A. Sajassi (Cisco), B. G Badoni (Cisco), Dhananjaya Rao (Cisco), P. Brissette (Cisco), J. Drake (Juniper)

IETF 98, March 2017
Chicago
Problem Statement

- Baseline DF election procedure described in [RFC 7432] was a good starting point but there is room for improvement

- draft-ietf-bess-evpn-df-election-01 makes improvement on top of this baseline draft by using HRW algorithm to avoid VLAN (service ID) shuffling

- This draft describes additional incremental improvement on top of HRW for faster DF election upon PE recovery or insertion
Problem Statement

- Currently, DF election errs on the side of transient black-holing over transient loop
- Recovered DF lets all other PEs know that it has joined the multi-homing group and starts a 3 sec. timer before doing DF election
- If timer is made too short, then there is a possibility of transient loop

Figure 1: CE1 multi-homed to PE1 and PE2. Potential for duplicate DF.
Proposal

- This drat proposes two methods of reducing and even almost eliminating transient black-holing upon PE recovery or insertion
 1. Handshaking between recovered PE and other PEs in the redundancy group
 2. Time-synchronization and uni-direction signaling between recovered PE and other PEs in the redundancy group
Handshake Mechanism

- Recovered/new PE advertises ES route and starts the wait timer as before
- Other PEs in the redundancy group upon receiving the ES route, run HRW algorithm for DF election as before
- If PEs in the redundancy group are capable of doing handshake, then they do the following:
Handshake Mechanism – Cont.

- Recovered/inserted PE sends the DF Request to previously inserted PEs with a new sequence no.
- Previously inserted PE(s) receives the DF Request and programs their hardware to block the VLANs that must be transferred to the newly inserted PE.
- Previously inserted PE(s) will send DF Response (e.g., ACK) to the newly inserted PE
- Newly inserted PE receives DF Response ACK and programs its hardware to assume DF state for the VLANs.

NOTE: handshaking is per PE and not per EVI/BD.
Consider the scenario where PE2 and PE3 are inserted simultaneously in the network where PE1 is in steady state (as shown below). PE2 and PE3 will send the Type 4 ES routes and start the discovery timer. This will cause PE1, PE2 and PE3 to discover each other. PE2 and PE3 will then simultaneously and separately send DF Request. PE1 will receive these requests and respond to them. To avoid any ambiguity, PE1 will explicitly specify in the DF Request route the destination for which the DF-ACK is meant for. That is why the responses from PE1 will contain [ES1, DF-ACK, PE2, SEQ] and [ES1, DF-ACK, PE3, SEQ] to specify that the response is meant for PE2 and PE3 respectively. Upon receiving the Type-D response message, PE2 and PE3 will take over the respective VLANs.
BGP Encoding

DF Election Handshake Request Route

```
<table>
<thead>
<tr>
<th>RD (8 octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Segment Identifier (10 octets)</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>DF-Flags (1 octet)</td>
</tr>
<tr>
<td>Sequence Number (1 octet)</td>
</tr>
</tbody>
</table>
```

DF Election Handshake Response Route

```
<table>
<thead>
<tr>
<th>RD (8 octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Segment Identifier (10 octets)</td>
</tr>
<tr>
<td>IP-Address Length (1 octet)</td>
</tr>
<tr>
<td>Destination Router’s IP Address (4 or 16 octets)</td>
</tr>
<tr>
<td>DF-Flags (1 octet)</td>
</tr>
<tr>
<td>Sequence Number (1 octet)</td>
</tr>
</tbody>
</table>
```
Synchronization Mechanism

- If all PE devices attached to an Ethernet Segment are clock-synchronized with each other, then a simple uni-directional signaling can eliminate (almost) any transient black-holing and packet duplication for DF election

- Procedure:
 - A recovered/inserted PE simply signals to other multi-homing PE devices the time at which it will execute the DF election
 - All other multi-homing PE set themselves up to execute the DF election for that ES at that time
Synchronization Mechanism – Cont.

A new BGP extended community needs to be defined to communicate the Service Carving Expected Timestamp for each Ethernet Segment. A new transitive extended community where the Type field is 0x06, and the Sub-Type is <to be defined> is advertised along with Ethernet Segment route. Timestamp for expected Service carving is encoded as a 8-octet value as follows:

```
+-----------------------------------------------+
<p>|    Type=0x06   | Sub-Type(TBD) |              Timestamp(upper 16) |</p>
<table>
<thead>
<tr>
<th>-----------------------------------------------</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp (lower 32)</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
</tr>
</tbody>
</table>
```

This EC is advertised along with the ES route type (0x04)
Synchronization - Example

- Initial state: PE1 is in steady-state, PE2 is recovering
- PE2 recovers at (absolute) time t=99
- PE2 advertises RT-4 (sent at t=100) with target SCT value t=103 to partner PE1
- PE2 starts its 3sec peering timer as per RFC7432/HRW
- Both PE1 and PE2 carves at (absolute) time t=103; (PE1 should carve slightly before PE2 (skew))
Next Step

- More discussions among interested partitas
- Finalize the new routes
- Clarify that this approach is incremental on top of HRW draft – to avoid too many permutations
- Beef-up backward compatibility section for both mechanisms