BGP Signaled Multicast

draft-zzhang-bess-bgp-multicast-01

Zhaohui (Jeffrey) Zhang, Juniper Keyur Patel, Arrcus IJsbrand Wijnands, Cisco Arkadiy Gulko, Thomson Reuters

98th ITEF, Chicago

Multicast: fear/dislike & necessity

- Many operators, especially DC ones, do not want to burden their infrastructure with multicast trees
 - They can live with ingress replication for multicast traffic
 - They do not like the following aspects of multicast trees
 - Per-tree state
 - PIM soft-state refresh overhead
 - PIM-ASM complexity due to shared-to-source tree switch
 - Yet another protocol to set up the trees
- Nonetheless, some operators have a lot of mission-critical multicast traffic, and still need the efficiency gains of having multicast trees in the infrastructure
 - at least until BIER arrives *

BGP Signaled Multicast: What & Why

- Use BGP to signal multicast
 - Use as a replacement for PIM
 - (s,g)/(*,g) unidirectional/bidirectional trees
 - Optionally with MPLS data plane
 - Use as a replacement for mLDP
 - Use mLDP FEC (<root, opaque_value>) to identify tree
- Why?
 - Remove PIM-ASM complexities & soft state
 - PIM-Port only removed soft state and deployment has been limited
 - PIM-SSM removes ASM complexities but requires good source discovery methods
 - Consolidate to BGP signaling
 - Single, scalable protocol for unicast/multicast, labeled/unlabeled

How to signal tree/tunnel using BGP

- Use receiver-initiated "joins" Leaf A-D routes in C-MCAST SAFI
 - Propagated over hop by hop EBGP/IBGP sessions or through RRs
- Each node determines upstream hop by using same RPF procedure as PIM/mLDP
- Leaf A-D routes serve the purpose of PIM Join or mLDP P2MP label mapping
 - NLRI encodes (s,g)/(*,g) or mLDP FEC
 - Route Target identifies Upstream node
 - Routes processed by upstream node and not propagated further
 - A new route with different NLRI is originated for the next node in the tree
 - Tunnel Encapsulation Attribute carries forwarding information
 - In case of labeled tree/tunnel, or
 - If downstream/upstream are not directly connected
 - For MP2MP labeled tunnels, S-PMSI/Leaf A-D routes serve the purpose of mLDP MP2MP-U/MP2MP-D label mappings
- For ASM, source specific trees are set up after source discovery via Source Active (SA) A-D routes, avoiding RP/shared-trees

Signal mLDP Tunnels

- Signal entire or part of an mLDP tunnel using BGP
 - Transition from an existing mLDP deployment w/o changing anything else
 - Reuse mLDP tunnel identification
- Where a P2MP Label Mapping or an MP2MP-D Label Mapping would be sent, a Leaf A-D route is sent instead
 - Unsolicited, but as if an S-PMSI had been received
- Where an MP2MP-U Label Mapping would be sent, an S-PMSI A-D route is sent instead
 - Only MP2MP-D FEC is used
 - Route Targets correspond to the set of downstream neighbors

	+-		++	
			Route Type - 4 (Leaf A-D)	
		т	Length (1 octet) I	т
			Route Type - 0x43 (mLDP S-PMSI A-D)	
L	L	Į.	++	S
Е	ΙE		Length (1 octet)	
Α	A		++	P
F	F	1	P2MP or MP2MP-D FEC	I M
	i	i	+	İS
Ν	IR	i	i i	İΙ
L	jo	i	+ +	i
R	jυ	i	1	j N
I	İΤ	İ	+ +	j L
	İΕ	İ	1	R
	İ	İ	++	İI
	IК	i	Upstream Router's IP Address	i
	İΕ	i	++ -	-+
		ł	Originating Router's IP Addrress	
		1 -		
	т -	т-	TT	

Signal (s,g)/(*,g) Trees

- Where a PIM join would be sent, a Leaf A-D route is sent instead
 - Unsolicited, but as if an S-PMSI had been received
- In case of labeled bidirectional trees, an S-PMSI A-D route is sent to signal the label for upstream path
- (*,g) unidirectional tree allowed when sources can send traffic to root of the tree w/o intersecting the tree
 - Source tree is not used in this case

+-			++	
	ļ		Route Type - 4 (Leaf A-D)	
		т	Length (1 octet)	Ŧ
	ł	I	Route Type - 3 (S-PMSI A-D)	1
L	L		++	S
Е	E	1	Length (1 octet)	
Α	İΑ	i	++	İΡ
F	İF	i	Multicast Source Length (1 octet)	İМ
	i	i	++	is
Ν	R	ł		I T
ï		1	++	1
		+	Multionet Group Longth (1 optot)	I
R			Multicast Group Length (1 octet)	
T	11		++	
	E		Multicast Group (variable)	R
	1		++	I
	İΚ	Ì	Upstream Router's IP Address	Ī
	İΕ	Ĩ	++	+
	і ү +-	i +-	Originating Router's IP Addrress +	
		• -	•	

Source Discovery for ASM

- First Hop Routers (FHRs) advertise SA routes
 - Upon receiving locally originated traffic
- Last Hop Routers (LHRs) receive SA routes and join source specific trees
- Similar to MSDP method, but:
 - Extended from among RPs to among FHRs and LHRs
 - With BGP advantages:
 - No periodical refreshing
 - No RPF checks for SA propagation
 - RRs and Route Target Constrain (RTC) can be used to avoid flooding SA routes
 - FHRs attach a RT that encodes the group address and advertise to RRs
 - LHRs advertise RT Membership NLRIs that encode the above mentioned RT for groups that they're interested in
 - SAs are only advertised to interested LHRs due to the RTC mechanism

Incremental Transition

- For mLDP or PIM-SSM replacement, transition can independently happen at any node
 - If the upstream neighbor can support BGP multicast signaling, then use it
- For PIM-ASM replacement, first upgrade the RPs so that they can advertise SA routes. After that each node can independently transition
 - If an upgraded node receives (*,g) PIM join, and its upstream supports BGP multicast signaling, it behaves as if it were a LHR
 - Terminate (*,g) join
 - Send RT Membership NRLI corresponding to the group
 - Establish source trees after receiving corresponding SA routes.

Next steps

- Add details like handling of neighbors not directly connected
- Seek comments and feedback