting views of the Merkle Tree at
 different times and/or to different parties; issuing STHs too
 frequently; mutating the signature of a logged certificate; and
 failing to present a chain containing the certifier of a logged
 certificate. Such misbehavior is detectable and
 [I-D.ietf-trans-threat-analysis] provides more details on how this
 can be done.

 Violation of the MMD contract is detected by log clients requesting a
 Merkle inclusion proof (Section 5.4) for each observed SCT. These
 checks can be asynchronous and need only be done once per
 certificate. However, note that there may be privacy concerns (see
 Section 8.1.4).

 Violation of the append-only property or the STH issuance rate limit
 can be detected by clients comparing their instances of the Signed
 Tree Heads. There are various ways this could be done, for example
 via gossip (see [I-D.ietf-trans-gossip]) or peer-to-peer
 communications or by sending STHs to monitors (who could then
 directly check against their own copy of the relevant log). Proof of
 misbehavior in such cases would be: a series of STHs that were issued
 too closely together, proving violation of the STH issuance rate
 limit; or an STH with a root hash that does not match the one
 calculated from a copy of the log, proving violation of the append-
 only property.

Laurie, et al. Expires September 6, 2018 [Page 49]

Internet-Draft Certificate Transparency Version 2.0 March 2018

11.4. Preventing Tracking Clients

 Clients that gossip STHs or report back SCTs can be tracked or traced
 if a log produces multiple STHs or SCTs with the same timestamp and
 data but different signatures. Logs SHOULD mitigate this risk by
 either:

 o Using deterministic signature schemes, or

 o Producing no more than one SCT for each distinct submission and no
 more than one STH for each distinct tree_size. Each of these SCTs
 and STHs can be stored by the log and served to other clients that
 submit the same certificate or request the same STH.

11.5. Multiple SCTs

 By requiring TLS servers to offer multiple SCTs, each from a
 different log, TLS clients reduce the effectiveness of an attack
 where a CA and a log collude (see Section 6.1).

12. Acknowledgements

 The authors would like to thank Erwann Abelea, Robin Alden, Andrew
 Ayer, Richard Barnes, Al Cutter, David Drysdale, Francis Dupont, Adam
 Eijdenberg, Stephen Farrell, Daniel Kahn Gillmor, Paul Hadfield, Brad
 Hill, Jeff Hodges, Paul Hoffman, Jeffrey Hutzelman, Kat Joyce,
 Stephen Kent, SM, Alexey Melnikov, Linus Nordberg, Chris Palmer,
 Trevor Perrin, Pierre Phaneuf, Eric Rescorla, Melinda Shore, Ryan
 Sleevi, Martin Smith, Carl Wallace and Paul Wouters for their
 valuable contributions.

 A big thank you to Symantec for kindly donating the OIDs from the
 1.3.101 arc that are used in this document.

13. References

13.1. Normative References

 [FIPS186-4]
 NIST, "FIPS PUB 186-4", July 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/
 NIST.FIPS.186-4.pdf>.

 [HTML401] Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium Recommendation
 REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

Laurie, et al. Expires September 6, 2018 [Page 50]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-26 (work in progress),
 March 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-
 editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011, <https://www.rfc-
 editor.org/info/rfc6066>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

Laurie, et al. Expires September 6, 2018 [Page 51]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013, <https://www.rfc-
 editor.org/info/rfc6961>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014, <https://www.rfc-
 editor.org/info/rfc7231>.

 [RFC7633] Hallam-Baker, P., "X.509v3 Transport Layer Security (TLS)
 Feature Extension", RFC 7633, DOI 10.17487/RFC7633,
 October 2015, <https://www.rfc-editor.org/info/rfc7633>.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924,
 DOI 10.17487/RFC7924, July 2016, <https://www.rfc-
 editor.org/info/rfc7924>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017, <https://www.rfc-
 editor.org/info/rfc8032>.

13.2. Informative References

 [Chromium.Log.Policy]
 The Chromium Projects, "Chromium Certificate Transparency
 Log Policy", 2014, <http://www.chromium.org/Home/chromium-
 security/certificate-transparency/log-policy>.

 [Chromium.Policy]
 The Chromium Projects, "Chromium Certificate
 Transparency", 2014, <http://www.chromium.org/Home/
 chromium-security/certificate-transparency>.

 [CrosbyWallach]
 Crosby, S. and D. Wallach, "Efficient Data Structures for
 Tamper-Evident Logging", Proceedings of the 18th USENIX
 Security Symposium, Montreal, August 2009,
 <http://static.usenix.org/event/sec09/tech/full_papers/
 crosby.pdf>.

Laurie, et al. Expires September 6, 2018 [Page 52]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 [I-D.ietf-trans-gossip]
 Nordberg, L., Gillmor, D., and T. Ritter, "Gossiping in
 CT", draft-ietf-trans-gossip-05 (work in progress),
 January 2018.

 [I-D.ietf-trans-threat-analysis]
 Kent, S., "Attack and Threat Model for Certificate
 Transparency", draft-ietf-trans-threat-analysis-12 (work
 in progress), October 2017.

 [JSON.Metadata]
 The Chromium Projects, "Chromium Log Metadata JSON
 Schema", 2014, <https://www.gstatic.com/ct/log_list/
 log_list_schema.json>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008, <https://www.rfc-
 editor.org/info/rfc5226>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011, <https://www.rfc-
 editor.org/info/rfc6234>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7320] Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 7320, DOI 10.17487/RFC7320, July 2014,
 <https://www.rfc-editor.org/info/rfc7320>.

Appendix A. Supporting v1 and v2 simultaneously

 Certificate Transparency logs have to be either v1 (conforming to
 [RFC6962]) or v2 (conforming to this document), as the data
 structures are incompatible and so a v2 log could not issue a valid
 v1 SCT.

 CT clients, however, can support v1 and v2 SCTs, for the same
 certificate, simultaneously, as v1 SCTs are delivered in different
 TLS, X.509 and OCSP extensions than v2 SCTs.

Laurie, et al. Expires September 6, 2018 [Page 53]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 v1 and v2 SCTs for X.509 certificates can be validated independently.
 For precertificates, v2 SCTs should be embedded in the TBSCertificate
 before submission of the TBSCertificate (inside a v1 precertificate,
 as described in Section 3.1. of [RFC6962]) to a v1 log so that TLS
 clients conforming to [RFC6962] but not this document are oblivious
 to the embedded v2 SCTs. An issuer can follow these steps to produce
 an X.509 certificate with embedded v1 and v2 SCTs:

 o Create a CMS precertificate as described in Section 3.2 and submit
 it to v2 logs.

 o Embed the obtained v2 SCTs in the TBSCertificate, as described in
 Section 7.1.2.

 o Use that TBSCertificate to create a v1 precertificate, as
 described in Section 3.1. of [RFC6962] and submit it to v1 logs.

 o Embed the v1 SCTs in the TBSCertificate, as described in
 Section 3.3 of [RFC6962].

 o Sign that TBSCertificate (which now contains v1 and v2 SCTs) to
 issue the final X.509 certificate.

Authors’ Addresses

 Ben Laurie
 Google UK Ltd.

 Email: benl@google.com

 Adam Langley
 Google Inc.

 Email: agl@google.com

 Emilia Kasper
 Google Switzerland GmbH

 Email: ekasper@google.com

 Eran Messeri
 Google UK Ltd.

 Email: eranm@google.com

Laurie, et al. Expires September 6, 2018 [Page 54]

Internet-Draft Certificate Transparency Version 2.0 March 2018

 Rob Stradling
 Comodo CA Ltd.

 Email: rob.stradling@comodoca.com

Laurie, et al. Expires September 6, 2018 [Page 55]

Public Notary Transparency S. Kent
Internet-Draft Independent
Intended status: Informational April 12, 2018
Expires: October 14, 2018

 Attack and Threat Model for Certificate Transparency
 draft-ietf-trans-threat-analysis-13

Abstract

 This document describes an attack model and discusses threats for the
 Web PKI context in which security mechanisms to detect mis-issuance
 of web site certificates are being developed. The model provides an
 analysis of detection and remediation mechanisms for both syntactic
 and semantic mis-issuance. The model introduces an outline of
 attacks to organize the discussion. The model also describes the
 roles played by the elements of the Certificate Transparency (CT)
 system, to establish a context for the model.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 14, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Kent Expires October 14, 2018 [Page 1]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Conventions used in this document 7
 2. Threats . 7
 3. Semantic mis-issuance . 9
 3.1. Non-malicious Web PKI CA context 9
 3.1.1. Certificate logged 9
 3.1.2. Certificate not logged 11
 3.2. Malicious Web PKI CA context 12
 3.2.1. Certificate logged 12
 3.2.2. Certificate not logged 14
 3.3. Undetected Compromise of CAs or Logs 15
 3.3.1. Compromised CA, Benign Log 15
 3.3.2. Benign CA, Compromised Log 17
 3.3.3. Compromised CA, Compromised Log 17
 3.4. Attacks Based on Exploiting Multiple Certificate Chains . 18
 3.5. Attacks Related to Distribution of Revocation Status . . 20
 4. Syntactic mis-issuance 21
 4.1. Non-malicious Web PKI CA context 21
 4.1.1. Certificate logged 21
 4.1.2. Certificate not logged 23
 4.2. Malicious Web PKI CA context 23
 4.2.1. Certificate logged 24
 4.2.2. Certificate is not logged 25
 5. Issues Applicable to Sections 3 and 4 25
 5.1. How does a Subject know which Monitor(s) to use? 25
 5.2. How does a Monitor discover new logs? 25
 5.3. CA response to report of a bogus or erroneous certificate 26
 5.4. Browser behavior . 26
 5.5. Remediation for a malicious CA 26
 5.6. Auditing - detecting misbehaving logs 27
 6. Security Considerations 28
 7. IANA Considerations . 28
 8. Acknowledgments . 29
 9. References . 29
 9.1. Normative References 29
 9.2. Informative References 29
 9.3. URIs . 30
 Author’s Address . 30

Kent Expires October 14, 2018 [Page 2]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

1. Introduction

 Certificate transparency (CT) is a set of mechanisms designed to
 detect, deter, and facilitate remediation of certificate mis-
 issuance. The term certificate mis-issuance is defined here to
 encompass violations of either semantic or syntactic constraints.
 The fundamental semantic constraint for a certificate is that it was
 issued to an entity that is authorized to represent the Subject (or
 Subject Alternative) named in the certificate. (It is also assumed
 that the entity requested the certificate from the CA that issued
 it.) Throughout the remainder of this document we refer to a
 semantically mis-issued certificate as "bogus."

 A certificate is characterized as syntactically mis-issued (aka
 erroneous) if it violates syntax constraints associated with the
 class of certificate that it purports to represent. Syntax
 constraints for certificates are established by certificate profiles,
 and typically are application-specific. For example, certificates
 used in the Web PKI environment might be characterized as domain
 validation (DV) or extended validation (EV) certificates.
 Certificates used with applications such as IPsec or S/MIME have
 different syntactic constraints from those in the Web PKI context.

 There are three classes of beneficiaries of CT: certificate Subjects,
 CAs, and relying parties (RPs). In the initial focus context of CT,
 the Web PKI, Subjects are web sites and RPs are browsers employing
 HTTPS to access these web sites. Thee CAs that benefit are issuers
 of certificates used to authenticate web sites.

 A certificate Subject benefits from CT because CT helps detect
 certificates that have been mis-issued in the name of that Subject.
 A Subject learns of a bogus certificate (issued in its name), via the
 Monitor function of CT. The Monitor function may be provided by the
 Subject itself, i.e., self-monitoring, or by a third party trusted by
 the Subject. When a Subject is informed of certificate mis-issuance
 by a Monitor, the Subject is expected to request/demand revocation of
 the bogus certificate. Revocation of a bogus certificate is the
 primary means of remedying mis-issuance.

 Certificate Revocations Lists (CRLs) [RFC5280] are the primary means
 of certificate revocation established by IETF standards.
 Unfortunately, most browsers do not make use of CRLs to check the
 revocation status of certificates presented by a TLS Server
 (Subject). Some browsers make use of Online Certificate Status
 Protocol (OCSP) data [RFC6960] as a standards-based alternative to
 CRLs. If a certificate contains an Authority Information Access
 (AIA) extension [RFC5280], it directs a relying party to an OCSP
 server to which a request can be directed. This extension also may

Kent Expires October 14, 2018 [Page 3]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 be used by a browser to request OCSP responses from a TLS server with
 which it is communicating [RFC6066][RFC6961].

 RFC 5280 does not require inclusion of an AIA extension in
 certificates, so a browser cannot assume that this extension will be
 present. The Certification Authority and Browser Forum (CABF)
 baseline requirements and extended validation guidelines do mandate
 inclusion of this extension in EE certificates (in conjunction with
 their certificate policies). (See https://cabforum.org [1] for the
 most recent versions of these policies.)

 In addition to the revocation status data dissemination mechanisms
 specified by IETF standards, most browser vendors employ proprietary
 means of conveying certificate revocation status information to their
 products, e.g., via a blacklist that enumerates revoked certificates
 (EE or CA). Such capabilities enable a browser vendor to cause
 browsers to reject any certificates on the blacklist. This approach
 also can be employed to remedy mis-issuance. Throughout the
 remainder of this document references to certificate revocation as a
 remedy encompass this and analogous forms of browser behavior, if
 available. Note: there are no IETF standards defining a browser
 blacklist capability.

 Note that a Subject can benefit from the Monitor function of CT even
 if the Subject’s certificate has not been logged. Monitoring of logs
 for certificates issued in the Subject’s name suffices to detect mis-
 issuance targeting the Subject, if the bogus/erroneous certificate is
 logged.

 A relying party (e.g., browser) benefits from CT if it rejects a
 bogus certificate, i.e., treats it as invalid. An RP is protected
 from accepting a bogus certificate if that certificate is revoked,
 and if the RP checks the revocation status of the certificate. (An
 RP is also protected if a browser vendor "blacklists" a certificate
 or "bad-CA-lists" a CA as noted above.) An RP also may benefit from
 CT if the RP validates an SCT associated with a certificate, and
 rejects the certificate if the Signed certificate Timestamp (SCT)
 [I-D.ietf-trans-rfc6962-bis] is invalid. If an RP verified that a
 certificate that claims to have been logged has a valid log entry,
 the RP would have a higher degree of confidence that the certificate
 is genuine. However, checking logs in this fashion imposes a burden
 on RPs and on logs. Moreover, the existence of a log entry does not
 ensure that the certificate is not mis-issued. Unless the
 certificate Subject is monitoring the log(s) in question, a bogus
 certificate will not be detected by CT mechanisms. Finally, if an RP
 were to check logs for individual certificates, that would disclose
 to logs the identity of web sites being visited by the RP, a privacy

Kent Expires October 14, 2018 [Page 4]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 violation. Thus this attack model does not assume that all RPs will
 check log entries.

 A CA benefits from CT when it detects a (mis-issued) certificate that
 represents the same Subject name as a legitimate certificate issued
 by the CA.

 Note that all RPs may benefit from CT even if they do nothing with
 SCTs. If Monitors inform Subjects of mis-issuance, and if a CA
 revokes a certificate in response to a request from the certificate’s
 legitimate Subject, then an RP benefits without having to implement
 any CT-specific mechanisms.

