L4S TCP-Prague

ICCRG IETF98 Chicago

March 27th, 2017

Koen De Schepper
Bob Briscoe
Olga Bondarenko
Inton Tsang
DualQ for DCTCP

DualQ AQM was main focus up to now

- Classic and DCTCP window compatibility
- PI2 as the classic AQM
- Overload handling
- Large number of experiments: flow numbers, RTTs, dynamic flows, overload

L4S - DualQ concept proven, usable with DCTCP

- Adoption of 3 drafts in TSVWG
- Linux open source released, mainline release ongoing
Recent focus on TCP-Prague

Internet-safety:

• 4.1: Fall back to Reno/Cubic congestion control on packet loss
• 4.2: Fall back to Reno/Cubic congestion control on classic ECN bottlenecks
• 4.3: Reduce RTT dependence
• 4.4: Scaling down the congestion window
• tcpm: Accurate ECN and negotiation draft-ietf-tcpm-accurate-ecn

Performance improvements:

• 5.1: Setting ECT in SYN, SYN/ACK and pure ACK packets
• 5.2: Faster than additive increase
• 5.3: Faster convergence to fairness

implemented work in progress
Prevent marking probability saturation

4.4: Scaling down the congestion window

Range \(p = [0 .. 1] \)

Range \(1/p = [1 .. \text{infinite}] \)

Rate should range from \([0 .. \text{infinite}] \) \(\rightarrow 1/p - 1 \)

Solution: Average unmarked packets between marks

\[u = \frac{1}{p} - 1 = \frac{1-p}{p} \]
Average unmarked:

\[p = 10\% \quad 1/p = 10 \quad u = 9 \quad = 1/p - 1 \]

\[p = 50\% \quad 1/p = 2 \quad u = 1 \]

\[p = 90\% \quad 1/p = 1,111 \quad u = 0,111 \]

\[\text{avg}(1 \quad 0) = 0,111 \]

\[p = 100\% \quad 1/p = 1 \quad u = 0 \]
Marking probability saturation

Drop based rate is also reduced by the dropped packets:

\[r_{\text{drop}} = \frac{(1 - p)}{p \cdot \text{RTT}} \]

unified: \[r \sim= \frac{u}{\text{RTT}} \]

Helps for

- scaling the congestion window down
- better drop compatibility
- solving RTT independence
4.3: Reduce RTT dependence

In Classic TCP, big queues → less RTT dependent:

\[
\begin{align*}
\text{RTT1} &= 100 \text{ ms} + 20 \text{ ms queue delay} = 120 \text{ ms} \\
\text{RTT2} &= 1 \text{ ms} + 20 \text{ ms queue delay} = 21 \text{ ms}
\end{align*}
\]

Rate ratio = \(\frac{120}{20} = 6\times\text{less throughput}\) for flow with 100ms RTT

L4S has small or no queues at all → high RTT dependence

\[
\begin{align*}
\text{RTT1} &= 100 \text{ ms} + 1 \text{ ms queue delay} = 101 \text{ ms} \\
\text{RTT2} &= 1 \text{ ms} + 1 \text{ ms queue delay} = 2 \text{ ms}
\end{align*}
\]

Rate ratio = \(\frac{101}{2} = 50\times\text{less throughput}\) for flow with 100ms RTT
Marking rate & probability

Marking probability p

- Equal for all flows
- Used to converge to equal window or rate

Marking rate $m = p \cdot \text{rate}$

- Depends on the rate too
- Is the signal frequency, which is indication for level of delay control
Question for ICCRG

Compromise between:

• RTT independence with $RTT_{ref} = 2ms$:
 \[r = \frac{2}{p \cdot RTT_{ref}} = \frac{1000}{p} \rightarrow p \cdot r = 1000 \]
 ✓ always 1000 marks per second
 ✗ not scalable to small RTTs

• RTT scalability:
 \[r = \frac{2}{p \cdot RTT} \rightarrow p \cdot r = \frac{2}{RTT} \]
 ✓ always 2 marks per RTT
 ✗ rate is very RTT dependent
Where is the right compromise?

Current DCTCP: 2 marks per RTT

Less dependent: $f(\text{RTT})$ marks per RTT

- The higher the RTT the more marks per RTT

Full RTT independence:

- Constant marks per second (eg: 1 mark per ms)
- The higher the rate the more marks per ms

Full RTT scalability and RTT independent:

- Constant marking probability at all rates
Where is the right compromise?

\[m = \text{steady state marking rate} = p \times \text{rate} = f(\text{RTT}^X, \text{rate}^Y) \]
Related DualQ discussion topics

L4S-only AQM:

- DCTCP-like immediate step
- AQM with gradual p control

DualQ Coupling function:

- Classic TCP-fairness is well known: $1/\sqrt{p}$ but future?
- Also coupling is determined by how DCTCP / TCP-Prague behaves
- RTT-independent related coupling

work in progress
Conclusion

L4S - DualQ concept proven and usable with DCTCP
- Low latency and low loss with window-fairness to classic Reno, Cubic, …

L4S: opportunity for new/existing improvements
- What other improvements can we bring to the Internet together with L4S - DualQ?
- Limited opportunity if tsvwg drafts go for last call

Think and discuss about RTT fairness: supporting paper, design team?

Next meeting in Prague: TCP-Prague implementations?
Questions

koen.de_schepper@nokia.com