
TRILL WG R. Parameswaran,
INTERNET-DRAFT Brocade Communications, Inc.
Intended Status:Informational April 22, 2017
Expires: October 20, 2017

 TRILL: Parent node Shifts in Tree Construction, Mitigation.
 <draft-rp-trill-parent-selection-03.txt>
Abstract

This draft documents a known problem in the TRILL tree construction
mechanism and offers an approach requiring no change to the TRILL
protocol in order to solve the problem.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Distribution of this document is unlimited. Comments should be sent
 to the authors or the TRILL working group mailing list:
 trill@ietf.org.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html. The list of Internet-Draft
 Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

Terminology and Acronyms.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Table of Contents

 1. Introduction...1
 2. Tree construction in TRILL.................................2
 3. Issues with the TRILL tree construction algorithm..........2
 4. Solution using the Affinity sub-TLV........................4
 5. Network wide selection of computation algorithm............7
 6. Relationship to draft-ietf-trill-resilient-trees...........7
 7. Security Considerations....................................9
 8. IANA Considerations..9
 9. Informative References.....................................9

1. Introduction.

TRILL is a data center technology that uses link-state routing
mechanisms in a layer 2 setting, and serves as a replacement
for spanning-tree. TRILL uses trees rooted at pre-determined nodes
as a way to distribute multi-destination traffic. Multi-destination
traffic includes traffic such as layer-2 broadcast frames, unknown
unicast flood frames, and layer 2 traffic with multicast MAC
addresses (collectively referred to as BUM traffic). Multi-destination
traffic is typically hashed onto one of the available trees and sent
over the tree, potentially reaching all nodes in the network (hosts
behind which may own/need the packet in question).

2. Tree construction in TRILL.

Tree construction in TRILL is defined by [RFC6325], with additional
corrections defined in [RFC7780].

The tree construction mechanism used in TRILL codifies
certain tree construction steps which make the resultant trees
very brittle. Specifically, the parent selection mechanism in TRILL
causes problems in case of node failures. TRILL uses the following rule
- when constructing an SPF tree, if there are multiple possible
parents for a given node (i.e. if multiple upstream nodes can
potentially pull in a given node during SPF, all at the same
cumulative cost, then the parent selection is imposed in the
following manner):

[RFC6325]:
"When building the tree number j, remember all possible
equal cost parents for node N. After calculating the entire ’tree’
(actually, directed graph), for each node N, if N has ’p’ parents,
then order the parents in ascending order according to the
7-octet IS-IS ID considered as an unsigned integer, and number them
starting at zero. For tree j, choose N’s parent as choice j mod p."

There is an additional correction posted to this in [RFC7780]:

[RFC7780], Section 3.4:

 "Section 4.5.1 of [RFC6325] specifies that, when building
 distribution tree number j, node (RBridge) N that has multiple
 possible parents in the tree is attached to possible parent
 number j mod p. Trees are numbered starting with 1, but possible
 parents are numbered starting with 0. As a result, if there are
 two trees and two possible parents, then in tree 1 parent 1 will
 be selected, and in tree 2 parent 0 will be selected.

 This is changed so that the selected parent MUST be (j-1) mod p. As
 a result, in the case above, tree 1 will select parent 0, and tree 2
 will select parent 1. This change is not backward compatible with
 [RFC6325]. If all RBridges in a campus do not determine distribution
 trees in the same way, then for most topologies, the RPFC will drop
 many multi-destination packets before they have been properly
 delivered."

3. Issues with the TRILL tree construction algorithm.

With this tree construction mechanism in mind,let’s look at
the Spine-Leaf topology presented below and consider the
calculation of Tree number 2 in TRILL. Assume all the links in the tree
are at the same cost.

 A-- --B
 / \ \/ /\
 / \/\ _/_ \
 /__ _/\ / \\
// \/ \\
1 2 3
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ |/
 C

Assume that in the above topology, when ordered by 7-octet ISIS-id,

1 < 2 < 3 holds and that the root for Tree number 2 is A. Given the
ordered set {1, 2, 3} , these nodes have the following indices (with a
starting index of 0):

Node Index
 1 0
 2 1
 3 2

Given the SPF constraint and that the tree root is A, the parent for
nodes 1,2, and 3 will be A. However, when the SPF algorithm tries to
pull B or C into the tree, we have a choice of parents, namely 1, 2,
or 3.