 Also note that one proposal [I-D.ietf-trans-gossip] for distributing
 Audit information (to detect misbehaving logs) calls for a browser to
 send SCTs it receives to the corresponding website when visited by
 the browser. If a website acquires an inclusion proof from a log for
 each (unique) SCT it receives in this fashion, this would cause a
 bogus SCT to be discovered, and, presumably, trigger a revocation
 request.

 Logging [I-D.ietf-trans-rfc6962-bis] is the central element of CT.
 Logging enables a Monitor to detect a bogus certificate based on
 reference information provided by the certificate Subject. Logging
 of certificates is intended to deter mis-issuance, by creating a
 publicly-accessible record that associates a CA with any certificates
 that it mis-issues. Logging does not remedy mis-issuance; but it
 does facilitate remediation by providing the information needed to
 enable detection and consequently revocation of bogus certificates in
 some circumstances.

 Auditing is a function employed by CT to detect misbehavior by logs
 and to deter mis-issuance that is abetted by misbehaving logs.
 Auditing detects several types of log misbehavior, including failures
 to adhere to the advertised Maximum Merge Delay (MMD) and Signed Tree
 Head (STH) frequency count [I-D.ietf-trans-rfc6962-bis] violating the
 append-only property, and providing inconsistent views of the log to
 different log clients. The first three of these are relatively easy
 for an individual auditor to detect, but the last form of misbehavior
 requires communication among multiple log clients. Monitors ought
 not trust logs that are detected misbehaving. Thus the Audit
 function does not detect mis-issuance per se. The CT design
 identifies audit functions designed to detect several types of
 misbehavior. However, mechanisms to detect some forms of log
 misbehavior are not yet standardized.

 Figure 1 (below) illustrates the data exchanges among the major
 elements of the CT system, based on the log specification

Kent Expires October 14, 2018 [Page 5]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 [I-D.ietf-trans-rfc6962-bis] and on the assumed behavior of other CT
 system elements as described above. This Figure does not include the
 Audit function, because there is not yet agreement on how that
 function will work in a distributed, privacy-preserving fashion.

 +----+ +---------+ +---------+
CA	---[1]-->	Log	---[8]---	Monitor
	--[2]---		----[9]-->	
	---[3]-->		--[10]---	
	--[4]---		---[11]-->	
			+---------+	
			+---------+	
			--[8]----	Self-
				Monitor
			---[9]--->	(Subject)
			--[10]---	
			---[11]-->	
	+---------+ +---------+			
	+---------+ +---------+			
	---[5]-->	Website	---[7]--->	Browser
		(Subject)	+---------+	
	--[6]-->		----------------------------+	
 +----+ +---------+

 [1] Retrieve accepted root certs
 [2] accepted root certs
 [3] Add chain to log/add PreCertChain to log
 [4] SCT
 [5] send cert + SCTs (or cert with embedded SCTs)
 [6] Revocation request/response (in response to detected
 mis-issuance)
 [7] cert + SCTs (or cert with embedded SCTs)
 [8] Retrieve entries from Log
 [9] returned entries from log
 [10] Retrieve latest STH
 [11] returned STH
 [12] bogus/erroneous cert notification

 Figure 1: Data Exchanges Between Major Elements of the CT System

Kent Expires October 14, 2018 [Page 6]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 Certificate mis-issuance may arise in one of several ways. The ways
 by which CT enables a Subject (or others) to detect and redress mis-
 issuance depends on the context and the entities involved in the mis-
 issuance. This attack model applies to use of CT in the Web PKI
 context. If CT is extended to apply to other contexts, each context
 will require its own attack model, although most elements of the
 model described here are likely to be applicable.

 Because certificates are issued by CAs, the top level differentiation
 in this analysis is whether the CA that mis-issued a certificate did
 so maliciously or not. Next, for each scenario, the model considers
 whether or not the certificate was logged. Scenarios are further
 differentiated based on whether the logs and monitors are benign or
 malicious and whether a certificate’s Subject is self-monitoring or
 is using a third party Monitoring service. Finally, the analysis
 considers whether a browser is performing checking relevant to CT.
 The scenarios are organized as illustrated by the following outline:

 Web PKI CA - malicious vs non-malicious
 Certificate - logged vs not logged
 Log - benign vs malicious
 Third party Monitor - benign vs malicious
 Certificate’s Subject - self-monitoring (or not)
 Browser - CT-supporting (or not)

 The next section of the document briefly discusses threats.
 Subsequent sections examine each of the cases described above. As
 noted earlier, the focus here is on the Web PKI context, although
 most of the analysis is applicable to other PKI contexts.

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Threats

 A threat is defined, traditionally, as a motivated, capable
 adversary. An adversary who is not motivated to attack a system is
 not a threat. An adversary who is motivated but not "capable" also
 is not a threat. Threats change over time; new classes of
 adversaries may arise, new motivations may come into play, and the
 capabilities of adversaries may change. Nonetheless, it is useful to
 document perceived threats against a system to provide a context for
 understanding attacks. Even if the assumptions about adversaries
 prove to be incorrect, documenting the assumptions is valuable.

Kent Expires October 14, 2018 [Page 7]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 As noted above, the goals of CT are to deter, detect, and facilitate
 remediation of attacks on the web PKI. Such attacks can enable an
 attacker to spoof the identity of TLS-enabled web sites. Spoofing
 enables an adversary to perform many types of attacks, e.g., delivery
 of malware to a client, reporting bogus information, or acquiring
 information that a client would not communicate if the client were
 aware of the spoofing. Such information may include personal
 identification and authentication information and electronic payment
 authorization information. Because of the nature of the information
 that may be divulged (or misinformation or malware that may be
 delivered), the principal adversaries in the CT context are perceived
 to be (cyber) criminals and nation states. Both adversaries are
 motivated to acquire personal identification and authentication
 information. Criminals are also motivated to acquire electronic
 payment authorization information.

 To make use of forged web site certificates, an adversary must be
 able to direct a TLS client to a spoofed web site, so that it can
 present the forged certificate during a TLS handshake. An adversary
 may achieve this in various ways, e.g., by manipulation of the DNS
 response sent to a TLS client or via a man-in-the-middle attack. The
 former type of attack is well within the perceived capabilities of
 both classes of adversary. The latter attack may be possible for
 criminals and is certainly a capability available to a nation state
 within its borders. Nation states also may be able to compromise DNS
 servers outside their own jurisdiction.

 The elements of CT may themselves be targets of attacks, as described
 below. A criminal organization might compromise a CA and cause it to
 issue bogus certificates, or it may exert influence over a CA (or CA
 staff) to do so, e.g., through extortion or physical threat. A CA
 may be the victim of social engineering, causing it to issue a
 certificate to an inappropriate Subject. (Even though the CA is not
 intentionally malicious in this case, the action is equivalent to a
 malicious CA, hence the use of the term "bogus" here.) A nation
 state may operate or influence a CA that is part of the large set of
 "root CAs" in browsers. A CA, acting in this fashion, is termed a
 "malicious" CA. A nation state also might compromise a CA in another
 country, to effect issuance of bogus certificates. In this case the
 (non-malicious) CA, upon detecting the compromise (perhaps because of
 CT) is expected to work with Subjects to remedy the mis-issuance.

 A log also might be compromised by a suitably sophisticated criminal
 organization or by a nation state. Compromising a log would enable a
 compromised or rogue CA to acquire SCTs, but log entries would be
 suppressed, either for all log clients or for targeted clients (e.g.,
 to selected Monitors or Auditors). It seems unlikely that a

Kent Expires October 14, 2018 [Page 8]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 compromised, non-malicious, log would persist in presenting multiple
 views of its data, but a malicious log would.

 Finally, note that a browser trust store may include a CA that is
 intended to issue certificates to enable monitoring of encrypted
 browser sessions. The inclusion of a trust anchor for such a CA is
 intended to facilitate monitoring encrypted content, via an
 authorized man-in-the-middle (MITM) attack. CT is not designed to
 counter this type of locally-authorized interception.

3. Semantic mis-issuance

3.1. Non-malicious Web PKI CA context

 In this section, we address the case where the CA has no intent to
 issue a bogus certificate.

 A CA may have mis-issued a certificate as a result of an error or, in
 the case of a bogus certificate, because it was the victim of a
 social engineering attack or an attack such as the one that affected
 DigiNotar [https://www.vasco.com/company/about_vasco/press_room/
 news_archive/2011/news_diginotar_reports_any security_incident.aspx
 [2]]. In the case of an error, the CA should have a record of the
 erroneous certificate and be prepared to revoke this certificate once
 it has discovered and confirmed the error. In the event of an
 attack, a CA may have no record of a bogus certificate.

3.1.1. Certificate logged

3.1.1.1. Benign log

 The log (or logs) is benign and thus is presumed to provide
 consistent, accurate responses to requests from all clients.

 If a bogus (pre-)certificate has been submitted to one or more logs
 prior to issuance to acquire an embedded SCT, or post-issuance to
 acquire a standalone SCT, detection of this mis-issuance is the
 responsibility of a Monitor.

3.1.1.1.1. Self-monitoring Subject

 If a Subject is tracking the log(s) to which a certificate was
 submitted, and is performing self-monitoring, then it will be able to
 detect a bogus (pre-)certificate and request revocation. In this
 case, the CA will make use of the log entry (supplied by the Subject)
 to determine the serial number of the bogus certificate, and
 investigate/revoke it. (See Sections 5.1, 5.2 and 5.3.)

Kent Expires October 14, 2018 [Page 9]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

3.1.1.1.2. Benign third party Monitor

 If a benign third party monitor is checking the logs to which a
 certificate was submitted and is protecting the targeted Subject, it
 will detect a bogus certificate and will alert the Subject. The
 Subject, in turn, will ask the CA to revoke the bogus certificate.
 In this case, the CA will make use of the log entry (supplied by the
 Subject) to determine the serial number of the bogus certificate, and
 revoke it (after investigation). (See Sections 5.1, 5.2 and 5.3.)

3.1.1.2. Misbehaving log

 In this case, the bogus (pre-)certificate has been submitted to one
 or more logs, each of which generate an SCT for the submission. A
 misbehaving log probably will suppress a bogus certificate log entry,
 or it may create an entry for the certificate but report it
 selectively. (A misbehaving log also could create and report entries
 for bogus certificates that have not been issued by the indicated CA
 (hereafter called "fake"). Unless a Monitor validates the associated
 certificate chains up to roots that it trusts, these fake bogus
 certificates could cause the Monitors to report non-existent semantic
 problems to the Subject who would in turn report them to the
 purported issuing CA. This might cause the CA to do needless
 investigative work or perhaps incorrectly revoke and re-issue the
 Subject’s real certificate. Note that for every certificate
 submitted to a log, the log MUST verify a complete certificate chain
 up to one of the roots it accepts. So creating a log entry for a
 fake bogus certificate marks the log as misbehaving.

3.1.1.2.1. Self-monitoring Subject & Benign third party Monitor

 If a misbehaving log suppresses a bogus certificate log entry, a
 Subject performing self-monitoring will not detect the bogus
 certificate. CT relies on an Audit mechanism to detect log
 misbehavior, as a deterrent. It is anticipated that logs that are
 identified as persistently misbehaving will cease to be trusted by
 Monitors, non-malicious CAs, and by browser vendors. This assumption
 forms the basis for the perceived deterrent. It is not clear if
 mechanisms to detect this sort of log misbehavior will be viable.

 Similarly, when a misbehaving log suppresses a bogus certificate log
 entry (or report such entries inconsistently) a benign third party
 Monitor that is protecting the targeted Subject also will not detect
 a bogus certificate. In this scenario, CT relies on a distributed
 Auditing mechanism [I-D.ietf-trans-gossip] to detect log misbehavior,
 as a deterrent. (See Section 5.6 below.) However, a Monitor (third-
 party or self) must participate in the Audit mechanism in order to
 become aware of log misbehavior.

Kent Expires October 14, 2018 [Page 10]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 If the misbehaving log has logged the bogus certificate when issuing
 the associated SCT, it will try to hide this from the Subject (if
 self-monitoring) or from the Monitor protecting the Subject. It does
 so by presenting them with a view of its log entries and STH that
 does not contain the bogus certificate. To other entities, the log
 presents log entries and an STH that include the bogus certificate.
 This discrepancy can be detected if there is an exchange of
 information about the log entries and STH between the entities
 receiving the view that excludes the bogus certificate and entities
 that receive a view that includes it, i.e., a distributed Audit
 mechanism.

 If a malicious log does not create an entry for a bogus certificate
 (for which an SCT has been issued), then any Monitor/Auditor that
 sees the bogus certificate will detect this when it checks with the
 log for log entries and STH (see Section 3.1.2.)

3.1.1.3. Misbehaving third party Monitor

 A third party Monitor that misbehaves will not notify the targeted
 Subject of a bogus certificate. This is true irrespective of whether
 the Monitor checks the logs or whether the logs are benign or
 malicious/conspiring.

 Note that independent of any mis-issuance on the part of the CA, a
 misbehaving Monitor could issue false warnings to a Subject that it
 protects. These could cause the Subject to report non-existent
 semantic problems to the issuing CA and cause the CA to do needless
 investigative work or perhaps incorrectly revoke and re-issue the
 Subject’s certificate.

3.1.2. Certificate not logged

 If the CA does not submit a pre-certificate to a log, whether a log
 is benign or misbehaving does not matter. The same is true if a
 Subject is issued a certificate without an SCT and does not log the
 certificate itself, to acquire an SCT. Also, since there is no log
 entry in this scenario, there is no difference in outcome between a
 benign and a misbehaving third party Monitor. In both cases, no
 Monitor (self or third-party) will detect a bogus certificate based
 on Monitor functions and there will be no consequent reporting of the
 problem to the Subject or by the Subject to the CA based on
 examination of log entries.

Kent Expires October 14, 2018 [Page 11]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

3.1.2.1. Self-monitoring Subject

 A Subject performing self-monitoring will be able to detect the lack
 of an embedded SCT in the certificate it received from the CA, or the
 lack of an SCT supplied to the Subject via an out-of-band channel. A
 Subject ought to notify the CA if the Subject expected that its
 certificate was to be logged. (A Subject would expect its
 certificate to be logged if there is an agreement between the Subject
 and the CA to do so, or because the CA advertises that it logs all of
 the certificates that it issues.) If the certificate was supposed to
 be logged, but was not, the CA can use the certificate supplied by
 the Subject to investigate and remedy the problem. In the context of
 a benign CA, a failure to log the certificate might be the result of
 an operations error, or evidence of an attack on the CA.

3.1.2.2. CT-enabled browser

 If a browser rejects certificates without SCTs (see Section 5.4), CAs
 may be "encouraged" to log the certificates they issue. This, in
 turn, would make it easier for Monitors to detect bogus certificates.
 However, the CT architecture does not describe how such behavior by
 browsers can be deployed incrementally throughout the Internet. As a
 result, this attack model does not assume that browsers will reject a
 certificate that is not accompanied by an SCT. In the CT
 architecture certificates have to be logged to enable Monitors to
 detect mis-issuance, and to trigger subsequent revocation
 [I-D.kent-trans-architecture]. Thus the effectiveness of CT is
 diminished in this context.

3.2. Malicious Web PKI CA context

 In this section, we address the scenario in which the mis-issuance is
 intentional, not due to error. The CA is not the victim but the
 attacker.

3.2.1. Certificate logged

3.2.1.1. Benign log

 A bogus (pre-)certificate may be submitted to one or more benign logs
 prior to issuance, to acquire an embedded SCT, or post-issuance to
 acquire a standalone SCT. The log (or logs) replies correctly to
 requests from clients.

