TRANS L. Nordberg

I nternet-Draft NORDUnet
I ntended status: Experinental D. Gl nor
Expires: July 18, 2018 ACLU

T. Ritter

January 14, 2018

Gossiping in CT
draft-ietf-trans-gossip-05

Abst ract

The logs in Certificate Transparency are untrusted in the sense that
the users of the systemdon’t have to trust that they behave
correctly since the behavior of a log can be verified to be correct.

This docunment tries to solve the problemw th | ogs presenting a
"split view' of their operations or failing to incorporate a

submi ssion within MVD. It describes three gossiping nechanisns for
Certificate Transparency: SCT Feedback, STH Pollination and Trusted
Audi tor Rel ationship.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on July 18, 2018.

Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of

Nor dberg, et al. Expires July 18, 2018 [Page 1]

Internet-Draft Gossiping in CT January 2018
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents
1. Introduction 3
2. Defining the problen1 4
3. Overview 4
4. Terninol ogy . . . 5

4.1. Pre-Loaded vs LocaIIy Added Anchors . 5
5. Who gossips with whom. . . . - 5
6. What to gossip about and how 6
7. Data flow. . 6
8. GCossip hbchanlsns . 7

8.1. SCT Feedback 7

8.1.1. SCT Feedback data format 8
8.1.2. HITPS client to server Ce e e 9
8.1.3. HITPS server operation 11
8.1.4. HITPS server to auditors 13
8.2. STH pollination . . 2}
8.2.1. HITPS dients and Proof Fetchlng 16
8.2.2. STH Pol l'inati on without Proof Fetchlng .
8.2.3. Auditor Action . . . 4
8.2.4. STH Pollination data fornat e e e 18
8.3. Trusted Auditor Stream . . e e e 18
8.3.1. Trusted Auditor data fornat e
9. 3-Method Ecosystem 20

9.1. SCT Feedback 20

9.2. STH Pollination .. 20

9.3. Trusted Auditor Relationship 21

9.4. Interaction . . . C e e e e s 22
10. Security conS|derat|ons .o B

10.1. Attacks by actively naI|C|ous Iogs . e 23

10. 2. Dual - CA Conprom se . . . e 23

10. 3. Censorshi p/ Bl ocki ng conS|derat|ons e e e e e .. 24

10.4. Flushing Attacks 25

10.4.1. STHs 25

10.4.2. SCTs & CErt|f|cate Cha|ns on HTTPS Servers 26

10.4.3. SCTs & Certificate Chains on HTTPS dients 27

10.5. Privacy considerations 27

10.5.1. Privacy and SCTs . . . - 4

10.5.2. Privacy in SCT Feedback 27
10.5.3. Privacy for HITPS clients perforn1ng STH Proof

Fetching 28

Nor dberg, et al. Expires July 18, 2018 [Page 2]

Internet-Draft

10.
10.
10.

10.

11.1.

11.

11.

11. 2.
11. 3.
11.

11.

11. 4.
11.

11.

12. | ANA consi derations .

Gossiping in CT

5.4, Privacy in STH Pol lination
5.5. Privacy in STH Interaction .

5.6. Trusted Auditors for

HTTPS Oients .

5.7. HITPS Cients as Auditors
11. Policy Recomendati ons .

Bl ocki ng Reconnendatlons .
1.1. Frustrating bl ocking .

1.2. Responding to possible blocklng.

Proof Fetchi ng Recommendati ons

Record Di stributi on Recommendati ons
3.1. Mxing Algorithm. . .
3.2. The Deletion Algorlthm

Concrete Reconmendati ons
4.1. STH Pol li nati on
4.2. SCT Feedback

13. Contributors
14. ChangeLog .

14.
14.
14.
14.
14.
14.
14.

NoghkwhE

Changes
Changes
Changes
Changes
Changes
Changes
Changes

15. References .
Nor mati ve References

I nformati ve References

bet ween

bet ween
bet ween
bet ween
bet ween
bet ween
bet ween

15. 1.
15. 2.
Aut hors’ Addr esses
1. Introduction

The purpose of the protocols in this docunent,

to as CT Gossip,

particul ar,

i etf-04

ietf-03
ietf-02
ietf-01
ietf-00
-01 and
-00 and

aﬁd.

and
and
and
and

-01

i etf-05

ietf-04
ietf-03
ietf-02
ietf-01

January 2018

29
29
30
30
31
31
31
31
33
33
34
35
36
36
40
53
53
53
54
54
54
54
54
55
55
55
55
56
57

collectively referred

is to detect certain mshehavior by CT logs. In
| ogs that are providing

i nconsistent views to different
include subrmitted certificates within the time period stipulated by

MVD.

One of the mmjor challenges of any gossip protoco

to user privacy.

any additiona
partici pants.
particul ar,

The goal
i nformati on about the logs and their operations,
i nformati on about the operation of any of the other
Privacy of consuners of
of web browsers and other TLS clients) should not be

under m ned by gossi p.

Nor dber g

et al.

CT Cossip ains to detect
log clients,

Expires July 18, 2018

and logs failing to

is limting danmage
of CT gossip is to publish and distribute
but not to expose

log information (in

[Page 3]

Internet-Draft Gossiping in CT January 2018

Thi s docunment presents three different, conplenmentary nmechani sns for
non-1og el ements of the CT ecosystemto exchange information about
logs in a manner that preserves the privacy of HITPS clients. They
shoul d provide protective benefits for the systemas a whole even if
their adoption is not universal

2. Defining the problem

When a |l og provides different views of the log to different clients
this is described as a partitioning attack. Each client would be
able to verify the append-only nature of the log but, in the extrene
case, each client m ght see a unique view of the |og.

The CT logs are public, append-only and untrusted and thus have to be
audited for consistency, i.e., they should never rewite history.
Additionally, auditors and other log clients need to exchange

i nformati on about logs in order to be able to detect a partitioning
attack (as described above).

CGossi pi ng about | og behavi or hel ps address the probl em of detecting
mal i ci ous or conpromised logs with respect to a partitioning attack
We want sone side of the partitioned tree, and ideally all sides, to
see at | east one other side.

D ssem nating i nformati on about a | og poses a potential threat to the
privacy of end users. Sone data of interest (e.g., SCTs) is linkable
to specific log entries and thereby to specific websites, which makes
sharing themw th others a privacy concern. Gossiping about this
data has to take privacy considerations into account in order not to
expose associ ati ons between users of the log (e.g., web browsers) and
certificate holders (e.g., web sites). Even sharing STHs (which do
not link to specific log entries) can be problematic - user tracking
by fingerprinting through rare STHs is one potential attack (see
Section 8.2).

3. Overview

Thi s docunment presents three gossiping mechani sns: SCT Feedback, STH
Pol I'i nation, and a Trusted Auditor Rel ationshi p.

SCT Feedback enables HTTPS clients to share Signed Certificate

Ti mestanps (SCTs) (Section 4.8 of [RFC 6962-BIS-27]) with CT auditors
in a privacy-preserving manner by sending SCTs to originating HTTPS
servers, which in turn share themw th CT auditors.

In STH Pol lination, HTTPS clients use HTTPS servers as pools to share
Signed Tree Heads (STHs) (Section 4.10 of [RFC 6962-BIS-27]) with

Nor dberg, et al. Expires July 18, 2018 [Page 4]

Internet-Draft Gossiping in CT January 2018

4.

5.

other connecting clients in the hope that STHs will find their way to
CT auditors.

HTTPS clients in a Trusted Auditor Relationship share SCTs and STHs
with trusted CT auditors directly, with expectations of privacy
sensitive data being handl ed accordi ng to whatever privacy policy is
agreed on between client and trusted party.

Despite the privacy risks with sharing SCTs there is no loss in
privacy if a client sends SCTs for a given site to the site
corresponding to the SCT. This is because the site’'s cookies could
already indicate that the client had accessed that site. In this way
a site can accumul ate records of SCTs that have been issued by
various logs for that site, providing a consolidated repository of
SCTs that could be shared with auditors. Auditors can use this
information to detect a mishehaving log that fails to include a
certificate within the tine period stipulated by its MVD | og

par aneter.

Sharing an STH is considered reasonably safe froma privacy
perspective as long as the same STH is shared by a | arge nunber of
other log clients. This safety in nunbers can be achi eved by only
al | owi ng gossiping of STHs issued in a certain wi ndow of tine, while
al so refusing to gossip about STHs fromlogs with too high an STH

i ssuance frequency (see Section 8.2).

Ter m nol ogy

This docunent relies on terninology and data structures defined in
[RFC-6962- Bl S-27], including MVD, STH, SCT, Version, LoglD, SCT

ti mestanp, CtExtensions, SCT signature, Merkle Tree Hash

This docunment relies on terninology defined in
[draft-ietf-trans-threat-anal ysis-12], including Auditing.

1. Pre-Loaded vs Locally Added Anchors

Through the docunent, we refer to both Trust Anchors (Certificate
Authorities) and Logs. Both Logs and Trust Anchors may be locally
added by an adm nistrator. Unless otherwise clarified, in both cases
we refer to the set of Trust Anchors and Logs that cone pre-|oaded
and pre-trusted in a piece of client software.

Who gossi ps with whom

0 HTTPS clients and servers (SCT Feedback and STH Pol I i nati on)

0 HTTPS servers and CT auditors (SCT Feedback and STH Pol | i nati on)

Nor dberg, et al. Expires July 18, 2018 [Page 5]

Internet-Draft Gossiping in CT January 2018

0 CT auditors (Trusted Auditor Relationship)

Additionally, sone HITPS clients may engage with an auditor which
they trust with their privacy:

o0 HITPS clients and CT auditors (Trusted Auditor Relationship)
6. \What to gossip about and how
There are three separate gossip streans:

0 SCT Feedback - transporting SCTs and certificate chains from HTTPS
clients to CT auditors via HITPS servers.

0 STH Pollination - HTTPS clients and CT auditors using HITPS
servers as STH pools for exchangi ng STHs.

0 Trusted Auditor Stream- HITPS clients comrunicating directly with
trusted CT auditors sharing SCTs, certificate chains and STHs.

It is worthwhile to note that when an HTTPS client or CT auditor
interacts with a log, they may equivalently interact with a | og
mrror or cache that replicates the |og.

7. Data flow
The follow ng picture shows how certificates, SCIs and STHs fl ow

through a CT systemw th SCT Feedback and STH Pollination. It does
not show what goes in the Trusted Auditor Rel ationship stream

Nor dberg, et al. Expires July 18, 2018 [Page 6]

Internet-Draft Gossiping in CT January 2018

8.

8.

1.

+- Cert ---- 4---------- +
| e +
| + SCT -> +---------- +
v [Cert [& SCT]
Fomm e + |
| Log | ---------- SCT ----------- +
e oo + v
| N S +
[SCTs & Certs --- | Website |
sy | T +
| 2] STHs A I
| 1[3] v | HITPS traffic
| e + | |
| +-------- > | Auditor | | SCT & Cert
| R + | | ,
STH | STH & Inclusion proof
I I I
Log entries SCTs & Certs
I I I
v STHs |
S + | Vv
| Monitor | R +
R + | Browser |
e e e oo +
Auditor Log
[1] |--- get-sth ----------mmmom- >|
[<-- STH ------mmmm e - [
[2] |--- leaf hash + tree size ----- >|
| <-- index + inclusion proof --->
[3] |--- tree size 1 + tree size 2 ->|

| <-- consistency proof ---------- |
Gossi p Mechani sns
SCT Feedback

The goal of SCT Feedback is for clients to share SCTs and certificate
chains with CT auditors while still preserving the privacy of the end
user. The sharing of SCTs contribute to the overall goal of
detecting nmisbehaving | ogs by providing auditors with SCTs from nany
vantage points, making it nore likely to catch a violation of a log’ s
MVD or a |log presenting inconsistent views. The sharing of
certificate chains is beneficial to HITPS server operators interested
in direct feedback fromclients for detecting bogus certificates
issued in their name and therefore incentivizes server operators to
take part in SCT Feedback.

Nor dberg, et al. Expires July 18, 2018 [Page 7]

Internet-Draft Gossiping in CT January 2018

SCT Feedback is the nost privacy-preserving gossip nechanism as it
does not directly expose any links between an end user and the sites
they' ve visited to any third party.

HTTPS clients store SCTs and certificate chains they see, and | ater
send themto the originating HTTPS server by posting themto a well -
known URL (associated with that server), as described in

Section 8.1.2. Note that clients will send the same SCTs and chai ns
to a server multiple times with the assunption that any man-in-the-
m ddl e attack eventually will cease, and an honest server wll
eventual ly receive collected malicious SCTs and certificate chains.

HTTPS servers store SCTs and certificate chains received from
clients, as described in Section 8.1.3. They later share themwth
CT auditors by either posting themto auditors or making them
available via a well-known URL. This is described in Section 8.1.4.

8.1.1. SCT Feedback data fornmat

The data shared between HTTPS clients and servers, as well as between
HTTPS servers and CT auditors, is a JSON array [RFC7159]. Each item
inthe array is a JSON object containing at least the first of the
foll owi ng nenbers

0 "x509 chain" : An array of PEM encoded X. 509 certificates. The
first element is the end-entity certificate, the second certifies
the first and so on. The "x509 chain" nmenber is mandatory to
i ncl ude.

0 "sct _data vl" : An array of base64 encoded
"SignedCertificateTi mestanplList"s as defined in [RFC6962] section
3.3. The "sct_data_v1" nmenber is optional

0 "sct _data v2" : An array of base64 encoded "Transltem structures
of type "x509 sct_v2" or "precert_sct_v2" as defined in
[RFC-6962- Bl S-27] section 4.8. The "sct_data_v2" nmenber is
opti onal

W will refer to this object as ’sct_feedback’

The x509 chain el ement always contains a full chain froma | eaf
certificate to a self-signed trust anchor

See Section 8.1.2 for details on what the sct_data el enent contains
as well as nore details about the x509 chain el enment.

Nor dberg, et al. Expires July 18, 2018 [Page 8]

Internet-Draft Gossiping in CT January 2018

8.1.2. HTTPS client to server

When an HTTPS client connects to an HTTPS server, the client receives
a set of SCTs as part of the TLS handshake. SCTs are included in the
TLS handshake using one or nore of the three nechani sns described in
[RFC-6962- Bl S-27] section 6 - in the server certificate, in a TLS
extension, or in an OCSP extension. The client MJST discard SCTs
that are not signed by a | og known to the client and SHOULD store the
remai ning SCTs together with a locally constructed certificate chain
which is trusted (i.e., terninated in a pre-loaded or locally
installed Trust Anchor) in an sct_feedback object or equivalent data
structure for later use in SCT Feedback

The SCTs stored on the client MIST be keyed by the exact domai n nane
the client contacted. They MJUST NOT be sent to the well-known URI of
any domain not matching the original donmain (e.g., if the origina
domai n i s sub. exanpl e.comthey nust not be sent to

sub. sub. exanpl e.comor to exanple.com) In particular, they MJST NOT
be sent to the well-known URI of any Subject Al ternate Nanes
specified in the certificate. |In the case of certificates that
validate nmultiple domain nanes, after visiting a second donmai n nane
specified in the certificate, the sane SCT is expected to be stored
once under each donmain nane’'s key. |f Connection Reuse as defined in
[RFC7540] is available, reusing an existing connection to

sub. exanpl e.comto send data to sub.sub. exanple.comis permtted

Not follow ng these constraints would increase the risk for two types
of privacy breaches. First, the HTTPS server receiving the SCT woul d
| earn about other sites visited by the HTTPS client. Second,
auditors receiving SCTs fromthe HTTPS server would |l earn information
about ot her HTTPS servers visited by its clients.

If the client |ater again connects to the sane HITPS server, it again
receives a set of SCTs and calculates a certificate chain, and again
creates an sct_feedback or similar object. |If this object does not
exactly match an existing object in the store, then the client MJST
add this new object to the store, associated with the exact domain
nane contacted, as described above. An exact conparison is needed to
ensure that attacks involving alternate chains are detected. An
exanpl e of such an attack is described in

[dual - ca- conproni se-attack]. However, at |east one optim zation is
safe and MAY be perforned: If the certificate chain exactly matches
an existing certificate chain, the client MAY store the union of the
SCTs fromthe two objects in the first (existing) object.

If the client does connect to the sanme HITPS server a subsequent

time, it MJUST send to the server sct_feedback objects in the store
that are associated with that donain nane. However, it is not

Nor dberg, et al. Expires July 18, 2018 [Page 9]

Internet-Draft Gossiping in CT January 2018

necessary to send an sct_feedback object constructed fromthe current
TLS session, and if the client does so, it MJST NOT be marked as sent
in any internal tracking done by the client.

Refer to Section 11.3 for recommendations for inplenentation

Because SCTs can be used as a tracki ng nechani sm (see

Section 10.5.2), they deserve special treatnent when they are
received from (and provided to) domains that are | oaded as
subresources froman origin domain. Such donmains are conmonly call ed
"third party donmains’. An HTTPS client SHOULD store SCT Feedback
usi ng a 'doubl e-keying’ approach, which isolates third party domai ns
by the first party domain. This is described in [double-keying].
CGossip would be performed normally for third party domai ns only when
the user revisits the first party domain. 1In lieu of ’double-
keying', an HTTPS client MAY treat SCT Feedback in the sane manner it
treats other security mechani sns that can enabl e tracking (such as
HSTS and HPKP.)

SCT Feedback is only perforned when a user connects to a site via
intentional web browsing or normal third party resource inclusion
It MUST NOT be perforned automatically as part of sone sort of
background process.

Finally, if the HTTPS client has configuration options for not
sendi ng cookies to third parties, SCIs of third parties MJST be
treated as cookies with respect to this setting. This prevents third
party tracking through the use of SCTs/certificates, which would
bypass the cookie policy. For donains that are only |oaded as third
party domains, the client may never perform SCT Feedback; however the
client may perform STH Pol li nati on after fetching an inclusion proof,
as specified in Section 8. 2.

SCTs and corresponding certificates are POSTed to the originating
HTTPS server at the well-known URL:

https://<domai n>/ . wel | - known/ ct - gossi p/ vl/ sct - f eedback

The data sent in the POST is defined in Section 8.1.1. This data
SHOULD be sent in an already-established TLS session. This nmakes it
hard for an attacker to disrupt SCT Feedback w thout al so disturbing
ordinary secure browsing (https://). This is discussed nore in
Section 11.1.1.

The HTTPS server SHOULD respond with an HTTP 200 response code and an

enpty body if it was able to process the request. An HITPS client
whi ch receives any other response SHOULD consider it an error.

Nor dberg, et al. Expires July 18, 2018 [Page 10]

Internet-Draft Gossiping in CT January 2018

Some clients have trust anchors or logs that are locally added (e.g.
by an administrator or by the user thenselves). These additions are
potentially privacy-sensitive because they can carry information
about the specific configuration, conputer, or user.

Certificates validated by locally added trust anchors will comonly
have no SCTs associated with them so in this case no action is
needed with respect to CT Gossip. SCTs issued by locally added | ogs
MUST NOT be reported via SCT Feedback.

If acertificate is validated by SCTs that are issued by publicly
trusted |l ogs, but chains to a local trust anchor, the client MAY
perform SCT Feedback for this SCT and certificate chain bundle. |If
it does so, the client MJUST include the full chain of certificates
chaining to the local trust anchor in the x509 chain array.
Perform ng SCT Feedback in this scenario may be advantageous for the
broader internet and CT ecosystem but nmay al so disclose infornation
about the client. |If the client elects to onit SCT Feedback, it can
choose to perform STH Pol lination after fetching an inclusion proof,
as specified in Section 8. 2.

We require the client to send the full chain (or nothing at all) for
two reasons. Firstly, it sinplifies the operation on the server if
there are not two code paths. Secondly, onmtting the chain does not
actually preserve user privacy. The Issuer field in the certificate
describes the signing certificate. And if the certificate is being
submitted at all, it nmeans the certificate is | ogged, and has SCTs.
This means that the |Issuer can be queried and obtained fromthe |og,
so onitting the signing certificate fromthe client’s subm ssion does
not actually hel p user privacy.

8.1.3. HITPS server operation

HTTPS servers can be configured (or omt configuration), resulting

in, broadly, two nodes of operation. |In the sinpler node, the server
will only track leaf certificates and SCTs applicable to those |eaf
certificates. 1In the nore conplex node, the server will confirmthe

client’s chain validation and store the certificate chain. The
| atter node requires nmore configuration, but is necessary to prevent
deni al of service (DoS) attacks on the server’s storage space.

In the sinple node of operation, upon receiving a subnission at the
sct-feedback well-known URL, an HTTPS server will performa set of
operations, checking on each sct_feedback object before storing it:

o (1) the HTTPS server MAY nodify the sct_feedback object, and

discard all itenms in the x509 chain array except the first item
(which is the end-entity certificate)

Nor dberg, et al. Expires July 18, 2018 [Page 11]

Internet-Draft Gossiping in CT January 2018

o (2) if a bit-wise compare of the sct_feedback object nmatches one
already in the store, this sct_feedback object SHOULD be di scarded

0 (3) if the leaf cert is not for a donmain for which the server is
authoritative, the SCT MJUST be di scarded

o (4) if an SCT in the sct_data array can’'t be verified to be a
valid SCT for the acconpanying |leaf cert, and issued by a known
| og, the individual SCT SHOULD be discarded

The nodification in step nunber 1 is necessary to prevent a nalicious
client fromexhausting the server’'s storage space. A client can
generate their own issuing certificate authorities, and create an
arbitrary nunber of chains that termnate in an end-entity
certificate with an existing SCI. By discarding all but the end-
entity certificate, we prevent a sinple HTTPS server fromstoring
this data. Note that operation in this node will not prevent the
attack described in [dual -ca-conprom se-attack]. Skipping this step
requires additional configuration as described bel ow

The check in step 2 is for detecting duplicates and m nim zi ng
processing and storage by the server. As on the client, an exact
conparison is needed to ensure that attacks involving alternate
chains are detected. Again, at |least one optinization is safe and

MAY be performed. |If the certificate chain exactly matches an
existing certificate chain, the server MAY store the union of the
SCTs fromthe two objects in the first (existing) object. [If the

validity check on any of the SCTs fails, the server SHOULD NOT store
t he uni on of the SCTs.

The check in step 3 is to help malfunctioning clients from exposing
which sites they visit. It additionally hel ps prevent DoS attacks on
t he server.

The check in step 4 is to prevent DoS attacks where an adversary
fills up the store prior to attacking a client (thus preventing the
client’s feedback from being recorded), or an attack where an
adversary sinply attenpts to fill up server’s storage space.

The above describes the sinpler nbde of operation. |In the nore
advanced server node, the server will detect the attack described in
[dual - ca-conproni se-attack]. In this configuration the server wll
not nodify the sct_feedback object prior to perforning checks 2, 3,
and 4. Instead, to prevent a malicious client fromfilling the
server’s data store, the HITPS server SHOULD perform an additiona
check in the nore advanced node:

Nor dberg, et al. Expires July 18, 2018 [Page 12]

Internet-Draft Gossiping in CT January 2018

o (5) if the x509 _chain consists of an invalid certificate chain, or
the culminating trust anchor is not recognized by the server, the
server SHOULD nodify the sct_feedback object, discarding all itens
in the x509 chain array except the first item

The HTTPS server MAY choose to onit checks 4 or 5. This will place
the server at risk of having its data store filled up by invalid
data, but can also allow a server to identify interesting certificate
or certificate chains that omt valid SCTs, or do not chain to a
trusted root. This informati on nay enable an HTTPS server operator
to detect attacks or unusual behavior of Certificate Authorities even
outside the Certificate Transparency ecosystem

8.1.4. HTTPS server to auditors

HTTPS servers receiving SCTs fromclients SHOULD share SCTs and
certificate chains with CT auditors by either serving themon the
wel | - known URL:

htt ps://<domai n>/ . wel | - known/ ct - gossi p/ vl/col | ect ed-sct-feedback

or by HTTPS POSTing themto a set of preconfigured auditors. This
all ows an HTTPS server to choose between an active push nodel or a
passi ve pull nodel

The data received in a GET of the well-known URL or sent in the POST
is defined in Section 8.1.1 with the follow ng difference: The

x509 chain el enent nay contain only he end-entity certificate, as
descri bed bel ow

HTTPS servers SHOULD share all sct_feedback objects they see that
pass the checks in Section 8.1.3. |If this is an infeasible anmount of
data, the server MAY choose to expire subm ssions according to an
undefined policy. Suggestions for such a policy can be found in
Section 11.3.

HTTPS servers MJST NOT share any other data that they may | earn from
the submi ssion of SCT Feedback by HTTPS clients, like the HITPS
client 1P address or the tine of subm ssion

As descri bed above, HTTPS servers can be configured (or onit
configuration), resulting in tw nodes of operation. In one node,
the x509 _chain array will contain a full certificate chain. This
chain may ternminate in a trust anchor the auditor may recognize, or
it my not. (One scenario where this could occur is if the client
submitted a chain termnating in a |locally added trust anchor, and
the server kept this chain.) 1In the other node, the x509 chain array

Nor dberg, et al. Expires July 18, 2018 [Page 13]

Internet-Draft Gossiping in CT January 2018

will consist of only a single elenent, which is the end-entity
certificate.

Audi t ors SHOULD provide the followi ng URL accepting HTTPS POSTi ng of
SCT feedback dat a:

https://<auditor>/ct-gossip/vl/sct-feedback

Audi tors SHOULD regularly poll HTTPS servers at the well-known

col l ected-sct-feedback URL. The frequency of the polling and how to
det ermi ne which donmains to poll is outside the scope of this
docunment. However, the selection MIST NOT be influenced by potenti al
HTTPS clients connecting directly to the auditor. For exanple, if a
poll to exanple.comoccurs directly after a client subnmits an SCT for
exanpl e.com an adversary observing the auditor can trivially
conclude the activity of the client.

8.2. STH pollination

The goal of sharing Signed Tree Heads (STHs) through pollination is
to share STHs between HITPS clients and CT auditors while stil
preserving the privacy of the end user. The sharing of STHs
contribute to the overall goal of detecting nisbehaving | ogs by
providing CT auditors with STHs from many vantage points, nmaking it
possible to detect logs that are presenting inconsistent views.

HTTPS servers supporting the protocol act as STH pools. HITPS
clients and CT auditors in the possession of STHs can pollinate STH
pools by sending STHs to them and retrieving new STHs to send to
other STH pools. CT auditors can inprove the value of their auditing
by retrieving STHs from pool s.

HTTPS clients send STHs to HTTPS servers by POSTing themto the well -
known URL:

https://<domai n>/ . wel | - known/ ct-gossi p/vl/sth-pollination

The data sent in the POST is defined in Section 8.2.4. This data
SHOULD be sent in an already established TLS session. This makes it
hard for an attacker to disrupt STH gossiping w thout al so disturbing
ordinary secure browsing (https://). This is discussed nore in
Section 11.1.1.

On a successful connection to an HITPS server inplenenting STH

Pol i nation, the response code will be 200, and the response body is
application/json, containing zero or nore STHs in the sane format, as
described in Section 8.2. 4.

Nor dberg, et al. Expires July 18, 2018 [Page 14]

Internet-Draft Gossiping in CT January 2018

An HTTPS client nmay acquire STHs by several nethods:
o inreplies to pollination POSTs;

o0 asking logs that it recognizes for the current STH, either
directly (v2/get-sth) or indirectly (for exanple over DNS)

0 resolving an SCT and certificate to an STH via an incl usion proof
0 resolving one STH to another via a consistency proof

HTTPS clients (that have STHs) and CT auditors SHOULD pol |l i nate STH
pools with STHs. Which STHs to send and how often pollination should
happen is regarded as undefined policy with the exception of privacy
concerns expl ained bel ow. Suggestions for the policy can be found in
Section 11.3.

An HTTPS client could be tracked by giving it a unique or rare STH
To address this concern, we place restrictions on different
components of the systemto ensure an STH will not be rare.

0 HTTPS clients silently ignore STHs fromlogs with an STH i ssuance
frequency of nore than one STH per hour. Logs use the STH
Frequency Count |og paraneter to express this ([RFC 6962- Bl S-27]
section 4.1).

0 HITPS clients silently ignore STHs which are not fresh

An STH is considered fresh iff its tinestanp is less than 14 days in
the past. G ven a maxi mum STH i ssuance rate of one per hour, an
attacker has 336 unique STHs per log for tracking. dients MJST

i gnore STHs ol der than 14 days. W consider STHs within this
validity window not to be personally identifiable data, and STHs
outside this window to be personally identifiable.

When nultiplied by the nunber of |logs fromwhich a client accepts
STHs, this nunmber of unique STHs grow and the negative privacy
inmplications growwith it. |It’s inportant that this is taken into
account when | ogs are chosen for default settings in HTTPS clients.
This concern is discussed upon in Section 10.5.5.

A log may cease operation, in which case there will soon be no STH
within the validity window dients SHOULD performall three nethods
of gossip about a log that has ceased operation since it is possible
the log was still conprom sed and gossip can detect that. STH
Pollination is the one nechanismwhere a client nust know about a | og
shutdown. A client which does not know about a | og shutdown MJUST NOT
attenpt any heuristic to detect a shutdown. Instead the client MJST

Nor dberg, et al. Expires July 18, 2018 [Page 15]

Internet-Draft Gossiping in CT January 2018

be i nformed about the shutdown froma verifiable source (e.g., a

sof tware update), and be provided the final STH issued by the |og.
The client SHOULD resolve SCTs and STHs to this final STH If an SCT
or STH cannot be resolved to the final STH, clients SHOULD fol |l ow t he
requi renents and recommendations set forth in Section 11.1.2.

8.2.1. HITPS dients and Proof Fetching

There are two types of proofs a client may retrieve; inclusion proofs
and consi stency proofs.

An HTTPS client will retrieve SCTs together with certificate chains
froman HTTPS server. Using the tinmestanp in the SCT together with
the end-entity certificate and the issuer key hash, it can obtain an
inclusion proof to an STH in order to verify the prom se nmade by the
SCT.

An HTTPS client will have STHs from perform ng STH Pol lination, and
may obtain a consistency proof to a nore recent STH

An HTTPS client may al so receive an SCT bundl ed with an inclusion
proof to a historical STH via an unspecified future nmechani sm
Because this historical STH is considered personally identifiable

i nformati on per above, the client needs to obtain a consistency proof
to a nore recent STH.

A client SHOULD attenpt proof fetching. A client MAY do network
probing to deternmine if proof fetching may succeed, and if it |earns
that it does not, SHOULD periodically re-probe (especially after
network change, if it is aware of these events.) |If it does succeed,
gqueued events can be processed.

A client MJUST NOT perform proof fetching for any SCTs or STHs issued
by a locally added log. A client MAY fetch an inclusion proof for an
SCT (issued by a pre-loaded log) that validates a certificate
chaining to a locally added trust anchor

If a client requested either proof directly froma log or auditor, it
woul d reveal the client’s browsing habits to a third party. To
mtigate this risk, an HITPS client MJST retrieve the proof in a
manner that disguises the client.

Depending on the client’s DNS provider, DNS nay provide an
appropriate internediate | ayer that obfuscates the linkability

bet ween the user of the client and the request for inclusion (while
at the sane tine providing a caching |layer for oft-requested

i nclusion proofs). See [draft-ct-over-dns] for an exanple of how
this can be done.

Nor dberg, et al. Expires July 18, 2018 [Page 16]

Internet-Draft Gossiping in CT January 2018

Anonymi ty networks such as Tor also present a mechanismfor a client
to anonynously retrieve a proof froman auditor or |og.

Even when using a privacy-preserving | ayer between the client and the
| og, certain observations nmay be nade about an anonynous client or
general user behavi or dependi ng on how proofs are fetched. For
exanple, if a client fetched all outstanding proofs at once, a | og
woul d know that SCTs or STHs received around the same tinme are nore
likely to cone froma particular client. This could potentially go
so far as correlation of activity at different tinmes to a single
client. In aggregate the data could reveal what sites are conmnonly
visited together. HITPS clients SHOULD use a strategy of proof
fetching that attenpts to obfuscate these patterns. A suggestion of
such a policy can be found in Section 11.2.

Resol ving either SCTs and STHs may result in errors. These errors
may be routine downtime or other transient errors, or they may be
indicative of an attack. Cients SHOULD follow the requirenents and
recomendations set forth in Section 11.1.2 when handling these
errors in order to give the CT ecosystemthe greatest chance of
detecting and responding to a conprom se.

8.2.2. STH Pol lination wi thout Proof Fetching

An HTTPS client MAY participate in STH Pollination w thout fetching

proofs. In this situation, the client receives STHs froma server,
applies the sane validation logic to them (signed by a known | og,
within the validity window) and will |ater pass themto another HITPS
server.

When operating in this fashion, the HTTPS client is pronoting gossip
for Certificate Transparency, but derives no direct benefit itself.
In conparison, a client which resolves SCTs or historical STHs to
recent STHs and pollinates themis assured that if it was attacked,
there is a probability that the ecosystemw ||l detect and respond to
the attack (by distrusting the |oqg).

8.2.3. Auditor Action

CT auditors participate in STH pollination by retrieving STHs from
HTTPS servers. They verify that the STHis valid by checking the
signature, and requesting a consistency proof fromthe STHto the
nost recent STH.

After retrieving the consistency proof to the nost recent STH, they
SHOULD pol linate this new STH anobng partici pating HTTPS servers. In
this way, as STHs "age out" and are no longer fresh, their "lineage"
continues to be tracked in the system

Nor dberg, et al. Expires July 18, 2018 [Page 17]

Internet-Draft Gossiping in CT January 2018

8.2.4. STH Pollination data fornat

The data sent from HITPS clients and CT auditors to HITPS servers is
a JSON object [RFC7159] with one or both of the follow ng two
nmenbers:

o "v1" : array of O or nore objects each containing an STH as
returned fromct/vl/get-sth, see [RFC6962] section 4.3

o "v2" : array of O or nore objects each containing an STH as
returned fromct/v2/ get-sth, see [RFC-6962-Bl S-27] section 5.2

Note that all STHs MJUST be fresh as defined in Section 8. 2.
8.3. Trusted Auditor Stream

HTTPS clients MAY send SCTs and cert chains, as well as STHs,
directly to auditors. |If sent, this data MAY include data that
reflects locally added | ogs or trust anchors. Note that there are
privacy inplications in doing so, these are outlined in

Section 10.5.1 and Section 10.5. 6.

The nost natural trusted auditor arrangenent arguably is a web
browser that is "logged in to" a provider of various internet
services. Another equivalent arrangenment is a trusted party like a
corporation to which an enpl oyee is connected through a VPN or by
other simlar neans. A third mght be individuals or smaller groups
of people running their own services. |n such a setting, retrieving
proofs fromthat third party could be considered reasonable froma
privacy perspective. The HITPS client may also do its own auditing
and might additionally share SCTs and STHs with the trusted party to
contribute to herd immunity. Here, the ordinary [RFC 6962-BI S-27]
protocol is sufficient for the client to do the auditing while SCT
Feedback and STH Pol lination can be used in whole or in parts for the
gossi p part.

Anot her wel| established trusted party arrangenment on the internet
today is the relation between internet users and their providers of
DNS resol ver services. DNS resolvers are typically provided by the

i nternet service provider (ISP) used, which by the nature of name
resol ving already know a great deal about which sites their users
visit. As mentioned in Section 8.2.1, in order for HTTPS clients to
be able to retrieve proofs in a privacy preserving manner, logs could
expose a DNS interface in addition to the ordinary HITPS interface.

A specification of such a protocol can be found in
[draft-ct-over-dns].

Nor dberg, et al. Expires July 18, 2018 [Page 18]

Internet-Draft Gossiping in CT January 2018

8.3.1. Trusted Auditor data format
Trusted Auditors expose a REST APl at the fixed URI
https://<auditor>/ct-gossip/vl/trusted-auditor
Subni ssions are made by sending an HTTPS POST request, with the body
of the POST in a JSON object. Upon successful receipt the Trusted
Auditor returns 200 K
The JSON obj ect consists of two top-level keys: 'sct feedback’ and
"sths’. The 'sct_feedback’ value is an array of JSON objects as
defined in Section 8.1.1. The 'sths’ value is an array of STHs as
defined in Section 8.2.4.
Exanpl e:

"sct _f eedback’

[

' x509 _chain’
[
"----BEG@ N CERTI FI CATE---\n
AAA. ..,
'----BEA N CERTI FI CATE---\n
AAA. ..,
]1
"sct_data’
[
TAAA LT
TAAA LT,
]
oo,
]1
" st hs’
[
"AAA LT,

Nor dberg, et al. Expires July 18, 2018 [Page 19]

Internet-Draft Gossiping in CT January 2018

9.

9.

9.

3- Met hod Ecosystem

The use of three distinct methods for auditing | ogs may seem
excessi ve, but each represents a needed conponent in the CT
ecosystem To understand why, the drawbacks of each conponent nust
be outlined. |In this discussion we assunme that an attacker knows
whi ch nechani sns an HTTPS client and HTTPS server inplenent.

1. SCT Feedback

SCT Feedback requires the cooperation of HITPS clients and nore
importantly HTTPS servers. Although SCT Feedback does require a
significant anmount of server-side logic to respond to the
corresponding APls, this functionality does not require

custom zation, so it may be pre-provided and work out of the box.
However, to take full advantage of the system an HITPS server woul d
wi sh to perform sonme configuration to optimze its operation:

0 Mninize its disk commitnment by maintaining a list of known SCTs
and certificate chains (or hashes thereof)

0 Muximze its chance of detecting a nisissued certificate by
configuring a trust store of CAs

o Establish a "push" nechani smfor POSTing SCTs to CT auditors

These configuration needs, and the sinple fact that it would require
some depl oynent of software, nmeans that sonme percentage of HITPS
servers will not deploy SCT Feedback

I f SCT Feedback was the only mechanismin the ecosystem any server
that did not inplement the feature would open itself and its users to
attack wi thout any possibility of detection.

A webserver not deploying SCT Feedback (or an alternative nethod
provi di ng equival ent functionality) may never learn that it was a
target of an attack by a malicious |og, as described in Section 10.1
al t hough the presence of an attack by the log could be |earned
through STH Pollination. Additionally, users who wi sh to have the
strongest neasure of privacy protection (by disabling STH Pollination
Proof Fetching and forgoing a Trusted Auditor) could be attacked
without risk of detection.

2. STH Pol lination

STH Pol l i nation requires the cooperation of HITPS clients, HITPS
servers, and | ogs.

Nor dberg, et al. Expires July 18, 2018 [Page 20]

Internet-Draft Gossiping in CT January 2018

For a client to fully participate in STH Pol i nati on, and have this
mechani sm detect attacks against it, the client nust have a way to
safely perform Proof Fetching in a privacy preserving manner. (The
client may pollinate STHs it receives w thout perfornng Proof
Fetching, but we do not consider this option in this section.)

HTTPS servers mnust depl oy software (although, as in the case with SCT
Feedback this logic can be pre-provided) and conmit some configurable
anount of di sk space to the endeavor.

Logs (or a third party mrroring the logs) nust provide access to
clients to query proofs in a privacy preserving nanner, nost |ikely
t hr ough DNS.

Unl i ke SCT Feedback, the STH Pollination mechanismis not hanpered if
only a mnority of HTTPS servers deploy it. However, it nmakes an
assunption that an HTTPS client perforns Proof Fetching (such as the
DNS nechani sm di scussed). Unfortunately, any manner that is
anonymous for sonme (such as clients which use shared DNS services
such as a large |SP), may not be anonynous for others.

For instance, DNS requests expose a considerable anount of sensitive
informati on (including what data is already present in the cache) in
pl ai nt ext over the network. For this reason, sone percentage of
HTTPS clients may choose to not enable the Proof Fetching conponent
of STH Pollination. (Al though they can still request and send STHs
anong participating HITPS servers, even when this affords them no
direct benefit.)

If STH Pollination was the only mechani sm depl oyed, users that
disable it would be able to be attacked without risk of detection

If STH Pollination (or an alternative nmethod providi ng equival ent
functionality) was not deployed, HTTPS clients visiting HITPS Servers
whi ch did not depl oy SCT Feedback coul d be attacked without risk of
det ecti on.

9.3. Trusted Auditor Relationship

The Trusted Auditor Relationship is expected to be the rarest gossip
mechani sm as an HTTPS client is providing an unadulterated report of
its browsing history to a third party. Wile there are valid and
conmon reasons for doing so, there is no appropriate way to enter
into this relationship without retrieving informed consent fromthe
user.

