
CBOR (RFC 7049)
Concise Binary Object Representation

See also: IETF94 CBOR lightning tutorial
Carsten Bormann, 2015-11-01

http://www.tzi.de/~cabo/CBOR-2015-11-01.pdf

1

http://www.tzi.de/~cabo/CBOR-2015-11-01.pdf

History of Data Formats

• Ad Hoc

• Database Model

• Document Model

• Programming Language Model

Slide stolen from Douglas Crockford

2

3

TLV

Box notation

4

XML XSD

JSON data model
Container:
• “object” (map, with text

string keys only)
• array

5

Primitive:
• null
• false, true
• numbers (decimal float)
• text string (UTF-8)

CBOR data model
Container:
• map (any key)
• array 

• Tag (extension point)

6

Primitive:
• null (+ other “simple”)
• false, true
• numbers:

• Integer
• Float16, 32, 64

• text string (UTF-8)
• byte string

JSON limitations
• No binary data (byte strings)
• Numbers are in decimal, some parsing required
• Format requires copying:

• Escaping for strings
• Base64 for binary

• No extensibility (e.g., date format?)
• Interoperability issues

• I-JSON further reduces functionality (RFC 7493)

7

 
Prof.	Carsten	Bormann,		cabo@tzi.org

Character-
based

Concise	
Binary

Document-
Oriented XML EXI
Data-
Oriented JSON ???

Data	Formats

8

BSON and friends

• Lots of “binary JSON” proposals

• Often optimized for data at rest, not protocol use  
(BSON ➔ MongoDB)

• Most are more complex than JSON

9

Why a new binary object format?

• Different design goals from current formats
– stated up front in the document

• Extremely small code size
– for work on constrained node networks

• Reasonably compact data size
– but no compression or even bit-fiddling

• Useful to any protocol or application that likes
the design goals

10

Concise Binary 
Object Representation

(CBOR)

11

“Sea Boar”

12
“Sea Boar”

Graphics: Stefanie Gerdes

 
Prof.	Carsten	Bormann,		cabo@tzi.org

Character-
based

Concise	
Binary

Document-
Oriented XML EXI
Data-
Oriented JSON CBOR

Data	Formats

13

Design goals (1 of 2)

1. unambiguously encode most common data
formats (such as JSON-like data) used in
Internet standards

2. compact implementation possible for
encoder and decoder
3. able to parse without a schema
description.

14

Design goals (2 of 2)

4. Serialization reasonably compact, but  
data compactness secondary to  
implementation compactness
5. applicable to both constrained nodes and
high-volume applications
6. support all JSON data types, conversion to
and from JSON
7. extensible, with the extended data being
able to be parsed by earlier parsers

15

2013-09-13: CBOR RFC
• “Concise Binary Object Representation”:  

JSON equivalent for constrained nodes

• start from JSON data model (no schema needed)

• add binary data, extensibility (“tags”)

• concise binary encoding (byte-oriented, counting objects)

• add diagnostic notation

• Done without a WG (with APPSAWG support)

16

http://cbor.io

17

http://cbor.io

18

Implementations
• Parsing/generating CBOR

easier than interfacing with
application

• Minimal implementation:  
822 bytes of ARM code

• Different integration models,
different languages

• > 25 implementations (after
first two years) 

19 http://cbor.io

Batteries included
• RFC 7049 predefines 18 Tags

• Time, big numbers (bigint, float, decimal),
various converter helpers, URI, MIME message

• Easy to register your own CBOR Tags

• 19 more tags: 6 for COSE;  
UUIDs, binary MIME, Perl support,  
language tagged string, compression

20

2015-06-03: COSE WG
• CBOR Object Signing and Encryption:  

Object Security for the IoT

• Based on JOSE: JSON Web Token, JWS, JWE, …
• Data structures for signatures, integrity, encryption…
• Derived from on OAuth JWT
• Encoded in JSON, can encrypt/sign other data

• COSE: use CBOR instead of JSON
• Can directly use binary encoding (no base64)
• Optimized for constrained devices

21

So, why a WG?