Kent Expires October 14, 2018 [Page 12]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

3.2.1.1.1. Self-monitoring Subject

 If a Subject is checking the logs to which a certificate was
 submitted and is performing self-monitoring, it will be able to
 detect the bogus certificate and will request revocation. The CA may
 refuse to revoke, or may substantially delay revoking, the bogus
 certificate. For example, the CA could make excuses about inadequate
 proof that the certificate is bogus, or argue that it cannot quickly
 revoke the certificate because of legal concerns, etc. In this case,
 the CT mechanisms will have detected mis-issuance, but the
 information logged by CT may not suffice to remedy the problem. (See
 Sections 4 and 6.)

 A malicious CA might revoke a bogus certificate to avoid having
 browser vendors take punitive action against the CA and/or to
 persuade them to not enter the bogus certificate on a vendor-
 maintained blacklist. However, the CA might provide a "good" OCSP
 response (from a server it operates) to a targeted browser instance
 as a way to circumvent the remediation nominally offered by
 revocation. No component of CT is tasked with detecting this sort of
 misbehavior by a CA. (The misbehavior is analogous to a log offering
 split views to different clients, as discussed later. The Audit
 element of CT is tasked with detecting this sort of attack.)

3.2.1.1.2. Benign third party Monitor

 If a benign third party monitor is checking the logs to which a
 certificate was submitted and is protecting the targeted Subject, it
 will detect the bogus certificate and will alert the Subject. The
 Subject will then ask the CA to revoke the bogus certificate. As in
 3.2.1.1.1, the CA may or may not revoke the certificate and it might
 revoke the certificate but provide "good" OCSP responses to a
 targeted browser instance.

3.2.1.2. Misbehaving log

 A bogus (pre-)certificate may have been submitted to one or more logs
 that are misbehaving, e.g., conspiring with an attacker. These logs
 may or may not issue SCTs, but will hide the log entries from some or
 all Monitors.

3.2.1.2.1. Monitors - third party and self

 If log entries are hidden from a Monitor (third party or self), the
 Monitor will not be able to detect issuance of a bogus certificate.

 The Audit function of CT is intended to detect logs that conspire to
 delay or suppress log entries (potentially selectively), based on

Kent Expires October 14, 2018 [Page 13]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 consistency checking of logs. (See 3.1.1.2.2.) If a Monitor learns
 of misbehaving log operation, it alerts the Subjects that it is
 protecting, so that they no longer acquire SCTs from that log. The
 Monitor also avoids relying upon such a log in the future. However,
 unless a distributed Audit mechanism proves effective in detecting
 such misbehavior, CT cannot be relied upon to detect this form of
 mis-issuance. (See Section 5.6 below.)

3.2.1.3. Misbehaving third party Monitor

 If the third party Monitor that is "protecting" the targeted Subject
 is misbehaving, then it will not notify the targeted Subject of any
 mis-issuance or of any malfeasant log behavior that it detects
 irrespective of whether the logs it checks are benign or malicious/
 conspiring. The CT architecture does not include any measures to
 detect misbehavior by third-party monitors.

3.2.2. Certificate not logged

 Because the CA is presumed malicious, it may choose to not submit a
 (pre-)certificate to a log. This means there is no SCT for the
 certificate.

 When a CA does not submit a certificate to a log, whether a log is
 benign or misbehaving does not matter. Also, since there is no log
 entry, there is no difference in behavior between a benign and a
 misbehaving third-party Monitor. Neither will report a problem to
 the Subject.

 A bogus certificate would not be delivered to the legitimate Subject.
 So the Subject, acting as a self-Monitor, cannot detect the issuance
 of a bogus certificate in this case.

3.2.2.1. CT-aware browser

 If careful browsers reject certificates without SCTs, CAs may be
 "encouraged" to log certificates (see section 5.4.) However, the CT
 architecture does not describe how such behavior by browsers can be
 deployed incrementally throughout the Internet. As a result, this
 attack model does not assume that browsers will reject a certificate
 that is not accompanied by an SCT. Since certificates have to be
 logged to enable detection of mis-issuance by Monitors, and to
 trigger subsequent revocation, the effectiveness of CT is diminished
 in this context.

Kent Expires October 14, 2018 [Page 14]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

3.3. Undetected Compromise of CAs or Logs

 Sections 3.1 and 3.2 examined attacks in the context of non-malicious
 and malicious CAs, and benign and misbehaving logs. Another class of
 attacks might occur in the context of a non-malicious CA and/or a
 benign log. Specifically these CT elements might be compromised and
 the compromise might go undetected. Compromise of CAs and logs was
 noted in Section 2, as was coercion of a CA. As noted there, a
 compromised CA is essentially a malicious CA, and thus the
 discussions in Section 3.2 are applicable. Section 3.3 explored the
 undetected compromise of a CA in the context of attacks designed to
 issue a bogus certificate that might avoid revocation (because the
 certificate would appear on distinct certificate paths).

 The section focuses on undetected compromise of CAs. Such
 compromises warrant some additional discussion, since some relying
 parties may see signed objects issued by the legitimate (non-
 malicious) CA, others may see signed objects from its compromised
 counterpart, and some may see objects from both. In the case of a
 compromised CA or log the adversary is presumed to have access to the
 private key used by a CA to sign certificates, or used by a log to
 sign SCTs and STHs. Because the compromise is undetected, there will
 be no effort by a CA to have its certificate revoked or by a log to
 shut down the log.

3.3.1. Compromised CA, Benign Log

 In the case of a compromised (non-malicious) CA, an attacker uses the
 purloined private key to generate a bogus certificate (that the
 compromised CA would not issue). If this certificate is submitted to
 a (benign) log, then it subject to detection by a Monitor, as
 discussed in 3.1.1.1. If the bogus certificate is submitted to a
 misbehaving log, then an SCT can be generated, but there will be no
 entry for it, as discussed in 3.1.1.2. If the bogus certificate is
 not logged, then there will be no SCT, and the implications are as
 described in 3.1.2.

 This sort of attack may be most effective if the CA that is the
 victim of the attack has issued a certificate for the targeted
 Subject. In this case the bogus certificate will then have the same
 certification path as the legitimate certificate, which may help hide
 the bogus certificate. However, means of remedying the attack are
 independent of this aspect, i.e., revocation can be effected
 irrespective of whether the targeted Subject received its certificate
 from the compromised CA.

 A compromised (non-malicious) CA may be able to revoke the bogus
 certificate if it is detected by a Monitor, and the targeted Subject

Kent Expires October 14, 2018 [Page 15]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 has been notified. It can do so only when the serial number of the
 bogus certificate is made known to this CA and assuming that the
 bogus certificate was not issued with an Authority Information Access
 (AIA) or CRL Distribution Point (CRL DP) extension that enables only
 the malicious twin to revoke the certificate. (The AIA extension in
 the bogus certificate could be used to direct relying parties to an
 OCSP server controlled by the malicious twin. The CRL DP extension
 could be used to direct relying parties to a CRL controlled by the
 malicious twin.) If the bogus certificate contains either extension,
 the compromised CA cannot effectively revoke it. However, the
 presence of either of these extensions provides some evidence that an
 entity other than the compromised CA issued the certificate in
 question. (If the extensions differ from those in other certificates
 issued by the compromised CA, that is suspicious.)

 If the serial number of the bogus certificate is the same as for a
 valid, not-expired certificate issued by the CA (to the target or to
 another Subject), then revocation poses a problem. This is because
 revocation of the bogus certificate will also invalidate a legitimate
 certificate. This problem may cause the compromised CA to delay
 revocation, thus allowing the bogus certificate to remain a danger
 for a longer time.

 The compromised CA may not realize that the bogus certificate was
 issued by a malicious twin; one occurrence of this sort might be
 regarded as an error, and not cause the CA to transition to a new key
 pair. (This assumes that the bogus certificate does not contain an
 AIA or CRL DP extension that wrests control of revocation from the
 compromised CA.) If the compromised CA does determine that its
 private key has been stolen, it probably will take some time to
 transition to a new key pair, and reissue certificates to all of its
 legitimate Subjects. Thus an attack of this sort probably will take
 a while to be remedied.

 Also note that the malicious twin of the compromised CA may be
 capable of issuing its own CRL or OCSP responses, without changing
 any AIA/CRL DP data present in the targeted certificate. The
 revocation status data from the evil twin will appear as valid as
 those of the compromised CA. If the attacker has the ability to
 control the sources of revocation status data available to a targeted
 user (browser instance), then the user may not become aware of the
 attack.

 A bogus certificate issued by the malicious CA will not match the SCT
 for the legitimate certificate, since they are not identical, e.g.,
 at a minimum the private keys do not match. Thus a CT-aware browser
 that rejects certificates without SCTs (see 3.1.2.2) will reject a
 bogus certificate created under these circumstances if it is not

Kent Expires October 14, 2018 [Page 16]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 logged. If the bogus certificate is detected and logged, browsers
 that require an SCT will reject the bogus certificate.

3.3.2. Benign CA, Compromised Log

 A benign CA does not issue bogus certificates, except as a result of
 an accident or attack. So, in normal operation, it is not clear what
 behavior by a compromised log would yield an attack. If a bogus
 certificate is issued by a benign CA (under these circumstances) is
 submitted to a compromised (non-malicious) log, then both an SCT and
 a log entry will be created. Again, it is not clear what additional
 adverse actions the compromised log would perform to further an
 attack on CT.

 It is worth noting that if a benign CA was attacked and thus issued
 one or more bogus certificates, then a malicious log might provide
 split views of its log to help conceal the bogus certificate from
 targeted users. Specifically, the log would show an accurate set of
 log entries (and STHs) to most clients, but would maintain a separate
 log view for targeted users. This sort of attack motivates the need
 for Audit capabilities based on "gossiping" [I-D.ietf-trans-gossip].
 However, even if such mechanisms are employed, they might be thwarted
 if a user is unable to exchange log information with trustworthy
 partners.

3.3.3. Compromised CA, Compromised Log

 As noted in 3.4.1, an evil twin CA may issue a bogus certificate that
 contains the same Subject name as a legitimate certificate issued by
 the compromised CA. Alternatively, the bogus certificate may contain
 a different name but reuse a serial number from a valid, not revoked
 certificate issued by that CA.

 An attacker who compromises a log might act in one of two ways. It
 might use the private key of the log only to generate SCTs for a
 malicious CA or the evil twin of a compromised CA. If a browser
 checks the signature on an SCT but does not contact a log to verify
 that the certificate appears in the log, then this is an effective
 attack strategy. Alternatively, the attacker might not only generate
 SCTs, but also pose as the compromised log, at least with regard to
 requests from targeted users. In the latter case, this "evil twin"
 log could respond to STH requests from targeted users, making appear
 that the compromised log was offering a split view (thus acting as a
 malicious log). To detect this attack an Auditor needs to employ a
 gossip mechanism that is able to acquire CT data from diverse
 sources, a feature not yet part of the base CT system.

Kent Expires October 14, 2018 [Page 17]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 An evil twin CA might submit a bogus certificate to the evil twin of
 a compromised log. (The same adversary may be controlling both.)
 The operator of the evil twin log can use the purloined private key
 to generate SCTs for certificates that have not been logged by its
 legitimate counterpart. These SCTs will appear valid relative to the
 public key associated with the legitimate log. However, an STH
 issued by the legitimate log will not correspond to a tree
 (maintained by the compromised log) containing these SCTs. Thus
 checking the SCTs issued by the evil twin log against STHs from the
 compromised log will identify this discrepancy. As noted above, if
 an attacker uses the key to generate log entries and respond to log
 queries, the effect is analogous to a malicious log.)

 An Auditor checking for log consistency and with access to bogus
 SCTs, might conclude that the compromised log is acting maliciously,
 and is presenting a split view to its clients. In this fashion the
 compromised log may be shunned and forced to shut down. However, if
 an attacker targets a set of TLS clients that do not have access to
 the legitimate log, they may not be able to detect this
 inconsistency. In this case CT would need to rely on a distributed
 gossiping audit mechanism to detect the compromise (see Section 5.6).

3.4. Attacks Based on Exploiting Multiple Certificate Chains

 Section 3.2 examined attacks in which a malicious CA issued a bogus
 certificate and either tried to prevent the Subject from detecting
 the bogus certificate, or reported the bogus certificate as valid, to
 at least some relying parties, even if the Subject requested
 revocation. These attacks are limited in that if the bogus
 certificate is not submitted to a log, then it may not be accepted by
 CT-aware browsers, and submitting the bogus certificate to a log
 increases the chances that the CA’s malicious behavior will be
 detected.

 In general, if a CA is discovered to be acting maliciously, its
 certificates will no longer be accepted, either because its parent
 will revoke its CA certificate, its CA certificate will be added to
 browsers’ blacklists, or both. However, a malicious CA may be able
 to obtain an SCT for each bogus certificate that it issues and
 continue to have those certificates accepted by relying parties even
 after its malicious behavior has been detected. It can do this by
 creating more than one path validation chain for the certificates, as
 shown in Figure 2.

Kent Expires October 14, 2018 [Page 18]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 +-----------------+ +-----------------+
 | CA A | | CA B |
 +-----------------+ +-----------------+
 \ /
 \ /
 CA certificate 1 \ / CA certificate 2
 \ /
 +----------------+
 | malicious CA |
 +----------------+
 |
 | bogus EE certificate
 |
 +------------------+
 | targeted Subject |
 +------------------+

 Figure 2: Multiple Certificate Chains for a Bogus Certificate

 In Figure 2, the malicious CA has been issued CA certificates by two
 different parent CAs. The parent CAs may be two different trust
 anchors, or one or both of them may be an intermediate CA (i.e., it
 is subordinate to some trust anchor). If both parent CAs are
 intermediate CAs, they may be subordinate to the same trust anchor or
 to different trust anchors. The malicious CA may have obtained
 certificates from the two parents by applying to them for the
 certificates, or by compromising the parent CAs and creating the
 certificates without the knowledge of the CAs. If the malicious CA
 applied for its certificates from these CAs, it may have presented
 false information as input to the CA’s normal issuance procedures,
 with the result that the CAs do not realize that a certificate with
 the same subject name and public key has been issued by another CA.

 Because there are two certificate path validation chains, the
 malicious CA could provide the chain that includes CA A when
 submitting a bogus certificate to one or more logs, but an attacker
 (colluding with the malicious CA) could provide the chain that
 includes CA B to targeted browsers. If the CA’s malicious behavior
 is detected, then CA A and browser vendors may be alerted (e.g., via
 the CT Monitor function) and revoke/blacklist CA certificate 1.
 However, CA certificate 2 does not appear in any logs, and CA A is
 unaware that CA B has issued a certificate to the malicious CA. Thus
 those who detected the malicious behavior may not discover the second
 chain and so may not alert CA B or browser vendors of the need to
 revoke/blacklist CA certificate 2. In this case, targeted browsers
 would continue to accept the bogus certificates issued by the
 malicious CA, since the certificate chain they are provided is valid

Kent Expires October 14, 2018 [Page 19]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 and because the SCT issued for the bogus certificate it the same
 irrespective of which certificate chain is presented.

3.5. Attacks Related to Distribution of Revocation Status

 A bogus certificate that has been revoked may still appear valid to a
 browser under certain circumstances. In part this is because the
 revocation information seen by a relying party is partly under the
 control of the CA and/or the certificate subject. As a result,
 different relying parties may be presented with different revocation
 information. This is true irrespective of whether revocation is
 effected via use of a CRL or OCSP. Additionally, an attacker can
 steer a browser to specific revocation status data via various means,
 preventing a targeted browser from acquiring accurate revocation
 status information for a bogus certificate.

