Consumer-Facing Interface YANG Data Model for Interface to
Network Security Functions
(draftjeong-i2nsf-consumer-facing-interface-dm-01)

Al Jilidun Wt di

IETF 98, Chicago, US
Mar. 27, 2017

e

Illfnhiliu :

i

[

Jaehoon Paul Jeong*, Mahdi Daghmehchi,
Tae-Jin Ahn, Rakesh Kumar, and Susan Hares



Contents

D Introduction

Il Architecture of Security Manage

o
.

E Use Case-VOLTE security service

B2 Update of Version

g Next Step




Introduction (1/2)

. N

* This document describes a data model for
security management based on 12NS
framework by using NFV

» A data model to perform VolP-VoLTE

security service




Introduction (2/2)

. ’

s

Defining high-level policies and translate them to several h

low-level policies

Updating low-level policies based on NSF capabilities
Monitoring network’s events and implementing security

functions based on NFV

K.
-~

o)

m 12NSF User

Consumer Facmg Interface

g

o mm e

{
a

/
\
-

Security
Controller

v

4



. p

Security Management Architecture (1/3) -,

I2NSF User

Security Managenf t',Systerr

Policy Updater

—> Application Logic

Event Controller

—I Consumer-Facing Interface

I

v

Security
Policy
Manager

Security Controller

NSF
Capability
Manager

Registration Interface

Developer’s
Mgnt System

NSF Instance

 Application Logic
Generating high-level security
policies

« Event Controller
Event monitoring and sending
to Application logic

 Policy Updater
Distributing high-level policies
to the Security Controller




' ’

Security Management Architecture (2/3) * .

I2NSF User

Policy Updater

Security ManagemF ¢Systerr

—> Application Logic

Event Controller

v

Security Controller

Security
Policy
Manager

NSF
Capability
Manager

NSF Instance

—I| Consumer-Facing Interface

Registration Interface

Developer’s
Mgnt System

-

Kcapability manager

~

Security Policy Manager

» Mapping high-level
policies into several low-
level policies

* Delivering low level

policies to NSF(s)

NSF capability manager
Storing the NSF’s
capability and sharing it
with Security policy
manager

Developer’s Mgnt system

Registering new NSF’s

capabilities into NSF




Security Management Architecture (3/3) *

I2NSF User

Policy Updater

Security Managerr*—:' g,Systerr

—> Application Logic

Event Controller

—I Consumer-Facing Interface

' v
I
Security Controller Registration Interface
Security NSF Developer’s
Policy Capability Mgnt System
Manager Manager
NSF Instance
NSF . NSF

' ,

/

\_

* NSF Instance

Exploiting low-level policies
delivered by the Security
policy manager

~

)




Security Management for VoLTE t

|

VoL TE/VolP security management:
Application Logic

)

/ Defining security conditions \

(e.g., blacklists of IP addresses & source
ports, expire time, user agents)

Updating the illegal devices
information (manually/automatically)

Generating new high-level security
policies

Updating the VolP-VOLTE database

based on the NSF’s anomalous detection

Information model for
Consumer-Facing Interface *

/Im‘ormation Model for: \

 Threat Prevention
To reduce the attack surface (e.g.,
Botnet)

* Policy endpoint groups
Where a security policy is to be
applied

* Policy Instance
A complete information for any

policy instance (e.g., where/when

v policy need to be applied) /

* draft-kumar-i2nsf-client-facing-interface-im-01 8



Update of Version
TRy TRE | ;m e aled A R b m'; | g b hed
i bty A o e i il



Update of Version (1/3) Q-

v

= The changes from draft-jeong-i2nsf-consumer-facing-
interface-dm-00:

= Addition of a new component (Update for NSF’s
feedback) and its description in data model.

* Implementation of the corrected data model based on
YANG model.

= draft-jeong-i2nsf-consumer-facing-interface-dm-01

defines an overall structure of consumer-facing interface and
Its YANG data model.