Given that this is tree 2, the parent will be the one with index
(2-1) mod 3 (which is equal to 1). Hence the parent for node B will be
node 2.
 A
 /|\
 / | \
 / | \
 1 2 3
 /\
 / \
 B C

However, due to TRILL’s parent selection algorithm, the sub-tree
rooted at Node 2 will be impacted even if Node 1 or Node 3
go down.

Take the case where Node 1 goes down. Tree 2 must now be
re-computed (this is normal) - but now, when the SPF computation is
underway, when the SPF process tries to pull in B, the list of
potential parents for B now are {2 and 3}. So, after ordering these
by ISIS-Id as {2, 3} (where 2 is considered to be at index of 0 and 3
is considered to be at index 1), for tree 1, we apply TRILL’s formula
of:

Parent’s index = (TreeNumber-1) mod Number_of_parents.
= (2-1) mod 2
= 1 mod 2
= 1 (which is the index of Node 3)

The re-calculated tree now looks as shown below. The shift in
parent nodes (for B) may cause disruption to live traffic in the
network, and is unnecessary in absolute terms because the existing
parent for node B, node 2, was not perturbed in any way.

 A
 / \
 / \
 / \
 2 3
 /\
 / \
 B C

Aside from the disruption posed by the change in the tree links,
depending upon how the concerned rbridges stripe vlans/FGLs across
trees and how they may prune these, additional disruption is possible
if the forwarding state on the new parent rbridge is not primed to
match the new tree structure. This churn could simply be avoided
with a better approach.

The parent shift issue noted above can be solved by using

the Affinity sub-TLV.

While the technique identified in this draft has an immediate benefit
when applied to spine/leaf networks popular in data-center designs,
nothing in the approach outlined below assumes a spine-leaf network.
The technique presented below will work on any connected graph.
Furthermore, no directional symmetry in link-cost is assumed.

4. Solution using the Affinity sub-TLV.

At a high level, this problem can be solved by having the affected
parent send out an Affinity sub-TLV identifying the children for
which it wants to preserve the parent-child relationship, subject to
network events which may change the structure of the tree. The
affected parent node would send out an Affinity sub-TLV with
multiple Affinity records, one per child node, listing the
concerned tree number.

It would be sufficient to have a local configuration option (e.g.
a CLI) at one of the nodes which is deemed to be the parent of
choice (referred to as designated parent below). The following steps
provide a way to implement this proposal:

 a. The operator locally configures the designated parent to indicate
 its stickiness in tree construction for a specific tree number
 and tree root via the Affinity sub-TLV. This can be done before
 tree construction if the operator consults the 7 octet ISIS-ID
 relative ordering of the concerned nodes and decides up-front which
 of the potential parent nodes should become the parent node for a
 given set of children on that tree number under the TRILL tree
 construction mechanism. The operator MUST configure the
 designated parent stickiness on only one node amongst a set of
 sibling (potential parent) nodes relative to the tree root for
 that tree number. It is suggested that the parent stickiness be
 configured on the node that would have been selected as the
 parent under default Trill parent selection rules. Parent
 stickiness MUST NOT be configured on the root of the tree, or
 if configured previously on a non-root node with the root for
 that tree shifting to that node subsequently, such configuration
 MUST be ignored on the root node.

 b. On any subsequent SPF calculation after the operator configures
 the designated parent as indicated above, when the designated
 parent node finds that it could be a potential parent for one or
 more child nodes during tree construction, it declares itself to be
 the parent for the concerned child nodes, over-riding the default
 TRILL parent selection rules. The configured node advertises its
 parent preference via the Affinity sub-TLV when it completes a
 tree calculation, and finds itself the parent of one or more child
 nodes per the SPF tree calculation. The Affinity sub-TLV MUST
 reflect the appropriate tree number and the child nodes for which
 the concerned node is a parent node. The Affinity sub-TLV SHOULD
 be published when the tree computation is deemed to have
 converged (more on this under d. below).

 c. Likewise, when any change event happens in the network, one which
 forces a tree re-calculation for the concerned tree, the designated
 parent node should run through the normal TRILL tree calculation
 agnostic of the fact that it has published an Affinity sub-TLV as
 well as agnostic of the default TRILL tree selection rules i.e the
 node asserts its right to be a parent without directly referencing
 either the default Trill parent selection rules or its own
 published Affinity sub-TLV in establishing parent relationships.

 d. During the SPF tree calculation, the designated parent node should
 react in the following manner:

 i. If the node is a potential parent for some of the
 children identified in an existing Affinity sub-TLV, if any,
 after convergence of the tree computation, the node MUST send
 out an (updated) Affinity sub-TLV identifying the correct
 sub-set of children for which the node aspires to
 establish/continue the parent relationship. This case would
 also apply if there are new child nodes for which the node is
 now a parent (however, see the conflicted Affinity sub-TLV
 rules in vii and j. below).