 The bogus certificate might contain an AIA extension pointing to an
 OCSP server controlled by the malicious CA (or the attacker). As
 noted in Section 3.2.1.1.1, the malicious CA could send a "good" OCSP
 response to a targeted browser instance, even if other parties are
 provided with a "revoked" response. A TLS server can supply an OCSP
 response to a browser as part of the TLS handshake [RFC6961], if
 requested by the browser. A TLS server posing as the entity named in
 the bogus certificate also could acquire a "good" OCSP response from
 the malicious CA to effect the attack. Only if the browser relies
 upon a trusted, third-party OCSP responder, one not part of the
 collusion, would these OCSP-based attacks fail.

 The bogus certificate could contain a CRL distribution point
 extension instead of an AIA extension. In that case a site supplying
 CRLs for the malicious CA could supply different CRLs to different
 requestors, in an attempt to hide the revocation status of the bogus
 certificate from targeted browser instances. This is analogous to a
 split-view attack effected by a CT log. However, as noted in
 Section 3.2.1.1 and 3.2.1.1.1, no element of CT is responsible for
 detecting inconsistent reporting of certificate revocation status
 data. (Monitoring in the CT context tracks log entries made by CAs
 or Subjects. Auditing is designed to detect misbehavior by logs, not
 by CAs per se.)

 The failure of a bogus certificate to be detected as revoked (by a
 browser) is not the fault of CT. In the class of attacks described
 above, CT achieves its goal of detecting the bogus certificate when
 that certificate is logged and a Monitor observes the log entry.
 Detection is intended to trigger revocation, to effect remediation,
 the details of which are outside the scope of CT. However the SCT
 mechanism is intended to assure a relying party that certificate has
 been logged, is susceptible to being detected as bogus by a Monitor,

Kent Expires October 14, 2018 [Page 20]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 and presumably will be revoked if detected as such. In the context
 of these attacks, because of the way revocation may be implemented,
 the assurance provided by the SCT may not have the anticipated
 effect.

 This type of attack might be thwarted in several ways. For example,
 if all intermediate (i.e., CA) certificates had to be logged, then CA
 certificate 2 might be rejected by CT-aware browsers. If a malicious
 CA is discovered, a browser vendor might blacklist it by public key
 (not by its serial number and the name of the parent CA or by a hash
 of the certificate). This approach to revocation would cause CA
 certificate 2 to be rejected as well as CA certificate 1. However
 none of these mechanisms are part of the CT specification
 [I-D.ietf-trans-rfc6962-bis] nor general IETF PKI standards (e.g.,
 [RFC5280]).

4. Syntactic mis-issuance

4.1. Non-malicious Web PKI CA context

 This section analyzes the scenario in which the CA has no intent to
 issue a syntactically incorrect certificate. As noted in Section 1,
 we refer to a syntactically incorrect certificate as erroneous.

4.1.1. Certificate logged

4.1.1.1. Benign log

 If a (pre)certificate is submitted to a benign log, syntactic mis-
 issuance can (optionally) be detected, and noted. This will happen
 only if the log performs syntactic checks in general, and if the log
 is capable of performing the checks applicable to the submitted (pre
)certificate. (A (pre)certificate SHOULD be logged even if it fails
 syntactic validation; logging takes precedence over detection of
 syntactic mis-issuance.) If syntactic validation fails, this can be
 noted in an SCT extension returned to the submitter.

 If the (pre)certificate is submitted by the non-malicious issuing
 CA, then the CA SHOULD remedy the syntactic problem and re-submit the
 (pre)certificate to a log or logs. If this is a pre-certificate
 submitted prior to issuance, syntactic checking by a log helps avoid
 issuance of an erroneous certificate. If the CA does not have a
 record of the certificate contents, then presumably it was a bogus
 certificate and the CA SHOULD revoke it.

 If a certificate is submitted by its Subject, and is deemed
 erroneous, then the Subject SHOULD contact the issuing CA and request
 a new certificate. If the Subject is a legitimate subscriber of the

Kent Expires October 14, 2018 [Page 21]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 CA, then the CA will either have a record of the certificate content
 or can obtain a copy of the certificate from the Subject. The CA
 will remedy the syntactic problem and either re-submit a corrected
 (pre-)certificate to a log and send it to the Subject or the Subject
 will re-submit it to a log. Here too syntactic checking by a log
 enables a Subject to be informed that its certificate is erroneous
 and thus may hasten issuance of a replacement certificate.

 If a certificate is submitted by a third party, that party might
 contact the Subject or the issuing CA, but because the party is not
 the Subject of the certificate it is not clear how the CA will
 respond.

 This analysis suggests that syntactic mis-issuance of a certificate
 can be avoided by a CA if it makes use of logs that are capable of
 performing these checks for the types of certificates that are
 submitted, and if the CA acts on the feedback it receives. If a CA
 uses a log that does not perform such checks, or if the CA requests
 checking relative to criteria not supported by the log, then
 syntactic mis-issuance will not be detected or avoided by this
 mechanism. Similarly, syntactic mis-issuance can be remedied if a
 Subject submits a certificate to a log that performs syntactic
 checks, and if the Subject asks the issuing CA to fix problems
 detected by the log. (The issuer is presumed to be willing to re-
 issue the certificate, correcting any problems, because the issuing
 CA is not malicious.)

4.1.1.2. Misbehaving log or third party Monitor

 A log or Monitor that is conspiring with the attacker or is
 independently malicious, will either not perform syntactic checks,
 even though it claims to do so, or simply not report errors. The log
 entry and the SCT for an erroneous certificate will assert that the
 certificate syntax was verified.

 As with detection of semantic mis-issuance, a distributed Audit
 mechanism could, in principle, detect misbehavior by logs or Monitors
 with respect to syntactic checking. For example, if for a given
 certificate, some logs (or Monitors) are reporting syntactic errors
 and some that claim to do syntactic checking, are not reporting these
 errors, this is indicative of misbehavior by these logs and/or
 Monitors.

 Note that a malicious log (or Monitor) could report syntactic errors
 for a syntactically valid certificate. This could result in
 reporting of non-existent syntactic problems to the issuing CA, which
 might cause the CA to do needless investigative work or perhaps
 incorrectly revoke and re-issue the Subject’s certificate.

Kent Expires October 14, 2018 [Page 22]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

4.1.1.3. Self-monitoring Subject and Benign third party Monitor

 If a Subject or benign third party Monitor performs syntactic checks,
 it will detect the erroneous certificate and the issuing CA will be
 notified (by the Subject). If the Subject is a legitimate subscriber
 of the CA, then the CA will either have a record of the certificate
 content or can obtain a copy of the certificate from the Subject.
 The CA SHOULD revoke the erroneous certificate (after investigation)
 and remedy the syntactic problem. The CA SHOULD either re-submit the
 corrected (pre)certificate to one or more logs and then send the
 result to the Subject, or send the corrected certificate to the
 Subject, who will re-submit it to one or more logs.

4.1.1.4. CT-enabled browser

 If a browser rejects an erroneous certificate and notifies the
 Subject and/or the issuing CA, then syntactic mis-issuance will be
 detected (see Section 5.) Unfortunately, experience suggests that
 many browsers do not perform thorough syntactic checks on
 certificates, and so it seems unlikely that browsers will be a
 reliable way to detect erroneous certificates. Moreover, a protocol
 used by a browser to notify a Subject and/or CA of an erroneous
 certificate represents a DoS potential, and thus may not be
 appropriate. Additionally, if a browser directly contacts a CA when
 an erroneous certificate is detected, this is a potential privacy
 violation, i.e., the CA learns that the browser user is visiting the
 web site in question. These observations argue for syntactic
 checking to be performed by other elements of the CT system, e.g.,
 logs and/or Monitors.

4.1.2. Certificate not logged

 If a CA does not submit a certificate to a log, there can be no
 syntactic checking by the log. Detection of syntactic errors will
 depend on a Subject performing the requisite checks when it receives
 its certificate from a CA. A Monitor that performs syntactic checks
 on behalf of a Subject also could detect such problems, but the CT
 architecture does not require Monitors to perform such checks.

4.2. Malicious Web PKI CA context

 This section analyzes the scenario in which the CA’s issuance of a
 syntactically incorrect certificate is intentional, not due to error.
 The CA is not the victim but the attacker.

Kent Expires October 14, 2018 [Page 23]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

4.2.1. Certificate logged

4.2.1.1. Benign log

 Because the CA is presumed to be malicious, the CA may cause the log
 to not perform checks, in one of several ways. (See
 [I-D.kent-trans-domain-validation-cert-checks] and
 [I-D.kent-trans-extended-validation-cert-checks] for more details on
 validation checks and CCIDs).

 1. The CA may assert that the certificate is being issued w/o regard
 to any guidelines (the "no guidelines" reserved CCID).

 2. The CA may assert a CCID that has not been registered, and thus
 no log will be able to perform a check.

 3. The CA may check to see which CCIDs a log declares it can check,
 and chose a registered CCID that is not checked by the log in
 question.

 4. The CA may submit a (pre-) certificate to a log that is known to
 not perform any syntactic checks, and thus avoid syntactic
 checking.

4.2.1.2. Misbehaving log or third party Monitor

 A misbehaving log or third party Monitor will either not perform
 syntactic checks or not report any problems that it discovers. (See
 4.1.1.2 for further problems). Also, as noted above, the CT
 architecture includes no explicit provisions for detecting a
 misbehaving third-party Monitor.

4.2.1.3. Self-monitoring Subject and Benign third party Monitor

 Irrespective of whether syntactic checks are performed by a log, a
 malicious CA will acquire an embedded SCT, or post-issuance will
 acquire a standalone SCT. If Subjects or Monitors perform syntactic
 checks that detect the syntactic mis-issuance and report the problem
 to the CA, a malicious CA may do nothing or may delay the action(s)
 needed to remedy the problem.

4.2.1.4. CT-enabled browser

 As noted above (4.1.1.4), most browsers fail to perform thorough
 syntax checks on certificates. Such browsers might benefit from
 having syntax checks performed by a log and reported in the SCT,
 although the pervasive nature of syntactically-defective certificates
 may limit the utility of such checks. (Remember, in this scenario,

Kent Expires October 14, 2018 [Page 24]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 the log is benign.) However, if a browser does not discriminate
 against certificates that do not contain SCTs (or that are not
 accompanied by an SCT in the TLS handshake), only minimal benefits
 might accrue to the browser from syntax checks perform by logs or
 Monitors.

 If a browser accepts certificates that do not appear to have been
 syntactically checked by a log (as indicated by the SCT), a malicious
 CA need not worry about failing a log-based check. Similarly, if
 there is no requirement for a browser to reject a certificate that
 was logged by an operator that does not perform syntactic checks, the
 fourth attack noted in 4.2.1.1 will succeed as well. If a browser
 were configured to know which versions of certificate types are
 applicable to its use of a certificate, the second and third attack
 strategies noted above could be thwarted.

4.2.2. Certificate is not logged

 Since certificates are not logged in this scenario, a Monitor (third-
 party or self) cannot detect the issuance of an erroneous
 certificate. Thus there is no difference between a benign or a
 malicious/conspiring log or a benign or conspiring/malicious Monitor.
 (A Subject MAY detect a syntax error by examining the certificate
 returned to it by the Issuer.) However, even if errors are detected
 and reported to the CA, a malicious/conspiring CA may do nothing to
 fix the problem or may delay action.

5. Issues Applicable to Sections 3 and 4

5.1. How does a Subject know which Monitor(s) to use?

 If a CA submits a bogus certificate to one or more logs, but these
 logs are not tracked by a Monitor that is protecting the targeted
 Subject, CT will not remedy this type of mis-issuance attack. If
 third-party Monitors advertise which logs they track, Subjects may be
 able to use this information to select an appropriate Monitor (or set
 thereof). Also, it is not clear whether every third-party Monitor
 MUST offer to track every Subject that requests protection. If a
 Subject acts as its own Monitor, this problem is solved for that
 Subject.

5.2. How does a Monitor discover new logs?

 It is not clear how a (self-)Monitor becomes aware of all (relevant)
 logs, including newly created logs. The means by which Monitors
 become aware of new logs MUST accommodate self-monitoring by a
 potentially very large number of web site operators. If there are
 many logs, it may not be feasible for a (self-) Monitor to track all

Kent Expires October 14, 2018 [Page 25]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 of them, or to determine what set of logs suffice to ensure an
 adequate level of coverage.

5.3. CA response to report of a bogus or erroneous certificate

 A CA being presented with evidence of a bogus or erroneous
 certificate, in the form of a log entry and/or SCT, will need to
 examine its records to determine if it has knowledge of the
 certificate in question. It also will likely require the targeted
 Subject to provide assurances that it is the authorized entity
 representing the Subject name (subjectAltname) in question. Thus a
 Subject should not expect immediate revocation of a contested
 certificate. The time frame in which a CA will respond to a
 revocation request usually is described in the CPS for the CA. Other
 certificate fields and extensions may be of interest for forensic
 purposes, but are not required to effect revocation nor to verify
 that the certificate to be revoked is bogus or erroneous, based on
 applicable criteria. The SCT and log entry, because each contains a
 timestamp from a third party, is probably valuable for forensic
 purposes (assuming a non-conspiring log operator).

5.4. Browser behavior

 If a browser is to reject a certificate that lacks an embedded SCT,
 or is not accompanied by an SCT transported via the TLS handshake,
 this behavior needs to be defined in a way that is compatible with
 incremental deployment. Issuing a warning to a (human) user is
 probably insufficient, based on experience with warnings displayed
 for expired certificates, lack of certificate revocation status
 information, and similar errors that violate RFC 5280 path validation
 rules [RFC5280]. Unless a mechanism is defined that accommodates
 incremental deployment of this capability, attackers probably will
 avoid submitting bogus certificates to (benign) logs as a means of
 evading detection.

5.5. Remediation for a malicious CA

 A targeted Subject might ask the parent of a malicious CA to revoke
 the certificate of the non-cooperative CA. However, a request of
 this sort may be rejected, e.g., because of the potential for
 significant collateral damage. A browser might be configured to
 reject all certificates issued by the malicious CA, e.g., using a
 bad-CA-list distributed by a browser vendor. However, if the
 malicious CA has a sufficient number of legitimate clients, treating
 all of their certificates as bogus or erroneous still represents
 serious collateral damage. If this specification were to require
 that a browser can be configured to reject a specific, bogus or
 erroneous certificate identified by a Monitor, then the bogus or

Kent Expires October 14, 2018 [Page 26]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 erroneous certificate could be rejected in that fashion. This
 remediation strategy calls for communication between Monitors and
 browsers, or between Monitors and browser vendors. Such
 communication has not been specified, i.e., there are no standard
 ways to configure a browser to reject individual bogus or erroneous
 certificates based on information provided by an external entity such
 as a Monitor. Moreover, the same or another malicious CA could issue
 new bogus or erroneous certificates for the targeted Subject, which
 would have to be detected and rejected in this (as yet unspecified)
 fashion. Thus, for now, CT does not seem to provide a way to
 facilitate remediation of this form of attack, even though it
 provides a basis for detecting such attacks.

