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 Open Network User Group
  Forum started by IT executives (https://opennetworkingusergroup.com)

 Founded by Nick Lippis and others

  User driven community

  Multiple Working groups

 ONUG S-DSS WG
  Software-Defined Security Services working group

 Security requirements in hybrid (private & public) clouds

  Chairs
 Rakesh Kumar, Fred Lima, Scott Bradner, Nick Lippis

Whitepaper
 https://opennetworkingusergroup.com/software-defined-security-services-white-paper-download/

ONUG

file:///a/www/www6s/proceedings/98/slides/https:%2F%2Fopennetworkingusergroup.com)%2F
file:///a/www/www6s/proceedings/98/slides/https:%2F%2Fopennetworkingusergroup.com)%2F
file:///a/www/www6s/proceedings/98/slides/https:%2F%2Fopennetworkingusergroup.com)%2F
https://opennetworkingusergroup.com/software-defined-security-services-white-paper-download/
https://opennetworkingusergroup.com/software-defined-security-services-white-paper-download/


 Build user requirements
  Develop user requirements based on targeted use-cases

 Publish specifications
  Update Software-Defined Security Services Framework document 

 Detailed user requirements

 Architectural framework for developmental guidelines

 Data models and API definitions
  Work with standard bodies such as IETF/I2NSF to model user requirements

 Open source efforts
  Encourage open source development efforts based on ONUG work

 Develop vendor certification program
Based on ONUG and IETF/I2NSF specification work

S-DSS WG – Proposed Work



 Targeted use-cases
Apply and bind policies to workloads (use-case #8)

 Enforced as close to workload as possible by security controller based on security fabric capabilities

• Physical server, virtual machines, containers, services/micro-services

 Policies move with workload

• Between hybrid cloud

  Portable security policies (use-case #9)
 Policies remain same no matter whether workloads are deployed in private or public cloud

  Operational requirements for workloads (use-case #4)
 Ability to execute workloads in secure environment (confidentiality, integrity and availability)

 Ability to define the security posture of security control and management components

 Translate use-cases to detailed user requirements
  Use-cases not granular enough for specification work to be done by WG

  Use-cases not granular enough for measuring any vendor compliance

 User requirements classification
  Cyber threat management policies (use-case #4)

 Protection against Botnets, Malware, DDoS and other external attacks

  Business security posture policies (use-case #8 & #9)
 Workload, Data and access policies

 Regulation and Compliance policies (PCI-DSS, HIPPA etc.)

S-DSS Framework Document – User requirements



S-DSS Framework Document – Architecture goals

 Protect against vendor and technology lock-ins (Portable policies)
  Decouple policy definition from enforcement 

 Define policies based on abstraction such as user-intent or user-construct (a.k.a user-intent policy)

 Consistent policy enforcement
  A workload policy remains active while workload moves across hybrid cloud

 Must happen without manual intervention

 Security function flexibility
  Must be able to use a wide variety of security enforcement points

 Networking elements (routers, switches), firewalls

 Hypervisor-based switches, virtual networks (SDN controller orchestrated), security service chains

 Workloads running on bare-metal servers, virtual machines, containers

 Public clouds (AWS, Azure)



S-DSS Framework Document – Architectural framework

 Security controller
 A policy compiler or engine

 Breaks high-level (user-intent) policy into low-level (security function) policy

 Hides network and security design complexity from user

 Security Controller – User interface
 A data model driven API  interface

 Portable across vendors and hybrid deployments

 Allows to express policy in high-level abstraction

 Security Controller – Security Function interface
 A data model driven API  interface

 Technology and vendor implementation independent

 Flexibility to choose security functions with a goal of supporting 
large-scale and dynamic changes

Policy Enforcement – Everywhere
 Security control and management components

 Network Devices, Appliances, and Services (physical or virtual)

 Native Cloud-specific Security Controls 

 SDN - Virtual switch (e.g., OVS) 

 Workloads – physical, virtual, containers
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