ICN in the IoT on RIOT

Cenk Gündogan, Oliver Hahm, Thomas C. Schmidt, Matthias Wählisch

Outline

- 1. Problems & Scenarios
- 2. ICN-IoT Platform: CCN-lite on RIOT
- 3. Content Dissemination in the IoT: Implementing Pub/Sub

Problem Space (that we look at)

- Constrained systems
 - Memory: scarce kBs
 - Storage: the least constraint (if available)
 - Operations: possibly long sleep cycles
- Communication
 - Event triggers insufficiently supported: want no push on the data plane
 - Data availability: timely at lowest price
- Naming
 - Role of contexts unclear

Typical IoT Network Scenarios

- Sparse deployment (of fixed devices)
- Inhomogeneous node coverage
- Partitioned networks
- Mobility
- Intermittent connectivity
- Selected uplinks into a cloud environment

Opportunities with ICN for IoT

- Mobility
 - Mobile devices are common for the use cases
 - Content counts, not addresses
- Security
 - False alarms may lead to shutdowns
 - Dropped alarms may lead to health risks
- Network management
 - Easy deployment and auto-configuration
 - Reducing total cost of ownership
- Network caches
 - May reduce latency for multiple services
 - Fixed devices anchor network caching

Shortcoming of ICN in the IoT

Routing on Names

- Long names, limited aggregation potentials
- FIBs (too) large, high churn potentials

Simplified Link-layer Model

• NDN assumes point-to-point or broadcast

IoT Wireless is a Broadcast Domain

- Lack of L2 mapping moves all packets to the CPU
 - Increases system load and energy consumption
- IoT link layer technologies usually restricted to short MTUs
 - Enhanced susceptibility to interference and loss

Implementing ICN in the IoT: Network Stack

Which ICN implementation?

• CCN/NDN

Which operating system for IoT?

• RIOT

Porting CCN-Lite to RIOT

- 1,000 lines of C code
- Required ROM 16 kBytes
- Required RAM 5 kBytes

More details: Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C. Schmidt, Matthias Wählisch, **Information Centric Networking in the IoT: Experiments with NDN in the Wild**, **In:** *Proc. of ACM ICN*, pp. 77--86, New York:ACM, 2014.

CCN-lite on RIOT

- Joint development started in late 2016
- Objective: Maintain CCN-lite as a RIOT package
- Major refactoring started
 - Code reorganization
 - New source structure and include policies
 - Many bug fixes & adaptations (56 PRs closed so far)
 - Features related to IoT platforms
- Dedicated branch in CCN-lite repo: <u>https://github.com/cn-uofbasel/ccn-lite/tree</u> IFTF 98

New Features

- CCN-Lite runs on a wide range of IoT devices via RIOT (analog to NDN-RIOT)
- LoWPAN support added to CCN-Lite
 - CCN-Lite implements RIOT's recursive **netapi**
 - Inherits support for all protocols/drivers
- Multi-Transceiver /Multi-Stack-Support in RIOT
 - Enables easy gateway functions
 - ICN-MQTT gateway ready
- Two new hooks in CCN-lite
 - -on interest
 - -on cache full

Roadmap & Ongoing Steps

- Building a build system:
 - Modularize code dependencies
 - Produce Makefiles ...
- CI similar to RIOT environment replace Travis?
- Enhance data structures for constrained devices
- Eliminating dynamic memory allocation
 - Provide a fixed size, dynamically usable mem-pool
 - Trade protocol state with cache
 - Limit names by a fixed max length

Content Dissemination

• How to publish data efficiently without continued node presence and huge FIBs?

• <u>draft-gundogan-icnrg-pub-iot-00</u>

Pub/Sub in ICN?

- Common Pub: Push on the data plane
- ICN paradigm contradicts pushing of data still there is around
 - Unsolicited Push Message
 - Interest Notification
 - Long-Lived Interest
 - Interest polling
- What happens on the control plane?

ICN Control Plane

- Distributes routing information
- Fills FIBs \rightarrow distribute names
 - Originally plain broadcast
 - Flooding according to selected routing protocols
 - Unicast push to Name Collector (PANINI)
 - Request/Response replication (Chronosync)
- Publishing = Making a name available?

More details: Thomas C. Schmidt, Sebastian Wölke, Nora Berg, Matthias Wählisch, Let's Collect Names: How PANINI Limits FIB Tables in Name Based Routing, In: Proc. of IFIP Networking, pp. 458–466, IEEE Press, 2016.

Pub/Sub Approach

RP

- Construct a rendezvous network
- RPs are content nodes
 - Gateways
 - Caches
 - Content stores (CDN replica ...)
- RPs announce prefixes
 - Prefix-specific
 default routing
 Publisher

Subscribers

Publishing Names

- A content producer ,tells' the new name to the content node
 - Name advertisement along default route (Panini NAM)
 - Pushing the name, not the content

Publishing Content

- The content node may request data
 - Replication to caches/deputy nodes
 - Data follows Interest

Subscribing to Content in the IoT

- Interest following default route
 - Returns a unique content item
 - May carry a "sub"-indicator for future alerts
- Name advertisement
 - Meta table _____
 (polling) _____
 - NAM advertisement
 (broadcast/ multicast)
 Publisher

Implementation

Questions & Discussion?

http://ccn-lite.net/

http://riot-os.org/