5.6. Auditing - detecting misbehaving logs

 The combination of a malicious CA and one or more conspiring logs
 motivates the definition of an audit function, to detect conspiring
 logs. If a Monitor protecting a Subject does not see bogus
 certificates, it cannot alert the Subject. If one or more SCTs are
 present in a certificate, or passed via the TLS handshake, a browser
 has no way to know that the logged certificate is not visible to
 Monitors. Only if Monitors and browsers reject certificates that
 contain SCTs from conspiring logs (based on information from an
 auditor) will CT be able to detect and deter use of such logs. Thus
 the means by which a Monitor performing an audit function detects
 such logs, and informs browsers must be specified for CT to be
 effective in the context of misbehaving logs.

 Absent a well-defined mechanism that enables Monitors to verify that
 data from logs are reported in a consistent fashion, CT cannot claim
 to provide protection against logs that are malicious or may conspire
 with, or are victims of, attackers effecting certificate mis-
 issuance. The mechanism needs to protect the privacy of users with
 respect to which web sites they visit. It needs to scale to
 accommodate a potentially large number of self-monitoring Subjects
 and a vast number of browsers, if browsers are part of the mechanism.
 Even when an Audit mechanism is defined, it will be necessary to
 describe how the CT system will deal with a misbehaving or
 compromised log. For example, will there be a mechanism to alert all
 browsers to reject SCTs issued by such a log? Absent a description
 of a remediation strategy to deal with misbehaving or compromised
 logs, CT cannot ensure detection of mis-issuance in a wide range of
 scenarios.

 Monitors play a critical role in detecting semantic certificate mis-
 issuance, for Subjects that have requested monitoring of their
 certificates. A monitor (including a Subject performing self-
 monitoring) examines logs for certificates associated with one or

Kent Expires October 14, 2018 [Page 27]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 more Subjects that are being "protected". A third-party Monitor must
 obtain a list of valid certificates for the Subject being monitored,
 in a secure manner, to use as a reference. It also must be able to
 identify and track a potentially large number of logs on behalf of
 its Subjects. This may be a daunting task for Subjects that elect to
 perform self-monitoring.

 Note: A Monitor must not rely on a CA or RA database for its
 reference information or use certificate discovery protocols; this
 information must be acquired by the Monitor based on reference
 certificates provided by a Subject. If a Monitor were to rely on a
 CA or RA database (for the CA that issued a targeted certificate),
 the Monitor would not detect mis-issuance due to malfeasance on the
 part of that CA or the RA, or due to compromise of the CA or the RA.
 If a CA or RA database is used, it would support detection of mis-
 issuance by an unauthorized CA. A Monitor must not rely on
 certificate discovery mechanisms to build the list of valid
 certificates since such mechanisms might result in bogus or erroneous
 certificates being added to the list.

 As noted above, Monitors represent another target for adversaries who
 wish to effect certificate mis-issuance. If a Monitor is compromised
 by, or conspires with, an attacker, it will fail to alert a Subject
 to a bogus or erroneous certificate targeting that Subject, as noted
 above. It is suggested that a Subject request certificate monitoring
 from multiple sources to guard against such failures. Operation of a
 Monitor by a Subject, on its own behalf, avoids dependence on third
 party Monitors. However, the burden of Monitor operation may be
 viewed as too great for many web sites, and thus this mode of
 operation ought not be assumed to be universal when evaluating
 protection against Monitor compromise.

6. Security Considerations

 An attack and threat model is, by definition, a security-centric
 document. Unlike a protocol description, a threat model does not
 create security problems nor does it purport to address security
 problems. This model postulates a set of threats (i.e., motivated,
 capable adversaries) and examines classes of attacks that these
 threats are capable of effecting, based on the motivations ascribed
 to the threats. It then analyses the ways in which the CT
 architecture addresses these attacks.

7. IANA Considerations

 None.

Kent Expires October 14, 2018 [Page 28]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

8. Acknowledgments

 The author would like to thank David Mandelberg and Karen Seo for
 their assistance in reviewing and preparing this document, and other
 members of the TRANS working group for reviewing it. Most of the
 text of Section 3.4 was provided by David Cooper, motivated by
 observations from Daniel Kahn Gilmor. Thanks also go to Daiming Li
 for her editorial assistance.

9. References

9.1. Normative References

 [I-D.kent-trans-architecture]
 Kent, S., Mandelberg, D., and K. Seo, "Certificate
 Transparency (CT) System Architecture", draft-kent-trans-
 architecture-07 (work in progress), December 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [I-D.ietf-trans-gossip]
 Nordberg, L., Gillmor, D., and T. Ritter, "Gossiping in
 CT", draft-ietf-trans-gossip-05 (work in progress),
 January 2018.

 [I-D.ietf-trans-rfc6962-bis]
 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency Version 2.0", draft-
 ietf-trans-rfc6962-bis-28 (work in progress), March 2018.

 [I-D.kent-trans-domain-validation-cert-checks]
 Kent, S. and R. Andrews, "Syntactic and Semantic Checks
 for Domain Validation Certificates", draft-kent-trans-
 domain-validation-cert-checks-02 (work in progress),
 December 2015.

 [I-D.kent-trans-extended-validation-cert-checks]
 Kent, S. and R. Andrews, "Syntactic and Semantic Checks
 for Extended Validation Certificates", draft-kent-trans-
 extended-validation-cert-checks-02 (work in progress),
 December 2015.

Kent Expires October 14, 2018 [Page 29]

Internet-Draft Attack Model for Certificate Mis-issuance April 2018

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013,
 <https://www.rfc-editor.org/info/rfc6961>.

9.3. URIs

 [1] https://cabforum.org

 [2] https://www.vasco.com/company/about_vasco/press_room/
 news_archive/2011/news_diginotar_reports_any
 security_incident.aspx

Author’s Address

 Stephen Kent
 Independent

 Email: kent@alum.mit.edu

Kent Expires October 14, 2018 [Page 30]

TRANS (Public Notary Transparency) R. Stradling
Internet-Draft Comodo CA, Ltd.
Intended status: Experimental E. Messeri
Expires: July 21, 2017 Google UK Ltd.
 January 17, 2017

 Certificate Transparency: Domain Label Redaction
 draft-strad-trans-redaction-01

Abstract

 This document defines mechanisms to allow DNS domain name labels that
 are considered to be private to not appear in public Certificate
 Transparency (CT) logs, while still retaining most of the security
 benefits that accrue from using Certificate Transparency.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 21, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Stradling & Messeri Expires July 21, 2017 [Page 1]

Internet-Draft CT Domain Label Redaction January 2017

Table of Contents

 1. Introduction . 2
 2. Requirements Language . 3
 3. Redaction Mechanisms . 3
 3.1. Using Wildcard Certificates 3
 3.2. Using a Name-Constrained Intermediate CA 4
 3.2.1. Presenting SCTs, Inclusion Proofs and STHs 5
 3.2.2. Matching an SCT to the Correct Certificate 6
 3.3. Redacting Labels in Precertificates 6
 3.3.1. redactedSubjectAltName Certificate Extension 7
 3.3.2. Verifying the redactedSubjectAltName extension . . . 8
 3.3.3. Reconstructing the TBSCertificate 8
 4. Security Considerations 8
 4.1. Avoiding Overly Redacted Domain Names 8
 5. Privacy Considerations 9
 5.1. Ensuring Effective Redaction 9
 6. Acknowledgements . 10
 7. References . 10
 7.1. Normative References 10
 7.2. Informative References 11
 Authors’ Addresses . 11

1. Introduction

 Some domain owners regard certain DNS domain name labels within their
 registered domain space as private and security sensitive. Even
 though these domains are often only accessible within the domain
 owner’s private network, it’s common for them to be secured using
 publicly trusted Transport Layer Security (TLS) server certificates.

 Certificate Transparency v1 [RFC6962] and v2
 [I-D.ietf-trans-rfc6962-bis] describe protocols for publicly logging
 the existence of TLS server certificates as they are issued or
 observed. Since each TLS server certificate lists the domain names
 that it is intended to secure, private domain name labels within
 registered domain space could end up appearing in CT logs, especially
 as TLS clients develop policies that mandate CT compliance. This
 seems like an unfortunate and potentially unnecessary privacy leak,
 because it’s the registered domain names in each certificate that are
 of primary interest when using CT to look for suspect certificates.

 TODO: Highlight better the differences between registered domains and
 subdomains, referencing the relevant DNS RFCs.

Stradling & Messeri Expires July 21, 2017 [Page 2]

Internet-Draft CT Domain Label Redaction January 2017

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Redaction Mechanisms

 We propose three mechanisms, in increasing order of implementation
 complexity, to allow certain DNS domain name labels to not appear in
 public CT logs:

 o Using wildcard certificates (Section 3.1) is the simplest option,
 but it only covers certain use cases.

 o Logging a name-constrained intermediate CA certificate in place of
 the end-entity certificate (Section 3.2) covers more, but not all,
 use cases.

 o Therefore, we define a domain label redaction mechanism
 (Section 3.3) that covers all use cases, at the cost of
 considerably increased implementation complexity.

 We anticipate that TLS clients may develop policies that impose
 additional compliancy requirements on the use of the Section 3.2 and
 Section 3.3 mechanisms.

 To ensure effective redaction, CAs and domain owners should note the
 privacy considerations (Section 5).

 TODO(eranm): Do we need to further expand (either here or in the
 following subsections) on when each of the mechanisms is/isn’t
 suitable?

 TODO: Previously, these mechanisms were defined in earlier revisions
 of CTv2 [I-D.ietf-trans-rfc6962-bis], and nothing was said about
 compatibility with CTv1. But now, given that these mechanisms have
 been decoupled from [I-D.ietf-trans-rfc6962-bis], and given that at
 least one major TLS client has announced a policy of mandatory CT
 compliance that will almost certainly take effect before CTv2 is
 widely deployed, we should consider making some or all of these
 mechnanisms compatible with both CTv1 and CTv2.

3.1. Using Wildcard Certificates

 A certificate containing a DNS-ID [RFC6125] of "*.example.com" could
 be used to secure the domain "topsecret.example.com", without
 revealing the label "topsecret" publicly.

Stradling & Messeri Expires July 21, 2017 [Page 3]

Internet-Draft CT Domain Label Redaction January 2017

 Since TLS clients only match the wildcard character to the complete
 leftmost label of the DNS domain name (see Section 6.4.3 of
 [RFC6125]), a different mechanism is needed when any label other than
 the leftmost label in a DNS-ID is considered private (e.g.,
 "top.secret.example.com"). Also, wildcard certificates are
 prohibited in some cases, such as Extended Validation Certificates
 [EV.Certificate.Guidelines].

3.2. Using a Name-Constrained Intermediate CA

 An intermediate CA certificate or intermediate CA precertificate that
 contains the Name Constraints [RFC5280] extension MAY be logged in
 place of end-entity certificates issued by that intermediate CA, as
 long as all of the following conditions are met:

 o there MUST be a non-critical extension (OID 1.3.101.76, whose
 extnValue OCTET STRING contains ASN.1 NULL data (0x05 0x00)).
 This extension is an explicit indication that it is acceptable to
 not log certificates issued by this intermediate CA.

 o there MUST be a Name Constraints extension, in which:

 * permittedSubtrees MUST specify one or more dNSNames.

 * excludedSubtrees MUST specify the entire IPv4 and IPv6 address
 ranges.

 Below is an example Name Constraints extension that meets these
 conditions:

Stradling & Messeri Expires July 21, 2017 [Page 4]

Internet-Draft CT Domain Label Redaction January 2017

 SEQUENCE {
 OBJECT IDENTIFIER ’2 5 29 30’
 BOOLEAN TRUE
 OCTET STRING, encapsulates {
 SEQUENCE {
 [0] {
 SEQUENCE {
 [2] ’example.com’
 }
 }
 [1] {
 SEQUENCE {
 [7] 00 00 00 00 00 00 00 00
 }
 SEQUENCE {
 [7]
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 }
 }
 }
 }
 }

3.2.1. Presenting SCTs, Inclusion Proofs and STHs

 Each SCT (and optional corresponding inclusion proof and STH)
 presented by a TLS server MAY correspond to an intermediate CA
 certificate or intermediate CA precertificate (to which the server
 certificate chains) that meets the requirements in Section 3.2. This
 extends section TBD of CT v2 [I-D.ietf-trans-rfc6962-bis], which
 specifies that each SCT always corresponds to the server certificate
 or to a precertificate that corresponds to that certificate.

 Each SCT (and optional corresponding inclusion proof and STH)
 included by a certification authority in a Transparency Information
 X.509v3 extension in the "singleExtensions" of a "SingleResponse" in
 an OCSP response MAY correspond to an intermediate CA certificate or
 intermediate CA precertificate (to which the certificate identified
 by the "certID" of that "SingleResponse" chains) that meets the
 requirements in Section 3.2. This extends section TBD of CT v2
 [I-D.ietf-trans-rfc6962-bis], which specifies that each SCT always
 corresponds to the certificate identified by the "certID" of that
 "SingleResponse" or to a precertificate that corresponds to that
 certificate.

 Each SCT (and optional corresponding inclusion proof and STH)
 included by a certification authority in a Transparency Information

Stradling & Messeri Expires July 21, 2017 [Page 5]

Internet-Draft CT Domain Label Redaction January 2017

 X.509v3 extension in a certificate MAY correspond to an intermediate
 CA certificate or intermediate CA precertificate (to which the
 certificate chains) that meets the requirements in Section 3.2. This
 extends section TBD of CT v2 [I-D.ietf-trans-rfc6962-bis], which
 specifies that each SCT always corresponds to a precertificate that
 corresponds to that certificate.

 TODO: Refactor this section to avoid repetition.

3.2.2. Matching an SCT to the Correct Certificate

 Before considering any SCT to be invalid, a TLS client MUST attempt
 to validate it against the server certificate and against each of the
 zero or more suitable name-constrained intermediates in the chain.
 These certificates may be evaluated in the order they appear in the
 chain, or indeed, in any order.

 TODO: Shall we specify that there MUST be no more than ONE name-
 constrained intermediate in the chain?

 TODO: Shall we specify that all presented SCTs MUST correspond to the
 same (end-entity or name-constrained intermediate) certificate?

3.3. Redacting Labels in Precertificates

 When creating a precertificate, the CA MAY include a
 redactedSubjectAltName (Section 3.3.1) extension that contains, in a
 redacted form, the same entries that will be included in the
 certificate’s subjectAltName extension. When the
 redactedSubjectAltName extension is present in a precertificate, the
 subjectAltName extension MUST be omitted (even though it MUST be
 present in the corresponding certificate).

 Wildcard "*" labels MUST NOT be redacted, but one or more non-
 wildcard labels in each DNS-ID [RFC6125] can each be replaced with a
 redacted label as follows:

 REDACT(label) = prefix || BASE32(index || _label_hash)
 _label_hash = LABELHASH(keyid_len || keyid || label_len || label)

 "label" is the case-sensitive label to be redacted.

 "prefix" is the "?" character (ASCII value 63).

 "index" is the 1 byte index of a hash function in the CT hash
 algorithm registry (section TBD of [I-D.ietf-trans-rfc6962-bis]).
 The value 255 is reserved.

Stradling & Messeri Expires July 21, 2017 [Page 6]

Internet-Draft CT Domain Label Redaction January 2017

 "keyid_len" is the 1 byte length of the "keyid".

 "keyid" is the keyIdentifier from the Subject Key Identifier
 extension (section 4.2.1.2 of [RFC5280]), excluding the ASN.1 OCTET
 STRING tag and length bytes.