However, the Trusted Auditor Rel ationship nechanismstill provides
value to a class of HTTPS clients. For exanple, web crawl ers have no

Nor dberg, et al. Expires July 18, 2018 [Page 21]

I nt

9. 4.

Nor

ernet-Draft Gossiping in CT January 2018

concept of a "user" and no expectation of privacy. O ganizations

al ready perform ng network auditing for anomalies or attacks can run
their own Trusted Auditor for the same purpose with marginal increase
in privacy concerns.

The ability to change one’s Trusted Auditor is a formof Trust
Agility that allows a user to choose who to trust, and be able to
revise that decision |ater wthout consequence. A Trusted Auditor
connection can be nmade nore confidential than DNS (through the use of
TLS), and can even be nmade (sonewhat) anonynous through the use of
anonymity services such as Tor. (Note that this does ignore the de-
anonymi zation possibilities available fromviewi ng a user’s browsing
history.)

If the Trusted Auditor relationship was the only nmechani sm depl oyed,
users who do not enable it (the majority) would be able to be
attacked without risk of detection.

If the Trusted Auditor relationship was not deployed, craw ers and
organi zations would build it thenselves for their own needs. By
standardizing it, users who wish to opt-in (for instance those
unwilling to participate fully in STH Pollination) can have an

i nteroperabl e standard they can use to choose and change their
trusted auditor.

I nt eraction

Assum ng no ot her | og consistency neasures exist, clients who perform
only a subset of the nmechani sns described in this docunent are
exposed to the follow ng vul nerabilities:

HTTPS clients can be attacked w thout risk of detection if they do
not participate in any of the three nechanisns.

HTTPS clients are afforded the greatest chance of detecting an attack
when they either participate in both SCT Feedback and STH Pol I i nati on
with Proof Fetching or if they have a Trusted Auditor relationship.
(Participating in SCT Feedback is the only way specified in this
docunent to prevent a nmalicious log fromrefusing to ever resolve an
SCT to an STH, as put forward in Section 10.1). Additionally,
participating in SCT Feedback enabl es an HTTPS client to assist in
detecting the exact target of an attack.

HTTPS servers that omit SCT Feedback enable malicious logs to carry
out attacks without risk of detection. |If these servers are targeted
specifically, even if the attack is detected, w thout SCT Feedback
they may never learn that they were specifically targeted. HITPS
servers wi thout SCT Feedback do gain sone neasure of herd immunity,

dberg, et al. Expires July 18, 2018 [Page 22]

Internet-Draft Gossiping in CT January 2018

10.

10.

10.

but only because their clients participate in STH Pollination (with
Proof Fetching) or have a Trusted Auditor Rel ationship.

When HTTPS servers onmit SCT feedback, it allows their users to be
attacked wi thout detection by a nmalicious |og; the vul nerable users
are those who do not have a Trusted Auditor relationshinp.

Security considerations
1. Attacks by actively malicious |ogs

One of the nost powerful attacks possible in the CT ecosystemis a
trusted |l og that has actively decided to be malicious. 1t can carry
out an attack in at |east tw ways:

In the first attack, the log can present a split view of the log for
all tine. This attack can be detected by CT auditors, but a naive
auditor inplenentation may fail to do so. The sinplest, |east
efficient way to detect the attack is to mirror the entire | og and
assert inclusion of every peice of data. |f an auditor does not
mrror the log, one way to detect this attack is to resolve each view
of the log to the nost recent STHs available and then force the |og
to present a consistency proof. (Wiich it cannot.) W highly
recomend auditors plan for this attack scenario and ensure it wll

be detected.

In the second attack, the log can sign an SCT, and refuse to ever
include the certificate that the SCT refers to in the tree
(Alternately, it can include it in a branch of the tree and issue an
STH, but then abandon that branch.) Wenever someone requests an

i nclusion proof for that SCT (or a consistency proof fromthat STH)
the I og would respond with an error, and a client may sinply regard
the response as a transient error. This attack can be detected using
SCT Feedback, or an Auditor of Last Resort, as presented in

Section 11.1.2.

Both of these attack variants can be detected by CT auditors who have
obt ai ned an STH of an 'abnormal’ view of the |og. However, they may
not be able to link the STH to any particular SCT or Certificate.
This means that while the | og m sbehavi or was successful |y detected,
the target of the attack was not identified. To assertively identify
the target(s) of the attack, SCT Feedback is necessary.

2. Dual - CA Conpromni se
[dual - ca- conprom se-attack] describes an attack possible by an

adversary who conpronises two Certificate Authorities and a Log. This
attack is difficult to defend against in the CT ecosystem and

Nor dberg, et al. Expires July 18, 2018 [Page 23]

Internet-Draft Gossiping in CT January 2018

10.

[dual - ca- conprom se-attack] describes a few approaches to doing so
We note that Gossip is not intended to defend against this attack
but can in certain nodes

Def endi ng agai nst the Dual - CA Conpromi se attack requires SCT
Feedback, and explicitly requires the server to save full certificate
chains (described in Section 8.1.3 as the ’"conplex’ configuration.)
After CT auditors receive the full certificate chains fromservers
they MAY conpare the chain built by clients to the chain supplied by
the log. |If the chains differ significantly, the auditor SHOULD
raise a concern. A nethod of determining if chains differ
significantly is by asserting that one chain is not a subset of the
other and that the roots of the chains are different.

3. Censorshi p/ Bl ocki ng consi derations

We assune a network attacker who is able to fully control the
client’s internet connection for some period of tine, including
sel ectively bl ocking requests to certain hosts and truncating TLS
connecti ons based on information observed or guessed about client
behavior. In order to successfully detect |og m sbehavior, the
gossi p nmechani sns nust still work even in these conditions.

There are several gossip connections that can be bl ocked:
1. dients sending SCTs to servers in SCT Feedback

2. Servers sending SCTs to auditors in SCT Feedback (server push
mechani sm

3. Servers nmking SCTs available to auditors (auditor pul
mechani sm

4, Cients fetching proofs in STH Pol lination

5. Cdients sending STHs to servers in STH Pol lination
6. Servers sending STHs to clients in STH Pollination
7. dients sending SCTs to Trusted Auditors

If a party cannot connect to another party, it can be assured that
the connection did not succeed. Wile it may not have been

mal i ci ously bl ocked, it knows the transaction did not succeed.
Mechani sns which result in a positive affirmation fromthe recipient
that the transaction succeeded allow confirmation that a connection
was not blocked. In this situation, the party can factor this into
strategi es suggested in Section 11.3 and in Section 11.1. 2.

Nor dberg, et al. Expires July 18, 2018 [Page 24]

Internet-Draft Gossiping in CT January 2018

10.

10.

The connections that allow positive affirmation are 1, 2, 4, 5, and
7

More insidious is blocking the connections that do not allow positive
confirmation: 3 and 6. An attacker may truncate or drop a response
froma server to a client, such that the server believes it has
shared data with the recipient, when it has not. However, in both
scenarios (3 and 6), the server cannot distinguish the client as a
cooperating nmenber of the CT ecosystemor as an attacker performng a
Sybil attack, aiming to flush the server’s data store. Therefore the
fact that these connections can be undetectably bl ocked does not
actually alter the threat nodel of servers responding to these
requests. The choice of algorithmto release data is crucial to
protect against these attacks; strategies are suggested in

Section 11. 3.

Handl i ng censorship and network bl ocki ng (which is indistinguishable
fromnetwork error) is relegated to the inplenentation policy chosen
by clients. Suggestions for client behavior are specified in
Section 11.1.

4. Flushing Attacks

A flushing attack is an attenpt by an adversary to flush a particul ar
pi ece of data froma pool. |In the CT Gossip ecosystem an attacker
may have perforned an attack and | eft evidence of a conprom sed | og
on a client or server. They would be interested in flushing that
data, i.e. tricking the target into gossiping or pollinating the
incrimnating evidence with only attacker-controlled clients or
servers with the hope they trick the target into deleting it.

Fl ushing attacks may be defended against differently depending on the
entity (HTTPS client or HTTPS server) and record (STHs or SCTs with
Certificate Chains).

4.1. STHs

For both HTTPS clients and HTTPS servers, STHs within the validity

wi ndow SHOULD NOT be deleted. An attacker cannot flush an item from
the cache if it is never renoved so flushing attacks are conpletely
m ti gat ed.

The required disk space for all STHs within the validity w ndow is
336 STHs per log that is trusted. |If 20 logs are trusted, and each
STH takes 1 Kilobytes, this is 6.56 Megabytes.

Note that it is inportant that inplenentors do not calculate the
exact size of cache expected - if an attack does occur, a snall

Nor dberg, et al. Expires July 18, 2018 [Page 25]

Internet-Draft Gossiping in CT January 2018

10.

number of additional, fraudulent STHs will enter into the cache.
These STHs will be in addition to the expected set, and will be
evi dence of the attack. Flooding the cache will not work, as an
attacker would have to include fraudulent STHs in the fl ood.

If an HTTPS client or HTTPS server is operating in a constrained
envi ronnment and cannot devote enough storage space to hold all STHs
within the validity window it is reconmended to use the bel ow

Del etion Algorithmin section Section 11.3.2 to nmake it nore
difficult for the attacker to performa flushing attack

4.2. SCTs & Certificate Chains on HITPS Servers

An HTTPS server will only accept SCTs and Certificate Chains for
domains it is authoritative for. Therefore the storage space needed
i s bound by the nunber of logs it accepts, multiplied by the nunber
of donmains it is authoritative for, multiplied by the nunber of
certificates issued for those domains

| magi ne a server authoritative for 10,000 donai ns, and each domain
has 3 certificate chains, and 10 SCTs. A certificate chainis 5
Kil obytes in size and an SCT 1 Kilobyte. This yields 732 Megabyt es.

This data can be large, but it is calculable. Wb properties with
nmore certificates and domains are nore likely to be able to handl e
the increased storage need, while small web properties will not seen
an undue burden. Therefore HITPS servers SHOULD NOT del ete SCTs or
Certificate Chains. This conpletely nmitigates flushing attacks.

Again, note that it is inportant that inplenmentors do not calcul ate
the exact size of cache expected - if an attack does occur, the new
SCT(s) and Certificate Chain(s) will enter into the cache. This data
will be in addition to the expected set, and will be evidence of the
att ack.

If an HTTPS server is operating in a constrained environnent and
cannot devote enough storage space to hold all SCTs and Certificate
Chains it is authoritative for it is reconrended to configure the SCT
Feedback mechanismto allow only certain certificates that are known
to be valid. These chains and SCTs can then be di scarded wi thout
bei ng stored or subsequently provided to any clients or auditors. |If
the allowist is not sufficient, the below Deletion Algorithmin
Section 11.3.2 is recomended to nmake it nore difficult for the
attacker to performa flushing attack.

Nor dberg, et al. Expires July 18, 2018 [Page 26]

Internet-Draft Gossiping in CT January 2018

10.

10.

10.

10.

4.3. SCTs & Certificate Chains on HITPS dients

HTTPS clients will accunulate SCTs and Certificate Chains w thout
bound. It is expected they will choose a particular cache size and
del ete entries when the cache size neets its linmit. This does not
mtigate flushing attacks, and such an attack is docunented in

[gossi p-ni xi ng] .

The bel ow Del etion Algorithm Section 11.3.2 is recommended to make it
nmore difficult for the attacker to performa flushing attack

5. Privacy considerations

CT CGossip deals with HITPS clients which are trying to share

i ndicators that correspond to their browsing history. The nost
sensitive relationships in the CT ecosystemare the rel ationships

bet ween HTTPS clients and HTTPS servers. Cient-server relationships
can be aggregated into a network graph with potentially serious
implications for correlative de-anonynization of clients and

rel ati onshi p-mappi ng or clustering of servers or of clients.

There are, however, certain clients that do not require privacy
protection. Exanples of these clients are web craw ers or robots.
But even in this case, the nmethod by which these clients crawl the
web may in fact be considered sensitive information. |n general, it
is better to err on the side of safety, and not assume a client is
okay with giving up its privacy.

5.1. Privacy and SCTs

An SCT contains information that links it to a particular web site.
Because the client-server relationship is sensitive, gossip between
clients and servers about unrelated SCTs is risky. Therefore, a
client with an SCT for a given server SHOULD NOT transmt that
information in any other than the following two channels: to the
server associated with the SCT itself (via a TLS connection with a
certificate identifying the Domain Name of the web site with a Host
header specifying the domain nanme); or to a Trusted Auditor, if one
exi sts.

5.2. Privacy in SCT Feedback

SCTs introduce yet another mechani smfor HITPS servers to store state
on an HTTPS client, and potentially track users. HITPS clients which
all ow users to clear history or cookies associated with an origin
MUST cl ear stored SCTs and certificate chains associated with the
origin as well.

Nor dberg, et al. Expires July 18, 2018 [Page 27]

Internet-Draft Gossiping in CT January 2018

10.

Auditors should treat all SCTs as sensitive data. SCTs received
directly froman HITPS client are especially sensitive, because the
auditor is a trusted by the client to not reveal their associations
with servers. Auditors MJUST NOT share such SCTs in any way,

i ncluding sending themto an external log, without first mxing them
with multiple other SCTs | earned through submissions fromnultiple
other clients. Suggestions for nixing SCTs are presented in

Section 11. 3.

There is a possible fingerprinting attack where a |og i ssues a uni que
SCT for targeted log client(s). A colluding |log and HTTPS server
operator could therefore be a threat to the privacy of an HTTPS
client. Gven all the other opportunities for HTTPS servers to
fingerprint clients - TLS session tickets, HPKP and HSTS headers,
HTTP Cookies, etc. - this is considered acceptable.

The fingerprinting attack descri bed above would be mtigated by a
requirenent that |ogs nust use a deterministic signature schenme when
signing SCTs ([RFC-6962-BI S-27] section 2.2). A log signing using
RSA is not required to use a deterninistic signature schene.

Since logs are allowed to issue a new SCT for a certificate already
present in the | og, nmandating determnistic signatures does not stop
this fingerprinting attack altogether. It does nake the attack
harder to pull off w thout being detected though

There is another similar fingerprinting attack where an HITPS server
tracks a client by using a unique certificate or a variation of cert
chains. The risk for this attack is accepted on the sanme grounds as
t he uni que SCT attack described above.

5.3. Privacy for HITPS clients perforning STH Proof Fetching

An HTTPS client perform ng Proof Fetching SHOULD NOT request proofs
froma CT log that it doesn't accept SCTs from An HTTPS client
SHOULD regul arly request an STH fromall logs it is willing to
accept, even if it has seen no SCTs fromthat | og.

The tinme between two polls for new STH s SHOULD NOT be significantly
shorter than the MVD of the polled |og divided by its STH Frequency
Count ([RFC-6962-BI S-27] section 4.1).

The actual mnechani sm by which Proof Fetching is done carries

consi derabl e privacy concerns. Although out of scope for the
docunent, DNS is a nechanismcurrently discussed. DNS exposes data
in plaintext over the network (including what sites the user is
visiting and what sites they have previously visited) and nay not be
suitabl e for sone.

Nor dberg, et al. Expires July 18, 2018 [Page 28]

Internet-Draft Gossiping in CT January 2018

10.

10.

5.4, Privacy in STH Pol lination

An STH linked to an HTTPS client may indicate the foll ow ng about
that client:

o that the client gossips;

o that the client has been using CT at |least until the tine that the
timestanp and the tree size indicate;

o that the client is talking, possibly indirectly, to the |log
i ndi cated by the tree hash

o0 which software and software version is being used.

There is a possible fingerprinting attack where a |og i ssues a uni que
STH for a targeted HTTPS client. This is sinmlar to the
fingerprinting attack described in Section 10.5.2, but can operate
cross-origin. If alog (or HITPS server cooperating with a |og)
provides a unique STHto a client, the targeted client will be the
only client pollinating that STH cross-origin.

It is mtigated partially because the log is Iimted in the nunber of
STHs it can issue. It nust 'save’ one of its STHs each MVD to
performthe attack. A log violating its STH Frequency Count

([RFC-6962-BI S-27] section 4.1) can be identified as non-conpliant by
CT auditors followi ng the procedure described in [RFC 6962- Bl S-27]
section 8. 3.

5.5. Privacy in STH Interaction

An HTTPS client may pollinate any STH within the last 14 days. An
HTTPS client may al so pollinate an STH for any log that it knows
about. Wien a client pollinates STHs to a server, it will rel ease
nmore than one STHat a tine. It is unclear if a server may 'prine’ a
client and be able to reliably detect the client at a later tine.

It’s clear that a single site can track a user any way they w sh, but
this attack works cross-origin and is therefore nore concerning. Two
i ndependent sites A and B want to collaborate to track a user cross-
origin. A feeds a client Carol sone N specific STHs fromthe M ogs
Carol trusts, chosen to be older and | ess common, but still in the
validity window. Carol visits B and chooses to rel ease sone of the
STHs she has stored, according to sonme policy.

Model ing a representation for how common ol der STHs are in the pools
of clients, and examning that with a given policy of how to choose
whi ch of those STHs to send to B, it should be possible to calcul ate

Nor dberg, et al. Expires July 18, 2018 [Page 29]

Internet-Draft Gossiping in CT January 2018

10.

10.

statistics about how uni que Carol |ooks when talking to B and how
useful /accurate such a tracking mechanismis.

Bui I ding such a nodel is likely inpossible without sone real world
data, and requires a given inplenentation of a policy. To conbat
this attack, suggestions are provided in Section 11.3 to attenpt to
mnimze it, but followup testing with real world depl oynent to

i mprove the policy will be required.

5.6. Trusted Auditors for HITPS dients

Sone HTTPS clients nmay choose to use a trusted auditor. This trust
rel ati onshi p exposes a | arge anmount of information about the client
to the auditor. |In particular, it will identify the web sites that
the client has visited to the auditor. Sone clients may al ready
share this information to a third party, for exanple, when using a
server to synchroni ze browser history across devices in a server-

vi si bl e way, or when doing DNS | ookups through a trusted DNS
resolver. For clients with such a relationship already established
sending SCTs to a trusted auditor run by the sanme organi zati on does
not appear to expose any additional information to the trusted third

party.

Clients which wish to contact a CT auditor wi thout associating their
identities with their SCTs may wi sh to use an anonym zi ng networKk
like Tor to submit SCT Feedback to the auditor. Auditors SHOULD
accept SCT Feedback that arrives over such anonym zi ng networKks.

Clients sending feedback to an auditor may prefer to reduce the
tenporal granularity of the history exposure to the auditor by
caching and del ayi ng their SCT Feedback reports. This is el aborated
upon in Section 11.3. This strategy is only as effective as the
granularity of the tinmestanps enbedded in the SCTs and STHs.

5.7. HITPS dients as Auditors

Sone HTTPS clients may choose to act as CT auditors thenmselves. A
Client taking on this role needs to consider the foll ow ng:

0 an Auditing HTTPS client potentially exposes its history to the
| ogs that they query. Querying the log through a cache or a proxy
with many other users may avoid this exposure, but may expose
information to the cache or proxy, in the sanme way that a non-
Auditing HTTPS Cient exposes information to a Trusted Auditor.

o0 an effective CT auditor needs a strategy about what to do in the
event that it discovers misbehavior froma |log. M sbhehavior from
a log involves the | og being unable to provide either (a) a

Nor dberg, et al. Expires July 18, 2018 [Page 30]

Internet-Draft Gossiping in CT January 2018

11.

11.

11.

11.

consi stency proof between two valid STHs or (b) an inclusion proof
for a certificate to an STH any tinme after the log’s MVD has

el apsed fromthe issuance of the SCT. The log’s inability to
provide either proof will not be externally cryptographically-
verifiable, as it may be indistinguishable froma network error

Pol i cy Recommendati ons

This section is intended as suggestions to inplementors of HITPS
Clients, HTTPS servers, and CT auditors. It is not a requirenent for
techni que of inplenentation, so long as the privacy considerations
est abl i shed above are obeyed.

1. Bl ocking Recormendati ons
1.1. Frustrating bl ocking

When nmaki ng gossip connections to HTTPS servers or Trusted Auditors,
it is desirable to mininize the plaintext nmetadata in the connection
that can be used to identify the connection as a gossip connection
and therefore be of interest to block. Additionally, introducing
some randommess into client behavior may be inportant. W assune
that the adversary is able to inspect the behavior of the HITPS
client and understand how it makes gossip connecti ons.

As an exanple, if a client, after establishing a TLS connection (and
recei ving an SCT, but not making its own HITP request yet),

i medi atel y opens a second TLS connection for the purpose of gossip,
the adversary can reliably block this second connection to bl ock
gossip without affecting normal browsing. For this reason it is
recomended to run the gossip protocols over an existing connection
to the server, making use of connection nultiplexing such as HITP
Keep- Al i ve or SPDY

Truncation is also a concern. |f a client always establishes a TLS
connection, nakes a request, receives a response, and then al ways
attenpts a gossip conmmuni cation inmrediately following the first
response, truncation will allow an attacker to bl ock gossip reliably.

For these reasons, we reconmmend that, if at all possible, clients
SHOULD send gossip data in an already established TLS session. This
can be done through the use of HTTP Pipelining, SPDY, or HTTP/ 2

1.2. Responding to possible blocking

In sone circunstances a client nmay have a piece of data that they
have attenpted to share (via SCT Feedback or STH Pollination), but

Nor dberg, et al. Expires July 18, 2018 [Page 31]

Internet-Draft Gossiping in CT January 2018

have been unable to do so: with every attenpt they receive an error
These situations are:

1. The client has an SCT and a certificate, and attenpts to retrieve
an inclusion proof - but receives an error on every attenpt.

2. The client has an STH, and attenpts to resolve it to a newer STH
via a consistency proof - but receives an error on every attenpt.

3. The client has attenpted to share an SCT and constructed
certificate via SCT Feedback - but receives an error on every
attenpt.

4. The client has attenpted to share an STH via STH Pol lination -
but receives an error on every attenpt.

5. The client has attenpted to share a specific piece of data with a
Trusted Auditor - but receives an error on every attenpt.

In the case of 1 or 2, it is conceivable that the reason for the
errors is that the log acted inproperly, either through malicious
actions or conpronise. A proof may not be able to be fetched because
it does not exist (and only errors or tinmeouts occur). One such
situation may arise because of an actively nalicious |og, as
presented in Section 10.1. This data is especially inportant to
share with the broader internet to detect this situation

If an SCT has attenpted to be resolved to an STH via an incl usion
proof multiple tines, and each tine has failed, this SCT mght very
wel | be a conprom sing proof of an attack. However the client MJST
NOT share the data with any other third party (excepting a Trusted
Audi t or shoul d one exist).

If an STH has attenpted to be resolved to a newer STH via a

consi stency proof nmultiple tinmes, and each tine has failed, a client
MAY share the STH with an "Auditor of Last Resort" even if the STHin
qgquestion is no longer within the validity window. This auditor may
be pre-configured in the client, but the client SHOULD permit a user
to disable the functionality or change whom data is sent to. The
Auditor of Last Resort itself represents a point of failure and
privacy concerns, so if inplenented, it SHOULD connect using public
key pinning and not consider an itemdelivered until it receives a
confirmation.

In the cases 3, 4, and 5, we assune that the webserver(s) or trusted
auditor in question is either experiencing an operational failure, or
being attacked. In both cases, a client SHOULD retain the data for

| ater submission (subject to Private Browsing or other history-

Nor dberg, et al. Expires July 18, 2018 [Page 32]

Internet-Draft Gossiping in CT January 2018

clearing actions taken by the user.) This is elaborated upon nore in
Section 11. 3.

11.2. Proof Fetching Reconmendati ons

Proof fetching (both inclusion proofs and consistency proofs) SHOULD
be performed at randomtinme intervals. |If proof fetching occurred
all at once, in a flurry of activity, a |log would know that SCTs or
STHs received around the sane tinme are nore likely to cone froma
particular client. Wile proof fetching is required to be done in a
manner that attenpts to be anonynous fromthe perspective of the |og,
the correlation of activity to a single client would still revea
patterns of user behavior we wish to keep confidential. These
patterns could be recogni zabl e as a single user, or could reveal what
sites are commonly visited together in the aggregate.

11.3. Record Distribution Recommendati ons

In several conponents of the CT Gossip ecosystem the recomendation
is made that data fromnultiple sources be ingested, mxed, stored
for an indeternmnate period of tinme, provided (nultiple tines) to a
third party, and eventually deleted. The instances of these
recommendations in this draft are:

0 When a client receives SCTs during SCT Feedback, it should store
the SCTs and Certificate Chain for sone amount of time, provide
some of them back to the server at sonme point, and nay eventually
remove themfromits store

0 Wien a client receives STHs during STH Pollination, it should
store them for sonme anmpunt of tinme, nmix themw th other STHs,
rel ease sone of themthemto various servers at some point,
resol ve sone of themto new STHs, and eventually renove them from
its store

0 When a server receives SCTs during SCT Feedback, it should store
them for sone period of time, provide themto auditors sone numnber
of times, and may eventually rempove t hem

0 \When a server receives STHs during STH Pollination, it should
store them for sone period of tine, mx themw th other STHs,
provi de sone of themto connecting clients, may resolve themto
new STHs via Proof Fetching, and eventually renmove themfromits
store

0 When a Trusted Auditor receives SCTs or historical STHs from
clients, it should store themfor sone period of tine, mx them

Nor dberg, et al. Expires July 18, 2018 [Page 33]

Internet-Draft Gossiping in CT January 2018

11.

with SCTs received fromother clients, and act upon them at sone
period of tine

Each of these instances have specific requirenments for user privacy,
and each have options that may not be invoked. As one exanple, an
HTTPS client should not mx SCTs fromserver Awith SCTs from server
B and rel ease server B's SCTs to Server A. As another exanple, an
HTTPS server may choose to resolve STHs to a single nore current STH
via proof fetching, but it is under no obligation to do so.

These requirenents should be net, but the general probl em of
aggregating nultiple pieces of data, choosing when and how nany to
rel ease, and when to renove themis shared. This problem has

previ ously been considered in the case of Mx Networks and Rerail ers,
i ncludi ng papers such as [trickle].

There are several concerns to be addressed in this area, outlined
bel ow.

3.1. Mxing A gorithm

When SCTs or STHs are recorded by a participant in CT Gossip and
|ater used, it is inportant that they are selected fromthe datastore
in a non-deterministic fashion.

This is nost inportant for servers, as they can be queried for SCTs
and STHs anonynously. |If the server used a predictable ordering
algorithm an attacker could exploit the predictability to learn

i nformati on about a client. One such nethod would be by observing
the (encrypted) traffic to a server. Wen a client of interest
connects, the attacker makes a note. They observe nore clients
connecting, and predicts at what point the client-of-interest’s data
wi Il be disclosed, and ensures that they query the server at that
poi nt .

Al t hough nost inportant for servers, randomordering is stil

strongly recommended for clients and Trusted Auditors. The above
attack can still occur for these entities, although the circunstances
are less straightforward. For clients, an attacker could observe
their behavior, note when they receive an STH from a server, and use
javascript to cause a network connection at the correct tine to force
a client to disclose the specific STH Trusted Auditors are stewards
of sensitive client data. |If an attacker had the ability to observe
the activities of a Trusted Auditor (perhaps by being a | og, or

anot her auditor), they could performthe sane attack - noting the

di sclosure of data froma client to the Trusted Auditor, and then
correlating a later disclosure fromthe Trusted Auditor as com ng
fromthat client.

Nor dberg, et al. Expires July 18, 2018 [Page 34]

Internet-Draft Gossiping in CT January 2018

11.

Random ordering can be ensured by several nechanisnms. A datastore
can be shuffled, using a secure shuffling algorithmsuch as Fisher-
Yates. Alternately, a series of randomindexes into the data store
can be selected (if a collision occurs, a newindex is selected.) A
cryptographically secure random nunber generator nust be used in
either case. |If shuffling is performed, the datastore nust be marked
"dirty’ upon iteminsertion, and at |east one shuffle operation
occurs on a dirty datastore before data is retrieved fromit for use.

3.2. The Deletion Al gorithm

No entity in CT Gossip is required to delete records at any tine,
except to respect user’s wi shes such as private browsing node or
clearing history. However, it is likely that over tine the
accunul ated storage will grow in size and need to be pruned.

Wil e del etion of data will occur, proof fetching can ensure that any
m sbehavior froma log will still be detected, even after the direct
evidence fromthe attack is deleted. Proof fetching ensures that if
a log presents a split view for a client, they nust maintain that
split viewin perpetuity. An inclusion proof froman SCT to an STH
does not erase the evidence - the new STH is evidence itself. A
consi stency proof fromthat STHto a new one |ikew se - the new STH
is every bit as incrimnating as the first. (dient behavior in the
situation where an SCT or STH cannot be resolved is suggested in
Section 11.1.2.) Because of this property, we recommend that if a
client is performng proof fetching, that they nmake every effort to
not delete data until it has been successfully resolved to a new STH
via a proof.

When it is tine to delete a record, it can be done in a way that
makes it more difficult for a successful flushing attack to to be
per f or med.

1. Wien the record cache has reached a certain size that is yet
under the linit, aggressively performproof fetching. This
shoul d resolve records to a small set of STHs that can be
retained. Once a proof has been fetched, the record is safer to
del ete.

2. |If proof fetching has failed, or is disabled, begin by deleting
SCTs and Certificate Chains that have been successfully reported.
Deletion fromthis set of SCTs should be done at random For a
client, a submission is not counted as being reported unless it
is sent over a connection using a different SCT, so the attacker
is faced with a recursive problem (For a server, this step does

not apply.)

Nor dberg, et al. Expires July 18, 2018 [Page 35]

Internet-Draft Gossiping in CT January 2018

11.

11.

3. Attenpt to save any subnissions that have failed proof fetching
repeatedly, as these are the nost likely to be indicative of an
att ack.

4. Finally, if the above steps have been foll owed and have not
succeeded in reducing the size sufficiently, records may be
del eted at random

Note that if proof fetching is disabled (which is expected although
not required for servers) - the algorithmcoll apses down to 'delete
at randomi .

The decision to delete records at randomis intentional. |Introducing
non-determnismin the decision is absolutely necessary to nake it
more difficult for an adversary to know with certainty or high
confidence that the record has been successfully flushed froma
target.

4. Concrete Recommendati ons

We present the foll ow ng pseudocode as a concrete outline of our
policy recommendati ons.

Bot h suggestions presented are applicable to both clients and
servers. Servers may not perform proof fetching, in which case |arge
portions of the pseudocode are not applicable. But it should work in
ei ther case.

Note that we use a function 'rand()’ in the pseudocode, this function
is assuned to be a cryptographically secure pseudorandom nunber
generator. Additionally, when N unique itens are needed, they are
chosen at random by drawi ng a random i ndex repeatedly until the N
unique itens froman array have been chosen. Al though sinple, when
the array is Nor near-Nitens in length this is inefficient. A
secure shuffle algorithmfoll owed by selecting the first Nitens may
be nore efficient, especially when Nis I|arge.

4.1. STH Pol li nati on

The STH cl ass contains data pertaining specifically to the STH
itself.

Nor dberg, et al. Expires July 18, 2018 [Page 36]

Internet-Draft Gossiping in CT January 2018

class STH
{
uint16 proof _attenpts
uintl16 proof failure_count
ui nt 32 numreports to thirdparty
datetine tinmestanp
byt e[] dat a

}

The broader STH store itself would contain all the STHs known by an
entity participating in STH Pollination (either client or server).
This sinplistic view of the class does not take into account the
complicated locking that would likely be required for a data
structure being accessed by multiple threads. Something to note
about this pseudocode is that it does not remove STHs once they have
been resolved to a newer STH. Doing so mght nmake ol der STHs within
the validity window rarer and thus enabl e tracking.

cl ass STHStore

{
STH] sth_list

/1 This function is run after receiving a set of STHs from
/1l a third party in response to a pollination subm ssion
def insert(STH] new sths) {
foreach(new i n new sths) {
if(this.sth_list.contains(new))
continue
this.sth_list.insert(new)

}
}

/1 This function is called to delete the given STH
/1l fromthe data store
def del ete_now(STH s) {

this.sth_list.renove(s)

}

/1 When it is tine to perform STH Pol lination, the HTTPS client
/1 calls this function to get a selection of STHs to send as
/'l feedback
def get _pollination_selection() {
if(len(this.sth_ list) < MAX STH TO GGSSI P)
return this.sth_|ist
el se {
i ndexes = se
modul us = |l e
outdated_sth

his.sth_list)
0

wnw s

Nor dberg, et al. Expires July 18, 2018 [Page 37]

| nt er net -

}
}
}

Dr aft Gossiping in CT January 2018

whi |l e(l en(i ndexes) + outdated_sths < MAX _STH TO GOSSI P) {
r = random nt () % nodul us
if(r not in indexes)
/1 lgnore STHs that are past the validity wi ndow but not
/1 yet renoved
if(now() - this.sth_list[i].timestamp < TWO VEEKS)
out dat ed_st hs++
el se
i ndexes.insert(r)

}

return_selection =[]
foreach(i in indexes) {
return_selection.insert(this.sth_list[i])

}

return return_sel ection

We al so suggest a function that will be called periodically in the
background, iterating through the STH store, perform ng a cleaning
operation and queui ng consistency proofs. This function can |live as
a menber functions of the STHStore cl ass.

Nor dber g

et al. Expires July 18, 2018 [Page 38]

Internet-Draft Gossiping in CT January 2018

/1 Just a suggestion:
#defi ne M N_PROOF_FAI LURES_CONSI DERED SUSPI Cl QUS 3

def clean_list() {
foreach(sth in this.sth list) {
if(now() - sth.timestanp > TWO WEEKS) {
[ISTH is too old, we nust renove it
i f(proof _fetching_enabled
&% auditor_of |ast _resort_enabl ed
&& st h. proof failure_count
> M N_PROOF_FAI LURES CONSI DERED SUSPI Cl QUS) {
queue_for_auditor_of last_resort(sth,
audi tor_of | ast_resort_cal | back)
} else {
del et e_now(st h)

}
}

el se if(proof _fetching_enabl ed

&% now() - sth.tinestanp > LOG MVD
&% st h.proof attenpts != U NT16_MAX
/[l Only fetch a proof is we have never received a proof
/'l before. (This also avoids submitting sonething
/1 already in the queue.)
&& sth.proof _attenpts == sth. proof_failure_count) {

st h. proof _attenpts++

queue_consi st ency_proof (sth, consistency_proof call back)

}
}
}

These functions also exist in the STHStore cl ass.

Nor dberg, et al. Expires July 18, 2018 [Page 39]

Internet-Draft Gossiping in CT January 2018

/1 This function is called after successfully pollinating STHs

/[l to athird party. It is passed the STHs sent to the third

/1 party, which is the output of get_gossip_selection(), as well

/]l as the STHs received in the response.

def successful thirdparty subm ssion_cal |l back(STH] subnmitted sth |ist,
STH] new st hs)

foreach(sth in submitted_sth list) {
sth.numreports_to_thirdparty++

}

this.insert(new sths);

}

/1 Attenpt auditor of |ast resort submissions until it succeeds
def auditor_of |ast resort _callback(original _sth, error) {
if(lerror) {
del et e_now(ori gi nal _sth)
}
}

def consistency_proof_cal |l back(consi stency_proof, original _sth, error) {
if(lerror) {
i nsert (consi stency_proof. current_sth)
} else {
original _sth.proof failure_count++
}
}

11.4.2. SCT Feedback
The SCT class contains data pertaining specifically to an SCT itself.

cl ass SCT
{
ui nt 16 proof _failure_count
bool has_been _resolved to_sth
bool pr oof _out st andi ng
byte[] data

}

The SCT bundle will contain the trusted certificate chain the HITPS
client built (chaining to a trusted root certificate.) It also
contains the list of associated SCTs, the exact domain it is
applicable to, and netadata pertaining to how often it has been
reported to the third party.

Nor dberg, et al. Expires July 18, 2018 [Page 40]

Internet-Draft Gossiping in CT January 2018

cl ass SCTBundl e
{
X509[] certificate_chain
SCT[] sct_list
string donmain
uint32 numreports to thirdparty

def equal s(sct_bundl e) {

i f(sct_bundl e.domain != this.domain)
return fal se

i f(sct_bundle.certificate chain != this.certificate_chain)
return fal se

i f(sct_bundle.sct_list !'=this.sct_list)

return fal se

return true

}
def approx_equal s(sct_bundle) {
i f(sct_bundle.domain != this.donain)
return fal se
i f(sct_bundle.certificate_chain !'= this.certificate_chain)

return false

return true

}

def insert_scts(sct[] sct_list) {
this.sct _list.union(sct _|ist)
this.numreports to thirdparty = 0

}

def has_been_fully_resolved_to_sths() {
foreach(s in this.sct_list) {
i f(!s.has_been resolved to sth &% !s. proof outstandi ng)
return fal se

}

return true

}

def nmax_proof failures() {
uint mx =0
foreach(sct in this.sct list) {
i f(sct.proof_failure_count > max)
max = sct.proof _failure_count
}
return nmax
}
}

Nor dberg, et al. Expires July 18, 2018 [Page 41]

Internet-Draft Gossiping in CT January 2018

For each domain, we store a SCTDommi nEntry that hol ds the SCTBundl es
seen for that domain, as well as encapsulating some logic relating to
SCT Feedback for that particular domain. |In particular, this data
structure al so contains the | ogic that handl es domai ns not supporting
SCT Feedback. |Its behavior is:

1. Wien a user visits a domain, SCT Feedback is attenpted for it
If it fails, it will retry after a month (configurable). If it
succeeds, excellent. SCT Feedback data is still collected and
stored even if SCT Feedback fail ed.

2. After 3 nonth-long waits between failures, the domain will be
marked as failing long-term No SCT Feedback data will be stored
beyond neta-data, but SCT Feedback will still be attenpted after
nmont h-1ong waits

3. If at any point in time, SCT Feedback succeeds, all failure
counters are reset

4. 1If a domain succeeds, but then begins failing, it nmust fail nore
than 90% of the time (configurable) and then the process begins
at (2).

If a domain is visited infrequently (say, once every 7 nonths) then
it will be evicted fromthe cache and start all over again (according
to the suggestion values in the bel ow pseudocode).

/ I Suggest i ons:

/1 After concluding a donmain doesn’t support feedback, we try again

[l after WAIT_BETWEEN SCT_FEEDBACK ATTEMPTS anount of time to see if
/1 they added support

#def i ne WAI T_BETWEEN_SCT_FEEDBACK _ATTEMPTS 1 nonth

/1 1f we’ve waited M N_SCT_FEEDBACK_ATTEMPTS_BEFORE_OM TTI NG_STORAGE
/1 multiplied by WAI T_BETWEEN SCT_FEEDBACK ATTEMPTS anount of tinme, we

/1 still attenpt SCT Feedback, but no | onger bother storing any data
/1 until the domain supports SCT Feedback
#defi ne M N_SCT_FEEDBACK ATTEMPTS BEFORE_OM TTI NG_STORAGE 3

/1 If this percentage of SCT Feedback attenpts previously succeeded,
/1 we consider the domain as supporting feedback and is just having
/1 transient errors

#define M N_RATI O FOR_SCT_FEEDBACK TO BE WORKI NG .10

cl ass SCTDonmai nEntry

/[l This is the primary key of the object, the exact donmain nane it
/[l is valid for

Nor dberg, et al. Expires July 18, 2018 [Page 42]

Internet-Draft Gossiping in CT January 2018

string domai n

/[l This is the last time the donmain was contacted. For client

/1 operations it is updated whenever the client nakes any request
/1 (not just feedback) to the donmain. For server operations, it is
/1 updated whenever any client contacts the domain. Responsibility
/1 for updating lies OUTSIDE of the class

public datetime |ast_contact_for_domain

/1 This is the last time SCT Feedback was attenpted for the donmin.
/1 1t is updated whenever feedback is attenpted - responsibility for
/1 updating lies OUTSI DE of the class

/1 This is not used when this algorithmruns on servers

public datetime |ast_sct_ feedback_attenpt

/1 This is the nunber of tinmes we have waited an

/1 WAl T_BETWEEN SCT_FEEDBACK ATTEMPTS anount of tine, and still failed
/1l e.g., 10 nonths of failures

/1 This is not used when this algorithmruns on servers

private uintl6 num f eedback_| oop_fail ures

/1 This is whether or not SCT Feedback has fail ed enough tines that we
/1 should not bother storing data for it anynore. It is a snall

/1 function used for illustrative purposes.
/1 This is not used when this algorithmruns on servers
private bool sct_feedback_failing_longtermn()

{ num f eedback_| oop_failures >=
M N_SCT_FEEDBACK_ATTEMPTS_BEFORE_OM TTI NG_STORACE }

[l This is the nunber of SCT Feedback subni ssions attenpted.
/'l Responsibility for incrementing |lies OUTSIDE of the class
/1 (And watch for integer overfl ows)

/1 This is not used when this algorithmruns on servers
public uintl6 num subm ssi ons_att enpted

/1 This is the nunber of successful SCT Feedback submissions. This
/1 variable is updated by the class.