22

Take CBOR to STD

RFC 6410:

• independent interoperable implementations ✔

• no errata (oops)

• no unused features

• (if patented: licensing process)

23

Take CBOR to STD

• Do not: futz around
• Document interoperability
• Make needed improvements in specification quality

• At least fix the errata :-)
• Are all tags implemented interoperably?

24

Next steps

• Create a 7049bis repo on github.com/cbor-wg

• Leading to draft-ietf-cbor-7049bis shortly

• Start the git-based issues/PR/merge process

• Start a separate feature interoperability list (wiki?)

25

http://github.com/cbor-wg

CDDL
Henk Birkholz, Christoph Vigano, Carsten Bormann

26

FDT in the IETF
• Formal description techniques helped kill OSI

• Takeup of FDT in IETF reluctant

• A few notable exceptions: e.g. RFC 4997

• Island of FDT: Management — SMIv2, YANG

• Widely used: ABNF  
(RFC 5234 = STD 68, updated by RFC 7405 (PS))

27

ABNF
• BNF: grammars for strings

• RFC40 (1970): first RFC with BNF

• “Internet” BNF: Augmented BNF (ABNF)

• RFC 733 (1977): “Ken L. Harrenstien, of SRI
International, was responsible for re-coding the
BNF into an augmented BNF which compacts
the specification and allows increased
comprehensibility.”

28

ABNF in the IETF

• 752 RFCs and I-Ds reference RFC 5234 (the most
recent version of ABNF) [cf. YANG: 160]

• Tool support (e.g., BAP, abnf-gen; antlr support)

• Pretty much standard for text-based protocols that
aren’t based on XML or JSON

29

ABNF is composed of
productions

addr-spec = local-part "@" domain
local-part = dot-atom / quoted-string / obs-local-part
domain = dot-atom / domain-literal / obs-domain
domain-literal = [CFWS] "[" *([FWS] dtext) [FWS] "]" [CFWS]
dtext = %d33-90 / ; Printable US-ASCII
 %d94-126 / ; characters not including
 obs-dtext ; "[", "]", or “\"

• Names for sublanguages
• Compose using

• Concatenation
• Choice: /

• Literals terminate nesting

30

From ABNF to CDDL

• Build trees of data items, not strings of characters

• Add literals for primitive types

• Add constructors for containers (arrays, maps)

• Inspiration: Relax-NG (ISO/IEC 19757-2)

31

Rule names are types
bool = false / true
label = text / int
int = uint / nint

• Types are sets of potential values
• Even literals are (very small) types

participants = 1 / 2 / 3
participants = 1..3
msgtype = "PUT"
msgtype = 1

32

Groups: building containers
• Containers contain sequences (array) or sets

(maps) of entries

• Entries are types (array) or key/value type pairs
(maps)

• Unify this into group:

• sequenced (ignored within maps)

• labeled (ignored within arrays)

33

reputation-object = {
 application: text
 reputons: [* reputon]
}

reputon = {
 rater: text
 assertion: text
 rated: text
 rating: float16
 ? confidence: float16
 ? normal-rating: float16
 ? sample-size: uint
 ? generated: uint
 ? expires: uint
 * text => any
}

; This is a map (JSON object)
; text string (vs. binary)
; Array of 0-∞ reputons

; Another map (JSON object)

; OK, float16 is a CBORism
; optional…

; unsigned integer

; 0-∞, express extensibility

How RFC 7071 would have looked like in CDDL

34

Named groups
 header_map = {
 Generic_Headers,
 * label => values
 }
 Generic_Headers = (
 ? 1 => int / tstr, ; algorithm identifier
 ? 2 => [+label], ; criticality
 ? 3 => tstr / int, ; content type
 ? 4 => bstr, ; key identifier
 ? 5 => bstr, ; IV
 ? 6 => bstr, ; Partial IV
 ? 7 => COSE_Signature / [+COSE_Signature]
)

• Named groups allow re-use of parts of a map/array
• Inclusion instead of inheritance

