Asynchronous Mgmt Architecture (AMA)

From draft-birrane-dtn-ama-05

Edward Birrane Edward.Birrane@jhuapl.edu 443-778-7423

AMA: Updates

From -04 to -05

- Minor Terminology and Definitions Updates
 Mostly wordsmithing based on feedback.
- No significant issues or limitations with the architecture.
 No "structural" changes to the architecture.

AMA: Introduction & Motivation

Document purpose

- Motivation, Service Definitions, Desirable Properties, Roles/Responsibilities, System Model, Logical Data Model
- Not a prescriptive standard, informative guidance.

Scope

- Challenged networks where asynchronous operation is required.
- Assumes naming, addressing, integrity, confidentiality, authentication, fragmentation, security, etc... already provided.
- Does not address interface with synchronous network management.

Motivation

- Asynchronous management requires:
 - Autonomy model, less reliance on sessions and per-operation state sync.
- SNMP/NETCONF don't provide these capabilities.
 - Work in RESTCONF might
- Provide a standard model to converge efforts in this area.

AMA: Service Definitions

- Configuration
 - Create new datum as function of other data (C = A + B)
 - Ex: Create new reports (RPT = {A, B, C})
 - Ex: Store pre-defined actions (IF (X > 3) THEN Cmd(Params)
- Reporting
 - Push data, don't pull.
 - Ex: Push as a function of time (Generate report every hour)
 - Ex: Push as function of state (Generate report if (X > 3))
- Autonomous Parameterized Procedure Calls
 - Manage" agent asynchronously by coding response options.
 - Allow for behavior to be customized through parameterization.
 - Ex: Update local route info based on local link analysis
 - Ex: Manage storage to enforce quotas
 - Ex: Apply or modify local security policy
- Administration
 - Finer grained access control for operations.

AMA: Desirable Properties

Intelligent Push

Asynchronous operation doesn't support round-trip pull requests.

Absolute Data Identification

Data must be atomically identifiable

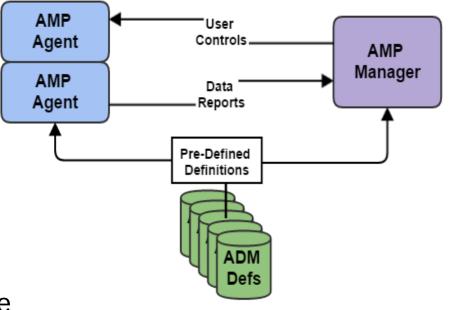
- Should not need multiple rounds of synchronization to figure out where data lives in an array, for example.
- E.g., support associative looks-ups

Custom Data Definition

¹ Define new data (variables) local to an agent.

Autonomous Operation

- Automation of pre-defined tasks, Autonomy to self-configure same.
- Distributed operation allows for decentralized control/execution.
- Deterministic Behavior Ability to forensically reconstruct events.
- Engine-Based Behavior Ability to avoid mobile code where needed.


AMA: System Model

Agents

- Run on Managed Devices
- Configure/Report on devices
- Heavy autonomy and parameterized control
- Manager(s)
 - Collect/Fuse data from Agents
 - Configure Agent behavior
 - Open-loop control

ADMs

- Well-named Data and Controls
- Superset of MIB
- Move to describe them in YANG
- Preconfiguration reduces msg size

AMA: Roles/Responsibilities

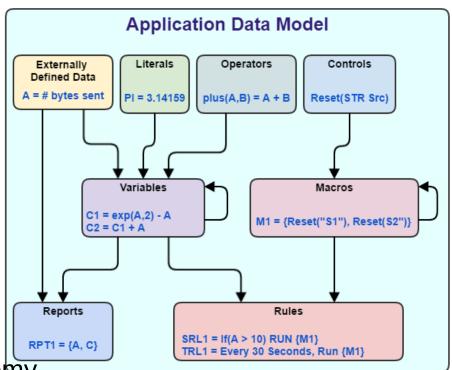
Agent Responsibilities

- Application Support Manage local applications/protocols.
- Local Data Collection Collect and/or calculate new values.
- Autonomy Control Apply time/state based response options.
- User Data Definition Store/remember user-defined data variables.
- Autonomous Reporting Push reports based on time/state.
- Consolidate Messages Where possible, reduce overhead.
- Regional Proxy Collect from other nodes in a region.

Manager Responsibilities

- Agent Capabilities Mapping Common picture of agent abilities.
- Data Collection Receive data from multiple agents.
- Custom Definitions Send user-defined data to agents.
- Data Translation Interface with other network management systems.
- Data Fusion Generate new data from received data.

AMA: Logical Data Model (ADM)


"Atomic" Elements

- Solely defined by their ADM.
- EDDs: collected by agents.
- Literals: useful constants.
- **Ops:** opcodes for math functions.
- Ctrls: opcodes for agent behavior.