 For its own tree computation, the designated parent node
 MUST use itself as parent in order to pull the set of children
 identified during the SPF run into the tree, barring a
 conflicting affinity sub-TLV seen from another node (see
 vii. below for handling this case).

 ii. If the tree structure changes such that the designated node is
 no longer a potential parent for any of the child nodes in the
 advertised Affinity sub-TLV, then it SHOULD retract the
 Affinity sub-TLV, upon convergence of the tree computation.
 In this case, the default TRILL tie-break rule would need to be
 used during SPF construction for the nodes that were children
 of this designated node previously. One specific case may be
 worth high-lighting - if a parent-child relationship inverts
 i.e. if the designated parent becomes a child of its former
 child node due to a change in the tree structure, it MUST
 exclude that child from its Affinity sub-TLV. In such case, if
 the designated parent node cannot maintain a parent
 relationship with any of its prior child nodes, then it MUST
 retract any previously published affinity sub-TLV.

 iii. Nodes SHOULD use a convergence timer to track completion
 of the tree computation. If there are any additional tree
 computations while the convergence timer is running, the
 timer SHOULD be re-started/extended in order to absorb the
 interim network events. It is possible that the intended action
 at the expiration of the timer may change meanwhile. The
 timer needs to be large enough to absorb multiple network
 events that may happen due to a change in the physical state
 of the network, and yet short enough to avoid delaying the
 update of the Affinity sub-TLV.

 iv. At the expiration of the convergence timer, the existing state
 of the tree MUST be compared with the existing Affinity
 sub-TLV and the intended change in the status of the Affinity
 sub-TLV is carried out e.g. a fresh publication, or an update
 to the list of children, or a retraction.

 v. Alternately, the above steps (re-examination of the Affinity
 sub-TLV and update) MAY be tied to/triggered from the download
 of the tree routes to the L2 RIB, since that typically happens
 upon a successful computation of the complete tree. An
 additional stabilization timer could be used to counteract
 back-to-back L2 RIB downloads due to repeated computations of
 the tree due to a burst of network events.

 vi. Note that this approach may cause an additional tree computation
 at remote nodes once the updated Affinity sub-TLV (or lack of
 it) is received/perceived, beyond the network events which led
 up to the change in the tree. In the case where an operator
 introduced a designated parent configuration on an existing
 tree, then remote nodes would need to receive the Affinity
 sub-TLV indicating the designated parent’s Affinity for its
 children before the remote nodes shift away from the default
 TRILL parent selection rules. However, in most cases, in steady
 state, this mechanism should cause very little tree churn unless

 a designated parent configuration was introduced, removed, or
 a link between the designated parent and its children changed
 state. In cases where the network change event originated on
 the designated parent node, it may be possible to optimize on
 the churn by packing both the data bearing the network change
 event and the Affinity sub-TLV into the same link-state update
 packet.

 vii. In situations where the designated parent node would
 normally originate an affinity sub-TLV to indicate affinity
 to a specific set of child nodes, it MUST NOT originate an
 Affinity sub-TLV if it sees an Affinity sub-TLV from some
 other node for the same tree number and for all of the same
 child-nodes, such that the other node’s Affinity sub-TLV would
 win using the conflict tie-break rules in section 5.3 of
 [RFC7783]. Any existing Affinity sub-TLV already published
 by this node in such a situation MUST be retracted. If only
 some of the child nodes overlap between the two conflicting
 Affinity sub-TLVs, then this designated parent node MAY
 continue to publish its affinity sub-TLV listing its child
 nodes that are not in conflict with the other Affinity sub-TLV.
 Other guide-lines listed in [RFC7783] MUST be adhered to as
 well - the originator of the Affinity sub-TLV must name only
 directly adjacent nodes as children, and must not name the
 tree root as a child.