35

GRASP
• Generic Autonomic Signaling Protocol (GRASP)
• For once, try not to invent another TLV format: just use CBOR
• Messages are arrays, with type, id, option: 
 message /= [MESSAGE_TYPE, session-id, *option] 
 MESSAGE_TYPE = 123 ; a defined constant 
 session-id = 0..16777215 
 ; option is one of the options defined below

• Options are arrays, again: 
 option /= waiting-time-option 
 waiting-time-option = [O_WAITING, waiting-time] 
 O_WAITING = 456 ; a defined constant 
 waiting-time = 0..4294967295 ; in milliseconds

36

draft-ietf-anima-grasp-10.txt

37

SDOs outside of IETF
• CDDL is being used for specifying both CBOR and

JSON in W3C, ___, and _________ ___

• Data in flight in a variety of protocols, e.g.

• Access to specific features in wireless radios

• Aggregation of metadata,  
enabling visualization of network topologies

38

From draft to RFC
• Do not: break it

• Editorial improvements required

• Any additional language features needed?

• Should stay in the “tree grammar” envelope

• What can we take out?

39

computed literals?

• integers relative to an offset
base = 400
a = base + 1
b = base + 2

• string concatenation/interpolation
• e.g., to build long regexes out of parts

40

unpack/inclusion operator?

foo-basic = { foo-guts }
foo-guts = (a: int, b: uint)
foo-extended = { foo-guts, c: text }

• ➔  

foo-basic = { a: int, b: uint }
foo-extended = { <foo-basic, c: text }

41

representation constraints

• definite vs. indefinite

• Float16, float32, float64

• … 
 

• (These often can be done on a global level)

42

cuts (better error messages)

a = ant / cat / elk
ant = ["ant", ^ uint]
cat = ["cat", ^ text]
ant = ["elk", ^ float] 

["ant", 47.11]

• tool will not tell you "can't match a",  
but "can't match rest of ant"

43

modules

;;< module fritz
;;< export foo, bar
foo = [baz, ant, cat]
bar = uint 

;;< module animals
;;< from fritz import foo

• (This is completely unthought-through)

• Proposal: make these a layer on top of CDDL

44

interchange as JSON
a = b / c

• ➔  

[":rule", "a", [":typechoice", "b", "c"]]

• Define standard mapping for tools that want to

• pretty print CDDL

• reason about CDDL

• transform CDDL (e.g., for parser generators)

45

Avoid the kitchen sink
• This is not a Christmas wish list

• Each feature has a cost

• specification complexity

• learning effort

• implementation effort

46

Next steps

• cddl draft already at github.com/core-wg

• Start the git-based issues/PR/merge process

47

http://github.com/core-wg

More tags

48

draft-jroatch-cbor-tags-05
• Provide tags for homogeneous arrays represented in

byte strings

• Inspired by JavaScript

• Both LSB and MSB first

• Reserves 24 tags in 1-byte space

• Provide a tag for other homogeneous arrays

• Provide a tag for multidimensional arrays

49

Unchartered Work

50

draft-bormann-cbor-  
time-tag-00

• Nobody knew that time could be so complicated!

51

draft-bormann-cbor-  
time-tag-00

• Limits of CBOR Tag 0/1:
• Limited resolution
• Only Posix Time as time scale
• “Intent” information and other metadata cannot

be included
• Start with defining a kitchen sink

• Then see whether we want to keep all of that
• Make sure simple things stay simple

52

draft-bormann-lpwan-cbor-
template

• variable: placeholder CBOR data item included in
a larger data item (the "CBOR template")

• Relevant for LPWAN SCHC

• But can be used in a general way

53

Status of Tags drafts

• OID: On charter, kitchen sink

• Array: On charter, ready for adoption

• Time: Off charter

• Template: Off charter  
(will likely be done with SCHC anyway)

54

Tutorial

55

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

56

CBOR vs. “binary JSONs”

• Encoding [1, [2, 3]]: compact | stream

57

Very quick overview of the format

• Initial byte: major type (3 bits) and
additional information (5 bits: immediate
value or length information)

• Eight major types:
– unsigned (0) and negative (1) integers
– byte strings (2), UTF-8 strings (3)
– arrays (4), maps (5)
– optional tagging (6) and  

simple types (7) (floating point, Booleans,
etc.)