/1 This is not used when this algorithmruns on servers

private uintl6 num subni ssi ons_succeeded

/'l This contains all the bundles of SCT data we have observed for
/!l this domain
SCTBundl e[] observed_records

/1 This function can be called to determine if we should attenpt
/'l SCT Feedback for this domain.
def should _attenpt feedback() {

Nor dberg, et al. Expires July 18, 2018 [Page 43]

Internet-Draft Gossiping in CT January 2018

/1 Servers always perform feedback
i f(operator_is_server)
return true

/1 If we have not tried in a nonth, try again
if(now() - last_sct feedback attenpt >
WAI T_BETWEEN _SCT_FEEDBACK_ATTEMPTS)
return true

/1 If we have tried recently, and it seens to be working, go for it!
i f((num subni ssions_succeeded / num subni ssions_attenpted) >
M N_RATI O FOR_SCT_FEEDBACK_TO BE_WORKI NG
return true

/1 Gtherwi se don't try
return fal se

/1l For dients, this function is called after a successfu
/1 connection to an HTTPS server, with a single SCTBundl e
/'l constructed fromthat connection’s certificate chain and SCTs.
/1l For Servers, this is called after receiving SCT Feedback with
/1 all the bundles sent in the feedback
def insert(SCTBundl e[] bundles) {

/1 Do not store data for |ong-failing domains

i f(sct_feedback _failing_longterm()) {

return
}

foreach(b in bundles) {
i f(operator_is_server) {
i f(!passes_validity _checks(b))
return
}

bool have inserted = fal se
foreach(e in this.observed_records) {
i f(e.equal s(b))
return
el se if(e.approx_equal s(b)) {
have_inserted = true
e.insert_scts(b.sct _list)

}

f(!bhave_i nserted)
this. observed records.insert(b)

}
|

}
SCTSt or eManager . updat e_cache_per cent age()

Nor dberg, et al. Expires July 18, 2018 [Page 44]

Internet-Draft Gossiping in CT January 2018

}

/1 When it is tine to perform SCT Feedback, the HITPS client
/1 calls this function to get a selection of SCTBundles to send
/'l as feedback
def get gossip_selection() {
i f(len(observed_records) > MAX SCT_RECORDS TO GOSSI P) {
i ndexes = set ()
nmodul us = | en(observed_records)
whi | e(l en(i ndexes) < MAX_SCT_RECORDS TO GCSSI P) {
r = random nt () % nodul us
if(r not in indexes)
i ndexes.insert(r)
}

return_selection = []
foreach(i in indexes) {
return_sel ection.insert(this.observed_records[i])

}

return return_sel ection
el se
return this.observed records

def passes_validity_checks(SCTBundl e b) {
/1 This function perforns the validity checks specified in
/1 {{feedback-srvop}}

The SCTDomai nEntry is responsible for handling the outcome of a
submi ssion report for that domain using its menber function

/1 This function is called after providing SCT Feedback

/'l to a server. It is passed the feedback sent to the other party, which

/1 is the output of get_gossip_selection(), and al so the SCTBundl e

/1 representing the connection the data was sent on

/1 (When this code runs on the server, connectionBundle is NULL)

/1 If the Feedback was not sent successfully, error is True

def after _subnit to thirdparty(error, SCTBundl e[] subm ttedBundl es,
SCTBundl e connecti onBundl e)

{

/1l Server operation in this instance is exceedingly sinple
i f(operator_is_server) {
if(error)
return

Nor dberg, et al. Expires July 18, 2018 [Page 45]

Internet-Draft Gossiping in CT January 2018

foreach(bundl e in subm ttedBundl es)
bundl e. num reports_to_thirdparty++
return

}

/1 dient behavior is much nore conplicated
if(error) {
i f(sct_feedback _failing_longterm()) {
num f eedback_| oop_fail ures++

el se i f((num subm ssions_succeeded / num subni ssi ons_att enpt ed)
> M N_RATI O FOR_SCT_FEEDBACK_TO BE WORKI NG {
/1 Do nothing. num submi ssions_succeeded will not be increnented
/1 After enough of these failures, the ratio will fall beyond
/'l acceptabl e
} else {
/1l The domain has begun its three-nonth grace period. W will
/1 attenpt submi ssions once a nonth
num f eedback_| oop_fail ures++

}

return

/'l W succeeded, so reset all of our failure states
/'l Note, there is a race condition here if clear_old_data() is called
/'l while this callback is outstanding.
num f eedback_| oop_fail ures =0
i f (num_submni ssions_succeeded ! = U NT16_MAX)
num subm ssi ons_succeeded++

foreach(bundl e in subm ttedBundl es)
{
/1l Conpare Certificate Chains, if they do not match, it counts as a
/1 submi ssi on.
i f(!connectionBundl e. approx_equal s(bundl e))
bundl e. num reports_to_thirdparty++
el se {
/1 This check ensures that a SCT Bundle is not considered reported
/1 if it is submtted over a connection with the same SCTs. This
/'l satisfies the constraint in Paragraph 5 of {{feedback-clisrv}}
/| Consider three subm ssion scenari os:

/'l Subm tted SCTs Connecti on SCTs Consi dered Submitted
/Il A B A B No - no new i nfornmation
Il A A B Yes - Bis a new SCT
Il A B A No - no new i nfornation

i f(connectionBundle.sct _list is NOT a subset of bundle.sct |ist)
bundl e. num reports_to_thirdparty++

Nor dberg, et al. Expires July 18, 2018 [Page 46]

Internet-Draft Gossiping in CT January 2018

I nstances of the SCTDonmi nEntry class are stored as part of a |arger
class that manages the entire SCT Cache, storing themin a hashmap
keyed by dormain. This class also tracks the current size of the
cache, and will trigger cache eviction.

Nor dberg, et al. Expires July 18, 2018 [Page 47]

Internet-Draft Gossiping in CT January 2018

/] Suggesti ons:

#def i ne CACHE_PRESSURE_SAFE .50
#defi ne CACHE_PRESSURE_I MM NENT .70
#def i ne CACHE_PRESSURE_ALMOST_FULL .85
#def i ne CACHE_PRESSURE_FULL .95

#def i ne WAI T_BETWEEN | MM NENT_CACHE_EVI CTION 5 mi nut es

cl ass SCTSt or eManager

{
hashmap<String, SCTDomai nEntry> all _sct_entries
ui nt 32 current _cache_si ze
datetinme i mm nent _cache_pressure_check _perforned

float current_cache_percentage() {
return current_cache_size / MAX_CACHE Sl ZE
}

static def update_cache_percentage() {
/1 This function calculates the current size of the cache
/1 and updates current_cache_si ze
[* ... performcalculations ... */
current _cache_size = /* new cal cul ated val ue */

/1l Performlocking to prevent multiple of these functions being

/] called concurrently or unnecessarily

i f(current_cache_percentage() > CACHE PRESSURE FULL) {
cache_is_full ()

}

el se if(current_cache_percentage() > CACHE PRESSURE ALMOST FULL) {
cache_pressure_al nost _full ()
}

el se if(current_cache percentage() > CACHE PRESSURE | MM NENT) {
/1 Do not repeatedly performthe i mr nent cache pressure operation
if(now() - inmmnent_cache pressure_check performed >
WAI T_BETWEEN | MM NENT_CACHE_EVI CTI ON) {
cache_pressure_i s_i nm nent ()

}
}
}
}
The SCTStoreManager contains a function that will be called
periodically in the background, iterating through all SCTDomai nEntry
obj ects and perform ng maintenance tasks. It renoves data for

domai ns we have not contacted in a long time. This function is not

Nor dberg, et al. Expires July 18, 2018 [Page 48]

Internet-Draft Gossiping in CT January 2018

intended to clear data if the cache is getting full, separate
functions are used for that.

/'l Suggestions:
#define TIME_UNTIL_OLD SUBM TTED_SCTDATA ERASED 3 nont hs
#define TIME_UNTIL _O.D UNSUBM TTED SCTDATA ERASED 6 nont hs

def clear_old_data()
foreach(domai nEntry in all_sct_stores)

/'l Queue proof fetches
i f(proof _fetching_enabl ed) {
foreach(sctBundl e i n domai nEntry. observed_records) {
i f(!sctBundle.has_been_fully resolved to_sths()) {
foreach(s in bundle.sct list) {
i f(!'s.has_been resolved to sth & !s. proof outstanding) {
sct. proof outstanding = True
queue_i ncl usi on_proof (sct, inclusion_proof_call back)

/1 Do not store data for domains who are not supporting SCT
i f(!operator_is_server

&& donmi nEntry. sct _feedback failing_longtern())
{

/'l Note that reseting these variables every single tine is
/'l necessary to avoid a bug

al | _sct_stores[donmai nEntry].num subm ssi ons_att enpt ed =0

al | _sct_stores[donai nEntry].num subm ssi ons_succeeded =0
del ete all _sct_stores[domai nEntry]. observed_records

al | _sct_stores[donai nEntry].observed records = NULL

}

/1 This check renoves successfully submitted data for
/1 old domains we have not dealt with in a long tine
i f (domai nEntry. num submi ssi ons_succeeded > 0
&% now() - donmi nEntry.last_contact_ for_donain
> TI ME_UNTI L_OLD SUBM TTED_ SCTDATA ERASED)
{

all _sct_stores. renove(domai nEntry)

}

/1 This check renoves unsuccessfully subnitted data for
/1 old domains we have not dealt with in a very long tine

Nor dberg, et al. Expires July 18, 2018 [Page 49]

Internet-Draft Gossiping in CT January 2018

if(now() - domminEntry.last_contact_for_domnain
> TI ME_UNTI L_CLD UNSUBM TTED_SCTDATA ERASED)
{

al | _sct_stores.renove(donmai nEntry)

}

SCTSt or eManager . updat e_cache_per cent age()

}

I nclusi on Proof Fetching is handled fairly independently

/1 This function is a callback invoked after an inclusion proof

/'l has been retrieved. It can exist on the SCT class or independently,
/1l so long as it can nodify the SCT class’ nenbers

def inclusion_proof_call back(inclusion_proof, original_sct, error)

{

/1 Unlike the STH code, this counter nust be increnented on the
/1 callback as there is a race condition on using this counter in the
/'l cache_* functions.
original _sct.proof _attenpts++
ori gi nal _sct. proof _outstanding = Fal se
if(lerror) {
original _sct.has_been resolved to sth = True
insert _to sth _datastore(inclusion_proof.new sth)

} else {
original _sct.proof _failure_count ++
}
If the cache is getting full, these three nmenber functions of the

SCTSt or eManager class will be used.

A e P
/1 This function is called when the cache is not yet full, but is

/1l nearing it. It prioritizes deleting data that should be safe

/1l to delete (because it has been shared with the site or resolved
/1l to an STH)

def cache_pressure_is_immnent()

bundl esToDel ete = []
foreach(domai nEntry in all_sct _stores) {
foreach(sctBundl e i n domai nEntry. observed records) {

i f(proof _fetching_enabl ed) {
/1l First, queue proofs for anything not already queued.
i f(!sctBundle.has_been fully resolved to sths()) {
foreach(sct in bundle.sct list) {
i f(!sct.has_been resolved to _sth

Nor dberg, et al. Expires July 18, 2018 [Page 50]

Internet-Draft Gossiping in CT January 2018

&& !sct. proof outstanding) {
sct. proof _outstandi ng = True
queue_i ncl usi on_proof (sct, inclusion_proof_call back)
}
}
}

/1 Second, consider deleting entries that have been fully
/'l resolved
el se {

bundl esToDel et e. append(Struct(donmai nEntry, sctBundle))
}

}

/1 Third, consider deleting entries that have been successfully
/1 reported
i f(sctBundle.numreports to thirdparty > 0) {
bundl esToDel et e. append(Struct (donmai nEntry, sctBundle))
}
}
}

[l Third, delete the eligible entries at randomuntil the cache is
/1 at a safe |evel

ui nt recal cul at el ndex =0

#def i ne RECALCULATE_EVERY_N_OPERATI ONS 50

whi | e(bundl esToDel ete.l ength > 0 &&
current _cache_percentage() > CACHE PRESSURE SAFE) {
uint rndlndex = rand() % bundl esToDel ete. | ength
bundl esToDel et e[r ndl ndex] . domai nEntry. observed_records. renmove(
bundl esToDel et e[r ndl ndex] . sct Bundl e)
bundl esToDel et e. r enoveAt (r ndl ndex)

recal cul at el ndex++

i f(recal cul atel ndex % RECALCULATE EVERY_ N OPERATI ONS == 0) {
updat e_cache_per cent age()

}

}

/1 Finally, tell the proof fetching engine to go faster

i f(proof fetching_enabled) {
/1 This function would speed up proof fetching until an
[l arbitrary time has passed. Perhaps until it has fetched
/1 proofs for the nunber of items currently in its queue? O
/1 a percentage of thenf
proof fetch faster please()

Nor dberg, et al. Expires July 18, 2018 [Page 51]

Internet-Draft Gossiping in CT January 2018

}

11

updat e_cache_percent age();

/1 This function is called when the cache is alnost full. It wll
/] evict entries at random while attenpting to save entries that
/'l appear to have proof fetching failures

def cache_pressure_al nost _full ()

{

ui nt recal cul at el ndex =0
ui nt savedRecords =0
#def i ne RECALCULATE_EVERY_ N _OPERATI ONS 5

0

while(all _sct_stores.length > savedRecords &&

current _cache_percentage() > CACHE PRESSURE_SAFE) {
uint rndlndexl = rand() %all _sct_stores.length
uint rndlndex2 = rand() %

al | _sct_stores[rndl ndex1].observed records. | ength

i f(proof _fetching_enabl ed) {
i f(all_sct_stores[rndl ndexl].observed_records]
rndl ndex2] . max_proof failures() >
M N_PROCF_FAI LURES_CONSI DERED_SUSPI Cl QUS) {
savedRecor ds++

conti nue
}
}
/1 |f proof fetching is not enabl ed we need sonme other |ogic
el se {
i f(sctBundle.numreports to thirdparty == 0) {
savedRecor ds++
conti nue
}
}
al | _sct_stores[rndl ndex1] . observed_records. renoveAt (rndl ndex?2)
i f(all_sct_stores[rndl ndexl].observed records.length == 0) {
al | _sct_stores. renoveAt (rndl ndexl)
}

recal cul at el ndex++

i f(recal cul atel ndex % RECALCULATE_EVERY_N _OPERATI ONS == 0) {
updat e_cache_per cent age()

}

updat e_cache_percent age();

Nor dberg, et al. Expires July 18, 2018 [Page 52]

Internet-Draft Gossiping in CT January 2018

12.

13.

14.

R e i
[/l This function is called when the cache is full, and will evict
/'l cache entries at random
def cache_is_full()
{
ui nt recal cul at el ndex =0
#def i ne RECALCULATE_EVERY_N OPERATI ONS 50

while(all _sct_stores.length > 0 &&
current _cache_percentage() > CACHE PRESSURE SAFE) {
uint rndindexl = rand() % all_sct_stores.length
uint rndlndex2 = rand() %
al | _sct_stores[rndl ndex1] . observed_records. | ength

al | _sct_stores[rndl ndex1] . observed _records.renoveAt (rndl ndex2)

i f(all _sct_stores[rndlndexl].observed records.length == 0) {
al | _sct_stores. renoveAt (rndl ndexl)
}

recal cul at el ndex++

i f(recal cul atel ndex % RECALCULATE EVERY N OPERATI ONS == 0) {
updat e_cache_per cent age()

}

}

updat e_cache_percent age();

| ANA consi derations
There are no | ANA consi derati ons.

Contributors
The authors would like to thank the follow ng contributors for
val uabl e suggestions: Al Cutter, Andrew Ayer, Ben Laurie, Benjamn
Kaduk, G aham Edgeconbe, Josef QGustafsson, Karen Seo, Magnhus Ahltorp
St even Kent, Yan Zhu

Changelog

Nor dberg, et al. Expires July 18, 2018 [Page 53]

Internet-Draft Gossiping in CT January 2018

14. 1.

14. 2.

14. 3.

14. 5.

Changes between ietf-04 and ietf-05
STH and SCT data formats changed to support CT vl and v2.
Address ED revi ew conments.
Changes between ietf-03 and ietf-04
No changes.
Changes between ietf-02 and ietf-03
TBD s resol ved.
Ref erences added.
Pseduocode changed to work for both clients and servers.
Changes between ietf-01 and ietf-02
Requiring full certificate chain in SCT Feedback

Clarifications on what clients store for and send in SCT Feedback
added.

SCT Feedback server operation updated to protect agai nst DoS
attacks on servers

Pre- Loaded vs Locally Added Anchors expl ai ned.

Base for well-known URL’s changed.

Renmove all mentions of nonitors - gossip deals with auditors.

New sections added: Trusted Auditor protocol, attacks by actively
mal i ci ous 1 og, the Dual - CA conpronise attack, policy
reconmendat i ons,

Changes between ietf-00 and ietf-01

| nprove | anguage and readability based on feedback from Stephen
Kent .

STH Pol I'i nati on Proof Fetching defined and indicated as optional
3- Met hod Ecosystem secti on added.

Cases with Logs ceasing operation handl ed.

Nor dberg, et al. Expires July 18, 2018 [Page 54]

Internet-Draft Gossiping in CT January 2018

14.

14.

15.

15.

(o]

o

1.

Text on tracking via STH Interaction added.
Section with sone early reconmendations for m xi ng added.

Section detailing blocking connections, frustrating it, and the
i mplications added.

Changes between -01 and -02
STH Pol I'i nati on defi ned.
Trusted Auditor Rel ationship defined.
Overvi ew section rewitten
Data fl ow picture added
Section on privacy considerati ons expanded.
Changes between -00 and -01

Add the SCT feedback nechanism Cients send SCTs to originating
web server which shares themwi th auditors.

Stop assuming that clients see STHs.

Don't use HTTP headers but instead .well-known URL's - avoid that
battl e.

Stop referring to trans-gossip and trans-gossip-transport-https -
too conpli cated

Renove all protocols but HTTPS in order to sinplify - let’s cone
back and add nore |ater.

Add nore reasoni ng about privacy.
Do specify data formats.
Ref er ences

Nor mat i ve Ref erences

[RFC- 6962- Bl S- 27]

Laurie, B., Langley, A, Kasper, E., Messeri, E., and R
Stradling, "Certificate Transparency", October 2017
<https://datatracker.ietf.org/doc/draft-ietf-trans-
rfc6962-bis/>.

Nor dberg, et al. Expires July 18, 2018 [Page 55]

Internet-Draft Gossiping in CT January 2018

15.

[RFC6962] Laurie, B., Langley, A, and E. Kasper, "Certificate
Transparency", RFC 6962, DA 10.17487/ RFC6962, June 2013,
<https://www. rfc-editor.org/info/rfc6962>.

[RFC7159] Bray, T., Ed., "The JavaScript Ooject Notation (JSON) Data
I nterchange Format", RFC 7159, DA 10.17487/ RFC7159, March
2014, <https://ww.rfc-editor.org/info/rfc7159>.

[RFC7540] Belshe, M, Peon, R, and M Thonmson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
DO 10.17487/ RFC7540, May 2015, <https://ww.rfc-
editor.org/infolrfc7540>.

2. I nformati ve References

[doubl e- keyi ng]
Perry, M, Cark, E., and S. Murdoch, "Cross-Origin
Identifier Unlinkability", My 2015,
<https://ww.torproject.org/projects/torbrowser/
design/#identifier-linkability>.

[draft-ct-over-dns]
Laurie, B., Phaneuf, P., and A Eijdenberg, "Certificate
Transparency over DNS', February 2016,
<https://github. coni googl e/ certificate-transparency-
rfcs/ bl ob/ master/ dns/draft-ct-over-dns. nd>.

[draft-ietf-trans-threat-anal ysis-12]
Kent, S., "Attack and Threat Mddel for Certificate
Transparency", October 2017,
<https://datatracker.ietf.org/doc/draft-ietf-trans-threat-
anal ysi s/ >.

[dual - ca- conpr oni se- att ack]
Gllnor, D., "can CT defend agai nst dual CA conpromn se?",
n.d., <https://ww.ietf.org/ mil -
archi ve/ web/ trans/ current/ nsg01984. ht nl >.

[gossi p- m xi ng]
Ritter, T., "ABit on Certificate Transparency Gossip",
June 2016, <https://ritter.vg/blog-
a _bit _on_certificate_transparency_gossip. htnl >,

[trickle] Serjantov, A, Dingledine, R, and . Paul Syverson, "From
a Trickle to a Flood: Active Attacks on Several M x
Types", Cctober 2002,
<http://freehaven. net/ doc/ bat chi ng-taxonony/t axonony. pdf >.

Nor dberg, et al. Expires July 18, 2018 [Page 56]

Internet-Draft

Aut hors’ Addr esses

Li nus Nordberg
NCRDUnet

Email : |inus@ordu. net

Dani el Kahn G || nor
ACLU

Emai | : dkg@i ft hhor seman. net

Tom R tter

Email: tom@itter.vg

Nor dberg, et al. Expires July 18, 2018

Gossiping in CT

January 2018

[Page 57]

TRANS (Public Notary Transparency) B. Laurie

I nternet-Draft A. Langl ey
bsol etes: 6962 (if approved) E. Kasper
I nt ended status: Standards Track E. Messeri
Expi res: Septenber 6, 2018 Googl e
R Stradling

Conodo CA

March 05, 2018

Certificate Transparency Version 2.0
draft-ietf-trans-rfc6962-bis-28

Abstract

Thi s docunent describes version 2.0 of the Certificate Transparency
(CT) protocol for publicly |ogging the existence of Transport Layer
Security (TLS) server certificates as they are issued or observed, in
a manner that allows anyone to audit certification authority (CA)
activity and notice the issuance of suspect certificates as well as
to audit the certificate | ogs thenmselves. The intent is that
eventually clients would refuse to honor certificates that do not
appear in a log, effectively forcing CAs to add all issued
certificates to the | ogs.

Logs are network services that inplenent the protocol operations for
submi ssions and queries that are defined in this docunent.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 6, 2018.

Laurie, et al. Expi res Septenber 6, 2018 [Page 1]

Internet-Draft

Copyright Notice

Certificate Transparency Version 2.0

March 2018

Copyright (c) 2018 | ETF Trust and the persons identified as the

docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info)

in effect on the date of

publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction .

Requi renment s Language .

Data Structures . . .
Maj or Di fferences fromCT 1 0 .
pt ogr aphi ¢ Conponent s .
Merkl e Hash Trees .

ol o
QwnNhE

y
1.1
1.2
1.3. Merkle Inclusion Proofs .
1.4 Mer kl e Consi stency Proofs .
1.5 Exanpl e . Co
Si gnat ur es

ubmtters

Certificates

Precertificates .

og Format and Operation

Log Paraneters .
Accepting Submi ssi ons .

Log Entries .

Log ID . .

Transl tem Structure . .

Log Artifact Extensions .

Merkl e Tree Leaves

ww

SN
CONOTRWNETNEAONNNNNDNE

Merkl e Tree Head . .
.10. Signed Tree Head (STH) .
.11. Merkl e Consistency Proofs .
.12. Merkle Inclusion Proofs .
.13. Shutting down a log .
5. Log dient Messages . .

. Submit Entry to Log .

e et et akats

o1
|

Laurie, et al. Expi res Septenber 6, 2018

Definition of thé i\/brkle Tree: . .
Verifying a Tree Head G ven Entries .

Signed Certificate Ti rréstanp (SCT)

coOOo~N~N~NOTO1LOT D

NNRNONNNNNNNRRRRRPRRRERRRRERR
OUBRDWNNFRPOOOWOONOURMDMWWNO

[Page 2]

Internet-Draft

Certificate Transparency Version 2.0

March 2018

5.2 Retrieve Latest Signed Tree Head . 29
5.3. Retrieve Merkl e Consistency Proof betmeen Tmo Slgned Tree
Heads 29
5.4. Retrieve Nbrkle IncIusion Proof fronfLog by Leaf Fbsh . . 30
5.5. Retrieve Merkle Inclusion Proof, Signed Tree Head and
Consi stency Proof by Leaf Hash 31
5.6. Retrieve Entries and STH from Log . 32
5.7. Retrieve Accepted Trust Anchors . 34
6. TLS Servers . . . 34
6.1. Miltiple SCTs . . 35
6.2. TransltenList Structure . . . 35
6.3. Presenting SCTs, inclusions proofs and STFB . 36
6.4. transparency_info TLS Extension . 36
6.5. cached_info TLS Extension . 37
7. Certification Authorities . . 37
7.1. Transparency Information X 509v3 Extensron 37
7.1.1. OCSP Response Extension . 37
7.1.2. Certificate Extension . . . 38
7.2. TLS Feature X 509v3 Extension . 38
8. dCients . 38
8.1. TLS d |ent . 38
8.1.1. Receiving SCTs and |ncIusron proofs . 38
8.1.2. Reconstructing the TBSCertificate . 39
8.1.3. Validating SCTs . Coe 39
8.1.4. Fetching inclusion proofs . 39
8.1.5. Validating inclusion proofs . 40
8.1.6. Evaluating conpliance . . 40
8.1.7. cached_info TLS Extension . 40
8.2. Mnitor 40
8.3. Auditing . 42
9. AgorithmAgility . 43
10. | ANA Consi derations . . 43
10.1. New Entry to the TLS ExtensronType Regrstry . . . 43
10.2. New Entry to the TLS CachedlnfornatronType regrstry . . 43
10.3. Hash Al gorithns . - |
10.3.1. Expert Review gurdelrnes . 44
10.4. Signature Algorithms . . 44
10.4.1. Expert ReVIGMIQUIde|IneS . 45
10.5. VersionedTransTypes . . 45
10.5.1. Expert Review gurdelrnes . 46
10.6. Log Artifact Extension Registry 46
10.6.1. Expert Review guidelines . 47
10.7. Object ldentifiers . 47
10.7.1. Log ID Registry 47
11. Security Considerations . 48
11.1. Msissued Certificates . 49
11.2. Detection of M sissue 49
11.3. M shehaving Logs . 49
Laurie, et al. Expi res Septenber 6, 2018 [Page 3]

Internet-Draft Certificate Transparency Version 2.0 March 2018

11.4. Preventing Tracking Clients 50
11.5. Miltiple SCTs b0
12. Acknow edgenents . 50
13. References b0
13.1. Normative References b0
13.2. Informmtive References b2
Appendi x A. Supporting vl and v2 simultaneously 53
Aut hors’ Addresses b4
1. Introduction

Certificate Transparency ainms to nmitigate the problem of m sissued
certificates by providing append-only |ogs of issued certificates.
The 1 ogs do not thensel ves prevent m sissuance, but they ensure that
interested parties (particularly those naned in certificates) can
detect such misissuance. Note that this is a general nmechani smthat
could be used for transparently |ogging any form of binary data,
subject to sonme kind of inclusion criteria. |In this docunent, we
only describe its use for public TLS server certificates (i.e., where
the inclusion criteriais a valid certificate issued by a public
certification authority (CA)).

Each | og contains certificate chains, which can be subnmitted by
anyone. It is expected that public CAs will contribute all their
newy issued certificates to one or nore |ogs; however certificate
hol ders can al so contribute their own certificate chains, as can
third parties. In order to avoid | ogs being rendered usel ess by the
submi ssion of |arge nunbers of spurious certificates, it is required
that each chain ends with a trust anchor that is accepted by the |og.
When a chain is accepted by a log, a signed tinmestanp is returned,
which can |l ater be used to provide evidence to TLS clients that the
chain has been submitted. TLS clients can thus require that al
certificates they accept as valid are acconpanied by signed

ti mest anps.

Those who are concerned about m sissuance can nonitor the | ogs,
asking themregularly for all new entries, and can thus check whet her
domai ns for which they are responsi ble have had certificates issued
that they did not expect. What they do with this information
particularly when they find that a m si ssuance has happened, is
beyond the scope of this docunent. However, broadly speaking, they
can invoke existing business mechanisms for dealing with msissued
certificates, such as working with the CAto get the certificate
revoked, or with maintainers of trust anchor lists to get the CA
renoved. O course, anyone who wants can nonitor the logs and, if
they believe a certificate is incorrectly issued, take action as they
see fit.

Laurie, et al. Expi res Septenber 6, 2018 [Page 4]

Internet-Draft Certificate Transparency Version 2.0 March 2018

Simlarly, those who have seen signed tinmestanps froma particul ar
log can | ater demand a proof of inclusion fromthat log. |If the log
is unable to provide this (or, indeed, if the corresponding
certificate is absent fromnonitors’ copies of that log), that is

evi dence of the incorrect operation of the log. The checking
operation is asynchronous to allow clients to proceed w thout delay,
despite possible issues such as network connectivity and the vagaries
of firewalls.

The append-only property of each log is achieved using Merkle Trees,
whi ch can be used to efficiently prove that any particular instance
of the log is a superset of any particular previous instance and to
efficiently detect various m sbehaviors of the log (e.g., issuing a
signed tinestanp for a certificate that is not subsequently | ogged).

It is necessary to treat each log as a trusted third party, because
the | og auditing nmechani sns described in this docunent can be
circunvented by a nisbehaving |og that shows different, inconsistent
views of itself to different clients. Wilst it is anticipated that
addi ti onal nmechani sns coul d be devel oped to address these
shortcom ngs and thereby avoid the need to blindly trust |ogs, such
mechani sns are outside the scope of this docunent.

1.1. Requirenents Language
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

1. 2. Data Structures

Data structures are defined and encoded according to the conventions
laid out in Section 3 of [I-D.ietf-tls-tls13].

1.3. Major Differences fromCT 1.0

Thi s docunent revises and obsol etes the experimental CT 1.0 [RFC6962]
protocol, drawing on insights gained fromCT 1.0 depl oynents and on
feedback fromthe community. The major changes are:

0 Hash and signature algorithmagility: permtted al gorithns are now
specified in | ANA registries.

0 Precertificate format: precertificates are now CM5 obj ects rather
than X 509 certificates, which avoids violating the certificate
serial nunber uni queness requirenent in Section 4.1.2.2 of
[RFC5280] .

Laurie, et al. Expi res Septenber 6, 2018 [Page 5]

Internet-Draft Certificate Transparency Version 2.0 March 2018

0 Renoved precertificate signing certificates and the precertificate
poi son extension: the change of precertificate format neans that
these are no | onger needed.

0 Logs IDs: each log is nowidentified by an O D rather than by the
hash of its public key. QD allocations are managed by an | ANA
registry

0o "Transltent structure: this new data structure is used to
encapsul ate nost types of CT data. A "TransltenList", consisting
of one or nore "Transltem structures, can be used anywhere that
"SignedCertificateTi mestanplList” was used in [RFC6962].

0 Merkle tree leaves: the "Merkl eTreeLeaf" structure has been
replaced by the "Transltent structure, which eases extensibility
and sinplifies the |leaf structure by renoving one |ayer of
abstraction.

0 Unified leaf format: the structure for both certificate and
precertificate entries now includes only the TBSCertificate
(whereas certificate entries in [RFC6962] included the entire
certificate).

o0 Log Artifact Extensions: these are now typed and nmanaged by an
| ANA registry, and they can now appear not only in SCTs but al so
in STHs.

0 APl outputs: conplete "Transltent structures are returned, rather
than the constituent parts of each structure.

o get-all-by-hash: new client APl for obtaining an inclusion proof
and the correspondi ng consi stency proof at the same tine.

0 submit-entry: new client APlI, replacing add-chain and add- pre-
chai n.

0 Presenting SCTs with proofs: TLS servers may present SCTs together
with the corresponding inclusion proofs using any of the
mechani sms that [RFC6962] defined for presenting SCTs only.
(Presenting SCTs only is still supported).

o0 CT TLS extension: the "signed certificate_ tinmestanp" TLS extension
has been replaced by the "transparency_info" TLS extension

0 Oher TLS extensions: "status_request_v2" may be used (in the same
manner as "status_request"); "cached_ info" may be used to avoid
sendi ng the sane conplete SCTs and inclusion proofs to the sane
TLS clients multiple tines.

Laurie, et al. Expi res Septenber 6, 2018 [Page 6]

Internet-Draft Certificate Transparency Version 2.0 March 2018

o Verification algorithnms: added detailed algorithms for verifying
i nclusion proofs, for verifying consistency between two STHs, and
for verifying a root hash given a conplete list of the rel evant
| eaf input entries.

0 Extensive clarifications and editorial work

2. Cryptographi c Conponents

2.1. Merkle Hash Trees

2.1.1. Definition of the Merkle Tree
The | og uses a binary Merkle Hash Tree for efficient auditing. The
hash algorithmused is one of the log's paraneters (see Section 4.1).
We have established a registry of acceptable hash al gorithns (see
Section 10.3). Throughout this docunent, the hash algorithmin use

is referred to as HASH and the size of its output in bytes as
HASH SI ZE. The input to the Merkle Tree Hash is a list of data

entries; these entries will be hashed to formthe | eaves of the
Merkl e Hash Tree. The output is a single HASH SI ZE Merkl e Tree Hash
G ven an ordered list of ninputs, Dn = {d[0], d[1], ..., d[n-1]},

the Merkle Tree Hash (MIH) is thus defined as follows:

The hash of an enpty list is the hash of an enpty string:
MIH({}) = HASH().

The hash of a list with one entry (al so known as a | eaf hash) is:
MIH({d[0] }) = HASH(0x00 || d[O0])

For n > 1, let k be the largest power of two smaller than n (i.e., k
< n <= 2k). The Merkle Tree Hash of an n-elenent list Dn is then
defined recursively as

MIH(D_n) = HASH(Ox01 || MIH(D{0:k]) || MIH(D k:n])),

Where || is concatenation and D k1: k2] = D _(k2-kl1) denotes the Ilist
{d"[0] =d[k1], d'[1] = d[k1+1], ..., d [k2-k1l-1] = d[k2-1]} of
length (k2 - k1). (Note that the hash calculations for |eaves and
nodes differ; this domain separation is required to give second

prei mage resistance).

Note that we do not require the length of the input list to be a
power of two. The resulting Merkle Tree nay thus not be bal anced;
however, its shape is uniquely deternined by the nunber of |eaves.
(Note: This Merkle Tree is essentially the sanme as the history tree

Laurie, et al. Expi res Septenber 6, 2018 [Page 7]

Internet-Draft Certificate Transparency Version 2.0 March 2018

2

2

1.

1.

[CrosbyWwal | ach] proposal, except our definition handles non-ful
trees differently).

2. Verifying a Tree Head G ven Entries

When a client has a conplete list of n input "entries" from"0" up to

"tree_size - 1" and wishes to verify this list against a tree head

"root _hash" returned by the log for the same "tree_size", the

foll owi ng al gorithm may be used

1. Set "stack" to an enpty stack.

2. For each "i" from"0" up to "tree_size - 1":

1. Push "HASH(Ox00 || entries[i])" to "stack"

2. Set "nerge _count" to the | owest value ("0" included) such
that "LSB(i >> merge_count)" is not set. |In other words, set

"merge_count" to the number of consecutive "1"s found
starting at the least significant bit of "i

3. Repeat "nerge_count" tines:
1. Pop "right" from "stack".

2. Pop "left" from"stack".

3. Push "HASH(O0xO01 || left || right)" to "stack".
3. If there is nore than one elenent in the "stack", repeat the same
merge procedure (Step 2.3 above) until only a single el enent
remai ns.

4. The remaining elenent in "stack"” is the Merkle Tree hash for the
given "tree_size" and should be conpared by equality against the
supplied "root _hash".

3. Mer kl e | ncl usi on Proofs

A Merkle inclusion proof for a leaf in a Merkle Hash Tree is the
shortest |ist of additional nodes in the Merkle Tree required to
compute the Merkle Tree Hash for that tree. Each node in the tree is
either a |l eaf node or is conputed fromthe two nodes imedi ately
below it (i.e., towards the | eaves). At each step up the tree
(towards the root), a node fromthe inclusion proof is conbined with
the node conputed so far. In other words, the inclusion proof
consists of the list of missing nodes required to conpute the nodes
leading froma leaf to the root of the tree. |If the root conputed

Laurie, et al. Expi res Septenber 6, 2018 [Page 8]

Internet-Draft Certificate Transparency Version 2.0 March 2018

fromthe inclusion proof matches the true root, then the inclusion
proof proves that the leaf exists in the tree.

2.1.3.1. Generating an |nclusion Proof
Gven an ordered list of n inputs to the tree, D n = {d[0], d[1],
., d[n-1]}, the Merkle inclusion proof PATH(m D.n) for the (m:l)th

input d[mM, 0 <= m<n, is defined as foll ows:

The proof for _the single leaf in a tree with a one-elenent input Iist
D 1] = {d[O]} is enpty:

PATH(O0, {d[0]}) = {}

For n > 1, let k be the largest power of two smaller than n. The
proof for the (mtl)th elenent d[m in alist of n > melenents is
then defined recursively as

PATH(m D_n)

PATH(m D[0:K]) : MIH(D k:n]) for m< k; and

PATH(m D n) = PATHm- k, D k:n]) : MIHD 0:k]) for m>= Kk,

The : operator and D kl: k2] are defined the sane as in Section 2.1.1.

2.1.3.2. Verifying an Inclusion Proof

When a client has received an inclusion proof (e.g., in a "Transltent

of type "inclusion proof_v2") and w shes to verify inclusion of an

i nput "hash" for a given "tree_size" and "root_hash", the follow ng

al gorithm may be used to prove the "hash" was included in the

"root _hash":

1. Compare "leaf_index" against "tree_size". |If "leaf_index" is
greater than or equal to "tree_size" then fail the proof
verification.

2. Set "fn" to "leaf_index" and "sn" to "tree_size - 1".

3. Set "r" to "hash".

4. For each val ue in the "inclusion_path" array:

p
If "sn" is O, stop the iteration and fail the proof verification.
If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

1. Set "r" to "HASH(OxO1 || p || r)"

Laurie, et al. Expi res Septenber 6, 2018 [Page 9]

Internet-Draft Certificate Transparency Version 2.0 March 2018

2.

2.

2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
equal ly until either "LSB(fn)" is set or "fn" is "0".

O herwi se:
1. Set "r" to "HASH(OxO1 || r |] p)"

Finally, right-shift both "fn" and "sn" one tine.

5. Conpare "sn" to 0. Conpare "r" against the "root _hash". If "sn"
is equal to 0, and "r" and the "root hash" are equal, then the
| og has proven the inclusion of "hash". Oherwise, fail the

proof verification.
1.4. Merkle Consistency Proofs

Mer kl e consi stency proofs prove the append-only property of the tree.
A Merkl e consistency proof for a Merkle Tree Hash MIH(D n) and a
previously advertised hash MTH(D[0:m) of the first mleaves, m<= n,
is the list of nodes in the Merkle Tree required to verify that the
first minputs D[0:n] are equal in both trees. Thus, a consistency
proof nust contain a set of internediate nodes (i.e., commtnents to
i nputs) sufficient to verify MIH(D n), such that (a subset of) the
sane nodes can be used to verify MIH(D[O:m). W define an algorithm
that outputs the (unique) mnimal consistency proof.

