
ONUG
Software-Defined Security Services (S-DSS)
WG Briefing

Rakesh Kumar

Fred Lima

Scott Bradner

Nick Lippis
Version 1.0

Feb 10, 2016

 Open Network User Group
 Forum started by IT executives (https://opennetworkingusergroup.com)

 Founded by Nick Lippis and others

 User driven community

 Multiple Working groups

 ONUG S-DSS WG
 Software-Defined Security Services working group

 Security requirements in hybrid (private & public) clouds

 Chairs
 Rakesh Kumar, Fred Lima, Scott Bradner, Nick Lippis

Whitepaper
 https://opennetworkingusergroup.com/software-defined-security-services-white-paper-download/

ONUG

file:///a/www/www6s/proceedings/98/slides/https:%2F%2Fopennetworkingusergroup.com)%2F
file:///a/www/www6s/proceedings/98/slides/https:%2F%2Fopennetworkingusergroup.com)%2F
file:///a/www/www6s/proceedings/98/slides/https:%2F%2Fopennetworkingusergroup.com)%2F
https://opennetworkingusergroup.com/software-defined-security-services-white-paper-download/
https://opennetworkingusergroup.com/software-defined-security-services-white-paper-download/

 Build user requirements
 Develop user requirements based on targeted use-cases

 Publish specifications
 Update Software-Defined Security Services Framework document

 Detailed user requirements

 Architectural framework for developmental guidelines

 Data models and API definitions
 Work with standard bodies such as IETF/I2NSF to model user requirements

 Open source efforts
 Encourage open source development efforts based on ONUG work

 Develop vendor certification program
Based on ONUG and IETF/I2NSF specification work

S-DSS WG – Proposed Work

 Targeted use-cases
Apply and bind policies to workloads (use-case #8)

 Enforced as close to workload as possible by security controller based on security fabric capabilities

• Physical server, virtual machines, containers, services/micro-services

 Policies move with workload

• Between hybrid cloud

 Portable security policies (use-case #9)
 Policies remain same no matter whether workloads are deployed in private or public cloud

 Operational requirements for workloads (use-case #4)
 Ability to execute workloads in secure environment (confidentiality, integrity and availability)

 Ability to define the security posture of security control and management components

 Translate use-cases to detailed user requirements
 Use-cases not granular enough for specification work to be done by WG

 Use-cases not granular enough for measuring any vendor compliance

 User requirements classification
 Cyber threat management policies (use-case #4)

 Protection against Botnets, Malware, DDoS and other external attacks

 Business security posture policies (use-case #8 & #9)
 Workload, Data and access policies

 Regulation and Compliance policies (PCI-DSS, HIPPA etc.)

S-DSS Framework Document – User requirements

S-DSS Framework Document – Architecture goals

 Protect against vendor and technology lock-ins (Portable policies)
 Decouple policy definition from enforcement

 Define policies based on abstraction such as user-intent or user-construct (a.k.a user-intent policy)

 Consistent policy enforcement
 A workload policy remains active while workload moves across hybrid cloud

 Must happen without manual intervention

 Security function flexibility
 Must be able to use a wide variety of security enforcement points

 Networking elements (routers, switches), firewalls

 Hypervisor-based switches, virtual networks (SDN controller orchestrated), security service chains

 Workloads running on bare-metal servers, virtual machines, containers

 Public clouds (AWS, Azure)

S-DSS Framework Document – Architectural framework

 Security controller
 A policy compiler or engine

 Breaks high-level (user-intent) policy into low-level (security function) policy

 Hides network and security design complexity from user

 Security Controller – User interface
 A data model driven API interface

 Portable across vendors and hybrid deployments

 Allows to express policy in high-level abstraction

 Security Controller – Security Function interface
 A data model driven API interface

 Technology and vendor implementation independent

 Flexibility to choose security functions with a goal of supporting
large-scale and dynamic changes

Policy Enforcement – Everywhere
 Security control and management components

 Network Devices, Appliances, and Services (physical or virtual)

 Native Cloud-specific Security Controls

 SDN - Virtual switch (e.g., OVS)

 Workloads – physical, virtual, containers

User-defined
workload policies

enforced in security
functions

Southbound Interface
(Independent of

security function type)

User Interface
(RESTful API driven by data model)

Security Controller

Northbound Interface
(Independent of

workload location)

Security Function Interface
(RESTful API driven by data model)

Network
Security
Devices,

Appliances
(physical or

virtual)

Public
Cloud

specific
Native

Security
Controls

Workloads
(physical, virtual, or containers)

Virtual
Switch

SDN
Controller

User-defined
security infrastructure
management policies

	ONUG Software-Defined Security Services (S-DSS) WG Briefing
	ONUG
	S-DSS WG – Proposed Work
	S-DSS Framework Document – User requirements
	S-DSS Framework Document – Architecture goals
	S-DSS Framework Document – Architectural framework