 "label_len" is the 1 byte length of the "label".

 "||" denotes concatenation.

 "BASE32" is the Base 32 Encoding function (section 6 of [RFC4648]).
 Pad characters MUST NOT be appended to the encoded data.

 "LABELHASH" is the hash function identified by "index".

3.3.1. redactedSubjectAltName Certificate Extension

 The redactedSubjectAltName extension is a non-critical extension (OID
 1.3.101.77) that is identical in structure to the subjectAltName
 extension, except that DNS-IDs MAY contain redacted labels
 (Section 3.3).

 When used, the redactedSubjectAltName extension MUST be present in
 both the precertificate and the corresponding certificate.

 This extension informs TLS clients of the DNS-ID labels that were
 redacted and the degree of redaction, while minimizing the complexity
 of TBSCertificate reconstruction (Section 3.3.3). Hashing the
 redacted labels allows the legitimate domain owner to identify
 whether or not each redacted label correlates to a label they know
 of.

 TODO: Consider the pros and cons of this ’un’redaction feature. If
 the cons outweigh the pros, switch to using Andrew Ayer’s alternative
 proposal of hashing a random salt and including that salt in an
 extension in the certificate (and not including the salt in the
 precertificate).

 Only DNS-ID labels can be redacted using this mechanism. However,
 CAs can use the Section 3.2 mechanism to allow DNS domain name labels
 in other subjectAltName entries to not appear in logs.

 TODO: Should we support redaction of SRV-IDs and URI-IDs using this
 mechanism?

Stradling & Messeri Expires July 21, 2017 [Page 7]

Internet-Draft CT Domain Label Redaction January 2017

3.3.2. Verifying the redactedSubjectAltName extension

 If the redactedSubjectAltName extension is present, TLS clients MUST
 check that the subjectAltName extension is present, that the
 subjectAltName extension contains the same number of entries as the
 redactedSubjectAltName extension, and that each entry in the
 subjectAltName extension has a matching entry at the same position in
 the redactedSubjectAltName extension. Two entries are matching if
 either:

 o The two entries are identical; or

 o Both entries are DNS-IDs, have the same number of labels, and each
 label in the subjectAltName entry has a matching label at the same
 position in the redactedSubjectAltName entry. Two labels are
 matching if either:

 * The two labels are identical; or,

 * Neither label is "*" and the label from the
 redactedSubjectAltName entry is equal to REDACT(label from
 subjectAltName entry) (Section 3.3).

 If any of these checks fail, the certificate MUST NOT be considered
 compliant.

3.3.3. Reconstructing the TBSCertificate

 Section TBD of [I-D.ietf-trans-rfc6962-bis] describes how TLS clients
 can reconstruct the TBSCertificate component of a precertificate from
 a certificate, so that associated SCTs may be verified.

 If the redactedSubjectAltName extension (Section 3.3.1) is present in
 the certificate, TLS clients MUST also:

 o Verify the redactedSubjectAltName extension against the
 subjectAltName extension according to Section 3.3.2.

 o Once verified, remove the subjectAltName extension from the
 TBSCertificate.

4. Security Considerations

4.1. Avoiding Overly Redacted Domain Names

 Redaction of domain name labels (Section 3.3) carries the same risks
 as the use of wildcards (e.g., section 7.2 of [RFC6125]). If the
 entirety of the domain space below the unredacted part of a domain

Stradling & Messeri Expires July 21, 2017 [Page 8]

Internet-Draft CT Domain Label Redaction January 2017

 name is not registered by a single domain owner (e.g.,
 REDACT(label).com, REDACT(label).co.uk and other [Public.Suffix.List]
 entries), then the domain name may be considered by clients to be
 overly redacted.

 CAs should take care to avoid overly redacting domain names in
 precertificates. It is expected that monitors will treat
 precertificates that contain overly redacted domain names as
 potentially misissued. TLS clients MAY consider a certificate to be
 non-compliant if the reconstructed TBSCertificate (Section 3.3.3)
 contains any overly redacted domain names.

 TODO(eranm): Describe how the CT ecosystem would be harmed if the use
 of redaction becomes too widespread.

5. Privacy Considerations

5.1. Ensuring Effective Redaction

 Although the mechanisms described in this document remove the need
 for private labels to appear in CT logs, they do not guarantee that
 this will never happen. For example, anyone who encounters a
 certificate could choose to submit it to one or more logs, thereby
 rendering the redaction futile.

 Domain owners are advised to take the following steps to minimize the
 likelihood that their private labels will become known outside their
 closed communities:

 o Avoid registering private labels in public DNS.

 o Avoid using private labels that are predictable (e.g., "www",
 labels consisting only of numerical digits, etc). If a label has
 insufficient entropy then redaction will only provide a thin layer
 of obfuscation, because it will be feasible to recover the label
 via a brute-force attack.

 o Avoid using publicly trusted certificates to secure private domain
 space.

 o Avoid enabling unrestricted access for DNS zone transfer (AXFR)
 requests (see section 5 of [RFC5936]).

 CAs are advised to carefully consider each request to redact a label
 using the Section 3.3 mechanism. When a CA believes that redacting a
 particular label would be futile, we advise rejecting the redaction
 request. TLS clients may have policies that forbid redaction, so

Stradling & Messeri Expires July 21, 2017 [Page 9]

Internet-Draft CT Domain Label Redaction January 2017

 label redaction should only be used when it’s absolutely necessary
 and likely to be effective.

6. Acknowledgements

 The authors would like to thank Andrew Ayer and TBD for their
 valuable contributions.

 A big thank you to Symantec for kindly donating the OIDs from the
 1.3.101 arc that are used in this document.

7. References

7.1. Normative References

 [I-D.ietf-trans-rfc6962-bis]
 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency Version 2.0", draft-
 ietf-trans-rfc6962-bis-24 (work in progress), December
 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5936] Lewis, E. and A. Hoenes, Ed., "DNS Zone Transfer Protocol
 (AXFR)", RFC 5936, DOI 10.17487/RFC5936, June 2010,
 <http://www.rfc-editor.org/info/rfc5936>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

Stradling & Messeri Expires July 21, 2017 [Page 10]

Internet-Draft CT Domain Label Redaction January 2017

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <http://www.rfc-editor.org/info/rfc6962>.

7.2. Informative References

 [EV.Certificate.Guidelines]
 CA/Browser Forum, "Guidelines For The Issuance And
 Management Of Extended Validation Certificates", 2007,
 <https://cabforum.org/wp-content/uploads/
 EV_Certificate_Guidelines.pdf>.

 [Public.Suffix.List]
 Mozilla Foundation, "Public Suffix List", 2016,
 <https://publicsuffix.org>.

Authors’ Addresses

 Rob Stradling
 Comodo CA, Ltd.

 Email: rob.stradling@comodo.com

 Eran Messeri
 Google UK Ltd.

 Email: eranm@google.com

Stradling & Messeri Expires July 21, 2017 [Page 11]

TRANS L. Xia, Ed.
Internet-Draft D. Zhang
Intended status: Standards Track Huawei
Expires: September 7, 2017 D. Gillmor
 CMRG
 B. Sarikaya
 Huawei USA
 March 6, 2017

 CT for Binary Codes
 draft-zhang-trans-ct-binary-codes-04

Abstract

 This document proposes a solution extending the Certificate
 Transparency protocol [I-D.ietf-trans-rfc6962-bis] for transparently
 logging the software binary codes (BC)or its digest with their
 signature, to enable anyone to monitor and audit the software
 provider activity and notice the distribution of suspect software as
 well as to audit the BC logs themselves. The solution is called
 "Binary Transparency" in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 7, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Xia, et al. Expires September 7, 2017 [Page 1]

Internet-Draft CT for Binary Codes March 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Cryptographic Components of Binary Transparency 3
 3. Motivation Scenarios . 3
 4. Log Format and Operation Extensions 4
 4.1. Log Entries . 5
 4.2. TransItem Structure 5
 4.3. Merkle Tree Leaves 6
 4.4. Structure of the Signed Binary Timestamp 7
 5. Log Client Messages . 9
 5.1. Add Binary Code and Certificate Chain to Log 9
 5.2. Retrieve Entries and STH from Log 9
 5.3. Summary . 10
 6. Acknowledgements . 11
 7. IANA Considerations . 11
 8. Security Considerations 11
 9. References . 11
 9.1. Normative References 11
 9.2. Informative References 11
 Authors’ Addresses . 11

1. Introduction

 Digital signatures have been widely used in software distributions to
 prove the authenticity of software. Through verifying signature, an
 end user can ensure that the gotten software is developed by a legal
 provider (e.g., Microsoft) and is not tampered during the
 distribution. If an end user does not have a direct trust
 relationship with the software provider, an certificate chain to a
 trust anchor that the user trusts should be provided. That is why
 many signature mechanisms for software distribution are based on
 public key infrastructure (PKI). However, signature mechanisms
 cannot prevent software provider from distributing software either
 with customized backdoors/drawbacks, or they do not own the right to
 distribute. Besides, it may be hard for a user to detect the
 differences between the software it got and the software provided to
 other users..

Xia, et al. Expires September 7, 2017 [Page 2]

Internet-Draft CT for Binary Codes March 2017

 This draft describes the Binary Transparency mechanism which extends
 the Certificate Transparency (CT) protocol specified in [I-D.ietf-
 trans-rfc6962-bis] to support logging binary codes. A software
 provider can submit its software Binary Codes (BC) (or digests of
 codes in order to e.g., save space or avoid violating license
 restrictions) with associated signature to one or more CT logs.
 Therefore, a user can easily detect the existence of software BC with
 customized backdoors, by comparing with the according CT log entries.
 The software provider can monitor the logs all the time to detect
 whether there are tempered copies of its software in the log, or its
 software is submitted into the log by other software providers
 without authority. In summary, the end users should be informed when
 all the above situations happen, how to achieve it is beyond the
 scope of this document.

 With this mechanism, when a section of binary codes and associated
 signature has been submitted to a log, if the provided certificate
 chain ends with a trust anchor that is accepted by the log, the log
 will accept it and return the Signed Binary Timestamp (SBT) to the
 software provider as the evidence of its acceptance provided to the
 users later. Thus, the users should only trust the software
 accompanied by SBT, even if it is associated with a proper signature.
 This approach then forces the software providers to submit their
 binary codes to logs before distributing them.

 Binary Transparency is an extension to Certificate Transparency,
 which comply with most of the specification in [I-D.ietf-trans-
 rfc6962-bis]. This document only focuses on the extension part of
 Binary Transparency mechanisms.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Cryptographic Components of Binary Transparency

 When applying CT for binary codes, a log is a single, ever-growing,
 append-only binary Merkle Hash Tree of software BC, with associated
 signature and certificate chain, complying with the Merkle Hash Tree
 specification in Section 2 of [I-D.ietf-trans-rfc6962-bis].

3. Motivation Scenarios

 The documents disclosed by Edward Snowden have raised the concerns of
 people on the vulnerability of the network devices to the passive
 attacks performed by NSA or other organizations. Meanwhile, the

Xia, et al. Expires September 7, 2017 [Page 3]

Internet-Draft CT for Binary Codes March 2017

 network device vendors are also concerned in their foreign markets
 because their products are suspected to have customized backdoors for
 adversaries to perform attacks. It is desired for vendors to publish
 the design details of the products and provide sufficient facilities
 for clients to check whether certain hardware or software of a device
 has been improperly modified. There are various techniques that
 could be used for this purpose. One way is to force a vendor to
 submit the binary codes of its firmwares to the public CT logs.
 Therefore, anyone can verify the correctness of each log entry and
 monitor when new software BCs are added to it. Specially, customers
 can easily detect whether the vendor is releasing the same firmware
 to everyone. In addition, under the assistance of the Binary
 Transparency, customer will have more confidence on the quality of
 firmware. Since the same codes are used by different customers all
 over the world, the drawbacks in firmware will be easier to be
 detected.

 There are similar requirements to detect the customized backdoors or
 misdistribution in the software market. Besides the software itself,
 a user may also concern whether there are customized backdoors in the
 patches. The Binary Transparency can help address such concerns in
 the same way. In addition, this mechanism can also show some
 advantages in the scenarios where the signer is not aware that their
 keys have been compromised. If their update system is required to
 use a CT log, they have the chance to find out about their
 compromise.

4. Log Format and Operation Extensions

 The software provider can submit the software and the associated
 signature to any preferred CT logs before distributing it. In some
 cases, the software provider may select only to submit the signed
 digest of the software because of the license restriction or the
 space restriction of log entry. In order to verify the attribution
 of each log entry, a log SHALL publish a set of certificates that it
 trusts to benefit an software provider to construct an certificate
 chain connecting a trust anchor and the certificate containing the
 key used to sign the software.

 A log needs to verify the certificate chain provided by the software
 provider, and MUST refuse to accept the signed software/digest if the
 chain cannot lead back to a trusted anchor. If the software/digest
 and the signature are accepted by a log and an SBT is issued, the log
 MUST store the entire chain and MUST present this chain for auditing
 upon request.

 Complying with the log format definition in [I-D.ietf-trans-
 rfc6962-bis], some definitions remain the same: "Log ID", "Merkle

Xia, et al. Expires September 7, 2017 [Page 4]

Internet-Draft CT for Binary Codes March 2017

 Tree Head", "Signed Tree Head", "Merkle Consistency Proofs", "Merkle
 Inclusion Proofs", "Shutting down a log"... The other required log
 format extension for Binary Transparency are specified in the
 following sections:

4.1. Log Entries

 Each software entry in a log MUST include a "BinaryChainEntryV2"
 structure as below:

 enum { binary(TBD1), binary_digest(TBD2) } BIN_Signed_Type;

 opaque BINARY<1..2^24-1>;
 opaque ASN.1Cert<1..2^24-1>;
 struct {
 BIN_Signed_Type bin_signed_type;
 BINARY signed_software;
 ASN.1Cert certificate_chain<1..2^24-1>;
 } BinaryChainEntryV2;

 "bin_signed_type" indicates whether the signature is generated based
 on the software or its digest.

 "signed_software" consists a ContentInfo structure specified in
 CMS[RFC5652]. Specifically, this field includes the binary codes/
 digest, the signature, and any other additional information used to
 describe the software and the issuer publishing the software. The
 software SHOULD be encapsulated and signed following the ways
 specified in CMS[RFC5652] . If signed_type is TBD1, the software
 binary code is encapsulated in this field. If signed_type is TBD2,
 the SHA-256 digest of software binary code is encapsulated in this
 field.

 "certificate_chain" includes the certificates constructing a chain
 from the certificate of software provider to a certificate trusted by
 the log. The first certificate MUST be the certificate of software
 provider. Each following certificate MUST directly certify the one
 preceding it. The final certificate MUST either be, or be issued by,
 a root certificate accepted by the log. If the certificate chain is
 provided in the "signed_software" field structure, this field is set
 to empty.