 e. Situations where the node advertising the Affinity sub-TLV dies
 or restarts SHOULD be handled using the normal handling for such
 scenarios relating to the parent Router Capability TLV, and as
 specified in [RFC4971].

 f. Situations where a parent-child link directly connected to the
 designated parent node constantly flaps, MUST be handled
 by having the designated parent node retract the Affinity
 sub-TLV, if it affects the parent-child relationships in
 consideration. The long-term state of the Affinity sub-TLV can
 be monitored by the designated parent node to see if it is being
 published and retracted repeatedly in multiple iterations or
 if a specific set of children are being constantly added and
 removed. The designated parent may resume publication of the
 Affinity sub-TLV once it perceives the network to be stable
 again in the future.

 g. If the designated parent node is forced to retract its Affinity
 sub-TLV due to a change in the tree structure, it can then repeat
 these steps in a subsequent tree construction, if the same node
 becomes a parent again, so long as it perceives its parent-child
 links to be stable (free of link/node flaps).

 h. In terms of nodes that do not support this draft, they are
 expected to seamlessly inter-operate with this draft, so long as
 they understand and honor the Affinity sub-TLV. The draft assumes
 that most TRILL implementations now support the Affinity sub-TLV.
 In any case, the guide-lines specified in section 4.1 of [RFC7783]
 MUST be used i.e. if all nodes in the network do not support the
 Affinity sub-TLV then the network must default to the Trill parent
 selection rules.

 i. Remote nodes MUST default to the Trill parent selection rules
 if they do not see an Affinity sub-TLV sent by any node in the
 network.

 j. At remote nodes, conflicting Affinity sub-TLVs from different
 originators for the same tree number and child node MUST be
 handled as specified in section 5.3 of [RFC7783], namely by
 selecting the Affinity sub-TLV originated by the node with the
 highest priority to be a tree root, with System-ID as tie-breaker.

5. Network wide selection of computation algorithm.

The proposed solution above does not need any operational change to the
TRILL protocol, beyond the usage of the Affinity sub-TLV (which is
already in the proposed standard) for the use case identified in
this draft.

6. Relationship to draft-ietf-trill-resilient-trees.

Given that both draft-ietf-trill-resilient-trees, and
draft-rp-trill-parent-selection-03 drafts use the Affinity sub-TLV,
it is worthwhile to examine if there is any functional overlap
between the two drafts. At a high level, the two drafts have different
goals and appear to solve unrelated problems.

draft-ietf-trill-resilient-trees relates to link protection, and
defines the notion of a primary distribution tree and a backup
distribution tree (DT), where these trees are intentionally kept link
disjoint to the extent possible, and the backup tree is pre-programmed
in the hardware, and activated either up front or upon failure of the
primary distribution tree.

On the other hand, draft-rp-trill-parent-selection-03 protects
parent-child relationships of interest on the primary DT, and has
no direct notion of a backup DT.

draft-ietf-trill-resilient-trees considers the following algorithmic
approaches to the building the backup distribution tree (section
numbers listed below are from draft-ietf-trill-resilient-trees):

1. Operator hand-configuration for links on the backup DT/manual
 generation of Affinity sub-TLV - this is very tedious and unlikely
 to scale or be implemented in practice, and hence is disregarded
 in the analysis here.

2. Section 3.2.1.1a: Use of MRT algorithms (which will produce conjugate
 trees - link disjoint trees with roots for primary and backup trees
 that are coincident on the same rBridge).

3. Section 3.2.1.1b: Once the primary DT is constructed, the links
 used in the primary DT are additively cost re-weighted, and a
 second SPF is run to derive the links comprising the backup DT.
 Affinity sub-TLV is used to mark links on the back-up DT which are
 not also on the primary DT. This approach can handle conjugate
 trees as well as non-conjugate trees (link disjoint trees that are
 rooted at different rBridges).

4. Section 3.2.2: A variation on the section 3.2.1.1b approach, but
 without Affinity sub-TLV advertisement. Once the primary DT is
 constructed, costs for links on the primary DT are multiplied by a
 fixed multiplier to prevent them from being selected in a
 subsequent SPF run, unless there is no other choice, and the
 subsequent SPF yields links on the backup DT.

All of the approaches above yield maximally link disjoint trees,
when applied as prescribed.

