
Flow-based Cost Query
draft-gao-alto-fcs-01

Kai Gao 1 J. Jensen Zhang 2 J. Austin Wang 2

Qiao Xiang 3 Y. Richard Yang 3

1 Tsinghua University 2 Tongji University 3 Yale University

March 31@IETF 98

Flow-based Design in a Nutshell

2

Cost Services: Cost Map (Non-Query Service), Filtered Cost Map, ECS (Query Service)

Motivations:

● Flow correlation (CoFlow...)
➜ Extend the query scheme
➜ Augment the request or introduce new media-type for the request

● Fine-grained routing (OpenFlow, ECMP, MPLS...)
➜ Effect both the request and response
➜ Why not introduce a new resource (service)? (incomplete)
➜ Why not introduce a unified resource (service)? (complete)

Previous work:

● draft-wang-alto-ecs-flow: augment the syntax of TypedEndpointAddress -> EndpointURI
● draft-gao-alto-fcs: Introduce “application/alto-flowcost+json”, “application/alto-flowparams+json”

Major update since -00:

● Claim draft-wang-alto-ecs-flow-01 as the basic flow-based query design
● Claim draft-gao-alto-fcs-00 as the advanced flow-based query design

Key Issues

3

● #1 How to encode a flow
○ <src, dst> (downward compatible)
○ {attribute -> value} (novel specification)

● #2 How to declare the capabilities
○ “Boolean flow-query-support;”?
○ “JSONString support-attributes<1..*>;”?
○ TLV dependencies?

● #3 How to encode a query scheme
○ CommodityFilter? FlowNameFilter? FlowSpecFilter?

● #4 How to deal with multipath
○ Provide statistics? Exploration? Warning?

Flow expression:

{

 “src”: “tcp:192.168.1.2:80”,

 “dst”: “tcp:192.168.1.3:51234”

}

#1 Flow Expression Encoding
Advanced Flow Encoding

● Flow ID
○ Same format as a PIDName

[RFC7285#Section 10.1]

● Typed header field
○ <protocol-name>:<field-name>

Flow expression:

“ssh-flow”: {

 “ipv4:src”: “192.168.1.2”,

 “ipv4:dst”: “192.168.1.3”,

 “tcp:dst”: “22”,

 “eth:vlan-id”: “20”

}
4

Basic Flow Encoding

● Commodity-based
○ <src, dst>

● Endpoint URI
○ <protocol>:<address|name>[:<port>]

Object {

 JSONString cost-type-names<1..*>;

 [JSONBool cost-constraints;]

 [JSONBool flow-based-filter;]

 [JSONString protocols<1..*>;]

} FlowFilteredCostMapCapabilities;

{ // ECS IRD Example

 “cost-type-names”: [“pv-ane”],

 “flow-based-filter”: true,

 “protocols”: [“ipv4”, “tcp”, “udp”]

}

{ // ECS Request Example

 “cost-type”: {“cost-mode”: “path-vector”,

 “cost-metric”: “ane”},

 “endpoint-flows”: [{

 “src”: “tcp:10.0.0.1:8080”,

 “dst”: “tcp:10.0.0.2:51234”}]

}

#2 Capabilities and #3 Query Schemes

5

Object {

 JSONString cost-type-names<1..*>;

 TypedHeaderField required<1..*>;

 [TypedHeaderField optional<1..*>;]

 [JSONBool cost-constraints;]

} FlowCostMapCapabilities;

{ // FCS IRD Example

 “cost-type-names”: [“pv-ane”],

 “required”: [“ipv4:src”, “ipv4:dst”],

 “optional”: [“tcp:src”, “tcp:dst”]

}

{ // FCS Request Example

 “cost-type”: ...,

 “flows”: {

 “test-l4-flow”: {

“ipv4:src”: “10.0.0.1”, “ipv4:dst”: “10.0.0.2”,

“tcp:src”: “8080”, “tcp:dst”: “51234”}

}}

// Statistics (Recommended)

“flow-cost-map”: {

 “test-l3-flow”: {“min”: 20, “max”: 40, “avg”: 30, “var”: 50}, ...