1.4.1. Generating a Consistency Proof

G ven an ordered list of ninputs to the tree, Dn = {d[0], d[1],
., d[n-1]}, the Merkle consistency proof PROOF(m D.n) for a
previ ous Merkle Tree Hash MIH(D[0:n]J), O < m< n, is defined as:

PROOF(m D n) = SUBPROOF(m D _n, true)

I n SUBPROOF, the bool ean val ue represents whether the subtree created
fromD0:n] is a conplete subtree of the Merkle Tree created from

D n, and, consequently, whether the subtree Merkle Tree Hash
MIH(D[0: n]) is known. The initial call to SUBPROOF sets this to be
true, and SUBPROCF is then defined as foll ows:

The subproof for m=nis enpty if mis the value for which PROOF was
originally requested (neaning that the subtree created fromD0:n] is
a conplete subtree of the Merkle Tree created fromthe original D_n
for which PROOF was requested, and the subtree Merkle Tree Hash
MIH(D[0: n]) is known):

SUBPROOF(m D[ni, true) = {}

Laurie, et al. Expi res Septenber 6, 2018 [Page 10]

Internet-Draft Certificate Transparency Version 2.0 March 2018

O herwi se, the subproof for m=n is the Merkle Tree Hash comitting
inputs D[0:mM:

SUBPROOF(m D[ni, false) = {MIH(D[nj)}

For m< n, let k be the largest power of two snmaller than n. The
subproof is then defined recursively.

If m<=k, the right subtree entries D k:n] only exist in the current
tree. W prove that the left subtree entries D 0:k] are consistent
and add a conmitrent to D k:n]:

SUBPROOF(m D.n, b) = SUBPROOF(m D[{0:k], b) : MIH(D{k:n])

If m>k, the left subtree entries D[0:k] are identical in both
trees. W prove that the right subtree entries D k:n] are consistent
and add a conmitrent to D[O0:K].

SUBPROOF(m D n, b) = SUBPROOF(m - k, D k:n], false) : MIH(D 0: k])

The nunber of nodes in the resulting proof is bounded above by
ceil(log2(n)) + 1.

The : operator and D kl: k2] are defined the same as in Section 2.1.1
2.1.4.2. Verifying Consistency between Two Tree Heads

When a client has a tree head "first_hash" for tree size "first", a
tree head "second hash" for tree size "second" where "0 < first <
second", and has received a consistency proof between the two (e.g.
ina "Transltem of type "consistency_proof_v2"), the follow ng

al gorithm may be used to verify the consistency proof:

1. If "first" is an exact power of 2, then prepend "first_hash" to
the "consi stency_pat h" array.

2. Set "fn" to "first - 1" and "sn" to "second - 1".

3. If "LSB(fn)" is set, then right-shift both "fn" and "sn" equally
until "LSB(fn)" is not set.

4., Set both "fr" and "sr" to the first value in the
"consi stency_pat h" array.

5. For each subsequent value "c" in the "consistency_path" array:

If "sn" is 0, stop the iteration and fail the proof verification

Laurie, et al. Expi res Septenber 6, 2018 [Page 11]

Internet-Draft Certificate Transparency Version 2.0

If "LSB(fn)" is set, or if "fn" is equal to "sn

1. Set "fr" to "HASH(OxO01 [| c || fr)"
Set "sr" to "HASH(Ox01 || ¢ || sr)"

March 2018

2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
equally until either "LSB(fn)" is set or "fn" is "O"

O herw se:

1. Set "sr" to "HASH(Ox01 || sr || ¢)"

Finally, right-shift both "fn" and "sn" one tine.

6. After conpleting iterating through the "consistency_path" array
as described above, verify that the "fr" calculated is equal to
the "first_hash" supplied, that the "sr" calculated is equal to

the "second_hash" supplied and that "sn" is O.
2.1.5. Exanple

The binary Merkle Tree with 7 | eaves

hash
/ \
/ \
/ \
/ \
/ \
k |
[\ [\
/ \ / \
/ \ / \
g h [i
[\ [\ [\ |
ab cd e f d6
[| [| [|
do di d2 d3 d4 d5

The inclusion proof for dO is [b, h, I].
The inclusion proof for d3 is [c, g, |].
The inclusion proof for d4 is [f, j, K].
The inclusion proof for d6 is [i, K].

The same tree, built increnentally in four steps:

Laurie, et al. Expi res Septenber 6, 2018

[Page 12]

Internet-Draft Certificate Transparency Version 2.0 March 2018

hashO hashl=k
[\ [\
/ \ / \
/ \ / \
g c g h
I\ | I\ I\
ab d2 ab cd
[| [| [|
do di do di d2 d3
hash2 hash
[\ / \
/ \ / \
/ \ / \
/ \ / \
/ \ / \
k i k |
I\ I\ I\ I\
/ \ e f / \ / \
/ \ |] / \ / \
g h d4 d5 g h i j
I\ I\ I\ I\ I\ [
ab cd ab cd e f d6
| | | | | | | | | |
do di d2 d3 do di d2 d3 d4 d5

The consi stency proof between hashO and hash is PROOF(3, D[7]) = [c,
d, g, I]. ¢, g are used to verify hashO, and d, | are additionally
used to show hash is consistent wth hashO.

The consi stency proof between hashl and hash is PROOF(4, D[7]) = [I].
hash can be verified using hashl=k and I

The consi stency proof between hash2 and hash is PROOF(6, D[7]) = [i,
i, kl. k, i are used to verify hash2, and j is additionally used to
show hash is consistent with hash2

Si gnat ur es

Various data structures Section 1.2 are signed. A |og MJST use one
of the signature algorithns defined in Section 10. 4.

Submitters

Submitters submt certificates or preannouncenents of certificates
prior to issuance (precertificates) to logs for public auditing, as
described below. |In order to enable attribution of each | ogged
certificate or precertificate to its issuer, each subm ssion MJST be

Laurie, et al. Expi res Septenber 6, 2018 [Page 13]

Internet-Draft Certificate Transparency Version 2.0 March 2018

acconpani ed by all additional certificates required to verify the
chain up to an accepted trust anchor (Section 5.7). The trust anchor
(a root or intermediate CA certificate) MAY be omitted fromthe
submi ssi on.

If a log accepts a submission, it will return a Signed Certificate

Ti mestanp (SCT) (see Section 4.8). The subnitter SHOULD validate the
returned SCT as described in Section 8.1 if they understand its
format and they intend to use it directly in a TLS handshake or to
construct a certificate. |If the submtter does not need the SCT (for
exanple, the certificate is being submtted sinply to nmake it
available in the log), it MAY validate the SCT

3.1. Certificates

Any entity can submit a certificate (Section 5.1) to a log. Since it
is anticipated that TLS clients will reject certificates that are not
| ogged, it is expected that certificate issuers and subjects will be
strongly notivated to subnit them

3. 2. Precertificates

CAs may preannounce a certificate prior to issuance by subnitting a
precertificate (Section 5.1) that the log can use to create an entry
that will be valid against the issued certificate. The CA MAY
incorporate the returned SCT in the issued certificate. One exanple
of where the returned SCT is not incorporated in the issued
certificate is when a CA sends the precertificate to nultiple |Iogs,
but only incorporates the SCTs that are returned first.

A precertificate is a CM5 [RFC5652] "si gned-data" object that
conforns to the follow ng profile:

o It MJST be DER encoded.

o "Si

gnedDat a. ver si on" MJST be v3(3).

0 "SignedDat a. di gest Al gorithnms" MJST only include the
" Si gnerlnfo.digestAl gorithn O D val ue (see bel ow).

o "Si

gnedDat a. encapCont ent | nf 0" :

* "eContent Type" MJST be the QD 1.3.101.78.

* "eContent"” MJST contain a TBSCertificate [RFC5280] that will be
identical to the TBSCertificate in the issued certificate,

except that the Transparency Information (Section 7.1)
ext ensi on MJUST be omitted.

Laurie, et al. Expi res Septenber 6, 2018 [Page 14]

Internet-Draft Certificate Transparency Version 2.0 March 2018

0 "SignedData.certificates" MJST be onitted.

0 "SignedData.crls" MJST be omtted.

0 "SignedDat a. si gnerlnfos" MJST contain one "Signerlnfo
* "version" MJST be v3(3).
* "sid" MJST use the "subjectKeyldentifier” option

* "digestA gorithm' MIST be one of the hash algorithm O Ds |isted
in Section 10. 3.

* "signedAttrs" MJST be present and MUST contain two attributes:

+ A content-type attribute whose value is the sane as
" Si gnedDat a. encapCont ent | nf 0. eCont ent Type"

+ A nessage-digest attribute whose value is the nmessage di gest
of "Si gnedDat a. encapCont ent | nf 0. eContent".

* "signatureAl gorithnt MJUST be the sane O D as
"TBSCertificate.signature"

* "signature" MJST be fromthe sane (root or intermediate) CA
that will ultimately issue the certificate. This signature
indicates the CA's intent to issue the certificate. This
intent is considered binding (i.e., msissuance of the
precertificate is considered equivalent to m sissuance of the
correspondi ng certificate).

* "unsignedAttrs" MJST be omitted.

"Signerlnfo.signedAttrs” is included in the nmessage di gest

cal cul ation process (see Section 5.4 of [RFC5652]), which ensures
that the "Signerinfo.signature" value will not be a valid X 509v3
signature that could be used in conjunction with the TBSCertificate
(from"Si gnedDat a. encapCont ent I nfo. eContent”) to construct a valid
certificate.

4. Log Format and Operation

Alog is a single, append-only Merkle Tree of subnitted certificate
and precertificate entries.

When it receives and accepts a valid subnmission, the | og MJST return

an SCT that corresponds to the subnitted certificate or
precertificate. |If the log has previously seen this valid

Laurie, et al. Expi res Septenber 6, 2018 [Page 15]

Internet-Draft Certificate Transparency Version 2.0 March 2018

submi ssion, it SHOULD return the sane SCT as it returned before (to
reduce the ability to track clients as described in Section 11.4).

If different SCTs are produced for the same submi ssion, multiple | og
entries will have to be created, one for each SCT (as the tinestanp
is a part of the leaf structure). Note that if a certificate was
previously logged as a precertificate, then the precertificate’ s SCT
of type "precert_sct_v2" would not be appropriate; instead, a fresh
SCT of type "x509_sct_v2" shoul d be generat ed.

An SCT is the log's promse to append to its Merkle Tree an entry for
the accepted subm ssion. Upon producing an SCT, the | og MJST fulfi
this prom se by performng the followi ng actions within a fixed
amount of tinme known as the Maxi num Merge Del ay (MVD), which is one
of the log's paraneters (see Section 4.1):

0o Allocate a tree index to the entry representing the accepted
subni ssi on.

0 Calculate the root of the tree
0 Sign the root of the tree (see Section 4.10).

The | og may append nultiple entries before signing the root of the
tree.

Log operators SHOULD NOT inpose any conditions on retrieving or
sharing data fromthe | og

4.1. Log Paraneters

A log is defined by a collection of paranmeters, which are used by
clients to communicate with the log and to verify log artifacts.

Base URL: The URL to substitute for <log server> in Section 5.

Hash Al gorithm The hash algorithmused for the Merkle Tree (see
Section 10.3).

Signature Algorithm The signature algorithmused (see Section 2.2).

Public Key: The public key used to verify signatures generated by
the log. A log MIUST NOT use the same keypair as any other |og.

Log ID: The O D that uniquely identifies the |og

Maxi mum Merge Delay: The MVD the |og has committed to.

Laurie, et al. Expi res Septenber 6, 2018 [Page 16]

Internet-Draft Certificate Transparency Version 2.0 March 2018

Version: The version of the protocol supported by the log (currently
1 or 2).

Maxi mum Chai n Length: The | ongest chain submission the log is
willing to accept, if the log inposes any linit.

STH Frequency Count: The maxi num nunber of STHs the | og may produce
in any period equal to the "Mximum Merge Del ay" (see
Section 4.10).

Final STH If a log has been closed down (i.e., no |onger accepts
new entries), existing entries may still be valid. 1In this case,
the client should know the final valid STHin the log to ensure no
new entri es can be added wi thout detection. The final STH should
be provided in the formof a Transltem of type
"signed _tree_head_v2".

[JSON. Met adata] is an exanple of a netadata format which includes the
above el enents.

4.2. Accepting Subm ssions

To set clear expectations for what nonitors would find in a |log, and
to avoid being overloaded by invalid subnissions, the | og MUST NOT
accept any submi ssion until it has verified that the subnitted
certificate or precertificate chains to an accepted trust anchor.
VWhile there are no security inplications to a | og accepting a

submi ssion that does not chain to one of its accepted trust anchors,
doi ng so woul d put additional burden on nonitors that inspect |og
entries. Additionally, there are no provisions in the protocol for a
log to indicate that a particul ar submi ssion was erroneously

accept ed.

The | og MJUST NOT use ot her sources of internediate CA certificates to
attenpt certification path construction; instead, it MJST only use
the internmediate CA certificates provided in the submission, in the
order provided.

Logs SHOULD accept certificates and precertificates that are fully
valid according to RFC 5280 [RFC5280] verification rules and are
submitted with such a chain. (A log may decide, for exanple, to
tenporarily reject valid submissions to protect itself against

deni al - of - servi ce attacks).

Logs MAY accept certificates and precertificates that have expired,
are not yet valid, have been revoked, or are otherwi se not fully
valid according to RFC 5280 verification rules in order to
acconmodat e quirks of CA certificate-issuing software. However, 1|o0gs

Laurie, et al. Expi res Septenber 6, 2018 [Page 17]

I nt

4. 3.

4.4.

ernet-Draft Certificate Transparency Version 2.0 March 2018

MUST rej ect submissions without a valid signature chain to an
accepted trust anchor. Logs MJIST also reject precertificates that do
not conformto the requirements in Section 3.2.

Logs SHOULD limt the length of chain they will accept. The maxi num
chain length is one of the |log's paraneters (see Section 4.1).

The log SHALL allow retrieval of its list of accepted trust anchors
(see Section 5.7), each of which is a root or internediate CA
certificate. This list might usefully be the union of root
certificates trusted by major browser vendors

Log Entries

If a submission is accepted and an SCT issued, the accepting | og MIST
store the entire chain used for verification. This chain MJST
include the certificate or precertificate itself, the zero or nore
intermedi ate CA certificates provided by the submitter, and the trust
anchor used to verify the chain (even if it was omtted fromthe
submi ssion). The |l og MIST present this chain for auditing upon
request (see Section 5.6). This prevents the CA from avoi ding bl ane
by logging a partial or enpty chain. Each log entry is a "Transltent

structure of type "x509 entry v2" or "precert_entry v2". However, a
log may store its entries in any format. |f a |og does not store
this "Transltent in full, it nust store the "tinestanp" and

"sct _extensions" of the correspondi ng

"Ti mestanpedCertificateEntryDataV2" structure. The "Translteni can
be reconstructed fromthese fields and the entire chain that the | og
used to verify the subm ssion

Log ID

Each log is identified by an O D, which is one of the log' s
paraneters (see Section 4.1) and which MJST NOT be used to identify
any other log. A log s operator MIST either allocate the OD

t hensel ves or request an O D fromthe Log ID Registry (see

Section 10.7.1). Various data structures include the DER encoding of
this O D, excluding the ASN.1 tag and |l ength bytes, in an opaque
vector:

opaque Logl D<2..127>

Note that the ASN. 1 length and the opaque vector length are identica
in size (1 byte) and value, so the DER encoding of the O D can be
reproduced sinply by prepending an OBJECT | DENTI FI ER tag (0x06) to

t he opaque vector length and contents.

Laurie, et al. Expi res Septenber 6, 2018 [Page 18]

Internet-Draft Certificate Transparency Version 2.0 March 2018

O Ds used to identify logs are linmted such that the DER encodi ng of
their value is less than or equal to 127 octets.

4.5, Transltem Structure

Various data structures are encapsulated in the "Transltem structure
to ensure that the type and version of each one is identified in a
common fashi on:

enum {
reserved(0),
x509_entry_v2(1), precert_entry v2(2),
x509_sct_v2(3), precert_sct_v2(4),
signed_tree_head_v2(5), consistency_proof_v2(6),
i ncl usi on_proof _v2(7),
(65535)

} VersionedTransType;

struct {
Ver si onedTransType versioned_type;
sel ect (versioned_type) {
case x509 entry v2: TinestanpedCertificateEntryDataVz;
case precert_entry v2: TinestanpedCertificateEntryDataV2;
case x509 sct _v2: SignedCertificateTi mestanpDat aV2;
case precert_sct_v2: SignedCertificateTi nestanpbat aVvz;
case signed_tree_head_v2: SignedTreeHeadDat aVz;
case consi stency_proof _v2: Consi st encyProof Dat aVz;
case inclusion_proof v2: InclusionProof Dat aV2;
} data;
} Transltem

"versioned_type" is a value fromthe I ANA registry in Section 10.5
that identifies the type of the encapsul ated data structure and the
earliest version of this protocol to which it conforns. This
docunent is v2.

"data" is the encapsul ated data structure. The various structures
named with the "DataV2" suffix are defined in later sections of this
docunent .

Not e that "VersionedTransType" conbines the vl [RFC6962] type
enunerations "Version", "LogEntryType", "SignatureType" and

"Merkl eLeaf Type". Note also that vl did not define "Translteni, but
this docunment provides guidelines (see Appendix A) on how v2

i npl ement ati ons can co-exist with vl inplenmentations.

Future versions of this protocol may reuse "VersionedTransType"
val ues defined in this docunent as long as the correspondi ng data

Laurie, et al. Expi res Septenber 6, 2018 [Page 19]

Internet-Draft Certificate Transparency Version 2.0 March 2018

structures are not nodified, and may add new "Versi onedTransType"
val ues for new or nodified data structures.

4.6. Log Artifact Extensions

enum {
reserved(65535)
} Ext ensionType;

struct {
Ext ensi onType extensi on_type;
opaque extension_data<0..2"16-1>
} Extension;

The "Extension" structure provides a generic extensibility for |og
artifacts, including Signed Certificate Tinmestanps (Section 4.8) and
Signed Tree Heads (Section 4.10). The interpretation of the
"extension _data" field is deternined solely by the value of the
"extension_type" field.

Thi s docunment does not define any extensions, but it does establish a
registry for future "ExtensionType" values (see Section 10.6). Each
docunent that registers a new "ExtensionType" nust specify the
context in which it may be used (e.g., SCT, STH, or both) and
describe how to interpret the correspondi ng "extension_data"

4. 7. Merkl e Tree Leaves

The | eaves of a log’s Merkle Tree correspond to the log’'s entries
(see Section 4.3). Each leaf is the leaf hash (Section 2.1) of a
"Translten? structure of type "x509 _entry_v2" or "precert_entry v2"
whi ch encapsul ates a "Ti nestanpedCertificateEntryDataV2" structure
Note that |eaf hashes are cal cul ated as HASH(Ox00 || Transltem
where the hash algorithmis one of the |log’'s paraneters.

opaque TBSCertificate<l..2"24-1>

struct {
ui nt 64 ti mestanp;
opaque issuer_key hash<32..278-1>
TBSCertificate tbs certificate;
Ext ensi on sct _ext ensi ons<0..2"16-1>
} TimestanpedCertificat eEntryDat aVz,

"timestanp” is the NTP Tinme [RFC5905] at which the certificate or

precertificate was accepted by the log, neasured in mlliseconds
since the epoch (January 1, 1970, 00:00 UTC), ignoring | eap seconds.

Laurie, et al. Expi res Septenber 6, 2018 [Page 20]

Internet-Draft Certificate Transparency Version 2.0 March 2018

Note that the leaves of a log’'s Merkle Tree are not required to be in
strict chronol ogi cal order.

"i ssuer _key hash" is the HASH of the public key of the CA that issued
the certificate or precertificate, cal culated over the DER encoding
of the key represented as Subject PublicKeylnfo [RFC5280]. This is
needed to bind the CAto the certificate or precertificate, making it
i mpossible for the corresponding SCT to be valid for any other
certificate or precertificate whose TBSCertificate matches

"tbs _certificate". The length of the "issuer_key hash" MJST match
HASH_SI ZE.

"tbs_certificate" is the DER encoded TBSCertificate fromthe
submi ssion. (Note that a precertificate' s TBSCertificate can be
reconstructed fromthe corresponding certificate as described in
Section 8.1.2).

"sct_extensions" matches the SCT extensions of the correspondi ng SCT

The type of the "Translten corresponds to the value of the "type"
paraneter supplied in the Section 5.1 call.

4.8. Signed Certificate Tinestanp (SCT)

An SCT is a "Translten! structure of type "x509_sct_v2" or
"precert_sct_v2", which encapsul ates a
"Si gnedCertificateTi mestanpbDat avV2" structure

struct {
Logl D log_id;
ui nt 64 ti mestanp;
Ext ensi on sct_extensi ons<0..2"16- 1>;
opaque signat ure<0..2"16-1>
} SignedCertificateTi nest anpbat aV2;

"log_id" is this log’ s unique ID, encoded in an opaque vector as
described in Section 4.4.

"timestanp” is equal to the tinestanp fromthe corresponding
"Ti mest anpedCertificat eEntryDat avV2" structure.

"sct_extensions" is a vector of 0 or nore SCT extensions. This
vector MJST NOT include nore than one extension with the sane
"extension_type". The extensions in the vector MJST be ordered by
the value of the "extension_type" field, smallest value first. |If an
i npl ement ati on sees an extension that it does not understand, it
SHOULD i gnore that extension. Furthernore, an inplenentation MAY
choose to ignore any extension(s) that it does understand.

Laurie, et al. Expi res Septenber 6, 2018 [Page 21]

Internet-Draft Certificate Transparency Version 2.0 March 2018

"signature" is conputed over a "Translten! structure of type
"x509_entry_v2" or "precert_entry v2" (see Section 4.7) using the
signature algorithmdeclared in the log’'s paraneters (see

Section 4.1).

4.9. Merkle Tree Head

The I og stores information about its Merkle Tree in a
"Tr eeHeadDat aV2":

opaque NodeHash<32..278-1>

struct {

ui nt 64 ti mestanp;

uint64 tree_size;

NodeHash root hash

Ext ensi on st h_ext ensi ons<0. . 2"16-1>;
} TreeHeadDat aV2;

The | ength of NodeHash MJUST mat ch HASH SI ZE of the | og.

"timestanp" is the current NTP Tinme [RFC5905], neasured in

m | 1iseconds since the epoch (January 1, 1970, 00:00 UTC), ignoring
| eap seconds.

"tree_size" is the nunber of entries currently in the log's Merkle
Tr ee.

"root _hash" is the root of the Merkle Hash Tree.
"sth_extensions" is a vector of 0 or nore STH extensions. This

vector MUST NOT include nore than one extension with the sane
"extension_type". The extensions in the vector MIJST be ordered by

the value of the "extension type" field, snmallest value first. |If an

i mpl ement ati on sees an extension that it does not understand, it
SHOULD i gnore that extension. Furthernmore, an inplenentati on MAY
choose to ignore any extension(s) that it does understand.

4.10. Signed Tree Head (STH)

Periodically each | og SHOULD sign its current tree head information
(see Section 4.9) to produce an STH. When a client requests a log's
| atest STH (see Section 5.2), the log MIUST return an STH that is no
ol der than the log's MVD. However, since STHs could be used to mark
i ndi vidual clients (by producing a new STH for each query), a | og
MUST NOT produce STHs nore frequently than its paraneters declare

(see Section 4.1). In general, there is no need to produce a new STH
unl ess there are new entries in the |og; however, in the event that a

Laurie, et al. Expi res Septenber 6, 2018 [Page 22]

Internet-Draft Certificate Transparency Version 2.0 March 2018

| og does not accept any subnissions during an MVD period, the | og
MUST sign the same Merkle Tree Hash with a fresh tinmestanp.

An STH is a "Translten! structure of type "signed tree _head v2",
whi ch encapsul ates a "Si gnedTr eeHeadDat aV2" structure:

struct {
Logl D | og_i d;
Tr eeHeadDat aV2 tree_head,;
opaque signature<0..2"16-1>
} Si gnedTr eeHeadDat aV2;

"log_id" is this log’s unique ID, encoded in an opaque vector as
described in Section 4.4.

The "tinestanp"” in "tree_head" MJST be at | east as recent as the nost
recent SCT timestanp in the tree. Each subsequent tinmestanp MJST be
nmore recent than the tinestanp of the previous update.

"tree_head" contains the latest tree head information (see
Section 4.9).

"signature" is conputed over the "tree_head" field using the
signature algorithmdeclared in the log’'s paraneters (see
Section 4.1).

4.11. Merkle Consistency Proofs

To prepare a Merkl e Consistency Proof for distribution to clients,
the 1 og produces a "Transltem' structure of type

"consi stency_proof _v2", which encapsul ates a "Consi st encyProof Dat av2"
structure:

struct {

Logl D | og_i d;

uint64 tree_size 1,

uint64 tree_size_ 2;

NodeHash consi st ency_pat h<1..2716- 1>
} Consi st encyPr oof Dat aV2;

"log_id" is this log's unique ID, encoded in an opaque vector as
described in Section 4.4.

"tree_size 1" is the size of the older tree

"tree_size 2" is the size of the newer tree.

Laurie, et al. Expi res Septenber 6, 2018 [Page 23]

Internet-Draft Certificate Transparency Version 2.0 March 2018

"consistency_path" is a vector of Merkle Tree nodes proving the
consi stency of two STHs.

4,.12. Merkle Inclusion Proofs

To prepare a Merkle Inclusion Proof for distribution to clients, the
| og produces a "Transltenm structure of type "inclusion_proof_v2"
whi ch encapsul ates an "I ncl usi onPr oof Dat aV2" structure:

struct {

Logl D | og_i d;

uint 64 tree_si ze;

ui nt 64 | eaf _i ndex;

NodeHash i ncl usi on_pat h<1..2"16-1>
} I'ncl usi onPr oof Dat aVz;

"log_id" is this log's unique ID, encoded in an opaque vector as
described in Section 4.4.

"tree_size" is the size of the tree on which this inclusion proof is
based.

"l eaf _index" is the 0-based index of the log entry corresponding to
this inclusion proof.

"inclusion_path" is a vector of Merkle Tree nodes proving the
i nclusion of the chosen certificate or precertificate.

4.13. Shutting down a | og

Log operators may decide to shut down a log for various reasons, such
as deprecation of the signature algorithm |If there are entries in
the log for certificates that have not yet expired, sinmply making TLS
clients stop recognizing that log will have the effect of
invalidating SCTs fromthat log. To avoid that, the follow ng
actions are suggest ed:

o Mke it known to clients and nonitors that the log will be frozen

0 Stop accepting new subnissions (the error code "shutdown" shoul d
be returned for such requests).

0 Once MWD fromthe |last accepted subnission has passed and al
pendi ng submi ssions are incorporated, issue a final STH and
publish it as one of the log’'s paraneters. Having an STHwith a
tinmestanp that is after the MVD has passed fromthe |ast SCT
i ssuance allows clients to audit this log regularly wthout

Laurie, et al. Expi res Septenber 6, 2018 [Page 24]

Internet-Draft Certificate Transparency Version 2.0 March 2018

5.

special handling for the final STH At this point the log's
private key is no | onger needed and can be destroyed.

0 Keep the log running until the certificates in all of its entries
have expired or exist in other logs (this can be determ ned by
scanni ng other | ogs or connecting to domai ns nmentioned in the
certificates and inspecting the SCTs served).

Log dient Messages

Messages are sent as HITPS GET or POST requests. Paraneters for
PCSTs and all responses are encoded as JavaScri pt Object Notation
(JSON) objects [RFC7159]. Paraneters for GETs are encoded as order-
i ndependent key/val ue URL paraneters, using the "application/x-ww
formurl encoded” format described in the "HTM. 4.01 Specification”
[HTML401]. Binary data is base64 encoded [RFC4648] as specified in
t he individual nessages.

Clients are configured with a base URL for a |l og and construct URLS
for requests by appending suffixes to this base URL. This structure
pl aces sone degree of restriction on how | og operators can depl oy
these services, as noted in [RFC7320]. However, operationa
experience with version 1 of this protocol has not indicated that
these restrictions are a problemin practice.

Note that JSON objects and URL paraneters may contain fields not
specified here. These extra fields SHOULD be i gnored.

The <l og server> prefix, which is one of the log' s paraneters, MAY
include a path as well as a server name and a port.

In practice, log servers may include nmultiple front-end machi nes.
Since it is inpractical to keep these machines in perfect sync,
errors may occur that are caused by skew between the nmachines. Were
such errors are possible, the front-end will return additiona

i nformati on (as specified below) naking it possible for clients to
make progress, if progress is possible. Front-ends MJST only serve
data that is free of gaps (that is, for exanple, no front-end wll
respond with an STH unless it is also able to prove consistency from
all log entries logged within that STH).

For exanpl e, when a consistency proof between two STHs is requested,
the front-end reached may not yet be aware of one or both STHs. In
the case where it is unaware of both, it will return the latest STH
it is aware of. Wwere it is aware of the first but not the second,
it will return the latest STHit is aware of and a consi stency proof
fromthe first STHto the returned STH. The case where it knows the

Laurie, et al. Expi res Septenber 6, 2018 [Page 25]

Internet-Draft Certificate Transparency Version 2.0 March 2018

second but not the first should not arise (see the "no gaps"
requi renent above).

If the log is unable to process a client’s request, it MJST return an
HTTP response code of 4xx/5xx (see [RFC7231]), and, in place of the
responses outlined in the subsections bel ow, the body SHOULD be a
JSON structure containing at least the following field:

error_nessage: A human-readabl e string describing the error which
prevented the | og from processing the request.

In the case of a nalforned request, the string SHOULD provide
sufficient detail for the error to be rectified.

error_code: An error code readable by the client. Oher than the
generic codes detailed here, each error code is specific to the
type of request. Specific errors are specified in the respective
sections below Error codes are fixed text strings.

B Fom e m e +
| Error Code | Meaning |
Fom e e e oo Fomm o e e e e e e e e e e e e e e e e e me i eo - +
| not conpliant | The request is not conpliant with this RFC
. S T +
e.g., In response to a request of "/ct/v2/get-

entries?start=100&end=99", the log would return a "400 Bad Request”
response code with a body simlar to the foll ow ng:

{
"error_message": "'start’ cannot be greater than 'end "
"error_code": "not conpliant",

}

Cients SHOULD treat "500 Internal Server Error" and "503 Service
Unavai | abl e" responses as transient failures and MAY retry the sanme
request without nodification at a later date. Note that as per
[RFC7231], in the case of a 503 response the | og MAY include a
"Retry-After:" header in order to request a mininumtime for the
client to wait before retrying the request.

5.1. Submt Entry to Log
POST https://<log server>/ct/v2/subnmit-entry
I nput s:

subni ssion: The base64 encoded certificate or precertificate.

Laurie, et al. Expi res Septenber 6, 2018 [Page 26]

Internet-Draft Certificate Transparency Version 2.0 March 2018

type: The "VersionedTransType" integer value that indicates the
type of the "subm ssion": 1 for "x509_entry v2", or 2 for

"precert_entry_v2".

chain: An array of zero or nore base64 encoded CA certificates
The first elenent is the certifier of the "subnission"; the
second certifies the first; etc. The last el enent of "chain"
(or, if "chain" is an enpty array, the "submission") is
certified by an accepted trust anchor

CQut put s:

sct: A base64 encoded "Transltent of type "x509 sct_v2" or
"precert_sct_v2", signed by this log, that corresponds to the

"submnm ssi on".

If the subnmitted entry is immediately appended to (or already
exists in) this log's tree, then the | og SHOULD al so out put:

sth: A base64 encoded "Transltent of type "signed_tree_head v2"
signed by this Iog.

inclusion: A base64 encoded "Translteni of type

"inclusion_proof_v2" whose "inclusion_path" array of Merkle
Tree nodes proves the inclusion of the "subm ssion" in the

returned "sth".

Error codes

Laurie, et al. Expi res Septenber 6, 2018 [Page 27]

Internet-Draft Certificate Transparency Version 2.0 March 2018

bad
subm ssi on

"subm ssion” is neither a valid certificate nor a
valid precertificate.

bad type "type" is neither 1 nor 2.

bad chain The first elenent of "chain" is not the certifier
of the "subni ssion", or the second el enent does not
certify the first, etc.

bad One or nore certificates in the "chain" are not

certificate valid (e.g., not properly encoded).

unknown The | ast elenent of "chain" (or, if "chain" is an
anchor enpty array, the "submission") both is not, and is
not certified by, an accepted trust anchor
shut down The log is no | onger accepting subm ssions.
TSRS o m e me e em o +

If the version of "sct" is not v2, then a v2 client nay be unable to
verify the signature. |t MJST NOT construe this as an error. This
is to avoid forcing an upgrade of conmpliant v2 clients that do not
use the returned SCTs.

If a log detects bad encoding in a chain that otherw se verifies
correctly then the log MIUST either log the certificate or return the
"bad certificate" error. |If the certificate is |ogged, an SCT MJST
be issued. Logging the certificate is useful, because nonitors
(Section 8.2) can then detect these encoding errors, which may be
accepted by sone TLS clients.

I f "submission" is an accepted trust anchor whose certifier is

nei ther an accepted trust anchor nor the first elenent of "chain",
then the log MIST return the "unknown anchor” error. A |log cannot
generate an SCT for a subnmission if it does not have access to the
i ssuer’s public key.

If the returned "sct" is intended to be provided to TLS clients, then
"sth" and "inclusion" (if returned) SHOULD al so be provided to TLS
clients (e.g., if "type" was 2 (for "precert_sct_v2") then all three
"Translteni's could be enmbedded in the certificate).

Laurie, et al. Expi res Septenber 6, 2018 [Page 28]

Internet-Draft Certificate Transparency Version 2.0 March 2018

5.2. Retrieve Latest Signed Tree Head
GET https://<log server>/ct/v2/ get-sth
No i nputs.
Cut put s:

sth: A base64 encoded "Transltent of type "signed_tree_head v2"
signed by this log, that is no older than the log’s MVD

5.3. Retrieve Merkle Consistency Proof between Two Signed Tree Heads
GET https://<log server>/ct/v2/get-sth-consistency
I nput s:
first: The tree_size of the older tree, in decinal.
second: The tree_size of the newer tree, in decimal (optional).

Both tree sizes nust be fromexisting v2 STHs. However, because
of skew, the receiving front-end may not know one or both of the
existing STHs. |If both are known, then only the "consistency”
output is returned. |If the first is known but the second is not
(or has been omitted), then the latest known STH is returned,
along with a consistency proof between the first STH and the
latest. |If neither are known, then the latest known STH is
returned without a consistency proof.

Cut put s:

consi stency: A base64 encoded "Transltent of type
"consi stency_proof v2", whose "tree_size 1" MJST match the
"first" input. |If the "sth" output is omtted, then
"tree_size_2" MJUST match the "second" input. If "first" and
"second" are equal and correspond to a known STH, the returned
consi stency proof MJST be enpty (a "consistency_path" array
with zero el enents)

sth: A base64 encoded "Translten! of type "signed tree head v2"
signed by this |og.

Note that no signature is required for the "consistency" output as
it is used to verify the consistency between two STHs, which are
si gned.

Error codes

Laurie, et al. Expi res Septenber 6, 2018 [Page 29]

Internet-Draft Certificate Transparency Version 2.0 March 2018

. T N TS +
| Error Code | Meaning |
TSRS o m e me e em o +
| first | “first" is before the latest known STH but is not

| unknown | froman existing STH. |
I I I
| second | "second" is before the |latest known STH but is not

| unknown | froman existing STH. |
TSRS o m e me e em o +

See Section 2.1.4.2 for an outline of howto use the "consistency"
out put .

5.4. Retrieve Merkle Inclusion Proof fromLog by Leaf Hash
GET https://<log server>/ct/v2/get-proof-by-hash
I nput s:
hash: A base64 encoded v2 |eaf hash

tree_size: The tree_size of the tree on which to base the proof,
i n decimal .

The "hash" nust be cal cul ated as defined in Section 4.7. The
"tree_size" nmust designate an existing v2 STH. Because of skew,
the front-end may not know the requested STH. In that case, it
will return the latest STH it knows, along with an inclusion proof
to that STH. If the front-end knows the requested STH then only
"inclusion" is returned.

Cut put s:
inclusion: A base64 encoded "Transltent of type
"inclusion_proof_v2" whose "inclusion_path" array of Merkle
Tree nodes proves the inclusion of the chosen certificate in
the selected STH

sth: A base64 encoded "Transltent of type "signed_tree_head v2"
signed by this |og.

Note that no signature is required for the "inclusion" output as
it is used to verify inclusion in the selected STH, which is
si gned.

Error codes

Laurie, et al. Expi res Septenber 6, 2018 [Page 30]

Internet-Draft Certificate Transparency Version 2.0 March 2018

Fommemeeeas T TS +
| Error | Meaning |
| Code [[
[S o s m o e me oo o +
| hash | "hash" is not the hash of a known |eaf (nay be caused

| unknown | by skew or by a known certificate not yet nerged). [
I I I
| tree_size | "hash" is before the |latest known STH but is not from|
| unknown | an existing STH. |
[S o s m o e me oo o +

See Section 2.1.3.2 for an outline of how to use the "incl usion"
out put .

5.5. Retrieve Merkle Inclusion Proof, Signed Tree Head and Consi stency
Proof by Leaf Hash

GET https://<log server>/ct/v2/ get-all-by-hash
| nput s:
hash: A base64 encoded v2 | eaf hash

tree_size: The tree_size of the tree on which to base the proofs,
i n decinmal.

The "hash” nust be calculated as defined in Section 4.7. The
"tree_size" nust designate an existing v2 STH

Because of skew, the front-end may not know the requested STH or the
requested hash, which leads to a nunber of cases:

| atest STH < Return | atest STH

requested STH

I I I
I I I
I I I
| latest STH > | Return latest STH and a consistency proof |
| requested STH | between it and the requested STH (see [
| | Section 5.3) |
I I I
| index of requested | Return "inclusion" |
| hash < latest STH | |

Laurie, et al. Expi res Septenber 6, 2018 [Page 31]

Internet-Draft Certificate Transparency Version 2.0 March 2018

Note that nore than one case can be true, in which case the returned
data is their union. It is also possible for none to be true, in
whi ch case the front-end MJST return an enpty response.

CQut put s:
i nclusion: A base64 encoded "Translteni of type

"inclusion_proof_v2" whose "inclusion_path" array of Merkle
Tree nodes proves the inclusion of the chosen certificate in

the returned STH.

sth: A base64 encoded "Translten! of type "signed tree head v2"
signed by this Iog.

consi stency: A base64 encoded "Translteni of type
"consi stency_proof v2" that proves the consistency of the
requested STH and the returned STH.
Note that no signature is required for the "inclusion" or
"consi stency" outputs as they are used to verify inclusion in and
consi stency of STHs, which are signed.
Errors are the same as in Section 5.4.

See Section 2.1.3.2 for an outline of howto use the "inclusion"
out put, and see Section 2.1.4.2 for an outline of how to use the

"consi stency" output.
5.6. Retrieve Entries and STH from Log

GET https://<log server>/ct/v2/get-entries

| nput s:
start: O-based index of first entry to retrieve, in decinal.
end: O-based index of last entry to retrieve, in decinal.

Cut put s:
entries: An array of objects, each consisting of

log_entry: The base64 encoded "Transltent structure of type
"x509_entry_v2" or "precert_entry v2" (see Section 4.3).

submitted entry: JSON object representing the inputs that were
submitted to "subnmit-entry", with the addition of the trust

Laurie, et al. Expi res Septenber 6, 2018 [Page 32]

Internet-Draft Certificate Transparency Version 2.0 March 2018

anchor to the "chain" field if the subm ssion did not
include it.

sct: The base64 encoded "Transltent of type "x509 sct_v2" or
"precert_sct_v2" corresponding to this log entry.

sth: A base64 encoded "Translten! of type "signed_tree_head v2"
signed by this Iog.

Note that this nessage is not signed -- the "entries" data can be
verified by constructing the Merkle Tree Hash corresponding to a
retrieved STH. Al |eaves MIST be v2. However, a conpliant v2
client MJUST NOT construe an unrecogni zed Transltemtype as an error
This means it may be unable to parse sone entries, but note that each
client can inspect the entries it does recognize as well as verify
the integrity of the data by treating unrecogni zed | eaves as opaque

i nput to the tree.

The "start" and "end" paraneters SHOULD be within the range 0 <= x <
"tree_size" as returned by "get-sth" in Section 5.2.

The "start" paraneter MJST be | ess than or equal to the "end"
par anet er .