Approach 4 above does not seem to use Affinity sub-TLVs and instead
seems to depend upon a network wide agreement on the alternative
tree computation algorithm being used.

Approaches 2 and 3 use Affinity sub-TLV on the backup DT, for links
that are not already on the primary DT. The primary DT does not
appear to use Affinity sub-TLVs. Additionally, from an end-to-end
perspective the backup DT comes into picture when the primary DT
fails (this is effectively true even in the 1+1 protection mechanism

and in the local protection case), and then again, only until the
primary DT is recalculated. Once the primary DT is recalculated, the
backup DT is recalculated as well, and can change corresponding to
the new primary DT.

draft-ietf-trill-resilient-trees cannot directly prevent/mitigate a
parent node shift on the primary DT at a given parent node, and while
usage of the Affinity sub-TLV on the backup DT might confer a parent
affinity on some nodes on the backup DT, these are not necessarily
the nodes on which the network operator may want/prefer an explicit
parent affinity. Further, the backup DT is only used on a transient
basis, from a forwarding perspective, until the primary DT is
recomputed.

However, a parent shift can be triggered by link or node failure. In
a situation where both drafts are active in the implementation, failure
of a specific link may cause the backup DT to kick in, but when the
primary DT is re-calculated, draft-rp-trill-parent-selection-03 can be
used to preserve parent-child relationships on the primary DT, to the
extent possible, during the re-calculation. So, there does not appear
to be a direct functional overlap in the simultaneous usage of these
drafts, and it ought to be possible to use both drafts simultaneously,
so long as the primary and back-up DTs can be uniquely
identified/differentiated.

7. Security Considerations.

The proposal primarily influences tree construction and tries to
preserve parent-child relationships in the tree from prior computations
of the same tree, without changing any of operational aspects of the
protocol. Hence, no new security considerations for TRILL are raised
by this proposal.

8. IANA Considerations.

No new registry entries are requested to be assigned by IANA. The
Affinity Sub-TLV has been defined in [RFC7176], and this proposal
does not change its semantics in any way.

9. Informative References.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6325] Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S., and A.
 Ghanwani, "Routing Bridges (RBridges): Base Protocol
 Specification", RFC 6325, DOI 10.17487/RFC6325, July 2011,
 <http://www.rfc-editor.org/info/rfc6325>.

 [RFC7780] - Eastlake 3rd, D., Zhang, M., Perlman, R., Banerjee, A.,
 Ghanwani, A., and S. Gupta, "Transparent Interconnection of
 Lots of Links (TRILL): Clarifications, Corrections, and
 Updates", RFC 7780, DOI 10.17487/RFC7780, February 2016,
 <http://www.rfc-editor.org/info/rfc7780>.

 [RFC7783] Senevirathne, T., Pathangi, J., Hudson, J., "Coordinated
 Multicast Trees (CMT) for Transparent Interconnection of
 Lots of Links (TRILL)", RFC 7783, February 2016,
 <http://datatracker.ietf.org/doc/rfc7783>

 [RFC4971] Vasseur, JP., Shen, N., Aggarwal, R., "Intermediate
 System to Intermediate System (IS-IS) Extensions for
 Advertising Router Information", RFC 4971, July 2007,
 <http://datatracker.ietf.org/doc/rfc4971>

Author’s Address:

R. Parameswaran,
Brocade Communications, Inc.
120 Holger Way,
San Jose, CA 95134.

Email: parameswaran.r7@gmail.com

Copyright and IPR Provisions

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License. The definitive version of
 an IETF Document is that published by, or under the auspices of, the
 IETF. Versions of IETF Documents that are published by third parties,
 including those that are translated into other languages, should not
 be considered to be definitive versions of IETF Documents. The
 definitive version of these Legal Provisions is that published by, or
 under the auspices of, the IETF. Versions of these Legal Provisions
 that are published by third parties, including those that are
 translated into other languages, should not be considered to be
 definitive versions of these Legal Provisions. For the avoidance of
 doubt, each Contributor to the IETF Standards Process licenses each
 Contribution that he or she makes as part of the IETF Standards
 Process to the IETF Trust pursuant to the provisions of RFC 5378. No
 language to the contrary, or terms, conditions or rights that differ
 from or are inconsistent with the rights and licenses granted under
 RFC 5378, shall have any effect and shall be null and void, whether
 published or posted by such Contributor, or included with or in such
 Contribution.