4.2. TransItem Structure

 The extended "TransItem" structure is defined as below:

Xia, et al. Expires September 7, 2017 [Page 5]

Internet-Draft CT for Binary Codes March 2017

 enum {
 reserved(0),
 x509_entry_v2(1), precert_entry_v2(2),
 x509_sct_v2(3), precert_sct_v2(4),
 signed_tree_head_v2(5), consistency_proof_v2(6),
 inclusion_proof_v2(7), x509_sct_with_proof_v2(8),
 precert_sct_with_proof_v2(9), BIN_entry_v2(TBD3),
 BIN_sbt_v2(TBD4), BIN_sbt_with_proof_v2(TBD5),
 (65535)
 } VersionedTransType;

 struct {
 VersionedTransType versioned_type;
 select (versioned_type) {
 case x509_entry_v2: TimestampedCertificateEntryDataV2;
 case precert_entry_v2: TimestampedCertificateEntryDataV2;
 case x509_sct_v2: SignedCertificateTimestampDataV2;
 case precert_sct_v2: SignedCertificateTimestampDataV2;
 case signed_tree_head_v2: SignedTreeHeadDataV2;
 case consistency_proof_v2: ConsistencyProofDataV2;
 case inclusion_proof_v2: InclusionProofDataV2;
 case x509_sct_with_proof_v2: SCTWithProofDataV2;
 case precert_sct_with_proof_v2: SCTWithProofDataV2;
 case BIN_entry_v2: TimestampedBinaryEntryDataV2;
 case BIN_sbt_v2: SignedBinaryTimestampDataV2;
 case BIN_sbt_with_proof_v2: SBTWithProofDataV2;
 } data;
 } TransItem;

 "versioned_type " is the type of the encapsulated data structure of
 TransItem. Three new values are added to it -- BIN_entry_v2(TBD3),
 BIN_sbt_v2(TBD4), BIN_sbt_with_proof_v2(TBD5).

 For "data" structure, a new type structure of
 TimestampedBinaryEntryDataV2 is added.

4.3. Merkle Tree Leaves

 Each Merkle Tree leaf is defined as the hash value of a "TransItem"
 structure of according type. Here, a new type ("BIN_entry_v2") of
 "TransItem" structure is created, which encapsulates a new
 "TimestampedBinaryEntryDataV2" structure defined as below:

Xia, et al. Expires September 7, 2017 [Page 6]

Internet-Draft CT for Binary Codes March 2017

 opaque TBSCertificate<1..2^24-1>;
 struct {
 uint64 timestamp;
 opaque issuer_key_hash<32..2^8-1>;
 BIN_Signed_Type bin_signed_type;
 TBSSignedSoftware tbs_signed_software;
 SbtExtension sbt_extensions<0..2^16-1>;
 } TimestampedBinaryEntryDataV2;

 "timestamp" is the NTP Time [RFC5905] at which the software binary
 code was accepted by the log, measured in milliseconds since the
 epoch (January 1, 1970, 00:00 UTC), ignoring leap seconds. Note that
 the leaves of a log’s Merkle Tree are not required to be in strict
 chronological order.

 "issuer_key_hash" is the HASH of the public key of the software
 provider that signed the software, calculated over the DER encoding
 of the key represented as SubjectPublicKeyInfo [RFC5280]. This is
 needed to bind the software provider to the software binary code,
 making it impossible for the corresponding SBT to be valid for any
 other software whose TBSSignedSoftware matches "tbs_signed_software".
 The length of the "issuer_key_hash" MUST match HASH_SIZE.

 "bin_signed_type" indicates whether the signature is generated based
 on the software or its digest.

 "tbs_signed_software" is the DER encoded TBSSignedSoftware from the
 "signed_software" in the case of a "BinaryChainEntryV2".

4.4. Structure of the Signed Binary Timestamp

 An SBT is a "TransItem" structure of type "bin_sbt_v2", which
 encapsulates a "SignedBinaryTimestampDataV2" structure:

Xia, et al. Expires September 7, 2017 [Page 7]

Internet-Draft CT for Binary Codes March 2017

 enum {
 reserved(65535)
 } SbtExtensionType;

 struct {
 SbtExtensionType sbt_extension_type;
 opaque sbt_extension_data<0..2^16-1>;
 } SbtExtension;

 struct {
 LogID log_id;
 uint64 timestamp;
 SbtExtension sbt_extensions<0..2^16-1>;
 digitally-signed struct {
 TransItem timestamped_entry;
 } signature;
 } SignedBinaryTimestampDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector.

 "timestamp" is equal to the timestamp from the
 "TimestampedBinaryEntryDataV2" structure encapsulated in the
 "timestamped_entry".

 "sbt_extension_type" identifies a single extension from the IANA
 registry in Section 6. At the time of writing, no extensions are
 specified.

 The interpretation of the "sbt_extension_data" field is determined
 solely by the value of the "sbt_extension_type" field. Each document
 that registers a new "sbt_extension_type" must describe how to
 interpret the corresponding "sbt_extension_data".

 "sbt_extensions" is a vector of 0 or more SBT extensions. This
 vector MUST NOT include more than one extension with the same
 "sbt_extension_type". The extensions in the vector MUST be ordered
 by the value of the "sbt_extension_type" field, smallest value first.
 If an implementation sees an extension that it does not understand,
 it SHOULD ignore that extension. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

 The encoding of the digitally-signed element is defined in [RFC5246].

 "timestamped_entry" is a "TransItem" structure that MUST be of type
 "BIN_entry_v2".

Xia, et al. Expires September 7, 2017 [Page 8]

Internet-Draft CT for Binary Codes March 2017

5. Log Client Messages

 In Section 5 of [I-D.ietf-trans-rfc6962-bis], a set of messages is
 defined for clients to query and verify the correctness of the log
 entries they are interested in. In this document, a new message is
 defined and an existing message is extended for CT to support Binary
 Transparency.

5.1. Add Binary Code and Certificate Chain to Log

 POST https://<log server>/ct/v1/add-Binary-chain

 Inputs:
 bin_signed_type: indicates whether the input parameter "software"
 is constructed by the binary code or its digest.
 software: the binary code (or digest), the signature, and the
 information used to describe the software and the software
 provider publishing the software, which are encapsulated
 following the way specified in CMS[RFC5652] . The submitter
 desires a SBT for this element.
 chain: An array of base64-encoded certificates. The first element is
 the certificate used to sign the binary code (or digest); the
 second certifies the first and so on to the last, which either is,
 or is certified by, an accepted trust anchor.If the certificate
 chain information has been included in the "software" field, this
 field could be empty.

 Outputs:
 sbt: A base64 encoded "TransItem" of type "BIN_sbt_v2", signed by this
 log, that corresponds to the submitted software.

 Error codes:
 Be identical with the according part in Section 5.1 (Add Chain to Log) of
 [I-D.ietf-trans-rfc6962-bis].

5.2. Retrieve Entries and STH from Log

Xia, et al. Expires September 7, 2017 [Page 9]

Internet-Draft CT for Binary Codes March 2017

 GET https://<log server>/ct/v2/get-entries
 Inputs:
 start: 0-based index of first entry to retrieve, in decimal.
 end: 0-based index of last entry to retrieve, in decimal.
 Outputs:
 entries: An array of objects, each consisting of
 leaf_input: The base64 encoded "TransItem" structure of type
 "x509_entry_v2" or "precert_entry_v2" or "BIN_entry_v2"
 (see Section 4.3).
 log_entry: The base64 encoded log entry (see Section 4.1). In the
 case of an "x509_entry_v2" entry, this is the whole
 "X509ChainEntry"; and in the case of a "precert_entry_v2",
 this is the whole "PrecertChainEntryV2"; and in the case of a
 "BIN_entry_v2", this is the whole "BinaryChainEntryV2".
 sct: The base64 encoded "TransItem" of type "x509_sct_v2" or "precert_sct
_v2"
 or "BIN_sbt_v2"corresponding to this log entry.
 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed
 by this log.

 More details are identical with Section 5.7 of [I-D.ietf-trans-
 rfc6962-bis].

5.3. Summary

 In summary, the above extensions of Binary Transparency enable the
 software providers, the end users, and anyone to monitor and audit
 the CT logs to mitigate the possible attacks induced by tampered
 software, or software misdistribution.

 This section gives a brief introduction to all the other aspects of
 Binary Transparency mechanisms for the reason of completeness, since
 they comply with the basic CT protocol specification. For more
 details please refer to the corresponding sections of [I-D.ietf-
 trans-rfc6962-bis].

 Software providers act the same as TLS servers in CT protocol. They
 present one or more SBTs from one or more logs to each end user while
 distributing the software, where each SBT corresponds to the
 software. Software providers SHOULD also present corresponding
 inclusion proofs and STHs. In which way the software providers
 present this information is beyond the scope of this document.

 The end users of software acts the same as Clients of logs described
 in CT protocol. They can perform various different functions, such
 as: get log metadata, exchange STHs they see, receive and validate
 SBTs, Validate inclusion proofs.

Xia, et al. Expires September 7, 2017 [Page 10]

Internet-Draft CT for Binary Codes March 2017

 Binary Transparency also provides monitoring and auditing functions
 with the same algorithms defined for CT protocol.

 Binary Transparency supports the same algorithm agility feature for
 signature algorithm and hash algorithm as CT protocol.

6. Acknowledgements

7. IANA Considerations

 To be added.

8. Security Considerations

 To be added.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <http://www.rfc-editor.org/info/rfc5652>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

9.2. Informative References

 [I-D.ietf-trans-rfc6962-bis]
 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency Version 2.0", draft-
 ietf-trans-rfc6962-bis-24 (work in progress), December
 2016.

Authors’ Addresses

 Liang Xia (editor)
 Huawei

 Email: frank.xialiang@huawei.com

Xia, et al. Expires September 7, 2017 [Page 11]

Internet-Draft CT for Binary Codes March 2017

 Dacheng Zhang
 Huawei

 Email: dacheng.zhang@huawei.com

 Daniel Kahn Gillmor
 CMRG

 Email: dkg@fifthhorseman.net

 Behcet Sarikaya
 Huawei USA
 5340 Legacy Dr. Building 3
 Plano, TX 75024

 Email: sarikaya@ieee.org

Xia, et al. Expires September 7, 2017 [Page 12]

Network Working Group D. Zhang
Internet-Draft
Intended status: Experimental D. Gillmor
Expires: January 6, 2016 CMRG
 D. He
 Huawei
 B. Sarikaya
 Huawei USA
 N. Kong
 July 5, 2015

 Certificate Transparency for Domain Name System Security Extensions
 draft-zhang-trans-ct-dnssec-03

Abstract

 In draft-ietf-trans-rfc6962-bis, a solution (Certificate
 Transparency) is proposed for publicly logging the existence of
 Transport Layer Security (TLS) certificates using Merkle Hash Trees.
 This document proposes a mechanism to extend Certificate Transparency
 for DNSSEC which publicly logs the DS RRs to notice the issuance of
 suspect key signing keys.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2016.

Zhang, et al. Expires January 6, 2016 [Page 1]

Internet-Draft CT-DNSSEC July 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Cryptographic Components of Certificate Transparency 4
 3. Motivation Scenario . 4
 4. Log Format and Operation 5
 4.1. Log Entries . 5
 4.2. Structure of the Signed Certificate Timestamp 7
 4.3. Merkle Tree . 8
 5. Including the Signed Certificate Timestamp into DNS Security
 Extensions . 9
 5.1. SCT RR . 9
 5.1.1. The Key Tag Field 10
 5.1.2. The Algorithm Field 10
 5.1.3. The Digest Type Field 10
 5.1.4. The Digest Field 10
 5.1.5. The SCT Field . 10
 5.1.6. The Signature Field 11
 5.2. Operations . 11
 6. Log Client Messages . 11
 6.1. Add DNSSEC RR Chain to Log 11
 6.2. Retrieve Accepted Root DNSKEY RRs 12
 7. IANA Considerations . 12
 8. Security Considerations 12
 8.1. Logging Other Types of RRs 12
 8.2. Scalability Concerns 13
 9. Acknowledgements . 13
 10. Normative References . 13
 Authors’ Addresses . 13

Zhang, et al. Expires January 6, 2016 [Page 2]

Internet-Draft CT-DNSSEC July 2015

1. Introduction

 [I-D.ietf-trans-rfc6962-bis] specifies a Certificate Transparency
 (CT) mechanism to disclosing TLS certificates into public logs. This
 mechanism benefits the public to monitor the operations in issuing
 certificates to improper subscribers. The logs do not prevent mis-
 issuing behavior directly, but the provided public audibility can
 increase the possibility in detecting the improper behaviors of
 issuers. The logs are constructed with Merkle Hash Trees to ensure
 the append-only property, and thus enable anyone to verify the
 correctness of each log record. Note that CT is a common mechanism
 although [I-D.ietf-trans-rfc6962-bis] only specifies how to use it to
 publish TLS server certificates issued by public certificate
 authorities (CAs).

 This document discusses the use of CT in addressing the improper
 issuance issues in DNSSEC. DNSSEC establishes chains of public keys
 for clients to assess the validity of DNS resource records. In order
 to prove the validity of keys used for signing DNS data, DNSSEC uses
 DNS public key (DNSKEY) RRsets and Delegation Signer (DS) RRsets to
 form authentication chains for the signed data, with each link in the
 chains vouching for the next by signing the next. If an
 authentication chain can be eventually connected to the a trusted DNS
 key or DS RR, the client then ensures the key for signing the data is
 legitimate. Unlike PKIX, SDNSEC inherently has strong naming
 constraints. The owner of a zone can only be allowed to sign the RRs
 in his zone. Any attempt in signing the RRs in other zones will be
 easily detected by clients. However, the owner of a zone is
 dependent on its parent delegation via the DS record to vouch for its
 DNSKEY. The zone itself is responsible for publishing DS records for
 the child zones that dependant on it. Misbehavior or compromise of
 the parent zone directly affects the core DNS security of the child
 zone. A detailed example is provided in Section 3.

 In order to benefit the detection of improper issuance/delegation of
 DNSSEC keys, this document describes an extension to CT to support
 logging DSs . The CT logs are publicly auditable, making it possible
 for anyone to verify the correctness of the log entries and monitor
 the new DS RR’s appended to the log. The logs do not prevent the
 parent from issuing DS records that the child disagrees with, but
 they ensure that interested parties can detect such operations. For
 instance, For example, a zone owner that has been compromised or
 compelled by a third party can hijack a child zone to return
 different DNS data that is indistinguishable from DNSSEC validated
 data from the child zone by using its own DNSKEY to sign DNS data on
 behalf of the child zone. It could deliver this modified DNS data to
 only selected regions or individuals, making this attack very
 difficult to detect by the legitimate child zone.

Zhang, et al. Expires January 6, 2016 [Page 3]

Internet-Draft CT-DNSSEC July 2015

 In DNSSEC, it is assumed that the keys used for signing RRs or other
 keys will be properly maintained. This work follows this assumption
 and the compromise of key signing keys are out of scope of this work.
 This work assumes the existence of inside attacker. That is, a legal
 owner of a zone may try to attack or circumvent other zones.
 However, because the naming constraint feature of DNSSEC, a zone
 owner in principle can only use its keys to perform attacks on its
 child zones.

 This work reuses most of the messages and data structures specified
 in [I-D.ietf-trans-rfc6962-bis] and makes necessary extensions for
 supporting DS RRs. Only the extensions to
 [I-D.ietf-trans-rfc6962-bis] are presented in this document.

2. Cryptographic Components of Certificate Transparency

 The introduce of cryptographic components of CT is in Section 2 of
 [I-D.ietf-trans-rfc6962-bis]. When applying CT for NDSSEC, a log is
 a single, ever-growing, append-only Merkle Tree of DS RRs.

3. Motivation Scenario

 Assume a zone (foo.bar.example) and its parent zone (bar.example) are
 owned by different organizations. Follows are the steps of an
 example attack that the owner of the parent zone could perform on the
 child zone.