"Variable" Elements

- Defined by ADM or by User
- ADM definitions are immutable.
- Vars: strong-typed variables, including a type for "expression".
- Macro: Ordered set of Ctrls.
- **Rpts**: Ordered sets of data
- Rules: Time or State based autonomy.

An ADM defines 8 types of data for each application/protocol managed in the AMA.

AMA Control and Data Flows

AMA Control and Data Flows

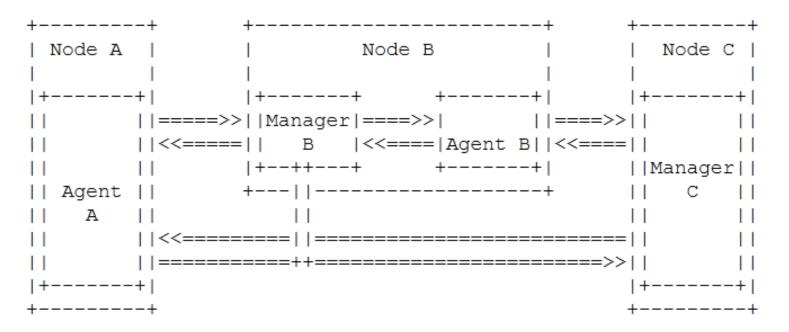
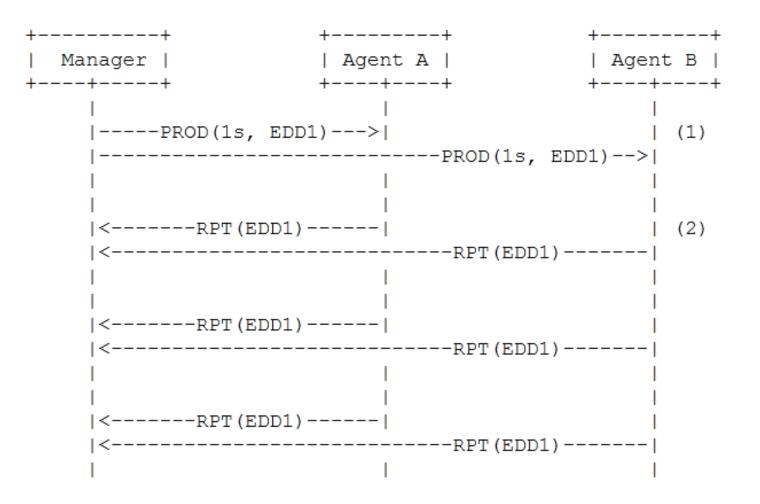
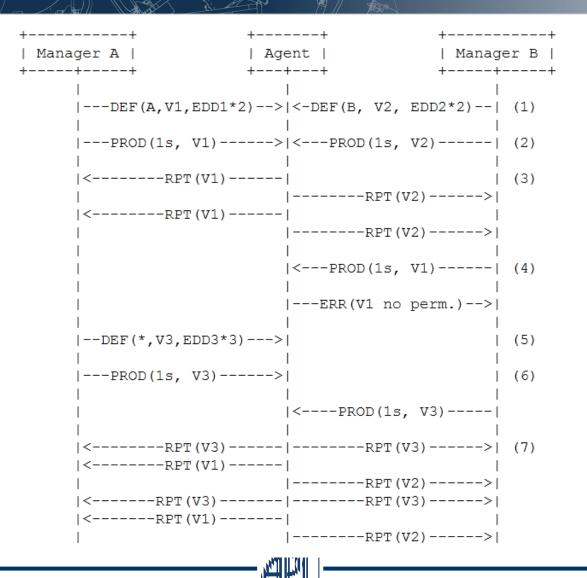
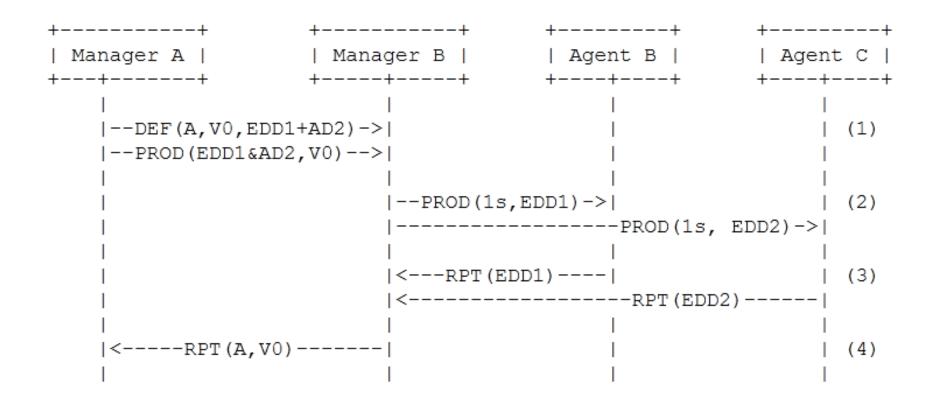



Figure 1


AMA Serialized Management Control Flow


Multiplexed Management Control Flow

Data Fusion Control Flow

Questions?

All

