Consumer-Facing Interface YANG Data Model for Interface to
Network Security Functions

(draft-jeong-i2nsf-consumer-facing-interface-dm-01)

IETF 98, Chicago, US
Mar. 27, 2017

Jaehoon Paul Jeong*, Mahdi Daghmehchi,
Tae-Jin Ahn, Rakesh Kumar, and Susan Hares
This document describes a data model for security management based on I2NSF framework by using NFV

A data model to perform VoIP-VoLTE security service
Introduction (2/2)

- Defining high-level policies and translate them to several low-level policies
- Updating low-level policies based on NSF capabilities
- Monitoring network’s events and implementing security functions based on NFV
Security Management Architecture (1/3)

- **Application Logic**: Generating high-level security policies
- **Event Controller**: Event monitoring and sending to Application logic
- **Policy Updater**: Distributing high-level policies to the Security Controller
Security Management Architecture (2/3)

- **Security Policy Manager**
 - Mapping high-level policies into several low-level policies
 - Delivering low level policies to NSF(s)

- **NSF capability manager**
 Storing the NSF’s capability and sharing it with Security policy manager

- **Developer’s Mgmt system**
 Registering new NSF’s capabilities into NSF capability manager
Security Management Architecture (3/3)

- NSF Instance
 Exploiting low-level policies delivered by the Security policy manager
Security Management for VoLTE

VoLTE/VoIP security management: Application Logic

- Defining security conditions (e.g., blacklists of IP addresses & source ports, expire time, user agents)
- Updating the illegal devices information (manually/automatically)
- Generating new high-level security policies
- Updating the VoIP-VoLTE database based on the NSF’s anomalous detection

Information model for Consumer-Facing Interface *

Information Model for:

- Threat Prevention
 To reduce the attack surface (e.g., Botnet)
- Policy endpoint groups
 Where a security policy is to be applied
- Policy Instance
 A complete information for any policy instance (e.g., where/when a policy need to be applied)

* draft-kumar-i2nsf-client-facing-interface-im-01
Update of Version
The changes from draft-jeong-i2nsf-consumer-facing-interface-dm-00:

- Addition of a new component (Update for NSF’s feedback) and its description in data model.
- Implementation of the corrected data model based on YANG model.

draft-jeong-i2nsf-consumer-facing-interface-dm-01 defines an overall structure of consumer-facing interface and its YANG data model.
High-level policies basements:

- Blacklisting countries
- Time interval specification
- Caller’s priority levels

The data model consists of:

- Policy life cycle management
- Policy rule
- Action
- Update (NSF’s Feedback or Unexpected Event)
Policy life cycle management
Specifies an expiration time and/or event to determine the life-time of the policy itself

Policy rule
Represents the specific information about a high-level policy e.g., service types, conditions and valid time interval

Action
Specifies the actions which should be performed when a policy rule is matched by NSF

Update
Update a policy to reflect upon the event triggered by NSFs.

--- (ietf-nsf-policy)
 +++ (policy-lifecycle-list)
 | --- (policy-lifecycle-container)
 | * (policy-lifecycle-id)
 | | - (expiration-event)
 | | | --- (enabled)
 | | | --- (event-id)
 | | | --- (event-date)
 | | | --- (expiration-time)
 | | | --- (time)
 | --- (enabled)
 | --- (time)

--- (policy-rule-list)
 +++ (policy-rule-container) * (policy-rule-id)
 | --- (rule-id)
 | --- (policy-name)
 | --- (policy-date)
 | --- (service)
 | | --- (voip-handling)
 | | --- (volte-handling)
 | --- (condition) [condition-id]
 | | - (caller)
 | | | --- (caller-id)
 | | | --- (caller-location)
 | | | --- (country)
 | | | --- (city)
 | | --- (callee)
 | | | --- (callee-id)
 | | | --- (callee-location)
 | | | --- (country)
 | | | --- (city)
 | --- (valid-time-interval)
 | --- (start-time)
 | --- (end-time)

--- (action-list)
 +++ (action-container)
 | --- (action-date)
 | --- (action-name)
 | | --- (name-ingress)
 | | --- (permit)
 | | --- (mirror)
 | | --- (log)
 | | --- (name-egress)
 | | --- (redirection)

--- (update-list)
 +++ (update-container) * (update-id)
 | --- (update-event)
 | --- (update-enabled)
 | --- (update-event-id)
 | --- (update-log)
 | --- (update-event-date)
Next Step

- **Generic YANG Data Model**
 Modify current data model to be a Generic model

- **Implementation of more use cases**
 e.g., Untrusted domain (malware distributor) detecting, and access control function (time/location depended)