58

Additional information
• 5 bits
• 0..23: immediate value
• 24..27: 1, 2, 4, 8 bytes value follow
• 28..30: reserved
• 31: indefinite length
• terminated only by 0xFF in place of data item 

• Generates unsigned integer:
• Value for mt 0, 1 (unsigned/neg integers), 7 (“simple”)
• Length (in bytes) for mt 2, 3 (byte/text strings)
• Count (in items) for mt 4, 5 (array, map)
• Tag value for mt 6

59

Major types 6 and 7

• mt 7:
• special values for ai = 0..24
• false, true, null, undef
• IANA registry for more

• ai = 25, 26, 27: IEEE floats
• in 16 (“half”), 32 (“single”), and 64

(“double”) bits
• mt 6: semantic tagging for things like dates,

arbitrary-length bignums, and decimal fractions
60

Tags

• A Tag contains one data item
• 0: RFC 3339 (~ ISO 8601) text string date/time
• 1: UNIX time (number relative to 1970-01-01)
• 2/3: bignum (byte string encodes unsigned)
• 4: [exp, mant] (decimal fraction)
• 5: [exp, mant] (binary fraction, “bigfloat”)
• 21..23: expected conversion of byte string
• 24: nested CBOR data item in byte string
• 32…: URI, base64[url], regexp, mime (text strings)

61

New Tags

• Anyone can register a tag (IANA)
• 0..23: Standards action
• 24..255: Specification required
• 256..18446744073709551615: FCFS

• 25/256: stringref for simple compression
• 28/29: value sharing (beyond trees)
• 26/27: constructed object (Perl/generic)
• 22098: Perl reference (“indirection”)

62

Examples

• Lots of examples in RFC (making use of JSON–like “diagnostic notation”)
• 0 ➔ 0x00, 1 ➔ 0x01, 23 ➔ 0x17, 24 ➔ 0x1818
• 100 ➔ 0x1864, 1000 ➔ 0x1903e8, 1000000 ➔ 0x1a000f4240
• 18446744073709551615 ➔ 0x1bffffffffffffffff, 18446744073709551616 ➔

0xc249010000000000000000
• –1 ➔ 0x20, –10 ➔ 0x29, –100 ➔ 0x3863, –1000 ➔ 0x3903e7
• 1.0 ➔ 0xf93c00, 1.1 ➔ 0xfb3ff199999999999a, 1.5 ➔ 0xf93e00
• Infinity ➔ 0xf97c00, NaN ➔ 0xf97e00, –Infinity ➔ 0xf9fc00
• false ➔ 0xf4, true ➔ 0xf5, null ➔ 0xf6
• h'' ➔ 0x40, h'01020304' ➔ 0x4401020304
• "" ➔ 0x60, ”a" ➔ 0x6161, ”IETF" ➔ 0x6449455446
• [] ➔ 0x80, [1, 2, 3] ➔ 0x83010203, [1, [2, 3], [4, 5]] ➔ 0x8301820203820405
• {} ➔ 0xa0, {1: 2, 3: 4} ➔ 0xa201020304, {"a": 1, "b": [2, 3]} ➔

0xa26161016162820203
63

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

64

http://cbor.me: CBOR playground

• Convert back and forth between diagnostic
notation (~JSON) and binary encoding

65

Offline tools (gem install)

• cbor-diag:  
offline (command line) version of cbor.me

• cddl: generate examples from CDDL, verify
instances against CDDL, extract code definitions
from CDDL

66

http://cbor.me

Implementations
• Parsing/generating CBOR

easier than interfacing with
application

• Minimal implementation:  
822 bytes of ARM code

• Different integration models,
different languages

• > 25 implementations (after
first two years) 

67 http://cbor.io

Resources
• RFC 7049

• http://cbor.io and http://cbor.me; gem install cbor-diag

• cbor@ietf.org

• http://tools.ietf.org/html/cddl

• gem install cddl

68

http://cbor.io
http://cbor.me
http://tools.ietf.org/html/cddl