} // How to deal with the path vector?

// List all the potential paths

“flow-cost-map”: {

 “test-l3-flow”: [20, 40], ... // Means two different paths matching the same flow spec

} // How to work with multi-cost extension together?

// Warning

“flow-cost-map”: {

 “test-l3-flow”: “MP”, ...

} // The client may waste a query (this result is useless for the client)

#4 Multipath Issue

6

Notice that it is not a flow-based-specific issue. It exists for both flow-based query and
non-flow-based query

Basic Flow-based Error Handling

object-map {

 EndpointURI -> DstErrors;

} EndpointCostErrorMap;

object-map {

 EndpointURI -> EndpointFilterError;

 [JSONString unsupported;]

} DstErrors;

object {

 [JSONString conflicts<2..2>;]

 [JSONString unsupported;]

} EndpointFilterError;

Other Considerations
Advanced Flow-based Error Handling

object-map {

 FlowId -> FlowCostError;

} FlowCostErrorMap;

object {

 [TypedHeaderField conflicts<2..*>;]

 [TypedHeadreField missing<2..*>;]

 [TypedHeaderField unsupported<1..*>;]

} FlowFilterError;

7

Open Discussions

8

● #0 Who is better to define flows?
○ Client-defined: specify the flow definition in the request

-> How to specify TLV dependencies?
○ Server-defined: maybe in a prop-map, provided to the client for

querying
● #1 New cost service or unified property service?
● #2 Simple constraints or general query language?
● #3 Endpoint aggregation or flow aggregation?

Open discussion: possible to use property map to implement flow-based query?

● Property Map to define the supported header fields and TLV dependencies
○ Declare the supported header fields for each endpoints?

● Property Map to define the supported flows
○ List all supported flows? (Too complex. A huge map)

● Property Map to provide the flow costs
○ Depends on the flow definitions

#1 Flow-based Query by Using Property
Map

9

Dependent
Resources

● Property Query Constraints

○ { “properties”: [“ipv4:src”, “tcp:src”], “constraints”: [“[1] eq 8080”]}

● Resource Dependency and Resource Query Joint

○ “flow-cost-prop-map” uses “flow-spec-prop-map”

○ The client can send a joint query:

#2 General Query Across Resources

10

{ // A Joint Query Example

 “flow-spec-prop-map”: {

 “properties”: [“ipv4:src”, “tcp:src”],

 “constraints”: [“[0] eq 10.0.0.1”,

 “[1] eq 8080”]

 },

 “flow-cost-prop-map”: {

 “entities”:

 “flow-spec-prop-map.cost-map.keys”,

 “properties”: [“cost”]

 }

}

{ // A Joint Query for Path Vector

 “pv-cost-map”: {

 “cost-type”: {“cost-mode”: “path-vector”,

 “cost-metric”: “ane”},

 “pid-flows”: [{“src”: “PID1”,

 “dst”: “PID2”}]},

 “nep-map”: {

 “entities”:

 “union(pv-cost-map.cost-map.values)”,

 “properties”: [“availbw”],

 “query-id”: “pv-cost-map.meta.vtag.query-id”

 }

}
Remove the State

● PID is an approach to achieve the endpoint aggregation
● Define PFID to achieve the aggregation of flows?

#3 Flow Aggregation

11

“flows”: {

 “PFID1”: {

 “ipv4:src”: “10.0.1.0/24”,

 “ipv4:dst”: “10.0.2.0/24”,

 “eth:vlan-id”: “10”

 },

 ...

}

“network-map”: {

 “PID1”: [“10.0.1.0/24”],

 “PID2”: [“10.0.2.0/24”],

 ...

}

“pid-flows”: [

 {“src”: “PID1”, “dst”: “PID2”},

 ...

]

Status:

● We are implementing the prototype in OpenDaylight

Next Step:

● Considering to merge with Path Vector?
● Try to use Unified Property Map?

Future Work

12

Thank you!

13

Backup Slides

14

