dnsop@IETF'98 Chicago, March 2017

draft-vcelak-nsec5-04 NSEC5: DNSSEC Authenticated Denial of Existence

Jan Vcelak (CZ.NIC) Sharon Goldberg (Boston University) Dimitrios Papadopoulos (University of Maryland) Shumon Huque (Salesforce)

DNSSEC Authenticated Denial of Existence

	No offline zone enumeration	Integrity vs outsiders	Integrity vs compromised nameserver	No online crypto
DNS (legacy)	√	X	X	✓
NSEC or NSEC3	X	\checkmark	√	✓
Online Signing ("NSEC3 White	√	√	X	X
NSEC5	√	✓	✓	X

NSEC5 replaces SHA1 used in NSEC3 with a Verifiable Random Function (VRF) [draft-goldbe-vrf-00] that resolvers cannot compute offline.

offline signing with NSEC5

* NSEC5-ECC: VRF based on elliptic curves

- [draft-goldbe-vrf-00]. (Presented at SAAG, Thursday!)
- Has a formal cryptographic security proof.
- For 256-bit elliptic curves, **Π** gives 641-bit outputs.

DNSSEC Authenticated Denial of Existence

		No offline zone enumeration	Integrity vs outsiders	Integrity vs compromised nameserver	No online crypto		
DNS (legacy)		√	X	X	\checkmark		
NSEC or NSE	C 3	X	\checkmark	√	\checkmark		
Online Signir ("NSEC3 Whi Lies")	ng te	√ 	√	X	7 X		
NSEC5 Be	cause l	resolvers	↓ ↓	[NDSS'15] we	proved		
cannot compute			this is necessary to				
VRF hashes offline / prevent zone enume				Imeration			
		/	& have integrity				
Because the nameserver doesn't							
know the zone-signing key							

NSEC5 spec & implementation

-04 draft includes DNS-level optimizations:

- 1. The wildcard bit from [draft-gieben-nsec4-00]
- 2. Precomputed closest encloser proofs mentioned in [RFC7128]

9K Lines of Code, no new libraries (openSSL) or system optimizations

Current implementations support P-256 curve. Could be faster with Ed25519 curve included in the -04 draft

empirical measurement of NXDOMAIN response sizes

nameserver query throughput (steady rate, NXDOMAIN)

Machine specs: 20X Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz Dual Mode (Total 24 threads on 40 virtual CPUs) 256GB RAM running CentOS Linux 7.1

questions?

- Research paper with performance numbers & crypto proofs: http://ia.cr/2017/099
- NSEC5 Project page_

https://www.cs.bu.edu/~goldbe/papers/nsec5.html

 Long preso on NSEC5 at Real World Crypto (RWC'17) https://www.youtube.com/watch?v=-pWrij0YhGo

dnsreactions...

Hearing about NSEC5

When I finally grasp NSEC5

backup slides

offline zone signing with NSEC3 [RFC5155]

answering queries with NSEC3

Public Zone Signing Key (ZSK

SHA1(q.com**)** = c987b

offline zone enumeration with NSEC3

Public Zone Signing Key (ZSK

online signing stops zone enumeration!

Public Zone Signing Key (ZSK

SHA1(r.com**)** = 33c46

"NSEC3 White Lies" [RFC7128]