Each "subnmitted_entry" output paraneter MJST include the trust anchor
that the log used to verify the "subm ssion", even if that trust
anchor was not provided to "submt-entry" (see Section 5.1). If the
"subni ssion" does not certify itself, then the first el enent of
"chai n" MJUST be present and MJST certify the "subni ssion"

Log servers MJST honor requests where 0 <= "start" < "tree_size" and
"end" >= "tree_size" by returning a partial response covering only
the valid entries in the specified range. "end" >= "tree_size" could
be caused by skew. Note that the following restriction may al so

appl y:

Logs MAY restrict the nunber of entries that can be retrieved per
"get-entries" request. If a client requests nore than the pernmitted
nunber of entries, the log SHALL return the maxi mrum nunber of entries
perm ssible. These entries SHALL be sequential beginning with the
entry specified by "start".

Because of skew, it is possible the |og server will not have any
entries between "start" and "end". In this case it MJST return an
enpty "entries" array.

In any case, the log server MJST return the latest STH it knows
about .

Laurie, et al. Expi res Septenber 6, 2018 [Page 33]

Internet-Draft Certificate Transparency Version 2.0 March 2018

5.

6

See Section 2.1.2 for an outline of howto use a conplete |ist of
"l og_entry" entries to verify the "root_hash"

7. Retrieve Accepted Trust Anchors
GET https://<log server>/ct/v2/ get-anchors
No i nputs.
Qut put s:
certificates: An array of base64 encoded trust anchors that are
acceptable to the | og.
max_chain_length: |If the server has chosen to lint the I ength of
chains it accepts, this is the maxi mum nunber of certificates
in the chain, in decimal. |If thereis nolinmt, thisis
omtted.
TLS Servers

CT-using TLS servers MJST use at | east one of the three nechanisns
|isted below to present one or nore SCTs fromone or nore logs to
each TLS client during full TLS handshakes, where each SCT
corresponds to the server certificate. They SHOULD al so present
correspondi ng inclusion proofs and STHs.

Three nechani sns are provi ded because they have different tradeoffs.

(0]

A TLS extension (Section 7.4.1.4 of [RFC5246]) with type
"transparency_info" (see Section 6.4). This nmechanismallows TLS
servers to participate in CT without the cooperation of CAs,

unli ke the other two mechanisnms. It also allows SCTs and

i nclusion proofs to be updated on the fly.

An Online Certificate Status Protocol (OCSP) [RFC6960] response
extension (see Section 7.1.1), where the OCSP response is provided
inthe "CertificateStatus" nmessage, provided that the TLS client

i ncluded the "status_request” extension in the (extended)
"ClientHell 0" (Section 8 of [RFC6066]). This nechanism popularly
known as OCSP stapling, is already widely (but not universally)
implemented. It also allows SCTs and inclusion proofs to be
updated on the fly.

An X509v3 certificate extension (see Section 7.1.2). This
mechani sm al |l ows the use of unnodified TLS servers, but the SCTs
and i ncl usion proofs cannot be updated on the fly. Since the |ogs
fromwhich the SCTs and inclusion proofs originated won't

Laurie, et al. Expi res Septenber 6, 2018 [Page 34]

Internet-Draft Certificate Transparency Version 2.0 March 2018

necessarily be accepted by TLS clients for the full lifetime of
the certificate, there is a risk that TLS clients wll
subsequently consider the certificate to be non-conpliant and in
need of re-issuance.

Additionally, a TLS server which supports presenting SCTs using an
OCSP response MAY provide it when the TLS client included the
"status_request_v2" extension ([RFC6961]) in the (extended)
"ClientHell o", but only in addition to at |east one of the three
nmechani sns |isted above.

6.1. Miltiple SCTs
CT-using TLS servers SHOULD send SCTs fromnultiple | ogs, because:

0 One or nore | ogs may not have becone acceptable to all CT-using
TLS clients.

o If a CAand a log collude, it is possible to tenporarily hide
m si ssuance fromclients. Wen a TLS client requires SCTs from
multiple logs to be provided, it is nore difficult to nount this
attack.

o |If a log nisbehaves or suffers a key conproni se, a consequence nay
be that clients cease to trust it. Since the time an SCT nmay be
in use can be considerable (several years is comon in current
practice when enbedded in a certificate), including SCTs from
multiple logs reduces the probability of the certificate being
rejected by TLS clients.

0 TLS clients may have policies related to the above risks requiring
TLS servers to present multiple SCTs. For exanmple, at the tine of
witing, Chrom um|[Chrom um Log. Policy] requires nmultiple SCTs to
be presented with EV certificates in order for the EV indicator to
be shown.

To select the logs fromwhich to obtain SCTs, a TLS server can, for
exanpl e, exanine the set of |ogs popular TLS clients accept and
recogni ze

6.2. TransltenList Structure

Mul tiple SCTs, inclusion proofs, and indeed "Transltent structures of
any type, are conbined into a list as foll ows:

Laurie, et al. Expi res Septenber 6, 2018 [Page 35]

Internet-Draft Certificate Transparency Version 2.0 March 2018

opaque SerializedTransltenxl..2716-1>

struct {
SerializedTransltemtrans_itemlist<l..2"16-1>
} Transltenlist;

Here, "SerializedTransltem is an opaque byte string that contains
the serialized "Translten! structure. This encoding ensures that TLS
clients can decode each "Transltent individually (so, for exanple, if
there is a version upgrade, out-of-date clients can still parse old
"Translteni structures while skipping over new "Translteni structures
whose versions they don’t understand).

6.3. Presenting SCTs, inclusions proofs and STHs

In each "TransltenList” that is sent to a client during a TLS
handshake, the TLS server MJST include a "Transltem structure of
type "x509 sct_v2" or "precert_sct_v2" (except as described in
Section 6.5).

Presenting inclusion proofs and STHs in the TLS handshake hel ps to
protect the client’s privacy (see Section 8.1.4) and reduces |oad on

| og servers. Therefore, if the TLS server can obtain them it SHOULD
al so include "Translteni's of type "inclusion _proof v2" and
"signed_tree_head_v2" in the "Transltenlist".

6.4. transparency_info TLS Extension

Provided that a TLS client includes the "transparency_info" extension
type in the CientHello and the TLS server supports the
"transparency_i nfo" extension

0 The TLS server MJST verify that the received "extension_data" is
enpty.

0 The TLS server MJST construct a "Transltenlist" of relevant
"Transltem's (see Section 6.3), which SHOULD onit any "Transltenis
that are already enbedded in the server certificate or the stapled
OCSP response (see Section 7.1). |If the constructed
"Transltenlist" is not enpty, then the TLS server MJST include the
"transparency_info" extension with the "extension _data" set to
this "Transltenlist".

TLS servers MJST only include this extension in the foll ow ng
nessages:

o0 the ServerHello nessage (for TLS 1.2 or earlier).

Laurie, et al. Expi res Septenber 6, 2018 [Page 36]

Internet-Draft Certificate Transparency Version 2.0 March 2018

0 the Certificate or CertificateRequest nmessage (for TLS 1.3).

TLS servers MJST NOT process or include this extension when a TLS
session is resuned, since session resunption uses the origina
session information.

6.5. cached_info TLS Extension

When a TLS server includes the "transparency_info" extension, it
SHOULD NOT include any "Transltent structures of type "x509 sct v2"
or "precert_sct _v2" in the "Transltenlist" if all of the follow ng
conditions are net:

o0 The TLS client includes the "cached_info" ([RFC7924]) extension
type in the CientHello, with a "CachedObject” of type
"ct_conpliant" (see Section 8.1.7) and at |east one "CachedOhject"”
of type "cert".

0 The TLS server sends a nodified Certificate nmessage (as descri bed
in section 4.1 of [RFC7924]).

If the "hash_val ue" of any "CachedObject" of type "ct_conpliant" sent
by a TLS client is not 1 byte long with the value 0, the CT-using TLS
server MJST abort the handshake.

7. Certification Authorities
7.1. Transparency Infornmation X 509v3 Extension

The Transparency Information X 509v3 extension, which has QD
1.3.101.75 and SHOULD be non-critical, contains one or nore
"Translten! structures in a "TransltenList". This extension MAY be
included in OCSP responses (see Section 7.1.1) and certificates (see
Section 7.1.2). Since RFC5280 requires the "extnValue" field (an
OCTET STRING of each X 509v3 extension to include the DER encoding
of an ASN. 1 value, a "Transltenlist" MJST NOT be included directly.
Instead, it MJST be wapped inside an additional OCTET STRI NG which
is then put into the "extnVal ue" field:

Transpar encyl nformati onSyntax ::= OCTET STRI NG
"Transpar encyl nformati onSynt ax" contains a "TransltenList".
7.1.1. OCSP Response Extension
A certification authority MAY include a Transparency |Infornation

X.509v3 extension in the "singl eExtensions" of a "Singl eResponse” in
an OCSP response. All included SCTs and inclusion proofs MJST be for

Laurie, et al. Expi res Septenber 6, 2018 [Page 37]

Internet-Draft Certificate Transparency Version 2.0 March 2018

the certificate identified by the "certl D' of that "Singl eResponse"
or for a precertificate that corresponds to that certificate.

7.1.2. Certificate Extension

A certification authority MAY include a Transparency |nformation
X.509v3 extension in a certificate. Al included SCTs and inclusion
proofs MUST be for a precertificate that corresponds to this
certificate.

7.2. TLS Feature X. 509v3 Extension

A certification authority SHOULD NOT issue any certificate that
identifies the "transparency_info" TLS extension in a TLS feature
ext ensi on [RFC7633], because TLS servers are not required to support
the "transparency_info" TLS extension in order to participate in CT
(see Section 6).

8. dients

There are various different functions clients of |ogs m ght perform
We describe here sone typical clients and how they should function
Any inconsistency may be used as evidence that a | og has not behaved
correctly, and the signatures on the data structures prevent the | og
from denyi ng that m sbehavi or.

Al'l clients need various paraneters in order to conmunicate with | ogs
and verify their responses. These paraneters are described in
Section 4.1, but note that this docunent does not describe how the
paraneters are obtained, which is inplenentation-dependent (see, for
exanpl e, [Chrom um Policy])

8.1. TLS dient
8.1.1. Receiving SCTs and inclusion proofs

TLS clients receive SCTs and inclusion proofs alongside or in
certificates. CT-using TLS clients MJST inplenent all of the three
mechani sms by which TLS servers may present SCTs (see Section 6) and
MAY al so accept SCTs via the "status_request_v2" extension

([RFCB961]).

TLS clients that support the "transparency_info" TLS extension (see
Section 6.4) SHOULD include it in dientHell o nessages, with enpty
"extension_data". |If a TLS server includes the "transparency_info"
TLS extension when resumng a TLS session, the TLS client MJST abort
t he handshake.

Laurie, et al. Expi res Septenber 6, 2018 [Page 38]

Internet-Draft Certificate Transparency Version 2.0 March 2018

8.

8.

1.2. Reconstructing the TBSCertificate

Validation of an SCT for a certificate (where the "type" of the
"Transltent is "x509 sct v2") uses the unnodified TBSCertificate
conmponent of the certificate.

Before an SCT for a precertificate (where the "type" of the
"Translten? is "precert_sct_v2") can be validated, the TBSCertificate
component of the precertificate needs to be reconstructed fromthe
TBSCertificate conponent of the certificate as foll ows:

0 Renove the Transparency Information extension (see Section 7.1).

0 Renove enbedded vl SCTs, identified by OD 1.3.6.1.4.1.11129.2.4.2
(see section 3.3 of [RFC6962]). This allows enbedded vl and v2
SCTs to co-exist in a certificate (see Appendi x A).

1.3. Validating SCTs

In addition to normal validation of the server certificate and its
chain, CT-using TLS clients MJST val i date each received SCT for which
they have the corresponding log’s paraneters. To validate an SCT, a
TLS client conputes the signature input by constructing a "Transltent
of type "x509 entry v2" or "precert_entry v2", depending on the SCT' s
"Transltem' type. The "TinestanpedCertificateEntryDataV2" structure
is constructed in the followi ng manner:

o "tinmestanp" is copied fromthe SCT.

o0 "tbs_certificate" is the reconstructed TBSCertificate portion of
the server certificate, as described in Section 8.1.2.

0 "issuer_key_hash" is conputed as described in Section 4.7.
0 "sct_extensions" is copied fromthe SCT.
The SCT's "signature" is then verified using the public key of the

corresponding log, which is identified by the "log_id". The required
signature algorithmis one of the |log s parameters.

8.1.4. Fetching inclusion proofs

When a TLS client has validated a received SCT but does not yet
possess a corresponding inclusion proof, the TLS client MAY request
the inclusion proof directly froma |og using "get-proof-by-hash”
(Section 5.4) or "get-all-by-hash" (Section 5.5).

Laurie, et al. Expi res Septenber 6, 2018 [Page 39]

Internet-Draft Certificate Transparency Version 2.0 March 2018

Note that fetching inclusion proofs directly froma log will disclose
to the log which TLS server the client has been commruni cating wth.
This may be regarded as a significant privacy concern, and so it is
preferable for the TLS server to send the inclusion proofs (see
Section 6.3).

8.1.5. Validating inclusion proofs

When a TLS client has received, or fetched, an inclusion proof (and
an STH), it SHOULD proceed to verifying the inclusion proof to the
provided STH. The TLS client SHOULD al so verify consi stency between
the provided STH and an STH it knows about.

If the TLS client holds an STH that predates the SCT, it MAY, in the
process of auditing, request a new STH fromthe |og (Section 5.2),
then verify it by requesting a consistency proof (Section 5.3). Note
that if the TLS client uses "get-all-by-hash", then it will already
have the new STH.

8.1.6. Evaluating conpliance

It isuptoaclient’s local policy to specify the quantity and form
of evidence (SCTs, inclusion proofs or a conbination) needed to
achi eve conpliance and how to handl e non-conpli ance.

A TLS client can only evaluate conpliance if it has given the TLS
server the opportunity to send SCTs and inclusion proofs by any of
the three nechani snms that are mandatory to inplenent for CT-using TLS
clients (see Section 8.1.1). Therefore, a TLS client MJST NOT

eval uate conpliance if it did not include both the
"transparency_info" and "status_request" TLS extensions in the
ClientHell o.

8.1.7. cached_info TLS Extension

If a TLS client uses the "cached info" TLS extension ([RFC7924]) to
indicate 1 or nore cached certificates, all of which it already
considers to be CT conpliant, the TLS client MAY al so include a
"CachedObj ect” of type "ct_conpliant” in the "cached_info" extension.
Its "hash val ue" field MJST have the value 0 and be 1 byte long (the
m ninmum |l ength permtted by [RFC7924]).

8.2. Mbnitor
Monitors watch | ogs to check that they behave correctly, for
certificates of interest, or both. For exanple, a nonitor nmay be

configured to report on all certificates that apply to a specific
domai n name when fetching new entries for consistency validation.

Laurie, et al. Expi res Septenber 6, 2018 [Page 40]

Internet-Draft Certificate Transparency Version 2.0 March 2018
A nmonitor MJST at |east inspect every new entry in every log it
wat ches, and it MAY al so choose to keep copies of entire |ogs

To inspect all of the existing entries, the nonitor SHOULD foll ow
these steps once for each | og:

1. Fetch the current STH (Section 5.2).
2. Verify the STH signature.

3. Fetch all the entries in the tree corresponding to the STH
(Section 5.6).

4. If applicable, check each entry to see if it's a certificate of
i nterest.

5. Confirmthat the tree nade fromthe fetched entries produces the
same hash as that in the STH

To inspect new entries, the nonitor SHOULD foll ow t hese steps
repeatedly for each | og:

1. Fetch the current STH (Section 5.2). Repeat until the STH
changes.

2. Verify the STH signature

3. Fetch all the newentries in the tree corresponding to the STH

(Section 5.6). |If they remain unavail able for an extended
period, then this should be viewed as m shehavior on the part of
t he | og.

4. If applicable, check each entry to see if it’s a certificate of
interest.

5. Either:

1. Verify that the updated list of all entries generates a tree
with the same hash as the new STH.

O, if it is not keeping all log entries

1. Fetch a consistency proof for the new STH with the previous
STH (Section 5.3).

2. Verify the consistency proof.

Laurie, et al. Expi res Septenber 6, 2018 [Page 41]

Internet-Draft Certificate Transparency Version 2.0 March 2018

3. Verify that the new entries generate the correspondi ng
el ements in the consistency proof.

6. Repeat fromstep 1.
8.3. Auditing

Audi ting ensures that the current published state of a log is
reachabl e from previously published states that are known to be good,
and that the promi ses nade by the log in the formof SCTs have been
kept. Audits are perforned by nonitors or TLS clients.

In particular, there are four |og behavior properties that should be
checked:

0 The Maxi mum Merge Delay (MVD).

o The STH Frequency Count.

o The append-only property.

o0 The consistency of the log view presented to all query sources.

A benign, conformant | og publishes a series of STHs over tinme, each
derived fromthe previous STH and the subnitted entries incorporated
into the log since publication of the previous STH. This can be
proven through auditing of STHs. SCTs returned to TLS clients can be
audi ted by verifying agai nst the acconpanying certificate, and using
Merkl e I nclusion Proofs, against the log's Merkle tree.

The action taken by the auditor if an audit fails is not specified,
but note that in general if audit fails, the auditor is in possession
of signed proof of the |l og s m sbehavior

A nonitor (Section 8.2) can audit by verifying the consistency of
STHs it receives, ensure that each entry can be fetched and that the
STH is indeed the result of naking a tree fromall fetched entries.

A TLS client (Section 8.1) can audit by verifying an SCT agai nst any
STH dated after the SCT tinmestanp + the Maxi num Merge Del ay by
requesting a Merkle inclusion proof (Section 5.4). It can also
verify that the SCT corresponds to the server certificate it arrived
with (i.e., the log entry is that certificate, or is a precertificate
corresponding to that certificate).

Checki ng of the consistency of the log view presented to all entities
is nore difficult to performbecause it requires a way to share | og

Laurie, et al. Expi res Septenber 6, 2018 [Page 42]

Internet-Draft Certificate Transparency Version 2.0 March 2018

10.

10.

10.

responses anong a set of CT-using entities, and is discussed in
Section 11. 3.

AlgorithmAgility

It is not possible for a log to change any of its algorithns part way
through its lifetinme:

Signature algorithm SCT signatures nust remain valid so signature
al gorithnms can only be added, not renoved.

Hash al gorithm A log would have to support the old and new hash
algorithnms to all ow backwards-conpatibility with clients that are
not aware of a hash al gorithm change.

Allowing nmultiple signature or hash algorithns for a | og would
require that all data structures support it and would significantly
complicate client inplenmentation, which is why it is not supported by
this docunent.

If it should beconme necessary to deprecate an algorithmused by a
live log, then the log MIUST be frozen as specified in Section 4.13
and a new | og SHOULD be started. Certificates in the frozen |og that
have not yet expired and require new SCTs SHOULD be subnitted to the
new | og and the SCTs fromthat |og used instead.

| ANA Consi der ations

The assignnment policy criteria nentioned in this section refer to the
policies outlined in [RFC5226] .

1. New Entry to the TLS Ext ensi onType Registry

I ANA is asked to add an entry for "transparency_info(TBD)" to the
"TLS Extensi onType Val ues" registry defined in [I-D.ietf-tls-tlsl3],
citing this docunment as the "Reference" and setting the "Recommended"
val ue to "Yes".

2. New Entry to the TLS Cachedl nformati onType registry
I ANA is asked to add an entry for "ct_conpliant(TBD)" to the "TLS

Cachedl nformati onType Val ues" registry defined in [RFC7924], citing
this docunent as the "Reference".

Laurie, et al. Expi res Septenber 6, 2018 [Page 43]

Internet-Draft Certificate Transparency Version 2.0 March 2018

10.

10.

10.

3. Hash Algorithns

I ANA is asked to establish a registry of hash al gorithm val ues, naned
"CT Hash Al gorithns", that initially consists of:

Fomee o o e e - o e e eo oo oo +
| Value | Hash | D | Reference / [
| | Algorithm | | Assignnent Policy |
Fom e e e - - Fom e e o e e e e e e e e oo e m e e e e e e oo - +
| 0x00 | SHA- 256 | 2.16.840.1.101.3.4.2.1 | [RFC6234] [
I I I I I
Ox01 -	Unassigned		Specification
OxDF			Required and
			Expert Review
I I I I I			
OXEO -	Reserved [Experinental Use [
OXEF	I I I		
I I I I I			
OXFO -	Reserved		Private Use
OxFF	I I I		
Fom e e e - - Fom e e o e e e e e e e e oo e m e e e e e e oo - +

3.1. Expert Review guidelines

The appoi nted Expert should ensure that the proposed al gorithmhas a
public specification and is suitable for use as a cryptographi c hash
algorithmw th no known preimage or collision attacks. These attacks
can damage the integrity of the |og.

4. Signature Al gorithmns

| ANA i s asked to establish a registry of signature algorithm val ues,
naned "CT Signature Algorithns”, that initially consists of:

Laurie, et al. Expi res Septenber 6, 2018 [Page 44]

Internet-Draft Certificate Transparency Version 2.0 March 2018

T e T . +
| SignatureSchene Val ue | Signature | Reference /

| | Algorithm | Assignnent |
| | | Policy |
S e . +
| ecdsa_secp256r1_sha256(0x0403) | ECDSA (N ST P-256) | [FIPS186-4] |
[| with SHA-256 [[
I I I I
| ecdsa_secp256r1 sha256(0x0403) | Deterministic | [RFC6979]

[| ECDSA (NI ST P-256) | [
| | with HVAC SHA256 | |
I I I I
| ed25519(0x0807) | Ed25519 (PureEdDSA | [RFC8032] [
[| with the [[
[| edwards25519 [[
[| curve) [[
I I I I
| private_use(O0xFEOO. . OxFFFF) | Reserved | Private Use
e T . +

10.4.1. Expert Review guidelines

The appoi nted Expert should ensure that the proposed al gorithm has a
public specification, has a value assigned to it in the TLS

Si gnat ureSchenme Registry (that 1ANA is asked to establish in
[I-D.ietf-tls-tls13]) and is suitable for use as a cryptographic
signature al gorithm

10.5. VersionedTransTypes

| ANA i s asked to establish a registry of "VersionedTransType" val ues,
naned "CT VersionedTransTypes”, that initially consists of:

Laurie, et al. Expi res Septenber 6, 2018 [Page 45]

Internet-Draft Certificate Transparency Version 2.0 March 2018

. - T +
| Val ue | Type and Version | Reference / Assignnent |
[[| Policy [
e e e - Fom e e e e oo o mm e e e e e e e e e m oo oo +
| 0x0000 | Reserved | [RFC6962] (*) |
I I I I
| 0x0001 | x509_entry_v2 | RFCXXXX |
I I I I
| 0x0002 | precert_entry v2 | RFCXXXX |
I I I I
| 0x0003 | x509 sct _v2 | RFCXXXX |
I I I I
| 0x0004 | precert_sct_v2 | RFCXXXX |
I I I I
| 0x0005 | signed_tree_head_v2 | RFCXXXX |
I I I I
| 0x0006 | consistency proof v2 | RFCXXXX |
I I I I
| 0x0007 | inclusion_proof_v2 | RFCXXXX |
I I I I
| 0x0008 - | Unassigned | Specification Required and

| OxDFFF [| Expert Review [
I I I I
| OxEOQ00 - | Reserved | Experinental Use |
| OXEFFF [[[
I I I I
| OxFO0O0 - | Reserved | Private Use |
| OxFFFF [[[
. O e +

(*) The 0x0000 value is reserved so that vl SCTs are distinguishable
fromv2 SCTs and other "Transltem structures.

[RFC Editor: please update 'RFCXXXX to refer to this docunent, once
its RFC nunber is known.]

10.5.1. Expert Revi ew guidelines

The appoi nted Expert should review the public specification to ensure
that it is detailed enough to ensure inplenentation interoperability.

10.6. Log Artifact Extension Registry

I ANA is asked to establish a registry of "ExtensionType" val ues,
naned "CT Log Artifact Extensions”, that initially consists of:

Laurie, et al. Expi res Septenber 6, 2018 [Page 46]

Internet-Draft Certificate Transparency Version 2.0 March 2018

10.

10.

10.

0x0000 - Unassi gned n/a | Specification Required and

I I I I
| OxDFFF | | | Expert Review |
I I I I I
| OxEO00 - | Reserved | nfa | Experimental Use |
| OXEFFF | | | |
I I I I I
| OxFO0O0 - | Reserved | nfa]| Private Use [
| OxFFFF [[[[
o e oo TS +--- - - oo e e e e e e e e eee— oo s +

The "Use" columm shoul d contain one or both of the foll owi ng val ues:

o "SCT", for extensions specified for use in Signed Certificate
Ti mest anps.

o "STH', for extensions specified for use in Signed Tree Heads.
6.1. Expert Review guidelines

The appoi nted Expert should review the public specification to ensure
that it is detailed enough to ensure inplenentation interoperability.
The Expert should also verify that the extension is appropriate to

the contexts in which it is specified to be used (SCT, STH, or both).

7. Object ldentifiers

Thi s docunent uses object identifiers (ODs) to identify Log I Ds (see
Section 4.4), the precertificate CM5 "eContent Type" (see

Section 3.2), and X. 509v3 extensions in certificates (see

Section 7.1.2) and OCSP responses (see Section 7.1.1). The ODs are
defined in an arc that was selected due to its short encoding.

7.1. Log ID Registry

| ANA is asked to establish a registry of Log IDs, naned "CT Log ID
Regi stry", that initially consists of:

Laurie, et al. Expi res Septenber 6, 2018 [Page 47]

Internet-Draft Certificate Transparency Version 2.0 March 2018

11.

T R T e +
| Val ue | Log | Reference / Assignment Policy |
e e e e e e e e o Fom e e o o mm e e e e e e e e e e e e +
| 1.3.101.8192 - | Unassigned | Paranmeters Required and First

| 1.3.101.16383 | | Cone First Served |
I I I
| 1.3.101.80.0 - | Unassigned | Parameters Required and First

| 1.3.101.80.* | | Come First Served |
e e e e e e e e o Fom e e o o mm e e e e e e e e e e e e +

All ODs in the range from 1.3.101.8192 to 1.3.101.16383 have been
reserved. This is a linted resource of 8,192 A Ds, each of which
has an encoded | ength of 4 octets.

The 1.3.101.80 arc has been delegated. This is an unlimted
resource, but only the 128 O Ds from1.3.101.80.0 to 1.3.101.80.127
have an encoded length of only 4 octets.

Each application for the allocation of a Log |ID should be acconpani ed
by all of the required paraneters (except for the Log ID) listed in
Section 4. 1.

Security Considerations

Wth CAs, logs, and servers perform ng the actions described here,
TLS clients can use |l ogs and signed timestanps to reduce the
I'ikelihood that they will accept m sissued certificates. |If a server
presents a valid signed tinmestanp for a certificate, then the client
knows that a | og has conmitted to publishing the certificate. From
this, the client knows that nonitors acting for the subject of the
certificate have had sonme tinme to notice the m sissuance and take
some action, such as asking a CA to revoke a m sissued certificate.

A signed tinestanp does not guarantee this though, since appropriate
nmoni tors mght not have checked the logs or the CA might have refused
to revoke the certificate.

In addition, if TLS clients will not accept unlogged certificates,
then site owners will have a greater incentive to subnmit certificates
to |l ogs, possibly with the assistance of their CA, increasing the
overal |l transparency of the system

[I-D.ietf-trans-threat-analysis] provides a nore detailed threat
anal ysis of the Certificate Transparency architecture.

Laurie, et al. Expi res Septenber 6, 2018 [Page 48]

Internet-Draft Certificate Transparency Version 2.0 March 2018

11.

11.

11.

1. M sissued Certificates

M si ssued certificates that have not been publicly |ogged, and thus
do not have a valid SCT, are not considered conpliant. M sissued
certificates that do have an SCT froma log will appear in that
public log within the Maxi mum Merge Del ay, assuming the log is
operating correctly. Since alog is allowed to serve an STH of any
age up to the MMVMD, the maxi num period of tine during which a

m si ssued certificate can be used w thout being available for audit
is twice the MVD

2. Detection of M sissue

The | ogs do not thensel ves detect msissued certificates; they rely
instead on interested parties, such as domain owners, to nonitor them
and take corrective action when a nisissue is detected.

3. M sbehavi ng Logs

A log can m sbehave in several ways. Exanples include: failing to
incorporate a certificate with an SCT in the Merkle Tree within the
MVD; presenting different, conflicting views of the Merkle Tree at
different tines and/or to different parties; issuing STHs too
frequently; nmutating the signature of a |ogged certificate; and
failing to present a chain containing the certifier of a |ogged
certificate. Such m sbehavior is detectable and
[I-D.ietf-trans-threat-analysis] provides nore details on howthis
can be done.

Violation of the MVD contract is detected by log clients requesting a
Merkl e inclusion proof (Section 5.4) for each observed SCT. These
checks can be asynchronous and need only be done once per

certificate. However, note that there may be privacy concerns (see
Section 8.1.4).

Viol ation of the append-only property or the STH i ssuance rate limt
can be detected by clients conparing their instances of the Signed
Tree Heads. There are various ways this could be done, for exanple
via gossip (see [I-D.ietf-trans-gossip]) or peer-to-peer

conmmuni cations or by sending STHs to nonitors (who could then
directly check against their own copy of the relevant log). Proof of
ni sbehavi or in such cases would be: a series of STHs that were issued
too closely together, proving violation of the STH i ssuance rate
limt; or an STHwi th a root hash that does not match the one
calculated froma copy of the |log, proving violation of the append-
only property.

Laurie, et al. Expi res Septenber 6, 2018 [Page 49]

Internet-Draft Certificate Transparency Version 2.0 March 2018

11.

11.

12.

13.

13.

4. Preventing Tracking Cients

Clients that gossip STHs or report back SCTs can be tracked or traced
if alog produces nultiple STHs or SCTs with the sane tinestanp and
data but different signatures. Logs SHOULD nmitigate this risk by

ei ther:

0 Using determ nistic signature schenes, or

0 Producing no nore than one SCT for each distinct subm ssion and no
nore than one STH for each distinct tree_size. Each of these SCTs
and STHs can be stored by the |og and served to other clients that
submit the sanme certificate or request the same STH.

5. Miltiple SCTs

By requiring TLS servers to offer nultiple SCTs, each froma
different log, TLS clients reduce the effectiveness of an attack
where a CA and a |l og collude (see Section 6.1).

Acknowl edgenent s

The authors would like to thank Erwann Abel ea, Robin Al den, Andrew
Ayer, Richard Barnes, Al Cutter, David Drysdale, Francis Dupont, Adam
Ei j denberg, Stephen Farrell, Daniel Kahn G|l nor, Paul Hadfield, Brad
Hll, Jeff Hodges, Paul Hoffman, Jeffrey Hutzel nan, Kat Joyce,

St ephen Kent, SM Al exey Mel ni kov, Linus Nordberg, Chris Pal ner,
Trevor Perrin, Pierre Phaneuf, Eric Rescorla, Melinda Shore, Ryan
Sleevi, Martin Snith, Carl Wallace and Paul Wuters for their

val uabl e contri buti ons.

A big thank you to Symantec for kindly donating the O Ds fromthe
1.3.101 arc that are used in this docunent.

Ref er ences
1. Nornmtive References

[FI PS186- 4]
NI ST, "FIPS PUB 186-4", July 2013,
<htt p:// nvl pubs. ni st. gov/ ni st pubs/ FI PS/
NI ST. FI PS. 186- 4. pdf >.

[HTML401] Raggett, D., Le Hors, A, and |I. Jacobs, "HTM. 4.01
Speci fication", Wrld Wde Wb Consortium Reconmendati on
REC- ht m 401- 19991224, Decenber 1999,
<http://ww. wW3. org/ TR/ 1999/ REC- ht M 401- 19991224>,

Laurie, et al. Expi res Septenber 6, 2018 [Page 50]

Internet-Draft Certificate Transparency Version 2.0 March 2018

[I-Dietf-tls-tls13]
Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", draft-ietf-tls-tlsl13-26 (work in progress),
March 2018.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997, <https://ww.rfc-
editor.org/info/rfc2119>.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10.17487/ RFC4648, Cctober 2006,
<https://ww. rfc-editor.org/info/rfc4648>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DA 10. 17487/ RFC5246, August 2008, <https://ww.rfc-
editor.org/infolrfc5246>.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DO 10.17487/RFC5280, My 2008,
<https://ww. rfc-editor.org/info/rfc5280>.

[RFC5652] Housley, R, "Cryptographic Message Syntax (CMs5)", STD 70,
RFC 5652, DA 10. 17487/ RFC5652, Septenber 2009,
<https://ww.rfc-editor.org/info/rfc5652>.

[RFC5905] MIls, D, Martin, J., Ed., Burbank, J., and W Kasch,
"Network Time Protocol Version 4: Protocol and Al gorithmns
Speci fication", RFC 5905, DA 10.17487/RFC5905, June 2010,
<https://ww.rfc-editor.org/info/rfc5905>.

[RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
Ext ensi ons: Extension Definitions", RFC 6066,
DO 10.17487/ RFC6066, January 2011, <https://ww.rfc-
editor.org/info/rfc6066>.

[RFC6960] Santesson, S., Myers, M, Ankney, R, Mlpani, A,
Gal perin, S., and C. Adans, "X. 509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP',
RFC 6960, DO 10.17487/ RFC6960, June 2013,
<https://www. rfc-editor.org/info/rfc6960>.

Laurie, et al. Expi res Septenber 6, 2018 [Page 51]

Internet-Draft Certificate Transparency Version 2.0 March 2018

13.

[RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
Multiple Certificate Status Request Extension", RFC 6961,
DA 10.17487/ RFC6961, June 2013, <https://ww.rfc-
editor.org/info/rfc6961>.

[RFC7159] Bray, T., Ed., "The JavaScript Ooject Notation (JSON) Data
I nterchange Format", RFC 7159, DA 10.17487/RFC7159, March
2014, <https://www. rfc-editor.org/info/rfc7159>.

[RFC7231] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
DA 10.17487/ RFC7231, June 2014, <https://ww.rfc-
editor.org/infolrfc7231>.

[RFC7633] Hall am Baker, P., "X. 509v3 Transport Layer Security (TLS)
Feature Extension", RFC 7633, DO 10.17487/ RFC7633,
Cct ober 2015, <https://ww.rfc-editor.org/info/rfc7633>.

[RFC7924] Santesson, S. and H Tschofenig, "Transport Layer Security
(TLS) Cached Informati on Extension", RFC 7924,
DO 10.17487/ RFC7924, July 2016, <https://ww.rfc-
editor.org/infolrfc7924>,

[RFC8032] Josefsson, S. and |. Liusvaara, "Edwards-Curve Digital
Si gnature Al gorithm (EdDSA)", RFC 8032,
DO 10.17487/ RFC8032, January 2017, <https://ww.rfc-
editor.org/infol/rfc8032>.

2. Informative References

[Chroni um Log. Pol i cy]
The Chrom um Projects, "Chromium Certificate Transparency
Log Policy", 2014, <http://ww. chrom um org/ Hone/chrom um
security/certificate-transparency/l og-policy>.

[Chromi um Pol i cy]
The Chromium Projects, "Chromium Certificate
Transparency", 2014, <http://ww. chrom um or g/ Honme/
chromi um security/certificate-transparency>.

[CrosbyWal | ach]
Croshy, S. and D. Wallach, "Efficient Data Structures for
Tanper - Evi dent Loggi ng", Proceedings of the 18th USEN X
Security Synposium Montreal, August 2009,
<http://static.usenix.org/event/sec09/tech/full _papers/
crosby. pdf >.

Laurie, et al. Expi res Septenber 6, 2018 [Page 52]

Internet-Draft Certificate Transparency Version 2.0 March 2018

[I-D.ietf-trans-gossip]
Nordberg, L., Gllnor, D., and T. Ritter, "Gossiping in
Cr", draft-ietf-trans-gossip-05 (work in progress),
January 2018.

[I-D.ietf-trans-threat-anal ysis]
Kent, S., "Attack and Threat Mdel for Certificate
Transparency", draft-ietf-trans-threat-anal ysis-12 (work
in progress), Cctober 2017.

[JSON. Met adat a]
The Chrom um Projects, "Chronmium Log Metadata JSON
Schema", 2014, <https://ww.gstatic.conlct/log_list/
Il og list_schema.json>.

[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an
I ANA Consi derations Section in RFCs", RFC 5226,
DO 10.17487/ RFC5226, May 2008, <https://ww.rfc-
editor.org/info/rfc5226>.

[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Al gorithns
(SHA and SHA-based HVAC and HKDF)", RFC 6234,
DO 10.17487/ RFC6234, May 2011, <https://ww.rfc-
editor.org/infolrfc6234>.

[RFC6962] Laurie, B., Langley, A, and E. Kasper, "Certificate
Transparency”, RFC 6962, DA 10.17487/ RFC6962, June 2013,
<https://ww. rfc-editor.org/info/rfc6962>.

[RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
Al gorithm (DSA) and Elliptic Curve Digital Signature
Al gorithm (ECDSA)", RFC 6979, DO 10. 17487/ RFC6979, August
2013, <https://ww.rfc-editor.org/info/rfc6979>.

[RFC7320] Nottingham M, "URl Design and Oanership", BCP 190,
RFC 7320, DO 10.17487/ RFC7320, July 2014,
<https://ww. rfc-editor.org/info/rfc7320>.

Appendi x A. Supporting vl and v2 simultaneously

Certificate Transparency | ogs have to be either vl (confornming to

[RFC6962]) or v2 (confornming to this docunment), as the data
structures are inconpatible and so a v2 log could not issue a valid
vl SCT.

CT clients, however, can support vl and v2 SCTs, for the sane

certificate, simultaneously, as vl SCTs are delivered in different
TLS, X 509 and OCSP extensions than v2 SCTs.

Laurie, et al. Expi res Septenber 6, 2018 [Page 53]

Internet-Draft Certificate Transparency Version 2.0 March 2018

vl and v2 SCTs for X 509 certificates can be validated i ndependently.
For precertificates, v2 SCTs should be enmbedded in the TBSCertificate
bef ore subnission of the TBSCertificate (inside a vl precertificate,
as described in Section 3.1. of [RFC6962]) to a vl log so that TLS
clients conform ng to [RFC6962] but not this docunent are oblivious
to the enbedded v2 SCTs. An issuer can follow these steps to produce
an X. 509 certificate with enbedded vl and v2 SCTs:

(0]

Create a COMS precertificate as described in Section 3.2 and submt
it to v2 |ogs.

Enbed the obtained v2 SCTs in the TBSCertificate, as described in
Section 7.1.2.

Use that TBSCertificate to create a vl precertificate, as
described in Section 3.1. of [RFC6962] and subnmit it to vl |ogs.

Enbed the vl SCTs in the TBSCertificate, as described in
Section 3.3 of [RFC6962].

Sign that TBSCertificate (which now contains vl and v2 SCTs) to
i ssue the final X 509 certificate.

Aut hors’ Addr esses

Ben Laurie
Googl e WK Ltd.

Enai | : benl @oogl e. com

Adam Langl ey
Googl e Inc.

Enmai | : agl @oogl e. com

Em | ia Kasper
Googl e Switzerl and GrbH

Enmai | : ekasper @oogl e. com

Er an Messeri
Googl e WK Ltd.

Enmai | : eranm@oogl e. com

Laurie, et al. Expi res Septenber 6, 2018 [Page 54]

Internet-Draft Certificate Transparency Version 2.0 March 2018
Rob Stradling
Conmodo CA Ltd.