10




Update of Version (2/3)
Data Model for VOLTE Security Service

High-level policies basements:

 Blacklisting countries
« Time interval specification
 Caller’s priority levels

-

¢

KI' he data model consists of:

 Policy life cycle management
 Policy rule
« Action

Update (NSF’s Feedback or
\ Unexpected Event)

4
~

/

P

(Jeft-iJnsf-policy]

+--rw policy-lifecycle-list

+--Tw explration-event
| +--Tw enabled
|  +--rw event-id

+--rw policy-lifecycle-container

*(policy- LEecvcle«Iid)

|
I
I
I
|
|
I
|
T

| +--Tw event-date
+--rw expiration-time

+--rw enabled

toorw time

boolean
uint 16
date-and-time

boolean
date_and-time

+-—Tw

--rw policy-rule-list
olicy-rule-container *Tpolicy-rule-id]

+--rw policy-rule-1
+--rw policy-name
+--rw policy-date
+--rw serwvice

+--rw condition

+--voip-handling
+--volte-handling

+--rw caller

| +--rw caller-id

| +--rw caller-location

| +--I'W country

| +--Tw city

+--rw callee

| +--rw callee-id

| +--rw callee-location

| +--Tw country

| +--rw city

+--rw valid-time-interval
+--rw start-time
+--rwW end-time

uint 16
string
date-and-time

boolean
boolean

*[condition-id]

uint 16

string
string

uint 16

string
string

data-and-time
data-and-time

-rw action-Llist

+--Tw action-container

|
I
|
|
I
|
|
I
|
|
I
|
|
I
|
|
I
|
|
T
|
I
|
I
|
|
I
|
|
.

+--Tw actlon-date
+--rw action-name

+--: (action-name-ingress)
| +--rw permit?

|  +--Tw mirror?

| +--rw log?

+--! (action-name-engress)
+--rw redirection?

date-and-time
string
boolean
boolean
boolean

boolean

+--rw update-list
+--Tw update-container
+--rw update-event

+--rw update-event-id
+--rw update-enabled
+--rw update-event-date
+--rw update-log

#*(update-id)

uint 16
boolean
date-and-time
string

11



Update of Version (3/3)

¢

Data Model for VOLTE Security Service

/

\
Policy life cycle management

Specifies an expiration time and/or event to

determine the life-time of the policy itself

A

Policy rule

Represents the specific information about a high-
level policy

e.g., service types, conditions and valid time interval

~

/
_ A
Action

Specifies the actions which should be performed

when a policy rule is matched by NSF

Update
Update a policy to reflect upon the event triggered by
NSFs.

+-—3 (Jeft-insf-policy]

+--rw policy-lifecycle-list
| +--rw policy-lifecycle-container *

(policy-lifecycle

hd)

T
|
|
I

+

--IwW explration-event
+--Tw enabled
+--rw event-id
+--rw event-date

--rw expiration-time
+--rw enabled

to-rw _time

boolean
uint 16
date-and-time

boolean
date-and-time

-rw policy-rule-list
+--1rw policy-rule-container

*Ipolicy-rule-id]

-rw policy-rule-id
-rw policy-name
-rw policy-date
-rw service

+--voip-handling
+--volte-handling

rw condition *[condition-id]
+--rw caller

| +--rw caller-id

| +--rw caller-location
| +--I'W country

| +--Tw city

+--rw callee

| +--rw callee-id

| +--rw callee-location
| +--Tw country

| +--rw city

+--rw valid-time-interval

+--rw start-time
+--rwW end-time

uint 1lé
string
date-and-time
boolean
boolean

uint 16

string
string

uint 16
string
string

data-and-time
data-and-time

- T

action-list

--rw action-container

I
I
|
|
|
I
L
ram
|
I
|
I
|
|
I
|
|
I
|
|
I
|
|
I
|
|
I
|
|
T
|
|
|
I
|
|
I
|
|

2 =
+——

T'w actlon-date
rw action-name

date-and-ctime
string

P
+--rw update-event-date
P

rw update-log

+--: (action-name-ingress)
| +--rw permit? boolean
|  +--Tw mirror? boolean
| +--rw log? boolean
+--! (action-name-engress)
+--rw redirection? boolean

"

+--rw update-list

+--Tw update-container #*(update-id)
+--rw update-event
+--rw update-event-id uint 16
rw update-enabled boolean

date-and-time
string

12



Next Step

.

.

~

Generic YANG Data Model
Modify current data model to be a Generic model

Implementation of more use cases A
e.g., Untrusted domain (malware distributer)
detecting, and access control function (time/location
depended) |