 1. Set up a fake foo.bar.example DNS server

 2. The owner of parent zone generates a new KSK X1 and ZSK X2 for
 the fake foo.bar.example DNS server, because it does not know the
 private key of the KSK of foo.bar.example. The fake server uses
 the KSK to sign the ZSK and uses the ZSK to sign the fake
 resource records

 3. The owner of parent zone generates a DS record for the KSK record
 generated in step 2 in order to generate the certificate chain
 for the records in the fake server.

 4. The owner of bar.example signs the DS RR with its zone signing
 key and publishes it

 5. Change the IP address of the DNS server of foo.bar.example in the
 associated RRs to the IP address of the fake DNS server

 The owner of foo.bar.example may try to periodically access the DNS
 server of bar.example and monitor the RRs on it . However, there
 could be still a time window between two assessments which can be

Zhang, et al. Expires January 6, 2016 [Page 4]

Internet-Draft CT-DNSSEC July 2015

 taken advantage of by the owner of bar.example to perform a hijacking
 attack and remove the bogus RRs before the owner of foo.bar.example
 detects the attack.

 In some cases, the parent can even achieve its objectives without
 publishing the DS RR containing the invalid KSK, which makes the
 attacks more difficult to detect.

 If the owner of bar.example is forced to publish his operations on
 the public CT logs, the attack introduced above will be detected
 eventually. Through checking the log, it is easy detect the improper
 issuance of RRs of his parent zone.

4. Log Format and Operation

 As illustrated in Section 3, a zone owner may need to publish
 multiple RRs in order to hijack the queries to its child zone and re-
 direct them to another illegal DNS server. However, it is not
 necessary to publish all those associated RRs to the log. In fact,
 by publishing the DS RR which is critical in constructing the
 authentication chain across two zones will be sufficient for helping
 the public to detect the improper issuance behavior. In this
 solution, when a zone owner generates a DS RR and delegates a new
 public key to a child zone, it MUST publish the DS RR at least one CT
 log in order to allow the public to monitor its behavior. Identical
 to what is specified in [I-D.ietf-trans-rfc6962-bis], each CT log
 needs to return a SCT to the zone owner immediately. The SCT will be
 encapsulated in a SCT RR and published within a DS RR.

 The SCT is the log’s promise to incorporate the RR in the Merkle Tree
 within a fixed amount of time known as the Maximum Merge Delay (MMD).
 If the log has previously seen the certificate, it MAY return the
 same SCT as it returned before. DNS servers MUST provide an SCT
 within a SCT RR. DNSSEC clients will not honor a DS RR that does not
 have a valid SCT. Therefore it is expected that a zone owner will
 usually deliver the DS RRs for audit purposes.

4.1. Log Entries

 Before publishing a DS RR, a zone owner MUST submit it to one or more
 preferred logs. In order to enable attribution of each logged RR to
 its issuer, the log SHALL publish a list of acceptable public keys
 (or hashes of public keys) of root zone or islands of security. Each
 submitted DS RR MUST be accompanied by all additional RRs (DNSKEY
 RRs, DS RRs, and RRSIG RRs) which construct an authentication chain
 to an accepted root public key.

Zhang, et al. Expires January 6, 2016 [Page 5]

Internet-Draft CT-DNSSEC July 2015

 Logs MUST verify that the authentication chain and make sure it leads
 back to a trusted public key, using the chain of intermediate DNSKEY
 RRs and DS RRs provided by the submitter. Logs MUST refuse to
 publish a DS RR without a valid chain to a trusted key. If a DS RR
 is accepted and an SCT issued, the accepting log MUST store the
 entire chain used for verification, including the DS RR itself and
 including the trusted key used to verify the chain, and MUST present
 this chain for auditing upon request.

 To comply with the certificate entries specified in
 [I-D.ietf-trans-rfc6962-bis],Each DS RR entry in a log MUST include
 the following components:

 enum { x509_entry(0), precert_entry(1), DSRR_entry(TBD1),(65535) } LogEntryT
ype;

 struct {
 LogEntryType entry_type;
 select (entry_type) {
 case x509_entry: X509ChainEntry;
 case precert_entry: PrecertChainEntry;
 case DSRR_entry:DSRR_Chain_Entry
 } entry;
 } LogEntry;

 opaque DNSSECRR<1..2^24-1>;

 struct {
 DNSSECRR DSRR;
 DNSSECRR DNSSEC_key_chain<0..2^24-1>
 } DSRR_Chain_Entry;

 "entry_type" is the type of this entry. the type value of a DSRR
 LogEntry is TBD1.

 "DSRR" is the DS RR submitted for auditing.

 "DNSSEC_key_chain" is a chain of additional DNSSEC RRs required to
 verify the DS RR.A typical authentication chain is as follow: Trusted
 DNSSKEY ->[DS->(DNSKEY)*->DNSKEY]*-> Submitted DS RR, where "*"
 denotes zero or more sub-chains. (DNSKEY)* indicates that DNSSEC
 permits additional layers of DNSKEY RRs including the keys for
 signing other keys within a zone. Each DNSKEY/DS RR in the chain is
 authenticated by a RRSIG RR. In practice, a RRSIG RR is normally
 used to sign a DS/DNSKEY RRset. Therefore, not only the DS/DNSKEY RR
 on the authentication chain but also other records in the RRset
 SHOULD be provided to the log the verification purpose. Otherwise,
 the log may have to consult DNS again in order to verify the

Zhang, et al. Expires January 6, 2016 [Page 6]

Internet-Draft CT-DNSSEC July 2015

 authentication chains. Logs SHOULD limit the length of chain they
 will accept.

4.2. Structure of the Signed Certificate Timestamp

 This work reuses the structure of Signed Certificate Timestamp
 specified in Section 3.3 of [I-D.ietf-trans-rfc6962-bis] but make
 necessary extensions.

 enum { certificate_timestamp(0), tree_hash(1),DSRR_timestamp(TBD2), (255) }
 SignatureType;

 enum { v1(0), (255) }
 Version;

 struct {
 opaque key_id[32];
 } LogID;

 struct {
 opaque issuer_key_hash[32];
 C14N_DSRR dsrr;
 } DSRR;

 opaque CtExtensions<0..2^16-1>;

 "key_id" and "issuer_key_hash" are defined in Section 3.3 of
 [I-D.ietf-trans-rfc6962-bis].

 dsrr is the submitted DS RR in a canonical form. The
 canconicalization of a DS RR is described in Section 6.2 of
 [RFC4304].

Zhang, et al. Expires January 6, 2016 [Page 7]

Internet-Draft CT-DNSSEC July 2015

 struct {
 Version sct_version;
 LogID id;
 uint64 timestamp;
 CtExtensions extensions;
 digitally-signed struct {
 Version sct_version;
 SignatureType signature_type = DSRR_timestamp;
 uint64 timestamp;
 LogEntryType entry_type;
 select(entry_type) {
 case x509_entry: ASN.1Cert;
 case precert_entry: PreCert;
 case BIN_entry: BinaryDigest;
 case BINDI_entry: BinaryDigest
 } signed_entry;
 CtExtensions extensions;
 };
 } SignedCertificateTimestamp;

 The encoding of the digitally-signed element is defined in [RFC5246].

 "sct_version", "timestamp", "entry_type and extensions" are are
 identical to what is defined in Section 3.3 of
 [I-D.ietf-trans-rfc6962-bis].

 "signed_entry" is the is DSRR (in the case of a DSRR_entry), as
 described above.

 "extensions" are future extensions to this protocol version (v1).
 Currently, no extensions are specified.

4.3. Merkle Tree

 This specification extends the structure of the Merkle Tree input in
 Section 3.5 of [I-D.ietf-trans-rfc6962-bis] and enable it to
 encapsulate DS RR:

Zhang, et al. Expires January 6, 2016 [Page 8]

Internet-Draft CT-DNSSEC July 2015

 enum { v1(0), v2(1), (255) }
 LeafVersion;

 struct {
 uint64 timestamp;
 LogEntryType entry_type;
 select(entry_type) {
 case x509_entry: ASN.1Cert;
 case precert_entry: PreCert;
 case DSRR_entry: DSRR;
 } signed_entry;
 CtExtensions extensions;
 } TimestampedEntry;

 struct {
 LeafVersion version;
 TimestampedEntry timestamped_entry;
 } MerkleTreeLeaf;

 The fields in the input are introduced in Section 3.5 of
 [I-D.ietf-trans-rfc6962-bis].

 Open question[dacheng]: We should include the RRs constucting the
 authenticaiton chain in the input, right?

5. Including the Signed Certificate Timestamp into DNS Security
 Extensions

 In section 3.5 of [I-D.ietf-trans-rfc6962-bis]

5.1. SCT RR

 The SCT associated with a DS RR is stored within a STC RR. A DNS
 server MAY provide multiple SCT RRs for one DS RR.

 The type number for the SCT RR is TBD3.

 The SCT resource record is class independent.

 The life period of SCT RR should not be set in a way that the RR will
 not be expired before the associated DS RR.

 The RDATA portion of an SCT RR is as shown below.

Zhang, et al. Expires January 6, 2016 [Page 9]

Internet-Draft CT-DNSSEC July 2015

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Key Tag | Algorithm | Digest Type |
 +-+
 / /
 / Digest /
 / /
 +-+
 / /
 / STC /
 / /
 +-+
 / /
 / Signature /
 / /
 +-+

5.1.1. The Key Tag Field

 The Key Tag field lists the key tag of the DNSKEY RR referred to by
 the SCT record, in network byte order. Appendix B of [RFC4034]
 describes how to compute a Key Tag.

5.1.2. The Algorithm Field

 The Algorithm field lists the algorithm number of the DNSKEY RR
 referred to by the SCT record. Appendix A.1 of [RFC4034] lists the
 algorithm number types.

5.1.3. The Digest Type Field

 The Digest Type field identifies the algorithm used to construct the
 digest used to identify the DS RR that the SCT RR refers to.
 Appendix A.2 of [RFC4034] lists the possible digest algorithm types.

5.1.4. The Digest Field

 The method of calculating digest is identical to what is specified in
 Section 5.1.4 of [RFC2065].[RFC4034]

5.1.5. The SCT Field

 This field contains the SCT got from the log, encoded in BASE64.

Zhang, et al. Expires January 6, 2016 [Page 10]

Internet-Draft CT-DNSSEC July 2015

5.1.6. The Signature Field

 This field contains the SCT signature associated with the SCT. The
 Signature field is represented as a Base64 encoding of the signature.

5.2. Operations

 After introducing the SCT RR, the verification procedures of DNS data
 specified in DNSSEC[RFC4305] do not change a lot. However, the
 correctness of CTS needs to be assessed during checking the validity
 of a DS RR.

 A DS RR needs to be associated with a CTS RR which contains a valid
 CTS and signed with a proper public key. Otherwise, the DS RR will
 not be used to construct the authentication chain. The signatures of
 DS RR and its CTS RR should be stored in different RRSIG RR
 respectively. In addition, a DNS server will sends CTS RRs and the
 associated RRSIG RRs to a resolver only when it indicates the support
 of CT in the request.

6. Log Client Messages

 In Section 4 of [I-D.ietf-trans-rfc6962-bis], a set of messages is
 defined for clients to query and verfiy the correctness of the log
 entries they are interested in. In this memo, two new messages are
 defined for CT to support DNSSEC.

6.1. Add DNSSEC RR Chain to Log

 POST https://<log server>/ct/v1/add-RR-chain

 Inputs:

 chain: An array of base64-encoded DNS RR. The first element is
 the submited DS RR; the second chains to the first and so on to
 the last, which is a trurst DNSKey RR.

 Outputs:

 sct_version: The version of the SignedCertificateTimestamp
 structure, in decimal. A compliant v1 implementation MUST NOT
 expect this to be 0 (i.e., v1).

 id: The log ID, base64 encoded.

Zhang, et al. Expires January 6, 2016 [Page 11]

Internet-Draft CT-DNSSEC July 2015

 timestamp: The SCT timestamp, in decimal.

 extensions: An opaque type for future expansion. It is likely
 that not all participants will need to understand data in this
 field. Logs should set this to the empty string. Clients
 should decode the base64-encoded data and include it in the
 SCT.

 signature: The SCT signature, base64 encoded.

6.2. Retrieve Accepted Root DNSKEY RRs

 GET https://<log server>/ct/v1/get-root-RRs

 No inputs.

 Outputs:

 RRs: An array of base64-encoded DNSKEY RRs that are acceptable to
 the log.

7. IANA Considerations

 This document specified a new LogEntryType value TBD1 to identify DS
 RR entry, a new SCT Type value TBD2, and a type number for the SCT
 DNS RR TBD3.

8. Security Considerations

8.1. Logging Other Types of RRs

 This solution only tries to describes a solution to disclose keys for
 DNSSEC in logs for the public to audit. However, it may be valuable
 to also log the RRs specified in [RFC1035]. For instance, assume
 there is an attacker which has compromised the zone authentication
 key and is able to perform the MITM attack between a resolver and the
 DNS server of the zone. It is possible for an attacker to transfer a
 forged RR which is signed with the compromised key. The current
 solution cannot benefit the detection of this attack in this
 scenario. However, if the RR is also required to be uploaded to
 public logs, the condition is changed. If the attacker does not
 publish the RR to a log, it cannot get the SCT. When the attacker
 tries to publish the RR to the log, the owner of the zone may detect
 the problem even if the attacker can provide keys to convince the log
 to accept the RR.

Zhang, et al. Expires January 6, 2016 [Page 12]

Internet-Draft CT-DNSSEC July 2015

8.2. Scalability Concerns

 The log MAY limit accepting entries where the TTL is too short or the
 RRSIG times are too far in the future or the past, to avoid spamming
 the log. It should probably also put a maximum on the number of
 child zones to avoid getting spammed.

9. Acknowledgements

10. Normative References

 [I-D.ietf-trans-rfc6962-bis]
 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency", draft-ietf-trans-
 rfc6962-bis-07 (work in progress), March 2015.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2065] Eastlake, D. and C. Kaufman, "Domain Name System Security
 Extensions", RFC 2065, January 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, March 2005.

 [RFC4304] Kent, S., "Extended Sequence Number (ESN) Addendum to
 IPsec Domain of Interpretation (DOI) for Internet Security
 Association and Key Management Protocol (ISAKMP)", RFC
 4304, December 2005.

 [RFC4305] Eastlake, D., "Cryptographic Algorithm Implementation
 Requirements for Encapsulating Security Payload (ESP) and
 Authentication Header (AH)", RFC 4305, December 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Authors’ Addresses

 Dacheng Zhang

 Email: dacheng.zhang@gmail.com

Zhang, et al. Expires January 6, 2016 [Page 13]

Internet-Draft CT-DNSSEC July 2015

 Daniel Kahn Gillmor
 CMRG

 Email: dkg@fifthhorseman.net

 Danping He
 Huawei

 Email: ana.hedanping@huawei.com

 Behcet Sarikaya
 Huawei USA
 5340 Legacy Dr. Building 3
 Plano, TX 75024

 Email: sarikaya@ieee.org

 Ning Kong

 Email: nkong@cnnic.cn

Zhang, et al. Expires January 6, 2016 [Page 14]

	draft-ietf-trans-gossip-05
	draft-ietf-trans-rfc6962-bis-28
	draft-ietf-trans-threat-analysis-13
	draft-strad-trans-redaction-01
	draft-zhang-trans-ct-binary-codes-04
	draft-zhang-trans-ct-dnssec-03