Enmai | : rob. stradl i ng@onodoca. com

Laurie, et al. Expi res Septenber 6, 2018 [Page 55]

Public Notary Transparency S. Kent
I nternet-Draft I ndependent
I ntended status: |nfornational April 12, 2018
Expi res: Cctober 14, 2018

Attack and Threat Mddel for Certificate Transparency
draft-ietf-trans-threat-anal ysis-13

Abst ract

Thi s docunent describes an attack nodel and discusses threats for the
Web PKI context in which security nechanisns to detect m s-issuance
of web site certificates are being devel oped. The nodel provides an
anal ysis of detection and renedi ati on nmechani sns for both syntactic
and semantic ms-issuance. The nodel introduces an outline of
attacks to organi ze the discussion. The nodel al so describes the
roles played by the elenents of the Certificate Transparency (CT)
system to establish a context for the nodel

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on October 14, 2018.
Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust

Kent Expi res Cctober 14, 2018 [Page 1]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . 3
1.1. Conventions used in th|s docunent 7
2. Threats . . 7
3. Semantic m s- |ssuance e e 9
3.1. Non-nalicious Wb PKI CA cont ext 9
3.1.1. Certificate |ogged C e e e 9
3.1.2. Certificate not logged 11
3.2. Milicious Wb PKI CA context 12
3.2.1. Certificate logged 12
3.2.2. Certificate not logged 14
3.3. Undetected Conprom se of CAs or Logs 15
3.3.1. Conpronmised CA Benignlog 15
3.3.2. Benign CA, Conmpromised Log 17
3.3.3. Comprom sed CA, Conprom sed Log17
3.4. Attacks Based on Exploiting Miltiple CErtrfrcate Charns . 18
3.5. Attacks Related to Distribution of Revocation Status . . 20
4, Syntactic mis-issuance 22
4.1. Non-malicious Wb PKI CA context 21
4.1.1. Certificate logged 21
4.1.2. Certificate not logged 23
4.2. Malicious Wb PKI CA context 23
4.2.1. Certificate logged 24
4,.2.2. Certificate is not logged 25

5. Issues Applicable to Sections 3 and 4 25
5.1. How does a Subject know which Monitor(s) to use° 25
5.2. How does a Mnitor discover new logs? . . . 25
5.3. CA response to report of a bogus or erroneous certrfrcate 26
5.4. Browser behavior . . e e e 26
5.5. Renediation for a nalrcrous CA . e e 26
5.6. Auditing - detecting nisbehaving Iogs - 4
6. Security Considerations 28
7. | ANA Considerations .. 28
8. Acknowl edgnents .. 29
9. References . . . A |
9.1. Nornmtive References 24]
9.2. Informative References 29
9.3. URIs 30
Author’s Address ... 30

Kent Expi res Cctober 14, 2018 [Page 2]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

1.

I nt roducti on

Certificate transparency (CT) is a set of mechani snms designed to
detect, deter, and facilitate renmediation of certificate m s-

i ssuance. The termcertificate mis-issuance is defined here to
enconpass violations of either semantic or syntactic constraints.
The fundanental semantic constraint for a certificate is that it was
issued to an entity that is authorized to represent the Subject (or
Subject Alternative) naned in the certificate. (It is also assuned
that the entity requested the certificate fromthe CA that issued
it.) Throughout the renainder of this docunent we refer to a
semantically mis-issued certificate as "bogus."

A certificate is characterized as syntactically mnis-issued (aka
erroneous) if it violates syntax constraints associated with the
class of certificate that it purports to represent. Syntax
constraints for certificates are established by certificate profiles,
and typically are application-specific. For exanple, certificates
used in the Web PKI environnent night be characterized as domain
validation (DV) or extended validation (EV) certificates.
Certificates used with applications such as IPsec or S/M ME have
different syntactic constraints fromthose in the Wb PKI context.

There are three classes of beneficiaries of CT: certificate Subjects,
CAs, and relying parties (RPs). In the initial focus context of CT
the Web PKI, Subjects are web sites and RPs are browsers enpl oyi ng
HTTPS to access these web sites. Thee CAs that benefit are issuers
of certificates used to authenticate web sites.

A certificate Subject benefits from CT because CT hel ps detect
certificates that have been ms-issued in the nane of that Subject.

A Subject learns of a bogus certificate (issued in its nane), via the
Monitor function of CT. The Mnitor function may be provided by the
Subj ect itself, i.e., self-nonitoring, or by a third party trusted by
the Subject. Wen a Subject is inforned of certificate ms-issuance
by a Monitor, the Subject is expected to request/demand revocati on of
the bogus certificate. Revocation of a bogus certificate is the
primary means of remedying m s-issuance

Certificate Revocations Lists (CRLs) [RFC5280] are the prinmary neans
of certificate revocation established by | ETF standards.
Unfortunately, nost browsers do not nake use of CRLs to check the
revocation status of certificates presented by a TLS Server
(Subject). Some browsers make use of Online Certificate Status

Prot ocol (OCSP) data [RFC6960] as a standards-based alternative to
CRLs. |If a certificate contains an Authority Information Access
(Al A) extension [RFC5280], it directs a relying party to an OCSP
server to which a request can be directed. This extension also may

Kent Expi res Cctober 14, 2018 [Page 3]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

be used by a browser to request OCSP responses froma TLS server with
which it is conmunicating [RFC6066] [RFC6961] .

RFC 5280 does not require inclusion of an AlA extension in
certificates, so a browser cannot assune that this extension will be
present. The Certification Authority and Browser Forum (CABF)
basel i ne requi rements and extended validation guidelines do nmandate
inclusion of this extension in EE certificates (in conjunction with
their certificate policies). (See https://cabforumorg [1] for the
nost recent versions of these policies.)

In addition to the revocation status data di ssemi nation nechani sns
specified by | ETF standards, nost browser vendors enploy proprietary
means of conveying certificate revocation status information to their
products, e.g., via a blacklist that enunerates revoked certificates
(EE or CA). Such capabilities enable a browser vendor to cause
browsers to reject any certificates on the blacklist. This approach
al so can be enployed to renedy mi s-issuance. Throughout the

remai nder of this document references to certificate revocation as a
renedy enconpass this and anal ogous forms of browser behavior, if
avail able. Note: there are no | ETF standards defining a browser

bl ackl i st capability.

Note that a Subject can benefit fromthe Mnitor function of CT even
if the Subject’s certificate has not been | ogged. Mbonitoring of |ogs
for certificates issued in the Subject’s name suffices to detect ms-
i ssuance targeting the Subject, if the bogus/erroneous certificate is
| ogged.

Arelying party (e.g., browser) benefits fromCT if it rejects a
bogus certificate, i.e., treats it as invalid. An RP is protected
fromaccepting a bogus certificate if that certificate is revoked,
and if the RP checks the revocation status of the certificate. (An
RP is also protected if a browser vendor "blacklists" a certificate
or "bad-CA-lists" a CA as noted above.) An RP also nmay benefit from
CTif the RP validates an SCT associated with a certificate, and
rejects the certificate if the Signed certificate Timestanp (SCT)
[I-D.ietf-trans-rfc6962-bis] is invalid. |If an RP verified that a
certificate that clains to have been | ogged has a valid |log entry,
the RP woul d have a hi gher degree of confidence that the certificate
i s genuine. However, checking logs in this fashion inposes a burden
on RPs and on | ogs. Moreover, the existence of a log entry does not
ensure that the certificate is not mis-issued. Unless the
certificate Subject is monitoring the log(s) in question, a bogus
certificate will not be detected by CT nmechanisns. Finally, if an RP
were to check logs for individual certificates, that would disclose
to logs the identity of web sites being visited by the RP, a privacy

Kent Expi res Cctober 14, 2018 [Page 4]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

violation. Thus this attack npdel does not assune that all RPs wll
check log entries.

A CA benefits from CT when it detects a (ms-issued) certificate that
represents the sane Subject nane as a legitimate certificate issued
by the CA

Note that all RPs nmay benefit from CT even if they do nothing with
SCTs. If Mnitors inform Subjects of m s-issuance, and if a CA
revokes a certificate in response to a request fromthe certificate's
| egitimate Subject, then an RP benefits wi thout having to inplenent
any CT-specific mechanisns.

Al so note that one proposal [I-D.ietf-trans-gossip] for distributing
Audit information (to detect m sbehaving logs) calls for a browser to
send SCTs it receives to the correspondi ng website when visited by
the browser. |If a website acquires an inclusion proof froma log for
each (unique) SCT it receives in this fashion, this would cause a
bogus SCT to be discovered, and, presumably, trigger a revocation
request.

Logging [I-D.ietf-trans-rfc6962-bis] is the central elenment of CT
Loggi ng enables a Mnitor to detect a bogus certificate based on
reference information provided by the certificate Subject. Logging
of certificates is intended to deter ms-issuance, by creating a
publicly-accessible record that associates a CAwith any certificates
that it ms-issues. Logging does not renedy m s-issuance; but it
does facilitate renediation by providing the information needed to
enabl e detection and consequently revocati on of bogus certificates in
sonme circunstances

Auditing is a function enployed by CT to detect m sbehavior by | ogs
and to deter mis-issuance that is abetted by m sbehaving | ogs.

Audi ting detects several types of |og misbehavior, including failures
to adhere to the adverti sed Maxi num Merge Delay (MVD) and Signed Tree
Head (STH) frequency count [I-D.ietf-trans-rfc6962-bis] violating the
append-only property, and providing i nconsistent views of the log to
different log clients. The first three of these are relatively easy
for an individual auditor to detect, but the |ast form of m sbehavior
requires communication anong nultiple log clients. Monitors ought

not trust logs that are detected m sbehaving. Thus the Audit
function does not detect mis-issuance per se. The CT design
identifies audit functions designed to detect several types of

m sbehavi or. However, nechanisns to detect sone forms of |og

m sbehavi or are not yet standardized.

Figure 1 (below) illustrates the data exchanges anong the ngjor
el ements of the CT system based on the |og specification

Kent Expi res Cctober 14, 2018 [Page 5]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

[I-D.ietf-trans-rfc6962-bis] and on the assumed behavi or of other CT
system el ements as descri bed above. This Figure does not include the
Audit function, because there is not yet agreenent on how t hat
function will work in a distributed, privacy-preserving fashion

oo+ oo + oo +
| CA|---[1]1-->| Log | ---[8]---] Mnitor |
I I I I I I
I i I i R
I |---[3]-->| | --[10]---| I
I I I I I |-------- +
I | --[4]---| |---[11]-->| I I
I I I I too-ooo-- + I
| | | | |
I I I I tooooooo-- + I
I I I | --[8]----] Self- | I
I I I I | Monitor | I
I I I I---[9]--->|(Subject)l I
| | | | --[10]---| | [12]
I I I I I I
I I I |---[11]-->| I I
| | Fomm e + Fomm e + |
I I I
| | [+ [+ |
[|---[5]--> Website |---[7]--->| Browser | [
| | (Subj ect) | oo + |
|1 -0 61-->] | o +
oo+ oo +

[1] Retrieve accepted root certs

[2] accepted root certs

[3] Add chain to log/add PreCertChain to | og

[4] sCT

[5] send cert + SCTs (or cert with enbedded SCTs)

[6] Revocation request/response (in response to detected

m s-i ssuance)
7] cert + SCTs (or cert with enbedded SCTs)
Retrieve entries from Log
9] returned entries fromlog
[10] Retrieve latest STH
[11] returned STH
[12] bogus/erroneous cert notification

———
(o]
—_

Figure 1: Data Exchanges Between Maj or El enents of the CT System

Kent Expi res Cctober 14, 2018 [Page 6]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

Certificate m s-issuance may arise in one of several ways. The ways
by which CT enables a Subject (or others) to detect and redress m s-
i ssuance depends on the context and the entities involved in the ms-
i ssuance. This attack nodel applies to use of CT in the Wb PK
context. If CT is extended to apply to other contexts, each context
will require its own attack nodel, although nost el ements of the
nodel described here are likely to be applicable.

Because certificates are issued by CAs, the top level differentiation
inthis analysis is whether the CA that mis-issued a certificate did
so maliciously or not. Next, for each scenario, the nodel considers
whet her or not the certificate was | ogged. Scenarios are further
differenti ated based on whether the |ogs and nonitors are benign or
mal i ci ous and whether a certificate's Subject is self-nonitoring or
is using a third party Mnitoring service. Finally, the analysis
consi ders whether a browser is perform ng checking relevant to CT
The scenarios are organized as illustrated by the follow ng outline:

Web PKI CA - nalicious vs non-malicious
Certificate - |ogged vs not |ogged
Log - benign vs malicious
Third party Monitor - benign vs nalicious
Certificate's Subject - self-nonitoring (or not)
Browser - CT-supporting (or not)

The next section of the docunment briefly discusses threats.
Subsequent sections exan ne each of the cases described above. As
noted earlier, the focus here is on the Wb PKI context, although
nmost of the analysis is applicable to other PKI contexts.

1.1. Conventions used in this docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

2. Threats

A threat is defined, traditionally, as a notivated, capable
adversary. An adversary who is not notivated to attack a systemis
not a threat. An adversary who is notivated but not "capable" al so
is not athreat. Threats change over tinme; new classes of
adversaries may arise, new notivations may cone into play, and the
capabilities of adversaries may change. Nonetheless, it is useful to
docunent perceived threats against a systemto provide a context for
under standi ng attacks. Even if the assunptions about adversaries
prove to be incorrect, docunenting the assunptions is val uable.

Kent Expi res Cctober 14, 2018 [Page 7]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

As noted above, the goals of CT are to deter, detect, and facilitate
renedi ati on of attacks on the web PKI. Such attacks can enable an
attacker to spoof the identity of TLS-enabled web sites. Spoofing
enabl es an adversary to performmany types of attacks, e.g., delivery
of malware to a client, reporting bogus information, or acquiring
information that a client would not comunicate if the client were
aware of the spoofing. Such information may include persona
identification and authentication information and el ectroni c paynent
aut hori zation informati on. Because of the nature of the information
that may be divulged (or msinformati on or nmalware that nmay be
delivered), the principal adversaries in the CT context are perceived
to be (cyber) crimnals and nation states. Both adversaries are
nmotivated to acquire personal identification and authentication
information. Crimnals are also notivated to acquire el ectronic
payment aut horization information

To nmake use of forged web site certificates, an adversary nust be
able to direct a TLS client to a spoofed web site, so that it can
present the forged certificate during a TLS handshake. An adversary
may achieve this in various ways, e.d., by manipul ation of the DNS
response sent to a TLS client or via a man-in-the-nmddle attack. The
former type of attack is well within the perceived capabilities of
both cl asses of adversary. The latter attack nay be possible for
criminals and is certainly a capability available to a nation state
within its borders. Nation states also nay be able to conproni se DNS
servers outside their own jurisdiction

The el enents of CT nmay thensel ves be targets of attacks, as described
below. A crimnal organization mght conpronise a CA and cause it to
i ssue bogus certificates, or it may exert influence over a CA (or CA
staff) to do so, e.g., through extortion or physical threat. A CA
may be the victimof social engineering, causing it to issue a
certificate to an inappropriate Subject. (Even though the CA is not
intentionally malicious in this case, the action is equivalent to a
mal i ci ous CA, hence the use of the term"bogus" here.) A nation
state may operate or influence a CAthat is part of the |arge set of
"root CAs" in browsers. A CA acting in this fashion, is terned a
"malicious" CA. A nation state also mght conpronise a CA in another
country, to effect issuance of bogus certificates. 1In this case the
(non-malicious) CA upon detecting the conpronise (perhaps because of
CT) is expected to work with Subjects to renmedy the nis-issuance.

A log also might be conprom sed by a suitably sophisticated crinina
organi zation or by a nation state. Conpromising a |log would enable a
conmprom sed or rogue CA to acquire SCTs, but log entries would be
suppressed, either for all log clients or for targeted clients (e.qg.
to selected Monitors or Auditors). It seens unlikely that a

Kent Expi res Cctober 14, 2018 [Page 8]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

3.

3.

3.

3.

3.

conprom sed, non-malicious, log would persist in presenting nmultiple
views of its data, but a malicious | og woul d.

Finally, note that a browser trust store may include a CAthat is
intended to issue certificates to enable nonitoring of encrypted
browser sessions. The inclusion of a trust anchor for such a CAis
intended to facilitate nonitoring encrypted content, via an

aut hori zed man-in-the-mddle (MTM attack. CT is not designed to
counter this type of |ocally-authorized interception

Semanti c m s-issuance
1. Non-malicious Wb PKI CA context

In this section, we address the case where the CA has no intent to
i ssue a bogus certificate.

A CA may have nis-issued a certificate as a result of an error or, in
the case of a bogus certificate, because it was the victimof a
soci al engineering attack or an attack such as the one that affected
Di gi Notar [https://ww. vasco. conl conpany/ about _vasco/ press_roonl
news_archi ve/ 2011/ news_di gi notar_reports_any security_incident. aspx
[2]]. In the case of an error, the CA should have a record of the
erroneous certificate and be prepared to revoke this certificate once
it has discovered and confirmed the error. 1In the event of an
attack, a CA may have no record of a bogus certificate.

1.1. Certificate |ogged
1.1.1. Benign |log

The log (or logs) is benign and thus is presuned to provide
consi stent, accurate responses to requests fromall clients.

If a bogus (pre-)certificate has been submitted to one or nore |ogs
prior to issuance to acquire an enbedded SCT, or post-issuance to
acquire a standal one SCT, detection of this mis-issuance is the
responsibility of a Mnitor.

1.1.1.1. Self-nonitoring Subject

If a Subject is tracking the log(s) to which a certificate was
submitted, and is performng self-nmonitoring, then it will be able to
detect a bogus (pre-)certificate and request revocation. |In this
case, the CA will make use of the log entry (supplied by the Subject)
to determ ne the serial nunber of the bogus certificate, and

i nvestigate/revoke it. (See Sections 5.1, 5.2 and 5.3.)

Kent Expi res Cctober 14, 2018 [Page 9]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

3.1.1.1.2. Benign third party Monitor

If a benign third party nmonitor is checking the logs to which a
certificate was subnmitted and is protecting the targeted Subject, it
will detect a bogus certificate and will alert the Subject. The
Subject, in turn, will ask the CA to revoke the bogus certificate.

In this case, the CAwill nake use of the log entry (supplied by the
Subj ect) to deternine the serial nunber of the bogus certificate, and
revoke it (after investigation). (See Sections 5.1, 5.2 and 5.3.)

3.1.1.2. M shehaving | og

In this case, the bogus (pre-)certificate has been subnmtted to one
or nmore | ogs, each of which generate an SCT for the submission. A

m sbehavi ng | og probably will suppress a bogus certificate |og entry,
or it my create an entry for the certificate but report it
selectively. (A nisbehaving |log also could create and report entries
for bogus certificates that have not been issued by the indicated CA
(hereafter called "fake"). Unless a Mnitor validates the associated
certificate chains up to roots that it trusts, these fake bogus
certificates could cause the Monitors to report non-existent semantic
probl ens to the Subject who would in turn report themto the
purported issuing CA. This mght cause the CA to do needl ess

i nvestigative work or perhaps incorrectly revoke and re-issue the
Subject’s real certificate. Note that for every certificate
submitted to a log, the log MIST verify a conplete certificate chain
up to one of the roots it accepts. So creating a log entry for a
fake bogus certificate marks the | og as ni sbehavi ng.

3.1.1.2.1. Self-nonitoring Subject & Benign third party Monitor

If a m sbehaving | og suppresses a bogus certificate log entry, a

Subj ect performing self-nonitoring will not detect the bogus
certificate. CT relies on an Audit mechanismto detect |og

m sbehavi or, as a deterrent. It is anticipated that |logs that are
identified as persistently misbehaving will cease to be trusted by
Moni tors, non-malicious CAs, and by browser vendors. This assunption
forns the basis for the perceived deterrent. It is not clear if
mechani sms to detect this sort of |og msbehavior will be viable.

Simlarly, when a nisbehaving | og suppresses a bogus certificate |og
entry (or report such entries inconsistently) a benign third party
Monitor that is protecting the targeted Subject also will not detect
a bogus certificate. In this scenario, CT relies on a distributed
Auditing mechanism[l-D.ietf-trans-gossip] to detect |og m sbehavior
as a deterrent. (See Section 5.6 below.) However, a Mnitor (third-
party or self) nust participate in the Audit nmechanismin order to
beconme aware of |og nisbehavior.

Kent Expi res Cctober 14, 2018 [Page 10]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

If the misbehaving | og has | ogged the bogus certificate when issuing
the associated SCT, it will try to hide this fromthe Subject (if
self-monitoring) or fromthe Monitor protecting the Subject. It does
so by presenting themwith a view of its log entries and STH t hat
does not contain the bogus certificate. To other entities, the log
presents log entries and an STH that include the bogus certificate.
Thi s di screpancy can be detected if there is an exchange of

i nformati on about the log entries and STH between the entities
receiving the view that excludes the bogus certificate and entities
that receive a viewthat includes it, i.e., a distributed Audit
mechani sm

If a malicious |og does not create an entry for a bogus certificate
(for which an SCT has been issued), then any Nonitor/Auditor that
sees the bogus certificate will detect this when it checks with the
log for log entries and STH (see Section 3.1.2.)

3.1.1.3. Mshehaving third party Monitor

A third party Mnitor that nisbehaves will not notify the targeted
Subj ect of a bogus certificate. This is true irrespective of whether
the Monitor checks the | ogs or whether the | ogs are benign or

mal i ci ous/ conspi ring.

Not e that independent of any nis-issuance on the part of the CA a
m sbehavi ng Monitor could issue false warnings to a Subject that it
protects. These could cause the Subject to report non-existent
semantic problens to the issuing CA and cause the CA to do needl ess
i nvestigative work or perhaps incorrectly revoke and re-issue the
Subj ect’s certificate.

3.1.2. Certificate not |ogged

If the CA does not subnit a pre-certificate to a log, whether a | og

i s benign or mshehaving does not matter. The sane is true if a

Subj ect is issued a certificate without an SCT and does not |og the
certificate itself, to acquire an SCT. Also, since there is no |og
entry in this scenario, there is no difference in outcome between a
beni gn and a m sbehaving third party Mnitor. |In both cases, no
Monitor (self or third-party) will detect a bogus certificate based
on Monitor functions and there will be no consequent reporting of the
problemto the Subject or by the Subject to the CA based on
exanination of log entries.

Kent Expi res Cctober 14, 2018 [Page 11]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

3.1.2.1. Self-monitoring Subject

A Subject performng self-nmonitoring will be able to detect the lack
of an enbedded SCT in the certificate it received fromthe CA or the
| ack of an SCT supplied to the Subject via an out-of-band channel. A
Subj ect ought to notify the CAif the Subject expected that its
certificate was to be | ogged. (A Subject would expect its
certificate to be logged if there is an agreenent between the Subject
and the CA to do so, or because the CA advertises that it logs all of
the certificates that it issues.) |If the certificate was supposed to
be | ogged, but was not, the CA can use the certificate supplied by
the Subject to investigate and renedy the problem In the context of
a benign CA, a failure to log the certificate nmight be the result of
an operations error, or evidence of an attack on the CA

3.1.2.2. CT-enabl ed browser

If a browser rejects certificates without SCTs (see Section 5.4), CAs
may be "encouraged" to log the certificates they issue. This, in
turn, would make it easier for Monitors to detect bogus certificates.
However, the CT architecture does not describe how such behavi or by
browsers can be deployed increnentally throughout the Internet. As a
result, this attack nodel does not assune that browsers will reject a
certificate that is not acconpanied by an SCT. |In the CT
architecture certificates have to be logged to enable Mnitors to
detect ms-issuance, and to trigger subsequent revocation

[1-D. kent-trans-architecture]. Thus the effectiveness of CT is

dim nished in this context.

3.2. Malicious Wb PKI CA context
In this section, we address the scenario in which the ms-issuance is
intentional, not due to error. The CAis not the victimbut the
attacker.

3.2.1. Certificate | ogged

3.2.1.1. Benign log
A bogus (pre-)certificate may be submitted to one or nore benign | ogs
prior to issuance, to acquire an enbedded SCT, or post-issuance to

acquire a standalone SCT. The log (or logs) replies correctly to
requests fromclients.

Kent Expi res Cctober 14, 2018 [Page 12]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

3.2.1.1.1. Sel f-nonitoring Subject

If a Subject is checking the logs to which a certificate was
submitted and is performng self-nonitoring, it will be able to
detect the bogus certificate and will request revocation. The CA nay
refuse to revoke, or may substantially delay revoking, the bogus
certificate. For exanple, the CA could nake excuses about inadequate
proof that the certificate is bogus, or argue that it cannot quickly
revoke the certificate because of |egal concerns, etc. |In this case,
the CT nmechanisns will have detected m s-issuance, but the

i nformati on | ogged by CT may not suffice to renedy the problem (See
Sections 4 and 6.)

A malicious CA mght revoke a bogus certificate to avoid having
browser vendors take punitive action against the CA and/or to
persuade themto not enter the bogus certificate on a vendor-

mai nt ai ned bl acklist. However, the CA night provide a "good" OCSP
response (froma server it operates) to a targeted browser instance
as a way to circunvent the renedi ation noninally offered by
revocation. No conponent of CT is tasked with detecting this sort of
m sbehavi or by a CA. (The m sbehavior is analogous to a log offering
split views to different clients, as discussed later. The Audit
element of CT is tasked with detecting this sort of attack.)

3.2.1.1.2. Benign third party Monitor

If a benign third party nmonitor is checking the logs to which a
certificate was subnmitted and is protecting the targeted Subject, it
will detect the bogus certificate and will alert the Subject. The
Subj ect will then ask the CA to revoke the bogus certificate. As in
3.2.1.1.1, the CA may or may not revoke the certificate and it might
revoke the certificate but provide "good" OCSP responses to a
targeted browser instance.

3.2.1.2. M shehaving | og
A bogus (pre-)certificate may have been subnitted to one or nore | ogs
that are m sbehaving, e.g., conspiring with an attacker. These |ogs
may or may not issue SCTs, but will hide the log entries from sone or
all Mnitors.

3.2.1.2.1. Mnitors - third party and self

If log entries are hidden froma Mnitor (third party or self), the
Monitor will not be able to detect issuance of a bogus certificate.

The Audit function of CT is intended to detect |ogs that conspire to
del ay or suppress log entries (potentially selectively), based on

Kent Expi res Cctober 14, 2018 [Page 13]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

consi stency checking of logs. (See 3.1.1.2.2.) |If a Mnitor |learns
of m sbehaving | og operation, it alerts the Subjects that it is
protecting, so that they no | onger acquire SCTs fromthat |og. The
Moni tor al so avoids relying upon such a log in the future. However,
unl ess a distributed Audit mechani sm proves effective in detecting
such m sbehavior, CT cannot be relied upon to detect this form of

nm s-issuance. (See Section 5.6 below)

3.2.1.3. Msbhehaving third party Monitor

If the third party Monitor that is "protecting" the targeted Subject
is misbehaving, then it will not notify the targeted Subject of any
n s-i ssuance or of any numlfeasant | og behavior that it detects
irrespective of whether the logs it checks are benign or malicious/
conspiring. The CT architecture does not include any nmeasures to
det ect m sbhehavior by third-party nonitors

3.2.2. Certificate not |ogged

Because the CAis presuned malicious, it may choose to not submit a
(pre-)certificate to a log. This means there is no SCT for the
certificate.

When a CA does not subnit a certificate to a |log, whether alog is

beni gn or mi sbehaving does not matter. Also, since there is no |og
entry, there is no difference in behavior between a benign and a

m sbehaving third-party Monitor. Neither will report a problemto

t he Subj ect.

A bogus certificate would not be delivered to the legitinmte Subject.
So the Subject, acting as a self-Mnitor, cannot detect the issuance
of a bogus certificate in this case

3.2.2.1. CT-aware browser

If careful browsers reject certificates wthout SCTs, CAs nay be
"encouraged" to log certificates (see section 5.4.) However, the CT
architecture does not describe how such behavi or by browsers can be
depl oyed increnentally throughout the Internet. As a result, this
attack nodel does not assune that browsers will reject a certificate
that is not acconpanied by an SCT. Since certificates have to be

| ogged to enabl e detection of ms-issuance by Mnitors, and to
trigger subsequent revocation, the effectiveness of CT is dimnished
in this context.

Kent Expi res Cctober 14, 2018 [Page 14]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

3.3. Undetected Conprom se of CAs or Logs

Sections 3.1 and 3.2 exanmined attacks in the context of non-malicious
and nalicious CAs, and benign and m sbehaving | ogs. Another class of
attacks mght occur in the context of a non-nalicious CA and/or a
benign log. Specifically these CT elenments night be conprom sed and
the conprom se might go undetected. Conpronise of CAs and | ogs was
noted in Section 2, as was coercion of a CA. As noted there, a
comprom sed CA is essentially a malicious CA, and thus the

di scussions in Section 3.2 are applicable. Section 3.3 explored the
undet ected conpronmise of a CAin the context of attacks designed to

i ssue a bogus certificate that night avoid revocati on (because the
certificate woul d appear on distinct certificate paths).

The section focuses on undetected conpronise of CAs. Such

conprom ses warrant sone additional discussion, since sone relying
parties may see signed objects issued by the legitinmte (non-
mal i ci ous) CA, others may see signhed objects fromits conpronised
counterpart, and sone nay see objects fromboth. In the case of a
conmprom sed CA or log the adversary is presunmed to have access to the
private key used by a CAto sign certificates, or used by alog to
sign SCTs and STHs. Because the conpronise is undetected, there wll
be no effort by a CAto have its certificate revoked or by a log to
shut down the | og

3.3.1. Conprom sed CA, Benign Log

In the case of a conpromi sed (non-nalicious) CA an attacker uses the
purl oi ned private key to generate a bogus certificate (that the
conmprom sed CA would not issue). |If this certificate is submitted to
a (benign) log, then it subject to detection by a Mnitor, as
discussed in 3.1.1.1. If the bogus certificate is submtted to a

m sbehaving 1 og, then an SCT can be generated, but there will be no
entry for it, as discussed in 3.1.1.2. |If the bogus certificate is
not |ogged, then there will be no SCT, and the inplications are as
described in 3.1.2.

This sort of attack may be nost effective if the CA that is the
victimof the attack has issued a certificate for the targeted
Subject. 1In this case the bogus certificate will then have the sane
certification path as the legitimate certificate, which nay hel p hide
the bogus certificate. However, neans of renedying the attack are

i ndependent of this aspect, i.e., revocation can be effected
irrespective of whether the targeted Subject received its certificate
fromthe conprom sed CA

A conprom sed (non-nalicious) CA nmay be able to revoke the bogus
certificate if it is detected by a Mdnitor, and the targeted Subject

Kent Expi res Cctober 14, 2018 [Page 15]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

has been notified. It can do so only when the serial nunber of the
bogus certificate is made known to this CA and assumi ng that the
bogus certificate was not issued with an Authority Information Access
(AIA) or CRL Distribution Point (CRL DP) extension that enables only
the malicious twin to revoke the certificate. (The Al A extension in
t he bogus certificate could be used to direct relying parties to an
OCSP server controlled by the nmalicious twin. The CRL DP extension
could be used to direct relying parties to a CRL controlled by the
malicious twin.) |If the bogus certificate contains either extension
the conpromi sed CA cannot effectively revoke it. However, the
presence of either of these extensions provides sone evidence that an
entity other than the conprom sed CA issued the certificate in
question. (If the extensions differ fromthose in other certificates
i ssued by the conmprom sed CA, that is suspicious.)

If the serial nunber of the bogus certificate is the sane as for a
valid, not-expired certificate issued by the CA (to the target or to
anot her Subject), then revocation poses a problem This is because
revocation of the bogus certificate will also invalidate a legitimte
certificate. This problemmy cause the conpromi sed CA to del ay
revocation, thus allow ng the bogus certificate to remain a danger
for a longer tine.

The conpromised CA nay not realize that the bogus certificate was

i ssued by a malicious twi n; one occurrence of this sort mght be
regarded as an error, and not cause the CAto transition to a new key
pair. (This assunes that the bogus certificate does not contain an
Al A or CRL DP extension that wests control of revocation fromthe
compromi sed CA.) |f the conpronised CA does determine that its
private key has been stolen, it probably will take sonme tine to
transition to a new key pair, and reissue certificates to all of its
legitimate Subjects. Thus an attack of this sort probably will take
a while to be renedied.

Also note that the nalicious twin of the conpromi sed CA nmay be
capabl e of issuing its owm CRL or OCSP responses, w thout changing
any ALA/CRL DP data present in the targeted certificate. The
revocation status data fromthe evil twin will appear as valid as
those of the conpronmised CA. |If the attacker has the ability to
control the sources of revocation status data available to a targeted
user (browser instance), then the user nmay not becone aware of the
att ack.

A bogus certificate issued by the malicious CAwll not match the SCT
for the legitimate certificate, since they are not identical, e.g.

at a mninumthe private keys do not match. Thus a CT-aware browser
that rejects certificates without SCTs (see 3.1.2.2) will reject a
bogus certificate created under these circumstances if it is not

Kent Expi res Cctober 14, 2018 [Page 16]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

Il ogged. |I|If the bogus certificate is detected and | ogged, browsers
that require an SCT will reject the bogus certificate.

3.3.2. Benign CA Conpromn sed Log

A beni gn CA does not issue bogus certificates, except as a result of
an accident or attack. So, in norrmal operation, it is not clear what
behavi or by a conprom sed | og would yield an attack. |If a bogus
certificate is issued by a benign CA (under these circunstances) is
submitted to a conprom sed (non-nmalicious) log, then both an SCT and
alog entry will be created. Again, it is not clear what additiona
adverse actions the conpronised | og would performto further an
attack on CT.

It is worth noting that if a benign CA was attacked and thus issued
one or nore bogus certificates, then a nalicious | og mght provide
split views of its log to help conceal the bogus certificate from
targeted users. Specifically, the I og would show an accurate set of
log entries (and STHs) to nost clients, but would maintain a separate
log view for targeted users. This sort of attack notivates the need
for Audit capabilities based on "gossiping” [I-D.ietf-trans-gossip].
However, even if such nechani sns are enpl oyed, they m ght be thwarted
if a user is unable to exchange log information with trustworthy
partners.

3.3.3. Comprom sed CA, Conprom sed Log

As noted in 3.4.1, an evil twin CA may issue a bogus certificate that
contains the same Subject nanme as a legitimate certificate issued by
the conpromised CA. Alternatively, the bogus certificate nmay contain
a different nane but reuse a serial nunber froma valid, not revoked
certificate issued by that CA

An attacker who conpronises a log mght act in one of two ways. It
m ght use the private key of the log only to generate SCTs for a
malicious CA or the evil twin of a conpromised CA. |If a browser

checks the signature on an SCT but does not contact a log to verify
that the certificate appears in the log, then this is an effective
attack strategy. Alternatively, the attacker m ght not only generate
SCTs, but al so pose as the conpromised log, at least with regard to
requests fromtargeted users. In the latter case, this "evil twin"

|l og could respond to STH requests fromtargeted users, neking appear
that the conpromised |og was offering a split view (thus acting as a
malicious log). To detect this attack an Auditor needs to enploy a
gossi p mechanismthat is able to acquire CT data from di verse
sources, a feature not yet part of the base CT system

Kent Expi res Cctober 14, 2018 [Page 17]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

An evil twin CA might subnmit a bogus certificate to the evil tw n of
a conpromi sed |l og. (The sane adversary may be controlling both.)
The operator of the evil twin log can use the purloined private key
to generate SCTs for certificates that have not been |logged by its
legitimate counterpart. These SCTs will appear valid relative to the
public key associated with the legitinmate 1 og. However, an STH

i ssued by the legitimate log will not correspond to a tree
(mai nt ai ned by the conmprom sed | og) containing these SCIs. Thus
checking the SCTs issued by the evil twin | og against STHs fromthe
compromi sed log will identify this discrepancy. As noted above, if
an attacker uses the key to generate log entries and respond to | og
queries, the effect is analogous to a nalicious |og.)

An Auditor checking for |og consistency and with access to bogus
SCTs, might conclude that the conpronised log is acting maliciously,
and is presenting a split viewto its clients. |In this fashion the
conprom sed | og may be shunned and forced to shut down. However, if
an attacker targets a set of TLS clients that do not have access to
the legitimate log, they may not be able to detect this
inconsistency. In this case CT would need to rely on a distributed
gossi ping audit mechanismto detect the conpronise (see Section 5.6).

3.4. Attacks Based on Exploiting Multiple Certificate Chains

Section 3.2 exanm ned attacks in which a malicious CA issued a bogus
certificate and either tried to prevent the Subject from detecting
the bogus certificate, or reported the bogus certificate as valid, to
at least sone relying parties, even if the Subject requested
revocation. These attacks are limted in that if the bogus
certificate is not subnmitted to a log, then it nmay not be accepted by
CT-aware browsers, and subnitting the bogus certificate to a |og

i ncreases the chances that the CA's nmlicious behavior will be
det ect ed.
In general, if a CAis discovered to be acting naliciously, its

certificates will no longer be accepted, either because its parent
will revoke its CA certificate, its CA certificate will be added to
browsers’ blacklists, or both. However, a malicious CA may be able
to obtain an SCT for each bogus certificate that it issues and
continue to have those certificates accepted by relying parties even
after its malicious behavior has been detected. It can do this by
creating nore than one path validation chain for the certificates, as
shown in Figure 2.

Kent Expi res Cctober 14, 2018 [Page 18]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

o e e e e oo - + o e e e e oo - +
CA A | | CA B
e e e e e oo - + e e e e e oo - +
\ /
\ /
CA certificate 1\ | CA certificate 2
\ /
B +
| malicious CA |
e e e e +

Figure 2: Miultiple Certificate Chains for a Bogus Certificate

In Figure 2, the malicious CA has been issued CA certificates by two
different parent CAs. The parent CAs may be two different trust
anchors, or one or both of themmay be an internediate CA (i.e., it
is subordinate to sone trust anchor). |If both parent CAs are

i ntermedi ate CAs, they nay be subordinate to the sane trust anchor or
to different trust anchors. The nualicious CA may have obtai ned
certificates fromthe two parents by applying to themfor the
certificates, or by conprom sing the parent CAs and creating the
certificates without the know edge of the CAs. |If the malicious CA
applied for its certificates fromthese CAs, it may have presented
false information as input to the CA's normal issuance procedures,
with the result that the CAs do not realize that a certificate with
the sane subject nane and public key has been issued by another CA.

Because there are two certificate path validation chains, the
mal i ci ous CA could provide the chain that includes CA A when
submitting a bogus certificate to one or nore logs, but an attacker
(colluding with the nmalicious CA) could provide the chain that
includes CA B to targeted browsers. |If the CA s nualicious behavior
is detected, then CA A and browser vendors may be alerted (e.g., via
the CT Monitor function) and revoke/ bl acklist CA certificate 1.
However, CA certificate 2 does not appear in any logs, and CAAis
unaware that CA B has issued a certificate to the malicious CA. Thus
those who detected the malicious behavior nay not di scover the second
chain and so may not alert CA B or browser vendors of the need to
revoke/ bl acklist CA certificate 2. In this case, targeted browsers
woul d continue to accept the bogus certificates issued by the
mal i ci ous CA, since the certificate chain they are provided is valid

Kent Expi res Cctober 14, 2018 [Page 19]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

and because the SCT issued for the bogus certificate it the same
irrespective of which certificate chain is presented.

3.5. Attacks Related to Distribution of Revocation Status

A bogus certificate that has been revoked may still appear valid to a
browser under certain circunstances. |In part this is because the
revocation information seen by a relying party is partly under the
control of the CA and/or the certificate subject. As a result,
different relying parties nmay be presented with different revocation
information. This is true irrespective of whether revocation is
effected via use of a CRL or OCSP. Additionally, an attacker can
steer a browser to specific revocation status data via various nmeans,
preventing a targeted browser from acquiring accurate revocation
status information for a bogus certificate.

The bogus certificate mght contain an Al A extension pointing to an
OCSP server controlled by the nalicious CA (or the attacker). As
noted in Section 3.2.1.1.1, the malicious CA could send a "good" OCSP
response to a targeted browser instance, even if other parties are
provided with a "revoked" response. A TLS server can supply an OCSP
response to a browser as part of the TLS handshake [RFC6961], if
requested by the browser. A TLS server posing as the entity naned in
the bogus certificate also could acquire a "good" OCSP response from
the malicious CAto effect the attack. Only if the browser relies
upon a trusted, third-party OCSP responder, one not part of the
col l usi on, woul d these OCSP-based attacks fail

The bogus certificate could contain a CRL distribution point
extension instead of an Al A extension. |In that case a site supplying
CRLs for the malicious CA could supply different CRLs to different
requestors, in an attenpt to hide the revocation status of the bogus
certificate fromtargeted browser instances. This is analogous to a
split-view attack effected by a CT log. However, as noted in
Section 3.2.1.1 and 3.2.1.1.1, no elenent of CT is responsible for
detecting inconsistent reporting of certificate revocation status
data. (Monitoring in the CT context tracks log entries nade by CAs
or Subjects. Auditing is designed to detect m sbehavior by |ogs, not
by CAs per se.)

