CBOR Tags and Technigues
for Object |dentifiers

and how to use them

draft-bormann-cbor-tags-oid-06

IETF 98 CBOR
Chicago, IL, USA, 2017-03-30
Sean Leonard <dev+ietf@seantek.com>
Penango, Inc.



draft-bormann-cbor-tags-oid Objectives

e Update other protocols and data models to CBOR

* Lots of identifiers already exist, want to reuse rather than reinvent
the wheel

e Support Object Identifiers [X.660] [X.680] natively in CBOR
* And provide guidance on how to use them properly

* Fill out and specify other tags



About Object Identifiers

* Managed hierarchy [X.660] based on positive integers or strings
* Open access: once arc is assigned, you can assign anything under it
 Variable-length (as short as one octet) and only* equality semantics

* Two widely adopted wire formats (canonical forms!)

* Dotted decimal [RFC1776] (genesis [RFC1228]) (~3.3 bits per octet, ASCllI-safe):
2.16.840.1.101.3.4.2.1

* BER encoding [X.690] (self-delimiting values, ~7 bits per octet):
60 86 48 01 65 03 04 02 01
* Two widely adopted notations

* ASN.1 value notation [X.680] (braces, optional strings):
{jJoint-iso-itu-t (2) country(16) us(840) organization(l) gov (101)
csor (3) nistAlgorithm(4) hashAlgs (2) sha256 (1)}

* Dotted decimal notation/dot notation (see above)




OID Advantages

 Variable octets, can be very short

 Relative OID (“ROID”) permits assumed or factored base arc = shorter
* Language neutral (no hardcoded ASCII or UTF-8 strings)

* Concise vocabulary (sequence of non-negative integers)

* Hundreds of thousands already minted

* No transcription or mapping needed with other protocols, e.g.,
crypto, SNMP, MIB, LDAP, etc.

* OID Repository Database facilitates easy lookup




OID Disadvantages

* Used to be hard to get an arc
e Still not easy to get a really short arc (but, ROID)
* Perception of ASN.1 (boo...)

* OIDs can be very long
* If ever longer than 16 octets, stop and use UUID

* Requires lookup: not self-describing (but OID Repository makes easy)
* “Not Native to CBOR” (NIH?)

* For simple, closed enumerations, OIDs are not the job




Where We Are with the Draft

* OID tag «6» and ROID tag «7» assignments (proposed)
* Diagnostic notation (dotted decimal, ASN.1 value notation)
* When to use OIDs versus other types (integers, UTF-8 strings, UUIDs)

1/

* OID (and ROID) arrays and maps, “tag factoring”, “tag stacking”

e Sets and multisets in CBOR Beyond OIDs

 CBOR has no native set type (unordered); ASN.1 has no native map type

* Technique to simulate set as map of key items, value items are all integer 1
(or 21 for multiset)

e Use case: express “capabilities” or “features” as sets of identifiers (OIDs)

* Tagging binary non-CBOR items (MIME, other binary formats)
* Validating CBOR data (with regular expressions)



Enumeration Decision Tree

* |f modeling a particular data item that already exists, use the native data
item’s type (duh!) Otherwise:

* Natively signal CBOR data type = CBOR tag.
* Limited, closed set of values =» integer.
 Human-readable on the wire (US-English?) =» UTF-8 string.

* Limited set of values controlled exclusively by IETF =» consider integer w/
registry.

* Open registration =» consider OID or UUID w/ optional registry.
* Create randomly or dynamically, or need exact size (16 octets) = UUID.
e Otherwise = OID.

* Need shorter identifiers (fewer octets) or many options drawn from one place =
consider ROID + OID.



WG Stuff to Consider

e Adopt the draft

 Split the draft

* Formalize enumerations
* Formalize UUID «37»?
» Relationship to CDDL (i.e., as keys in map, like ASN.1 Open Type)

* A solution in search of problems? (Address)