The failure of a bogus certificate to be detected as revoked (by a
browser) is not the fault of CT. |In the class of attacks described
above, CT achieves its goal of detecting the bogus certificate when
that certificate is logged and a Monitor observes the log entry.
Detection is intended to trigger revocation, to effect renediation
the details of which are outside the scope of CT. However the SCT
mechanismis intended to assure a relying party that certificate has
been | ogged, is susceptible to being detected as bogus by a Mnitor

Kent Expi res Cctober 14, 2018 [Page 20]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

and presunably will be revoked if detected as such. In the context
of these attacks, because of the way revocation nmay be inpl emrented,
the assurance provided by the SCT may not have the antici pated
effect.

This type of attack might be thwarted in several ways. For exanple,
if all internediate (i.e., CA) certificates had to be | ogged, then CA
certificate 2 m ght be rejected by CT-aware browsers. |f a malicious
CA is discovered, a browser vendor mght blacklist it by public key
(not by its serial nunber and the nane of the parent CA or by a hash
of the certificate). This approach to revocation would cause CA
certificate 2 to be rejected as well as CA certificate 1. However
none of these mechani sms are part of the CT specification
[I-D.ietf-trans-rfc6962-bis] nor general |ETF PKI standards (e.g.

[RFC5280]).

4, Syntactic ms-issuance
4.1. Non-malicious Wb PKI CA context

This section anal yzes the scenario in which the CA has no intent to
i ssue a syntactically incorrect certificate. As noted in Section 1,
we refer to a syntactically incorrect certificate as erroneous.

4.1.1. Certificate |ogged
4.1.1.1. Benign log

If a (pre)certificate is subnmtted to a benign log, syntactic m s-

i ssuance can (optionally) be detected, and noted. This will happen
only if the log perforns syntactic checks in general, and if the |og
is capabl e of perform ng the checks applicable to the subnmitted (pre
Jcertificate. (A (pre)certificate SHOULD be | ogged even if it fails
syntactic validation; |ogging takes precedence over detection of
syntactic ms-issuance.) |If syntactic validation fails, this can be
noted in an SCT extension returned to the subnitter

If the (pre)certificate is submtted by the non-malicious issuing
CA, then the CA SHOULD renedy the syntactic problem and re-subnit the

(pre)certificate to a log or logs. |If this is a pre-certificate
submitted prior to issuance, syntactic checking by a | og hel ps avoid
i ssuance of an erroneous certificate. |If the CA does not have a

record of the certificate contents, then presunably it was a bogus
certificate and the CA SHOULD revoke it.

If acertificate is submtted by its Subject, and is deened

erroneous, then the Subject SHOULD contact the issuing CA and request
a new certificate. |If the Subject is a legitinate subscriber of the

Kent Expi res Cctober 14, 2018 [Page 21]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

CA, then the CAwll either have a record of the certificate content
or can obtain a copy of the certificate fromthe Subject. The CA
will remedy the syntactic problemand either re-submt a corrected
(pre-)certificate to a log and send it to the Subject or the Subject
will re-submit it to a log. Here too syntactic checking by a |og
enables a Subject to be informed that its certificate is erroneous
and thus may hasten issuance of a replacenent certificate.

If acertificate is submtted by a third party, that party m ght
contact the Subject or the issuing CA but because the party is not
the Subject of the certificate it is not clear how the CA will
respond.

Thi s anal ysis suggests that syntactic m s-issuance of a certificate
can be avoided by a CAif it nmakes use of |ogs that are capabl e of
perform ng these checks for the types of certificates that are
subnmitted, and if the CA acts on the feedback it receives. |f a CA
uses a |l og that does not perform such checks, or if the CA requests
checking relative to criteria not supported by the |og, then
syntactic ms-issuance will not be detected or avoided by this
mechanism Similarly, syntactic m s-issuance can be renmedied if a
Subj ect subnits a certificate to a log that perforns syntactic
checks, and if the Subject asks the issuing CA to fix problens
detected by the log. (The issuer is presuned to be willing to re-

i ssue the certificate, correcting any problens, because the issuing
CA is not malicious.)

4.1.1.2. M sbehaving log or third party Monitor

A log or Monitor that is conspiring with the attacker or is

i ndependently malicious, will either not performsyntactic checks,
even though it clains to do so, or sinply not report errors. The |og
entry and the SCT for an erroneous certificate will assert that the
certificate syntax was verified

As with detection of semantic mis-issuance, a distributed Audit
mechani sm could, in principle, detect misbhehavior by logs or Mnitors
with respect to syntactic checking. For exanple, if for a given
certificate, some logs (or Mnitors) are reporting syntactic errors
and sone that claimto do syntactic checking, are not reporting these
errors, this is indicative of m sbehavior by these | ogs and/or

Moni t ors.

Note that a malicious log (or Monitor) could report syntactic errors
for a syntactically valid certificate. This could result in
reporting of non-existent syntactic problens to the issuing CA which
m ght cause the CA to do needl ess investigative work or perhaps
incorrectly revoke and re-issue the Subject’s certificate.

Kent Expi res Cctober 14, 2018 [Page 22]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

4.1.1.3. Self-nonitoring Subject and Benign third party Monitor

If a Subject or benign third party Mnitor performs syntactic checks,
it will detect the erroneous certificate and the issuing CAwll be
notified (by the Subject). |If the Subject is a legitinate subscriber
of the CA, then the CAwll either have a record of the certificate
content or can obtain a copy of the certificate fromthe Subject.

The CA SHOULD revoke the erroneous certificate (after investigation)
and renedy the syntactic problem The CA SHOULD either re-submt the
corrected (pre)certificate to one or nore |logs and then send the
result to the Subject, or send the corrected certificate to the

Subj ect, who will re-subnit it to one or nore | ogs.

4.1.1.4. CT-enabl ed browser

If a browser rejects an erroneous certificate and notifies the

Subj ect and/or the issuing CA then syntactic ms-issuance will be
detected (see Section 5.) Unfortunately, experience suggests that
many browsers do not performthorough syntactic checks on
certificates, and so it seens unlikely that browsers will be a
reliable way to detect erroneous certificates. Mreover, a protoco
used by a browser to notify a Subject and/or CA of an erroneous
certificate represents a DoS potential, and thus may not be
appropriate. Additionally, if a browser directly contacts a CA when
an erroneous certificate is detected, this is a potential privacy
violation, i.e., the CAlearns that the browser user is visiting the
web site in question. These observations argue for syntactic
checking to be perforned by other elenents of the CT system e.qg.

| ogs and/or Mbnitors.

4.1.2. Certificate not |ogged

If a CA does not submit a certificate to a log, there can be no
syntactic checking by the log. Detection of syntactic errors wll
depend on a Subject perfornming the requisite checks when it receives
its certificate froma CA. A Mnitor that perforns syntactic checks
on behal f of a Subject also could detect such problenms, but the CT
architecture does not require Monitors to perform such checks.

4.2. Malicious Wb PKI CA context
Thi s section anal yzes the scenario in which the CA's issuance of a

syntactically incorrect certificate is intentional, not due to error
The CAis not the victimbut the attacker.

Kent Expi res Cctober 14, 2018 [Page 23]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

4.2.1. Certificate |ogged
4.2.1.1. Benign log

Because the CAis presuned to be malicious, the CA nay cause the | og
to not performchecks, in one of several ways. (See

[1-D. kent-trans-domai n-validation-cert-checks] and

[1-D. kent-trans-extended-validation-cert-checks] for nore details on
val i dati on checks and CCl Ds).

1. The CA may assert that the certificate is being issued wo regard
to any guidelines (the "no guidelines" reserved CCID).

2. The CA may assert a CCID that has not been registered, and thus
no log will be able to perform a check

3. The CA may check to see which CCIDs a |l og declares it can check
and chose a registered CCID that is not checked by the log in
questi on.

4. The CA may submit a (pre-) certificate to a log that is known to
not perform any syntactic checks, and thus avoid syntactic
checki ng.

4.2.1.2. Msbehaving log or third party Mnitor

A m sbehaving log or third party Mnitor will either not perform
syntactic checks or not report any problens that it discovers. (See
4.1.1.2 for further problens). Also, as noted above, the CT
architecture includes no explicit provisions for detecting a

ni sbehaving third-party Mnitor.

4.2.1.3. Self-nonitoring Subject and Benign third party Monitor

Irrespective of whether syntactic checks are perforned by a log, a
mal i cious CA will acquire an enbedded SCT, or post-issuance wll
acquire a standal one SCT. |f Subjects or Mnitors performsyntactic
checks that detect the syntactic m s-issuance and report the problem
to the CA, a malicious CA may do nothing or nmay delay the action(s)
needed to renedy the problem

4.2.1.4. CT-enabl ed browser

As noted above (4.1.1.4), nost browsers fail to performthorough
syntax checks on certificates. Such browsers might benefit from
havi ng syntax checks perfornmed by a log and reported in the SCT

al t hough the pervasive nature of syntactically-defective certificates
may limt the utility of such checks. (Remenber, in this scenario,

Kent Expi res Cctober 14, 2018 [Page 24]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

4.

5.

5.

the log is benign.) However, if a browser does not discrininate
agai nst certificates that do not contain SCTs (or that are not
acconpani ed by an SCT in the TLS handshake), only m nimal benefits
m ght accrue to the browser from syntax checks performby |ogs or
Moni tors

If a browser accepts certificates that do not appear to have been
syntactically checked by a log (as indicated by the SCT), a malicious
CA need not worry about failing a | og-based check. Sinmlarly, if
there is no requirenent for a browser to reject a certificate that
was | ogged by an operator that does not perform syntactic checks, the
fourth attack noted in 4.2.1.1 will succeed as well. |f a browser
were configured to know which versions of certificate types are
applicable to its use of a certificate, the second and third attack
strategi es noted above could be thwarted.

2.2. Certificate is not |ogged

Since certificates are not logged in this scenario, a Mnitor (third-
party or self) cannot detect the issuance of an erroneous
certificate. Thus there is no difference between a benign or a

mal i ci ous/ conspiring |1 og or a benign or conspiring/ malicious Mnitor
(A Subject MAY detect a syntax error by examining the certificate
returned to it by the Issuer.) However, even if errors are detected
and reported to the CA a nalicious/conspiring CA may do nothing to
fix the problemor may delay action.

| ssues Applicable to Sections 3 and 4

.1. How does a Subject know which Mnitor(s) to use?

If a CA submits a bogus certificate to one or nore | ogs, but these

| ogs are not tracked by a Monitor that is protecting the targeted
Subject, CT will not renmedy this type of nis-issuance attack. |If
third-party Monitors advertise which | ogs they track, Subjects may be
able to use this information to select an appropriate Mnitor (or set
thereof). Also, it is not clear whether every third-party Monitor
MUST offer to track every Subject that requests protection. If a
Subj ect acts as its own Monitor, this problemis solved for that

Subj ect.

2. How does a Mnitor discover new | ogs?

It is not clear how a (self-)Mnitor becomes aware of all (rel evant)
l ogs, including newy created | ogs. The neans by which Mnitors
becone aware of new | ogs MJUST acconmpdat e self-nonitoring by a
potentially very |large nunber of web site operators. |If there are
many logs, it may not be feasible for a (self-) Mnitor to track al

Kent Expi res Cctober 14, 2018 [Page 25]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

of them or to determnine what set of |logs suffice to ensure an
adequat e | evel of coverage

5.3. CA response to report of a bogus or erroneous certificate

A CA being presented with evidence of a bogus or erroneous
certificate, in the formof a log entry and/or SCT, will need to
examine its records to determne if it has know edge of the
certificate in question. It also will likely require the targeted
Subj ect to provide assurances that it is the authorized entity
representing the Subject nane (subjectAltnane) in question. Thus a
Subj ect shoul d not expect i medi ate revocation of a contested
certificate. The time frame in which a CAwill respond to a
revocation request usually is described in the CPS for the CA. (O her
certificate fields and extensions nmay be of interest for forensic
pur poses, but are not required to effect revocation nor to verify
that the certificate to be revoked is bogus or erroneous, based on
applicable criteria. The SCT and |log entry, because each contains a
timestanp froma third party, is probably valuable for forensic

pur poses (assuming a non-conspiring | og operator).

5.4. Browser behavi or

If a browser is to reject a certificate that | acks an enbedded SCT,
or is not acconpani ed by an SCT transported via the TLS handshake,
this behavior needs to be defined in a way that is conpatible with
i ncremental deploynent. |Issuing a warning to a (human) user is
probably insufficient, based on experience with warnings displayed
for expired certificates, lack of certificate revocation status
information, and sinmilar errors that violate RFC 5280 path validation
rules [RFC5280]. Unless a nechanismis defined that accommopdates

i ncrenment al depl oynment of this capability, attackers probably wll
avoid subm tting bogus certificates to (benign) |ogs as a neans of
evadi ng detection.

5.5. Renediation for a malicious CA

A targeted Subject nmight ask the parent of a nmalicious CA to revoke
the certificate of the non-cooperative CA. However, a request of
this sort may be rejected, e.g., because of the potential for
significant collateral danage. A browser might be configured to
reject all certificates issued by the malicious CA, e.g., using a
bad- CA-list distributed by a browser vendor. However, if the
mal i ci ous CA has a sufficient nunber of legitimate clients, treating
all of their certificates as bogus or erroneous still represents
serious collateral damage. |If this specification were to require
that a browser can be configured to reject a specific, bogus or
erroneous certificate identified by a Monitor, then the bogus or

Kent Expi res Cctober 14, 2018 [Page 26]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

erroneous certificate could be rejected in that fashion. This
renedi ati on strategy calls for communi cati on between Mnitors and
browsers, or between Mnitors and browser vendors. Such

conmmuni cati on has not been specified, i.e., there are no standard
ways to configure a browser to reject individual bogus or erroneous
certificates based on information provided by an external entity such
as a Mnitor. Mreover, the same or another malicious CA could issue
new bogus or erroneous certificates for the targeted Subject, which
woul d have to be detected and rejected in this (as yet unspecified)
fashion. Thus, for now, CT does not seemto provide a way to
facilitate renediation of this formof attack, even though it
provides a basis for detecting such attacks.

5.6. Auditing - detecting m sbehaving | ogs

The conbination of a malicious CA and one or nore conspiring |ogs
nmotivates the definition of an audit function, to detect conspiring
logs. |If a Mnitor protecting a Subject does not see bogus
certificates, it cannot alert the Subject. |If one or nore SCTs are
present in a certificate, or passed via the TLS handshake, a browser
has no way to know that the | ogged certificate is not visible to
Monitors. Only if Monitors and browsers reject certificates that
contain SCTs fromconspiring |ogs (based on information from an
auditor) will CT be able to detect and deter use of such logs. Thus
the means by which a Mnitor perforning an audit function detects
such logs, and infornms browsers nust be specified for CT to be
effective in the context of m sbehaving | ogs.

Absent a wel | -defined mechani smthat enables Mnitors to verify that
data fromlogs are reported in a consistent fashion, CT cannot claim
to provide protection against logs that are malicious or rmay conspire
with, or are victims of, attackers effecting certificate ms-

i ssuance. The nechani sm needs to protect the privacy of users with
respect to which web sites they visit. It needs to scale to
acconmodate a potentially |large nunber of self-nonitoring Subjects
and a vast nunber of browsers, if browsers are part of the nmechani sm
Even when an Audit mechanismis defined, it will be necessary to
describe how the CT systemwi ||l deal with a mi sbehaving or

comprom sed log. For exanple, will there be a nmechanismto alert all
browsers to reject SCTs issued by such a | og? Absent a description
of a renmediation strategy to deal with nisbehaving or conpronised

| ogs, CT cannot ensure detection of nis-issuance in a w de range of
scenari os.

Monitors play a critical role in detecting semantic certificate ms-
i ssuance, for Subjects that have requested nonitoring of their
certificates. A nonitor (including a Subject performing self-
nonitoring) exam nes logs for certificates associated with one or

Kent Expi res Cctober 14, 2018 [Page 27]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

nmore Subjects that are being "protected". A third-party Mnitor nust
obtain a list of valid certificates for the Subject being nonitored,
in a secure manner, to use as a reference. It also nmust be able to
identify and track a potentially |arge nunber of |ogs on behal f of
its Subjects. This nay be a daunting task for Subjects that elect to
perform sel f-nonitoring.

Note: A Monitor nust not rely on a CA or RA database for its
reference information or use certificate discovery protocols; this

i nformati on nust be acquired by the Mnitor based on reference
certificates provided by a Subject. If a Mnitor were to rely on a
CA or RA database (for the CA that issued a targeted certificate),
the Monitor woul d not detect mis-issuance due to nal feasance on the
part of that CA or the RA, or due to conprom se of the CA or the RA
If a CA or RA database is used, it would support detection of ms-

i ssuance by an unauthorized CA. A Mnitor nust not rely on
certificate discovery nechanisns to build the list of valid
certificates since such nmechanisns mght result in bogus or erroneous
certificates being added to the list.

As noted above, Mnitors represent another target for adversaries who
wish to effect certificate ms-issuance. |If a Mnitor is conproni sed
by, or conspires with, an attacker, it will fail to alert a Subject
to a bogus or erroneous certificate targeting that Subject, as noted
above. It is suggested that a Subject request certificate nonitoring
frommultiple sources to guard against such failures. Operation of a
Monitor by a Subject, on its own behal f, avoids dependence on third
party Monitors. However, the burden of Monitor operation nay be
viewed as too great for nmany web sites, and thus this node of
operation ought not be assuned to be universal when eval uating
protection agai nst Monitor conprom se.

6. Security Considerations

An attack and threat nodel is, by definition, a security-centric
docunent. Unlike a protocol description, a threat nodel does not
create security problens nor does it purport to address security
probl enms. This nodel postulates a set of threats (i.e., notivated
capabl e adversaries) and exam nes cl asses of attacks that these
threats are capabl e of effecting, based on the notivations ascribed
to the threats. It then analyses the ways in which the CT
architecture addresses these attacks.

7. | ANA Consi der ati ons

None.

Kent Expi res Cctober 14, 2018 [Page 28]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

8. Acknow edgnents

The author would like to thank David Mandel berg and Karen Seo for
their assistance in review ng and preparing this docunent, and other
menbers of the TRANS working group for reviewing it. Mst of the
text of Section 3.4 was provided by David Cooper, notivated by
observations from Dani el Kahn G lnmor. Thanks also go to Dai mng Li
for her editorial assistance.

9. References
9.1. Normative References

[1-D. kent-trans-architecture]
Kent, S., Mandel berg, D., and K. Seo, "Certificate
Transparency (CT) System Architecture", draft-kent-trans-
architecture-07 (work in progress), Decenber 2017.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<https://ww.rfc-editor.org/info/rfc2119>.

9.2. Informative References

[I-D.ietf-trans-gossip]
Nordberg, L., Gllnor, D, and T. Ritter, "Gossiping in
CT", draft-ietf-trans-gossip-05 (work in progress),
January 2018.

[I-Dietf-trans-rfc6962-bis]
Laurie, B., Langley, A, Kasper, E., Messeri, E., and R
Stradling, "Certificate Transparency Version 2.0", draft-
ietf-trans-rfc6962-bis-28 (work in progress), March 2018.

[I1-D. kent-trans-domai n-validation-cert-checks]
Kent, S. and R Andrews, "Syntactic and Senantic Checks
for Domain Validation Certificates", draft-kent-trans-
domai n-val i dati on-cert-checks-02 (work in progress),
Decenber 2015.

[1-D. kent-trans-extended-validation-cert-checks]
Kent, S. and R Andrews, "Syntactic and Senantic Checks
for Extended Validation Certificates", draft-kent-trans-
ext ended-val i dati on-cert-checks-02 (work in progress),
Decenber 2015.

Kent Expi res Cctober 14, 2018 [Page 29]

Internet-Draft Attack Model for Certificate M s-issuance April 2018

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DO 10.17487/ RFC5280, May 2008,
<https://ww.rfc-editor.org/info/rfc5280>.

[RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
Ext ensi ons: Extension Definitions", RFC 6066,
DA 10.17487/ RFC6066, January 2011,
<https://www. rfc-editor.org/info/rfc6066>.

[RFC6960] Santesson, S., Myers, M, Ankney, R, Mlpani, A,
Gal perin, S., and C. Adanms, "X 509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP',
RFC 6960, DO 10. 17487/ RFC6960, June 2013,
<https://ww.rfc-editor.org/info/rfc6960>.

[RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
Multiple Certificate Status Request Extension", RFC 6961,
DO 10.17487/ RFC6961, June 2013,
<https://www. rfc-editor.org/info/rfc6961>.
9.3. URIs
[1] https://cabforumorg
[2] https://ww. vasco. con conpany/ about _vasco/ press_roont
news_ar chi ve/ 2011/ news_di gi notar _reports_any
security_incident.aspx
Aut hor’ s Addr ess

St ephen Kent
| ndependent

Email: kent@l um mt. edu

Kent Expi res Cctober 14, 2018 [Page 30]

TRANS (Public Notary Transparency) R Stradling

I nternet-Draft Conpdo CA, Ltd.
I ntended status: Experinental E. Messeri
Expires: July 21, 2017 Google WK Ltd

January 17, 2017

Certificate Transparency: Donmain Label Redaction
draft-strad-trans-redaction-01

Abst ract

Thi s docunent defines nmechanisns to allow DNS domai n name | abel s that
are considered to be private to not appear in public Certificate
Transparency (CT) logs, while still retaining nost of the security
benefits that accrue fromusing Certificate Transparency.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on July 21, 2017
Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Stradling & Messeri Expires July 21, 2017 [Page 1]

Internet-Draft CT Domai n Label Redaction January 2017

Tabl e of Contents

1.
2
3

7
7

I nt roducti on .
Requi renent s Language
Redacti on Mechani sns

.1. Using Wldcard CErtlflcates

Usi ng a Nane- Constrai ned Internedlate CA .
2.1. Presenting SCTs, Inclusion Proofs and STFB
2.2. Matching an SCT to the Correct Certificate

Redacting Labels in Precertificates

redact edSubj ect Al t Nane Certificate ExtenS|on

Reconstructing the TBSCertificate

ecurity Considerations . .
Avoi di ng Overly Redact ed Domal n Nanes .

Privacy Consi derations Co

2
3.
3.
3.
3.
3.
3.
S
1.

.1. Ensuring Effective Redactlon

Acknow edgenent s

Ref erences

1. Nor mati ve References
2. Informative References

Aut hor s’ Addr esses

1. I nt

roduction

3. 1.

3.2. Verifying the redactedSubject Al t Name extension
3.3. S
c

OOV NOOODUITRARWWWN

Some domain owners regard certain DNS domain nanme |abels within their

regi

stered donmai n space as private and security sensitive

Even

t hough these donmins are often only accessible within the domain

owner’'s private network

it’s common for themto be secured using

publicly trusted Transport Layer Security (TLS) server certificates.

Cert

ificate Transparency vl [RFC6962] and v2

[I-D.ietf-trans-rfc6962-bis] describe protocols for publicly |ogging
the existence of TLS server certificates as they are issued or

observed.

t hat
regi

as TLS clients devel op policies that mandate CT conpli ance.

Si nce each TLS server certificate |ists the donmai n nanes

it is intended to secure, private donmain nane |abels within

stered donai n space could end up appearing in CT |ogs,

especially
Thi s

seens |ike an unfortunate and potentially unnecessary privacy |eak
because it’'s the registered domain nanes in each certificate that are
of primary interest when using CT to |ook for suspect certificates.

TODO Highlight better the differences between registered domai ns and
subdomai ns, referencing the rel evant DNS RFCs.

Stradli

ng & Messeri Expires July 21, 2017

[Page 2]

Internet-Draft CT Domai n Label Redaction January 2017

2

3.

Requi rement s Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Redacti on Mechani sns

We propose three mechani sms, in increasing order of inplenentation
complexity, to allow certain DNS donain nane | abels to not appear in
public CT | ogs:

0 Using wildcard certificates (Section 3.1) is the sinplest option
but it only covers certain use cases.

0 Logging a name-constrained internediate CA certificate in place of
the end-entity certificate (Section 3.2) covers nore, but not all
use cases.

0 Therefore, we define a donmain | abel redaction nechani sm
(Section 3.3) that covers all use cases, at the cost of
consi derably increased inplenmentation conplexity.

We anticipate that TLS clients nmay devel op policies that inpose
addi tional conpliancy requirements on the use of the Section 3.2 and
Section 3.3 nechani sns.

To ensure effective redaction, CAs and domai n owners should note the
privacy considerations (Section 5).

TODO(erann): Do we need to further expand (either here or in the
foll owi ng subsections) on when each of the mechanisnms is/isn't
sui tabl e?

TODG: Previously, these nechanisns were defined in earlier revisions
of CTv2 [I-D.ietf-trans-rfc6962-bis], and nothing was said about
compatibility with CTvl. But now, given that these mechani snms have
been decoupled from[I-D.ietf-trans-rfc6962-bis], and given that at

| east one major TLS client has announced a policy of mandatory CT
compliance that will alnpbst certainly take effect before CIv2 is

wi del y depl oyed, we shoul d consi der neking sone or all of these
mechnani sms conpatible with both CTvl and CTv2.

1. Using Wldcard Certificates
A certificate containing a DNS-1D [RFC6125] of "*.exanple.com' could

be used to secure the donmin "topsecret.exanple.cont, wthout
revealing the | abel "topsecret” publicly.

Stradling & Messeri Expires July 21, 2017 [Page 3]

Internet-Draft CT Domai n Label Redaction January 2017

Since TLS clients only match the wildcard character to the conplete

| eft nost | abel of the DNS domain nanme (see Section 6.4.3 of

[RFC6125]), a different mechanismis needed when any | abel other than
the leftnost label in a DNS-ID is considered private (e.qg.
"top.secret.exanple.conf'). Also, wildcard certificates are

prohi bited in some cases, such as Extended Validation Certificates
[EV.Certificate. Guidelines].

3.2. Using a Nanme-Constrained Intermedi ate CA

An internediate CA certificate or internediate CA precertificate that

contai ns the Name Constraints [RFC5280] extension MAY be | ogged in

pl ace of end-entity certificates issued by that internediate CA, as
long as all of the follow ng conditions are net:

o there MUST be a non-critical extension (O D 1.3.101.76, whose
extnVal ue OCTET STRI NG contains ASN.1 NULL data (0x05 0x00)).
This extension is an explicit indication that it is acceptable to
not log certificates issued by this internediate CA

o there MUST be a Nane Constraints extension, in which
* pernittedSubtrees MUST specify one or nore dNSNanes.

* excludedSubt rees MJST specify the entire | Pv4 and | Pv6 address
ranges.

Bel ow i s an exanpl e Nane Constraints extension that neets these
condi tions:

Stradling & Messeri Expires July 21, 2017 [Page 4]

Internet-Draft CT Domai n Label Redaction January 2017

SEQUENCE {
OBJECT IDENTIFIER "2 5 29 30’
BOOLEAN TRUE
OCTET STRI NG encapsul ates {
SEQUENCE {
[0] {
SEQUENCE {
[2] '’ exampl e. con
}
}
[1] {
SEQUENCE {

[7] 00 00 00 00 00 OO 0O 0O

}
SEQUENCE {
[7]
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3.2.1. Presenting SCTs, Inclusion Proofs and STHs

Each SCT (and optional correspondi ng inclusion proof and STH)
presented by a TLS server MAY correspond to an internediate CA
certificate or internmediate CA precertificate (to which the server
certificate chains) that neets the requirenents in Section 3.2. This
extends section TBD of CT v2 [I-D.ietf-trans-rfc6962-bis], which
specifies that each SCT al ways corresponds to the server certificate
or to a precertificate that corresponds to that certificate.

Each SCT (and optional correspondi ng inclusion proof and STH)
included by a certification authority in a Transparency |Information
X.509v3 extension in the "singl eExtensions" of a "SingleResponse” in
an OCSP response MAY correspond to an internediate CA certificate or
intermedi ate CA precertificate (to which the certificate identified
by the "certlI D' of that "SingleResponse"” chains) that neets the
requirenents in Section 3.2. This extends section TBD of CT v2
[I-Dietf-trans-rfc6962-bis], which specifies that each SCT al ways
corresponds to the certificate identified by the "certlD' of that

" Si ngl eResponse” or to a precertificate that corresponds to that
certificate.

Each SCT (and optional correspondi ng inclusion proof and STH)
included by a certification authority in a Transparency |Information

Stradling & Messeri Expires July 21, 2017 [Page 5]

Internet-Draft CT Domai n Label Redaction January 2017

X.509v3 extension in a certificate MAY correspond to an internedi ate
CA certificate or internediate CA precertificate (to which the
certificate chains) that neets the requirenents in Section 3.2. This
extends section TBD of CT v2 [I-D.ietf-trans-rfc6962-bis], which
specifies that each SCT al ways corresponds to a precertificate that
corresponds to that certificate.

TODO Refactor this section to avoid repetition
3.2.2. Matching an SCT to the Correct Certificate

Bef ore considering any SCT to be invalid, a TLS client MJST attenpt
to validate it against the server certificate and against each of the
zero or nore suitable name-constrained intermediates in the chain.
These certificates may be evaluated in the order they appear in the
chain, or indeed, in any order

TODO Shall we specify that there MJUST be no nore than ONE nane-
constrained intermediate in the chain?

TODO Shall we specify that all presented SCTs MJST correspond to the
same (end-entity or nane-constrained internediate) certificate?

3.3. Redacting Labels in Precertificates

When creating a precertificate, the CA MAY include a
redact edSubj ect Al t Nane (Section 3.3.1) extension that contains, in a
redacted form the sanme entries that will be included in the
certificate's subjectAl tNane extension. Wen the
redact edSubj ect Al t Nane extension is present in a precertificate, the
subj ect Al t Nane ext ensi on MJUST be onmitted (even though it MJST be
present in the corresponding certificate).

Wl dcard "*" | abels MUST NOT be redacted, but one or npre non-
wi l dcard | abels in each DNS-1D [RFC6125] can each be replaced with a
redacted | abel as foll ows:

REDACT(| abel)
_label _hash

prefix || BASE32(index || _I
LABELHASH(keyid_len || keyid

abel _hash)
|| label _len || | abel)

"label" is the case-sensitive |abel to be redacted.
"prefix" is the "?" character (ASCI| val ue 63).
"index" is the 1 byte index of a hash function in the CT hash

algorithmregistry (section TBD of [I-D.ietf-trans-rfc6962-bis]).
The val ue 255 is reserved.

Stradling & Messeri Expires July 21, 2017 [Page 6]

Internet-Draft CT Domai n Label Redaction January 2017

"keyid_len" is the 1 byte length of the "keyid".

"keyid" is the keyldentifier fromthe Subject Key ldentifier
extension (section 4.2.1.2 of [RFC5280]), excluding the ASN. 1 OCTET
STRING tag and | ength bytes.

"l abel _len" is the 1 byte length of the "I abel"
"||" denotes concatenation.

"BASE32" is the Base 32 Encoding function (section 6 of [RFCA4648]).
Pad characters MJUST NOT be appended to the encoded data.

"LABELHASH' is the hash function identified by "index".
3.3.1. redactedSubjectAltName Certificate Extension

The redact edSubj ect Al t Name extension is a non-critical extension (OD
1.3.101.77) that is identical in structure to the subjectAltNane

ext ensi on, except that DNS-I1Ds MAY contain redacted | abels

(Section 3.3).

When used, the redactedSubject Al t Name extensi on MJUST be present in
both the precertificate and the corresponding certificate.

This extension informs TLS clients of the DNS-1D | abel s that were
redacted and the degree of redaction, while minimzing the conplexity
of TBSCertificate reconstruction (Section 3.3.3). Hashing the
redacted labels allows the legitimate donmain owner to identify

whet her or not each redacted | abel correlates to a | abel they know
of .

TODO Consider the pros and cons of this "un' redaction feature. |If
the cons outweigh the pros, switch to using Andrew Ayer’s alternative
proposal of hashing a randomsalt and including that salt in an
extension in the certificate (and not including the salt in the
precertificate).

Only DNS-I1D | abel s can be redacted using this nechanism However,
CAs can use the Section 3.2 mechanismto allow DNS donain name | abels
in other subjectAltNanme entries to not appear in |ogs.

TODO: Shoul d we support redaction of SRV-1Ds and URI-1Ds using this
mechani snf

Stradling & Messeri Expires July 21, 2017 [Page 7]

Internet-Draft CT Domai n Label Redaction January 2017

3.3.2. Verifying the redactedSubj ect Al t Nane ext ensi on

If the redactedSubj ect Alt Name extension is present, TLS clients MJST
check that the subjectAl tNane extension is present, that the
subj ect Al t Nane extension contains the sane nunber of entries as the
redact edSubj ect Al t Name ext ensi on, and that each entry in the

subj ect Al t Name extension has a matching entry at the sanme position in
t he redact edSubj ect Al t Nane extension. Two entries are matching if

ei ther:

0o The two entries are identical; or
0 Both entries are DNS-I1Ds, have the sane nunber of |abels, and each
| abel in the subjectAltNane entry has a matching | abel at the sane
position in the redactedSubjectA tNane entry. Two |abels are
matching i f either:
* The two | abels are identical; or
* Neither label is "*" and the |label fromthe
redact edSubj ect Alt Nane entry is equal to REDACT(| abel from
subj ect Al t Nane entry) (Section 3.3).

If any of these checks fail, the certificate MJUST NOT be consi dered
compliant.

3.3.3. Reconstructing the TBSCertificate
Section TBD of [I-D.ietf-trans-rfc6962-bis] describes how TLS clients
can reconstruct the TBSCertificate conmponent of a precertificate from
a certificate, so that associated SCTs rmay be verified

If the redactedSubj ect Alt Name extension (Section 3.3.1) is present in
the certificate, TLS clients MJST al so

o Verify the redactedSubject Al't Nanme extension agai nst the
subj ect Al t Nane ext ension according to Section 3. 3. 2.

0 Once verified, renmove the subjectAltName extension fromthe
TBSCertificate.

4. Security Considerations
4.1. Avoiding Overly Redacted Domai n Nanes
Redacti on of domain nane |abels (Section 3.3) carries the sane risks

as the use of wildcards (e.g., section 7.2 of [RFC6125]). |If the
entirety of the domain space bel ow the unredacted part of a domain

Stradling & Messeri Expires July 21, 2017 [Page 8]

Internet-Draft CT Domai n Label Redaction January 2017

5.

5.

name is not registered by a single domain owner (e.g.,
REDACT(| abel). com REDACT(| abel). co. uk and other [Public. Suffix.List]
entries), then the domain name may be considered by clients to be
overly redacted.

CAs shoul d take care to avoid overly redacting domain nanes in
precertificates. It is expected that nonitors will treat
precertificates that contain overly redacted domai n nanes as
potentially m sissued. TLS clients MAY consider a certificate to be
non-conpliant if the reconstructed TBSCertificate (Section 3.3.3)
contains any overly redacted donai n nanes.

TODQ(eranm): Describe how the CT ecosystem woul d be harned if the use
of redaction becones too w despread.

Privacy Consi derations
1. Ensuring Effective Redaction

Al t hough t he nmechani sns described in this document renove the need
for private | abels to appear in CT logs, they do not guarantee that
this will never happen. For exanple, anyone who encounters a
certificate could choose to subnit it to one or nore |ogs, thereby
rendering the redaction futile.

Domai n owners are advised to take the follow ng steps to mnimnize the
l'ikelihood that their private |labels will becone known outside their
cl osed conmuniti es:

0 Avoid registering private labels in public DNS

0 Avoid using private |labels that are predictable (e.g., "ww'
| abel s consisting only of nunerical digits, etc). |If a |label has
insufficient entropy then redaction will only provide a thin |ayer
of obfuscation, because it will be feasible to recover the |abe
via a brute-force attack

0 Avoid using publicly trusted certificates to secure private domain
space.

0 Avoid enabling unrestricted access for DNS zone transfer (AXFR)
requests (see section 5 of [RFC5936]).

CAs are advised to carefully consider each request to redact a | abe
using the Section 3.3 nmechanism Wen a CA believes that redacting a
particul ar |abel would be futile, we advise rejecting the redaction
request. TLS clients may have policies that forbid redaction, so

Stradling & Messeri Expires July 21, 2017 [Page 9]

Internet-Draft CT Domai n Label Redaction January 2017

| abel redaction should only be used when it’'s absolutely necessary
and likely to be effective.

6. Acknow edgenents

The authors would like to thank Andrew Ayer and TBD for their
val uabl e contri buti ons.

A big thank you to Symantec for kindly donating the O Ds fromthe
1.3.101 arc that are used in this docunent.

7. References
7. 1. Nor mat i ve Ref erences

[I-Dietf-trans-rfc6962-bi s]
Laurie, B., Langley, A, Kasper, E., Messeri, E., and R
Stradling, "Certificate Transparency Version 2.0", draft-
ietf-trans-rfc6962-bis-24 (work in progress), Decenber
2016.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<http://wwv rfc-editor.org/info/rfc2119>.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10.17487/ RFC4648, Cctober 2006,
<http://ww.rfc-editor.org/info/rfc4648>.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DO 10.17487/ RFC5280, May 2008,
<http://ww.rfc-editor.org/info/rfc5280>.

[RFC5936] Lewis, E. and A. Hoenes, Ed., "DNS Zone Transfer Protocol
(AXFR)", RFC 5936, DA 10.17487/RFC5936, June 2010,
<http://ww. rfc-editor.org/info/rfc5936>.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domai n-Based Application Service ldentity
within Internet Public Key Infrastructure Using X 509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DO 10.17487/ RFC6125, March
2011, <http://ww.rfc-editor.org/info/rfc6125>.

Stradling & Messeri Expires July 21, 2017 [Page 10]

Internet-Draft CT Domai n Label Redaction January 2017

[RFC6962] Laurie, B., Langley, A, and E. Kasper, "Certificate
Transparency", RFC 6962, DA 10.17487/ RFC6962, June 2013,
<http://ww. rfc-editor.org/info/rfc6962>.

7.2. Informative References
[EV. Certificate. Guidelines]
CA/ Browser Forum "Qui delines For The Issuance And
Management OF Extended Validation Certificates", 2007,
<htt ps: // cabf orum or g/ wp- cont ent / upl oads/
EV Certificate_Quidelines. pdf>.
[Public. Suffix.List]
Mozilla Foundation, "Public Suffix List", 2016,
<https://publicsuffix.org>.
Aut hors’ Addresses

Rob Stradling
Conpdo CA, Ltd.

Enmai | : rob. stradl i ng@onodo. com
Eran Messeri
Googl e WK Ltd.

Enmai | : eranm@oogl e. com

Stradling & Messeri Expires July 21, 2017 [Page 11]

TRANS L. Xia, Ed.

I nternet-Draft D. Zhang
I ntended status: Standards Track Huawei
Expi res: Septenber 7, 2017 D. GIInor
CVRG

B. Sarikaya

Huawei USA

March 6, 2017

CT for Binary Codes
draft-zhang-trans-ct-binary-codes- 04

Abstract

Thi s docunent proposes a solution extending the Certificate
Transparency protocol [I-D.ietf-trans-rfc6962-bis] for transparently
| oggi ng the software binary codes (BCor its digest with their
signature, to enable anyone to nonitor and audit the software
provider activity and notice the distribution of suspect software as
well as to audit the BC | ogs thenselves. The solution is called

"Bi nary Transparency" in this docunent.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on Septenber 7, 2017

Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of

Xia, et al. Expi res Septenber 7, 2017 [Page 1]

Internet-Draft CT for Binary Codes March 2017

publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . 2
1.1. Requirenents Language . . 3
2. Cryptographi c Conponents of Brnary Transparency . 3
3. Mdtivation Scenarios . 3
4. Log Format and Operation Exten5|ons . 4
4.1. Log Entries . . 5
4. 2. Translteantructure . 5
4.3. Merkle Tree Leaves . 6
4.4, Structure of the Signed Brnary Trnestanp 7
5. Log dient Messages . . 9
5.1. Add Binary Code and Cbrtlflcate Chaln to Log 9
5.2. Retrieve Entries and STH from Log . - Ce 9
53 Summary 10
6. Acknow edgenents 11
7. | ANA Considerations 1
8. Security Considerations 11
9. References . . e v
9.1. Normative References Pt I
9.2. Informative References 11
Authors’ Addresses 12
1. Introduction

Digital signatures have been widely used in software distributions to
prove the authenticity of software. Through verifying signature, an
end user can ensure that the gotten software is devel oped by a | ega
provider (e.g., Mcrosoft) and is not tanpered during the
distribution. |If an end user does not have a direct trust
relationship with the software provider, an certificate chain to a
trust anchor that the user trusts should be provided. That is why
many signature nechani sns for software distribution are based on
public key infrastructure (PKlI). However, signature nechani sns
cannot prevent software provider fromdistributing software either

wi th custom zed backdoors/drawbacks, or they do not own the right to
distribute. Besides, it may be hard for a user to detect the

di fferences between the software it got and the software provided to
ot her users.

Xia, et al. Expi res Septenber 7, 2017 [Page 2]

Internet-Draft CT for Binary Codes March 2017

This draft describes the Binary Transparency nechani sm whi ch extends
the Certificate Transparency (CT) protocol specified in [I-D.ietf-
trans-rfc6962-bis] to support |ogging binary codes. A software

provi der can subnit its software Binary Codes (BC) (or digests of
codes in order to e.g., save space or avoid violating |license
restrictions) with associated signhature to one or nore CT |o0gs.
Therefore, a user can easily detect the existence of software BC with
cust om zed backdoors, by conparing with the according CT log entries.
The software provider can nonitor the logs all the tine to detect
whet her there are tenpered copies of its software in the log, or its
software is submtted into the | og by other software providers

wi thout authority. |In summary, the end users should be informed when
all the above situations happen, how to achieve it is beyond the
scope of this docunent.

Wth this nmechanism when a section of binary codes and associ at ed
signature has been subnmitted to a log, if the provided certificate
chain ends with a trust anchor that is accepted by the log, the log
will accept it and return the Signed Binary Tinmestanp (SBT) to the
software provider as the evidence of its acceptance provided to the
users later. Thus, the users should only trust the software
acconpani ed by SBT, even if it is associated with a proper signature.
This approach then forces the software providers to subnmit their

bi nary codes to | ogs before distributing them

Bi nary Transparency is an extension to Certificate Transparency,
whi ch conply with nost of the specification in [I-D.ietf-trans-
rfc6962-bis]. This docunent only focuses on the extension part of
Bi nary Transparency nechani sns.

1.1. Requirenents Language
The key words "MJST", "MJST NOT', "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

2. Cryptographic Conponents of Binary Transparency
When applying CT for binary codes, a log is a single, ever-grow ng,
append-only binary Merkle Hash Tree of software BC, with associated
signature and certificate chain, conplying with the Merkle Hash Tree
specification in Section 2 of [I-D.ietf-trans-rfc6962-bis].

3. Mdtivation Scenarios
The docunents di scl osed by Edward Snowden have rai sed the concerns of

people on the vulnerability of the network devices to the passive
attacks perforned by NSA or other organizations. Meanwhile, the

Xia, et al. Expi res Septenber 7, 2017 [Page 3]

Internet-Draft CT for Binary Codes March 2017

net wor k devi ce vendors are also concerned in their foreign nmarkets
because their products are suspected to have custoni zed backdoors for
adversaries to performattacks. It is desired for vendors to publish
the design details of the products and provide sufficient facilities
for clients to check whether certain hardware or software of a device
has been inproperly nodified. There are various techniques that
could be used for this purpose. One way is to force a vendor to
submit the binary codes of its firmvares to the public CT | ogs.

Theref ore, anyone can verify the correctness of each log entry and
nmoni t or when new software BCs are added to it. Specially, custoners
can easily detect whether the vendor is releasing the sane firmare
to everyone. In addition, under the assistance of the Binary
Transparency, customer will have nore confidence on the quality of
firmvare. Since the same codes are used by different custonmers al
over the world, the drawbacks in firmvare will be easier to be

det ect ed.

There are similar requirenments to detect the custom zed backdoors or
nm sdistribution in the software market. Besides the software itself,
a user may al so concern whether there are custom zed backdoors in the
patches. The Binary Transparency can hel p address such concerns in

the sane way. |n addition, this nechanismcan al so show sone
advantages in the scenarios where the signer is not aware that their
keys have been conpromi sed. |If their update systemis required to

use a CT log, they have the chance to find out about their
conprom se

4. Log Format and Operation Extensions

The software provider can subnit the software and the associated
signature to any preferred CT logs before distributing it. |In sone
cases, the software provider may select only to subnmit the signed

di gest of the software because of the license restriction or the
space restriction of log entry. In order to verify the attribution
of each log entry, a log SHALL publish a set of certificates that it
trusts to benefit an software provider to construct an certificate
chai n connecting a trust anchor and the certificate containing the
key used to sign the software.

A log needs to verify the certificate chain provided by the software
provi der, and MJST refuse to accept the signed software/digest if the
chain cannot |ead back to a trusted anchor. |If the software/di gest
and the signature are accepted by a log and an SBT is issued, the |og
MUST store the entire chain and MJUST present this chain for auditing
upon request.

Conplying with the log format definition in [I-D.ietf-trans-
rfc6962-bis], sone definitions remain the sane: "Log I D', "Merkle

Xia, et al. Expi res Septenber 7, 2017 [Page 4]

Internet-Draft CT for Binary Codes March 2017

Tree Head", "Signed Tree Head", "Merkle Consistency Proofs", "Merkle
I ncl usi on Proofs", "Shutting down a log"... The other required | og
format extension for Binary Transparency are specified in the
foll owi ng secti ons:

4.1. Log Entries

Each software entry in a |l og MJIST include a "BinaryChai nEnt ryV2"
structure as bel ow

enum { binary(TBDl), binary_digest(TBD2) } BIN_Signed_Type

opaque BI NARY<1. . 2"24-1>
opaque ASN. 1Cert<1..2724-1>
struct {
Bl N_Si gned_Type bin_signed_type;
Bl NARY si ghed_sof t war e;
ASN. 1Cert certificate _chain<l..2"24-1>
} Bi naryChai nEntryVv2

"bi n_signed_type" indicates whether the signature is generated based
on the software or its digest.

"signed_software" consists a Contentlnfo structure specified in
CMS[RFC5652] . Specifically, this field includes the binary codes/
di gest, the signature, and any other additional information used to
describe the software and the issuer publishing the software. The
software SHOULD be encapsul ated and signed foll owi ng the ways
specified in CM5[RFC5652] . If signed type is TBDl1, the software
binary code is encapsulated in this field. |If signed_type is TBD2,
t he SHA- 256 di gest of software binary code is encapsulated in this
field.

"certificate_chain" includes the certificates constructing a chain
fromthe certificate of software provider to a certificate trusted by
the log. The first certificate MUST be the certificate of software
provider. Each following certificate MIST directly certify the one
preceding it. The final certificate MJST either be, or be issued by,
a root certificate accepted by the log. |If the certificate chainis
provided in the "signed software" field structure, this field is set

to enpty.
4.2. Transltem Structure

The extended "Transltent structure is defined as bel ow

Xia, et al. Expi res Septenber 7, 2017 [Page 5]

Internet-Draft CT for Binary Codes March 2017

enum {
reserved(0),
x509 _entry_v2(1l), precert_entry v2(2),
x509 sct _v2(3), precert_sct_v2(4),
signed_tree_head v2(5), consistency_proof v2(6),
i ncl usi on_proof _v2(7), x509_sct_with_proof_v2(8),
precert_sct_with_proof_v2(9), BIN entry_v2(TBD3),
BI N_sbt_v2(TBD4), BIN _sbt_w th_proof_v2(TBD5),
(65535)

} VersionedTransType;

struct {

Ver si onedTransType versioned_type;

sel ect (versioned type) {
case x509 entry v2: TinestanpedCertificateEntryDataVz;
case precert_entry v2: TinestanpedCertificateEntryDataV2;
case x509_sct _v2: SignedCertificateTi mestanpDat aV2;
case precert_sct_v2: SignedCertificateTi nestanpbDat aVvz;
case signed_tree_head_v2: SignedTreeHeadDat aVvz;
case consi stency_proof v2: Consi st encyProof Dat aVz;
case inclusion_proof _v2: InclusionProof Dat aV2;
case x509 sct_with _proof v2: SCTWthProof Dat aV2;
case precert_sct_wi th_proof_v2: SCTWthProof Dat aV2;
case BIN entry_v2: Ti mestanpedBi naryEnt r yDat aV2;
case BIN_sbt_v2: SignedBi naryTi mest anpDat aV2;
case BIN sht _with _proof v2: SBTWt hProof Dat aVz;

} data;

} Transltem
"versioned_type " is the type of the encapsul ated data structure of
Transltem Three new values are added to it -- BIN entry v2(TBD3),
BI N sbt v2(TBD4), BIN sbt with proof v2(TBD5).

For "data" structure, a new type structure of
Ti mest anpedBi naryEnt ryDat aV2 i s added.

. 3. Merkl e Tree Leaves

Each Merkle Tree leaf is defined as the hash value of a "Transltent
structure of according type. Here, a new type ("BIN_entry_v2") of
"Translteni structure is created, which encapsul ates a new

"Ti mest anpedBi nar yEnt r yDat aV2" structure defined as bel ow

Xia, et al. Expi res Septenber 7, 2017 [Page 6]

Internet-Draft CT for Binary Codes March 2017

opaque TBSCertificate<l..2724-1>
struct {
ui nt 64 ti mestanp;
opaque issuer_key hash<32..278-1>
Bl N_Si gned_Type bin_signed_type;
TBSSi gnedSof t ware tbs_si gned_sof t war e;
Sbt Ext ensi on sbt _ext ensi ons<0..2"16- 1>
} Ti mest anpedBi nar yEnt r yDat aV2

"timestanp" is the NTP Tine [RFC5905] at which the software binary
code was accepted by the log, neasured in mlliseconds since the
epoch (January 1, 1970, 00:00 UTC), ignoring |leap seconds. Note that
the leaves of a log’'s Merkle Tree are not required to be in strict
chronol ogi cal order.

"i ssuer_key hash" is the HASH of the public key of the software

provi der that signed the software, cal cul ated over the DER encodi ng
of the key represented as Subject PublicKeylnfo [RFC5280]. This is
needed to bind the software provider to the software binary code,
making it inpossible for the corresponding SBT to be valid for any

ot her software whose TBSSi gnedSoftware mat ches "tbs_si gned_sof t ware".
The length of the "issuer_key hash" MJST nmatch HASH SI ZE.

"bi n_signed_type" indicates whether the signature is generated based
on the software or its digest.

"tbs_signed_software" is the DER encoded TBSSi gnedSoftware fromthe
"signed_software" in the case of a "BinaryChai nEntryV2"

4.4, Structure of the Signed Binary Tinestanp

An SBT is a "Transltenm structure of type "bin_sbt_v2", which
encapsul ates a " Si gnedBi naryTi nest anpDat aV2" structure:

Xia, et al. Expi res Septenber 7, 2017 [Page 7]

Internet-Draft CT for Binary Codes March 2017

enum {
reserved(65535)
} Sbt Ext ensi onType;

struct {
Sht Ext ensi onType sbt _extensi on_type;
opaque sbt _ext ensi on_dat a<0. . 2"16- 1>
} Sbt Ext ensi on;

struct {
Logl D | og_i d;
ui nt 64 ti mestanp;
Sbt Ext ensi on sbt _ext ensi ons<0..2"16- 1>
digitally-signed struct {
Transltem ti mest anped_entry;
} signature;
} Si gnedBi naryTi nest anpDat aV2;

"log_id" is this log's unique ID, encoded in an opaque vector

"timestanp” is equal to the tinestanp fromthe
"Ti mest anpedBi nar yEnt ryDat aV2" structure encapsulated in the
"timestanped _entry".

"sbt _extension_type" identifies a single extension fromthe | ANA
registry in Section 6. At the tine of witing, no extensions are
speci fi ed.

The interpretation of the "sht_extension_data" field is deternined
solely by the value of the "sbt extension_type" field. Each docunent
that registers a new "sbt_extension_type" nust describe howto
interpret the correspondi ng "sbt_extension_data"

"sbt _extensions" is a vector of 0 or nore SBT extensions. This
vector MJUST NOT include nore than one extension with the sane

"sbt _extension_type". The extensions in the vector MJST be ordered
by the value of the "sbt_extension_type" field, snallest value first.
If an inplenmentation sees an extension that it does not understand,
it SHOULD ignore that extension. Furthernore, an inplenmentation MAY
choose to ignore any extension(s) that it does understand.

The encoding of the digitally-signed elenent is defined in [RFC5246].

"timestanped_entry" is a "Transltenm structure that MJST be of type
"Bl N_entry_v2".

Xia, et al. Expi res Septenber 7, 2017 [Page 8]

Internet-Draft CT for Binary Codes March 2017

5. Log Oient Messages

In Section 5 of [I-D.ietf-trans-rfc6962-bis], a set of nessages is
defined for clients to query and verify the correctness of the |og
entries they are interested in. 1In this docunent, a new nessage is
defined and an existing nessage is extended for CT to support Binary
Transpar ency.

5.1. Add Binary Code and Certificate Chain to Log
PCST https://<log server>/ct/vl/ add-Bi nary-chain

I nput s:
bi n_si gned_type: indicates whether the input paraneter "software"
is constructed by the binary code or its digest.
software: the binary code (or digest), the signature, and the
i nformation used to describe the software and the software
provi der publishing the software, which are encapsul ated
followi ng the way specified in CM5[RFC5652] . The subnitter
desires a SBT for this elenent.
chain: An array of base64-encoded certificates. The first elenent is
the certificate used to sign the binary code (or digest); the
second certifies the first and so on to the last, which either is,
or is certified by, an accepted trust anchor.If the certificate
chain information has been included in the "software" field, this
field could be enpty.

Qut put s:
sbt: A base64 encoded "Transltenm of type "BIN sbt _v2", signed by this
| og, that corresponds to the subnmitted software.
Error codes:
Be identical with the according part in Section 5.1 (Add Chain to Log) of
[I-Dietf-trans-rfc6962-his].

5.2. Retrieve Entries and STH from Log

Xia, et al. Expi res Septenber 7, 2017 [Page 9]

Internet-Draft CT for Binary Codes March 2017

GET https://<log server>/ct/v2/get-entries
| nput s:
start: O-based index of first entry to retrieve, in decinal.
end: O0-based index of last entry to retrieve, in decinal
CQut put s:
entries: An array of objects, each consisting of
| eaf _input: The base64 encoded "Transltent structure of type
"x509 _entry_v2" or "precert_entry_v2" or "BIN entry v2"
(see Section 4.3).
|l og entry: The base64 encoded |l og entry (see Section 4.1). |In the
case of an "x509 entry v2" entry, this is the whole
"X509Chai nEntry"; and in the case of a "precert_entry_v2"
this is the whole "PrecertChai nEntryV2"; and in the case of a
"BIN entry v2", this is the whol e "Bi naryChai nEntryVv2"
sct: The base64 encoded "Transltenm® of type "x509 sct_v2" or "precert_sct
v2"
or "BIN sbt_v2"corresponding to this log entry.
sth: A base64 encoded "Transltem of type "signed tree head v2", signed
by this Iog.

More details are identical with Section 5.7 of [I-D.ietf-trans-
rfc6962-hisj.

5.3. Summary

In summary, the above extensions of Binary Transparency enable the
software providers, the end users, and anyone to nonitor and audit
the CT logs to mtigate the possible attacks induced by tanpered
software, or software m sdistribution

This section gives a brief introduction to all the other aspects of
Bi nary Transparency mechani sns for the reason of conpl eteness, since
they comply with the basic CT protocol specification. For nore
details please refer to the corresponding sections of [I-D.ietf-
trans-rfc6962-bis].

Sof tware providers act the sanme as TLS servers in CT protocol. They
present one or nore SBTs fromone or nore |logs to each end user while
di stributing the software, where each SBT corresponds to the
software. Software providers SHOULD al so present correspondi ng

i nclusion proofs and STHs. In which way the software providers
present this information is beyond the scope of this docunent.

The end users of software acts the sane as Clients of |ogs described
in CT protocol. They can performvarious different functions, such
as: get |log netadata, exchange STHs they see, receive and validate
SBTs, Validate inclusion proofs.

Xia, et al. Expi res Septenber 7, 2017 [Page 10]

Internet-Draft CT for Binary Codes March 2017

Bi nary Transparency al so provides nonitoring and auditing functions
with the sane algorithnms defined for CT protocol.

Bi nary Transparency supports the sane algorithmagility feature for
signature al gorithm and hash algorithmas CT protocol.

6. Acknow edgenents
7. | ANA Consi derations

To be added.

8. Security Considerations

To be added.

9. References
9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119,

DO 10.17487/ RFC2119, March 1997,
<http://wwv. rfc-editor.org/info/rfc2119>.

[RFC5652] Housley, R, "Cryptographic Message Syntax (CMs5)", STD 70,
RFC 5652, DA 10. 17487/ RFC5652, Septenber 2009,
<http://ww.rfc-editor.org/info/rfc5652>.

[RFC5905] MIls, D, Martin, J., Ed., Burbank, J., and W Kasch,
"Network Time Protocol Version 4: Protocol and Al gorithmns
Speci fication", RFC 5905, DA 10.17487/RFC5905, June 2010,
<http://ww. rfc-editor.org/info/rfc5905>.

9.2. Informative References

[I-Dietf-trans-rfc6962-bis]

Laurie, B., Langley, A, Kasper, E., Messeri, E., and R
Stradling, "Certificate Transparency Version 2.0", draft-
ietf-trans-rfc6962-hbis-24 (work in progress), Decenber
2016.

Aut hors’ Addresses

Liang Xia (editor)
Huawei

Emai | : frank. xi al i ang@uawei . com

Xia, et al. Expi res Septenber 7, 2017 [Page 11]

Internet-Draft CT for Binary Codes March 2017
Dacheng Zhang
Huawei
Enai | : dacheng. zhang@wuawei . com
Dani el Kahn G I nor
CVRG

Enmai | : dkg@i f t hhor senan. net

Behcet Sari kaya

Huawei USA

5340 Legacy Dr. Building 3
Pl ano, TX 75024

Emai | : sari kaya@ eee. org

Xia, et al. Expi res Septenber 7, 2017 [Page 12]

Net wor k Wor ki ng Group D. Zhang
I nternet-Draft

I ntended status: Experinental D. Gl nor

Expi res: January 6, 2016 CVRG

D. He

Huawei

B. Sarikaya

Huawei USA

N. Kong

July 5, 2015

Certificate Transparency for Domain Nane System Security Extensions
draft-zhang-trans-ct-dnssec-03

Abst r act

In draft-ietf-trans-rfc6962-bis, a solution (Certificate
Transparency) is proposed for publicly |ogging the existence of
Transport Layer Security (TLS) certificates using Merkle Hash Trees.
Thi s docunment proposes a mechanismto extend Certificate Transparency
for DNSSEC which publicly logs the DS RRs to notice the issuance of
suspect key signing keys.

Requi rement s Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute

wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on January 6, 2016.

Zhang, et al. Expi res January 6, 2016 [Page 1]

Internet-Draft CT- DNSSEC

Copyright Notice

July 2015

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this docunent.

is subject to BCP 78 and the | ETF Trust’s Lega

in effect on the date of

Pl ease revi ew t hese documents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust

include Sinplified BSD Li cense text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

Provi sions and are provided wi thout warranty as

1. Introduction . . C e e e 3
2. Cryptographic Cbnponents of Certificate Transparency . 4
3. Mdtivation Scenario . 4
4. Log Format and Operation 5
4.1. Log Entries . . 5
4.2. Structure of the Sl gned Certlflcate T| rTestaer . 7
4.3. Merkle Tree . . . 8
5. Including the Slgned CErtlflcate Tlnestanp |nto DNS Securlty
Ext ensi ons 9
5.1. SCTRR 9
5.1.1. The Key Tag Field . . 10
5.1.2. The AlgorithmField . . 10
5.1.3. The Digest Type Field . 10
5.1.4. The Digest Field 10
5.1.5. The SCT Field . . 10
5.1.6. The Signature Field . 11
5.2. (Qperations .o 11
6. Log dient Messages . . 11
6.1. Add DNSSEC RR Chain to Log . . 11
6.2. Retrieve Accepted Root DNSKEY RRS . 12
7. | ANA Consi derations . Ce e 12
8. Security Considerations . 12
8.1. Logging Qher Types of RRS 12
8.2. Scalability Concerns 13
9. Acknow edgenents 13
10. Normati ve References 13
Aut hors’ Addr esses 13
Zhang, et al. Expi res January 6, 2016 [Page 2]

Internet-Draft CT- DNSSEC July 2015

1.

I nt roducti on

[I-D.ietf-trans-rfc6962-bis] specifies a Certificate Transparency
(CT) mechanismto disclosing TLS certificates into public logs. This
mechani sm benefits the public to nonitor the operations in issuing
certificates to inproper subscribers. The |ogs do not prevent ms-

i ssuing behavior directly, but the provided public audibility can
increase the possibility in detecting the inproper behaviors of

i ssuers. The logs are constructed with Merkle Hash Trees to ensure
the append-only property, and thus enable anyone to verify the
correctness of each log record. Note that CT is a comopn nmechani sm
although [I-D.ietf-trans-rfc6962-bis] only specifies howto use it to
publish TLS server certificates issued by public certificate
authorities (CAs).

Thi s docunent di scusses the use of CT in addressing the inproper

i ssuance issues in DNSSEC. DNSSEC establishes chains of public keys
for clients to assess the validity of DNS resource records. |In order
to prove the validity of keys used for signing DNS data, DNSSEC uses
DNS public key (DNSKEY) RRsets and Del egation Signer (DS) RRsets to
form aut hentication chains for the signed data, with each link in the
chai ns vouching for the next by signing the next. If an

aut henti cation chain can be eventually connected to the a trusted DNS
key or DS RR, the client then ensures the key for signing the data is
legitimate. Unlike PKIX, SDNSEC i nherently has strong naming
constraints. The owner of a zone can only be allowed to sign the RRs
in his zone. Any attenpt in signing the RRs in other zones wll be
easily detected by clients. However, the owner of a zone is
dependent on its parent delegation via the DS record to vouch for its
DNSKEY. The zone itself is responsible for publishing DS records for
the child zones that dependant on it. M sbehavior or conpronise of
the parent zone directly affects the core DNS security of the child
zone. A detailed exanple is provided in Section 3.

In order to benefit the detection of inproper issuance/delegation of
DNSSEC keys, this docunent describes an extension to CT to support
logging DSs . The CT logs are publicly auditable, nmaking it possible
for anyone to verify the correctness of the log entries and nonitor
the new DS RR s appended to the log. The |ogs do not prevent the
parent fromissuing DS records that the child di sagrees with, but
they ensure that interested parties can detect such operations. For
i nstance, For exanple, a zone owner that has been conprom sed or
compelled by a third party can hijack a child zone to return
different DNS data that is indistinguishable from DNSSEC val i dated
data fromthe child zone by using its own DNSKEY to sign DNS data on
behal f of the child zone. It could deliver this nodified DNS data to
only selected regions or individuals, nmaking this attack very
difficult to detect by the legitimate child zone.

Zhang, et al. Expi res January 6, 2016 [Page 3]

Internet-Draft CT- DNSSEC July 2015

In DNSSEC, it is assuned that the keys used for signing RRs or other
keys will be properly maintained. This work follows this assunption
and the conmprom se of key signing keys are out of scope of this work.
This work assunes the existence of inside attacker. That is, a |lega
owner of a zone may try to attack or circunmvent other zones

However, because the nam ng constraint feature of DNSSEC, a zone
owner in principle can only use its keys to performattacks on its
child zones.

This work reuses nost of the nessages and data structures specified
in[l-Dietf-trans-rfc6962-bis] and nakes necessary extensions for
supporting DS RRs. Only the extensions to
[I-D.ietf-trans-rfc6962-bis] are presented in this docunent.

2. Cryptographic Conponents of Certificate Transparency

The introduce of cryptographic conponents of CT is in Section 2 of
[I-Dietf-trans-rfc6962-bis]. Wen applying CT for NDSSEC, a log is
a single, ever-grow ng, append-only Merkle Tree of DS RRs.

3. Moti vation Scenario

Assunme a zone (foo.bar.exanple) and its parent zone (bar.exanple) are
owned by different organizations. Follows are the steps of an
exanpl e attack that the owner of the parent zone could performon the
child zone

1. Set up a fake foo.bar.exanpl e DNS server

2. The owner of parent zone generates a new KSK X1 and ZSK X2 for
the fake foo. bar.exanpl e DNS server, because it does not know the
private key of the KSK of foo.bar.exanple. The fake server uses
the KSK to sign the ZSK and uses the ZSK to sign the fake
resource records

3. The owner of parent zone generates a DS record for the KSK record
generated in step 2 in order to generate the certificate chain
for the records in the fake server.

4. The owner of bar.exanple signs the DS RRwith its zone signing
key and publishes it

5. Change the I P address of the DNS server of foo.bar.exanple in the
associated RRs to the | P address of the fake DNS server

The owner of foo.bar.exanple may try to periodically access the DNS

server of bar.exanple and nonitor the RRs on it . However, there
could be still a tine wi ndow between two assessnents which can be

Zhang, et al. Expi res January 6, 2016 [Page 4]

Internet-Draft CT- DNSSEC July 2015

t aken advantage of by the owner of bar.exanple to performa hijacking
attack and renove the bogus RRs before the owner of foo.bar.exanple
detects the attack.

In sone cases, the parent can even achieve its objectives wthout
publishing the DS RR contai ning the invalid KSK, which nmakes the
attacks nore difficult to detect.

If the owner of bar.exanple is forced to publish his operations on
the public CT logs, the attack introduced above will be detected
eventually. Through checking the log, it is easy detect the inproper
i ssuance of RRs of his parent zone.

4. Log Format and Operation

As illustrated in Section 3, a zone owner may need to publish
multiple RRs in order to hijack the queries to its child zone and re-
direct themto another illegal DNS server. However, it is not
necessary to publish all those associated RRs to the log. In fact,
by publishing the DS RR which is critical in constructing the

aut henti cation chain across two zones will be sufficient for hel ping
the public to detect the inproper issuance behavior. |In this
solution, when a zone owner generates a DS RR and del egates a new
public key to a child zone, it MJST publish the DS RR at | east one CT
log in order to allow the public to nonitor its behavior. |Identica
to what is specified in [I-Dietf-trans-rfc6962-bis], each CT |og
needs to return a SCT to the zone owner inmediately. The SCT will be
encapsul ated in a SCT RR and published within a DS RR

The SCT is the log’s promise to incorporate the RRin the Merkle Tree
within a fixed amount of time known as the Maxi mum Merge Delay (MVD).
If the log has previously seen the certificate, it MAY return the
same SCT as it returned before. DNS servers MJIST provide an SCT
within a SCT RR DNSSEC clients will not honor a DS RR that does not
have a valid SCT. Therefore it is expected that a zone owner will
usual ly deliver the DS RRs for audit purposes.

4.1. Log Entries

Bef ore publishing a DS RR, a zone owner MJST subnit it to one or nore
preferred logs. In order to enable attribution of each |logged RR to
its issuer, the log SHALL publish a list of acceptable public keys
(or hashes of public keys) of root zone or islands of security. Each
submitted DS RR MJUST be acconpani ed by all additional RRs (DNSKEY
RRs, DS RRs, and RRSI G RRs) which construct an authentication chain
to an accepted root public key.

Zhang, et al. Expi res January 6, 2016 [Page 5]

Internet-Draft CT- DNSSEC July 2015

Logs MUST verify that the authentication chain and make sure it |eads
back to a trusted public key, using the chain of internedi ate DNSKEY
RRs and DS RRs provided by the submitter. Logs MJST refuse to
publish a DS RR without a valid chain to a trusted key. If a DS RR
is accepted and an SCT issued, the accepting |l og MIST store the
entire chain used for verification, including the DS RR itself and
including the trusted key used to verify the chain, and MJST present
this chain for auditing upon request.

To conply with the certificate entries specified in
[I-D.ietf-trans-rfc6962-bis], Each DS RR entry in a | og MJST incl ude
the foll owi ng conponents:

enum { x509 entry(0), precert_entry(1l), DSRR entry(TBDl), (65535) } LogEntryT
ype;

struct {
LogEntryType entry_type;
select (entry_type) {
case x509_entry: X509Chai nEntry;
case precert_entry: PrecertChai nEntry;
case DSRR entry: DSRR Chain_Entry
} entry;
} LogEntry;

opaque DNSSECRR<1..2"24-1>

struct {

DNSSECRR DSRR;

DNSSECRR DNSSEC key_chai n<0. . 2"24- 1>
} DSRR _Chai n_Entry;

"entry_type" is the type of this entry. the type value of a DSRR
LogEntry is TBDL.

"DSRR' is the DS RR submitted for auditing.

"DNSSEC key_chain" is a chain of additional DNSSEC RRs required to
verify the DS RR A typical authentication chain is as follow Trusted
DNSSKEY - >[DS- >(DNSKEY) *- >DNSKEY] *-> Subnmitted DS RR, where "*"
denotes zero or nore sub-chains. (DNSKEY)* indicates that DNSSEC
permts additional |ayers of DNSKEY RRs including the keys for
signing other keys within a zone. Each DNSKEY/DS RR in the chain is
authenticated by a RRSIGRR. In practice, a RRSIGRR is normally
used to sign a DS/ DNSKEY RRset. Therefore, not only the DS/ DNSKEY RR
on the authentication chain but also other records in the RRset
SHOULD be provided to the I og the verification purpose. Oherw se,
the I og may have to consult DNS again in order to verify the

Zhang, et al. Expi res January 6, 2016 [Page 6]

Internet-Draft CT- DNSSEC July 2015

aut hentication chains. Logs SHOULD linit the length of chain they
will accept.

4.2, Structure of the Signed Certificate Tinestanp

This work reuses the structure of Signed Certificate Tinestanp
specified in Section 3.3 of [I-D.ietf-trans-rfc6962-bis] but nake
necessary extensions.

enum { certificate_ tinestanp(0), tree_hash(1l),DSRR tinestanp(TBD2), (255) }
Si gnat ur eType

enum { v1(0), (255) }
Ver si on;

struct {
opaque key id[32];
} Logl b

struct {
opaque i ssuer_key hash[32];
C14N DSRR dsrr;

} DSRR

opaque Ct Extensions<0..2"16-1>

"key_id" and "issuer_key_hash" are defined in Section 3.3 of
[I-Dietf-trans-rfc6962-his].

dsrr is the submtted DS RRin a canonical form The

canconi calization of a DS RRis described in Section 6.2 of
[RFC4304] .

Zhang, et al. Expi res January 6, 2016 [Page 7]

Internet-Draft CT- DNSSEC July 2015

struct {
Ver si on sct_version
Logl D id;
ui nt 64 ti nmestanp;
Ct Ext ensi ons ext ensi ons;
digitally-signed struct {
Ver si on sct_version
Si gnat ureType signature_type = DSRR_ ti nestanp;
ui nt 64 ti mestanp;
LogEntryType entry_type;
select(entry type) {
case x509 _entry: ASN. 1Cert;
case precert_entry: PreCert;
case BIN entry: BinaryDi gest;
case BINDI _entry: BinaryDi gest
} signed_entry;
Ct Ext ensi ons ext ensi ons;

b
} SignedCertificateTi nestanp;
The encoding of the digitally-signed elenment is defined in [RFC5246].
"sct_version", "tinmestanp", "entry_ type and extensions" are are
identical to what is defined in Section 3.3 of

[I-Dietf-trans-rfc6962-bis].

"signed_entry" is the is DSRR (in the case of a DSRR entry), as
descri bed above.

"extensions" are future extensions to this protocol version (vl).
Currently, no extensions are specified.

4.3. Merkle Tree
This specification extends the structure of the Merkle Tree input in

Section 3.5 of [I-D.ietf-trans-rfc6962-bis] and enable it to
encapsul ate DS RR

Zhang, et al. Expi res January 6, 2016 [Page 8]

Internet-Draft CT- DNSSEC July 2015

enum{ v1(0), v2(1), (255) }
Leaf Ver si on;

struct {
ui nt 64 tinmestanp;
LogEntryType entry_type;
select(entry_type) {
case x509 entry: ASN. 1Cert;
case precert_entry: PreCert,;
case DSRR entry: DSRR,
} signed_entry;
Ct Ext ensi ons ext ensi ons;
} TimestanpedEntry;

struct {

Leaf Ver si on versi on;

Ti mest anpedEntry ti nmestanped_entry;
} Merkl eTreelLeaf;

The fields in the input are introduced in Section 3.5 of
[I-D.ietf-trans-rfc6962-bis].

Open question[dacheng]: W should include the RRs constucting the
aut henticaiton chain in the input, right?

5. Including the Signed Certificate Timestanp into DNS Security
Ext ensi ons

In section 3.5 of [I-D.ietf-trans-rfc6962-bis]
5.1. SCT RR

The SCT associated with a DS RRis stored within a STC RR A DNS
server MAY provide nultiple SCT RRs for one DS RR

The type nunber for the SCT RR is TBD3.
The SCT resource record is class independent.

The life period of SCT RR should not be set in a way that the RR will
not be expired before the associated DS RR

The RDATA portion of an SCT RR is as shown bel ow.

Zhang, et al. Expi res January 6, 2016 [Page 9]

Internet-Draft CT- DNSSEC July 2015

1111111111222222222233
01234567890123456789012345678901
B i S S T s i S T st i S S S S S S S S i
[Key Tag | Algorithm | Digest Type |
B e i i e o e e S T S e e s i i TR S

Di gest
B T s T S i S S S i (T S I S S S o S i
B e T i e S i T e o R e S e S S i ot e TR S N S

/

/

/

/

STC /
/

/

Si gnature /
/

/
/
/
+-
/
/
/
+-
/
/
/
T I I S i T i T S S e It L i T S A s

5.1.1. The Key Tag Field
The Key Tag field lists the key tag of the DNSKEY RR referred to by
the SCT record, in network byte order. Appendix B of [RFC4034]
descri bes how to conpute a Key Tag.

5.1.2. The AlgorithmField
The Algorithmfield lists the algorithm nunber of the DNSKEY RR
referred to by the SCT record. Appendix A 1 of [RFC4034] lists the
al gori t hm nunber types.

5.1.3. The Digest Type Field
The Digest Type field identifies the algorithmused to construct the
digest used to identify the DS RR that the SCT RR refers to.
Appendi x A 2 of [RFC4034] lists the possible digest algorithmtypes.

5.1.4. The Digest Field

The nmet hod of calculating digest is identical to what is specified in
Section 5.1.4 of [RFC2065].[RFC4034]

5.1.5. The SCT Field

This field contains the SCT got fromthe | og, encoded in BASE64.

Zhang, et al. Expi res January 6, 2016 [Page 10]

Internet-Draft CT- DNSSEC July 2015

5.1.6. The Signature Field

This field contains the SCT signature associated with the SCT. The
Signature field is represented as a Base64 encodi ng of the signature.

5.2. Operations

After introducing the SCT RR the verification procedures of DNS data
speci fied i n DNSSEC] RFC4305] do not change a lot. However, the
correctness of CTS needs to be assessed during checking the validity
of a DS RR

A DS RR needs to be associated with a CTS RR which contains a valid
CTS and signed with a proper public key. Oherwise, the DS RR wi ||
not be used to construct the authentication chain. The signatures of
DS RR and its CTS RR should be stored in different RRSIG RR
respectively. 1In addition, a DNS server will sends CTS RRs and the
associated RRSIG RRs to a resolver only when it indicates the support
of CT in the request.

6. Log dient Messages
In Section 4 of [I-D.ietf-trans-rfc6962-bis], a set of nessages is
defined for clients to query and verfiy the correctness of the |og
entries they are interested in. In this neno, two new nmessages are
defined for CT to support DNSSEC

6.1. Add DNSSEC RR Chain to Log
POST https://<log server>/ct/vl/ add- RR-chain

| nput s:

chain: An array of base64-encoded DNS RR. The first elenent is
the subnmited DS RR, the second chains to the first and so on to
the last, which is a trurst DNSKey RR

Qut put s:

sct_version: The version of the SignedCertificateTi mestanp
structure, in decimal. A conmpliant v1 inplenmentation MJST NOT
expect this to be 0 (i.e., vl).

id: The log I D, base64 encoded.

Zhang, et al. Expi res January 6, 2016 [Page 11]

Internet-Draft CT- DNSSEC July 2015

ti mestanp: The SCT tinmestanp, in decimal.

extensions: An opaque type for future expansion. It is likely
that not all participants will need to understand data in this
field. Logs should set this to the enpty string. Cients
shoul d decode the base64-encoded data and include it in the
SCT.

signature: The SCT signature, base64 encoded.
6.2. Retrieve Accepted Root DNSKEY RRs
GET https://<log server>/ct/vl/ get-root-RRs
No i nputs.

CQut put s:

RRs: An array of base64-encoded DNSKEY RRs that are acceptable to
t he 1 og.

7. | ANA Consi derati ons

Thi s docunment specified a new LogEntryType value TBD1 to identify DS
RR entry, a new SCT Type value TBD2, and a type nunber for the SCT
DNS RR TBDS.

8. Security Considerations
8.1. Logging Gther Types of RRs

This solution only tries to describes a solution to disclose keys for
DNSSEC in logs for the public to audit. However, it nmay be val uabl e
to also log the RRs specified in [RFCL035]. For instance, assune
there is an attacker which has conprom sed the zone authentication
key and is able to performthe M TM attack between a resolver and the
DNS server of the zone. It is possible for an attacker to transfer a
forged RR which is signed with the conproni sed key. The current
solution cannot benefit the detection of this attack in this
scenario. However, if the RRis also required to be uploaded to
public logs, the condition is changed. |f the attacker does not
publish the RRto a log, it cannot get the SCT. Wen the attacker
tries to publish the RRto the log, the owner of the zone may detect
the problemeven if the attacker can provide keys to convince the | og
to accept the RR

Zhang, et al. Expi res January 6, 2016 [Page 12]

Internet-Draft CT- DNSSEC July 2015

8.2. Scalability Concerns

The log MAY linit accepting entries where the TTL is too short or the
RRSIG tines are too far in the future or the past, to avoid spanmi ng
the log. It should probably also put a naxi mumon the nunber of
child zones to avoid getting spammed.

9. Acknow edgemnent s
10. Nornative References
[I-Dietf-trans-rfc6962-bis]
Laurie, B., Langley, A, Kasper, E., Messeri, E., and R
Stradling, "Certificate Transparency", draft-ietf-trans-
rfc6962-bis-07 (work in progress), Mrch 2015.

[RFC1035] Mockapetris, P., "Donmain nanes - inplenentation and
speci fication", STD 13, RFC 1035, Novenber 1987.

[RFC2065] Eastlake, D. and C. Kaufman, "Domain Name System Security
Ext ensi ons”, RFC 2065, January 1997.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC4034] Arends, R, Austein, R, Larson, M, Massey, D., and S
Rose, "Resource Records for the DNS Security Extensions",
RFC 4034, March 2005.

[RFC4304] Kent, S., "Extended Sequence Number (ESN) Addendum to
| Psec Domain of Interpretation (DA) for Internet Security
Associ ati on and Key Managenment Protocol (1SAKMP)", RFC
4304, Decenber 2005.

[RFC4A305] Eastlake, D., "Cryptographic Al gorithm I nplenmentation
Requirements for Encapsul ating Security Payl oad (ESP) and
Aut henti cati on Header (AH)", RFC 4305, Decenber 2005.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

Aut hors’ Addr esses
Dacheng Zhang

Enmai | : dacheng. zhang@nai | . com

Zhang, et al. Expi res January 6, 2016 [Page 13]

Internet-Draft CT- DNSSEC July 2015

Dani el Kahn G || nor
CVRG

Emai | : dkg@i f t hhor senan. net

Danpi ng He
Huawei
Enai | : ana. hedanpi ng@uawei . com

Behcet Sari kaya

Huawei USA

5340 Legacy Dr. Building 3
Pl ano, TX 75024

Emai | : sari kaya@ eee. org
Ni ng Kong
Emai | : nkong@nnic.cn

Zhang, et al. Expi res January 6, 2016 [Page 14]

	draft-ietf-trans-gossip-05
	draft-ietf-trans-rfc6962-bis-28
	draft-ietf-trans-threat-analysis-13
	draft-strad-trans-redaction-01
	draft-zhang-trans-ct-binary-codes-04
	draft-zhang-trans-ct-dnssec-03

