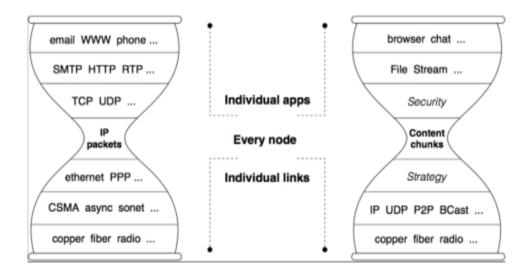


ICN-WEN Information Centric-Networking in Wireless Edge Networks

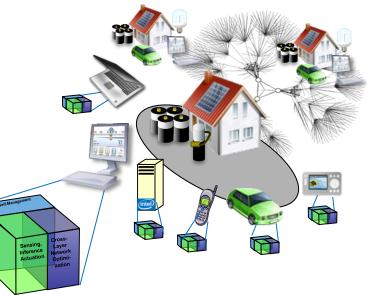
Srikathyayani Srikanteswara Jeff Foerster Intel Labs (IL)


March 30, 2017

Eve Schooler Internet of Things Group (IoTG)

Outline

- Backstory
- ICN-WEN Program
- Bigger Picture
- Next Steps

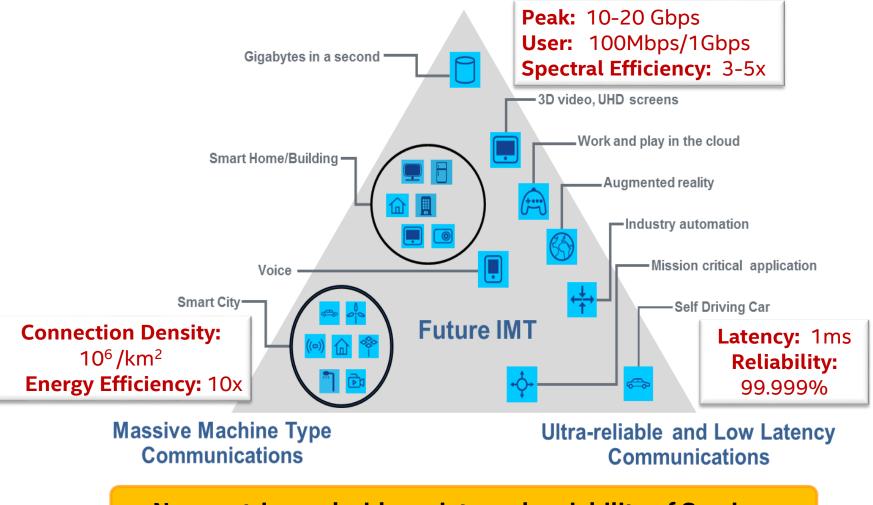


"Thin waist of the Internet"

Backstory: ICN for IoT

- Deployed ICN at the network edge
 - Within edge administrative domain
 - Sidestepped global deployment
- Built early IoT PoCs: ICN as a trusted data bus
 - Smart home Pub-sub and Security APIs
 - Smart neighborhood *Data-centric privacy*
 - Massive IoT software updates Scalability
 - Edge computing Move the compute to the data
- Supplied user vs. router insights
- Grew partnership between Labs & IoTG

NSF-Intel ICN-WEN Program: \$6.5M over 3 years, 2-3 projects to be awarded


- Focus on Wireless Edge Networks
 - Ultra low-latency and massive IoT applications
- ICN approach to 3 dimensions:
 - wireless device endpoints
 - wireless network infrastructure and architecture
 - wireless data security and privacy
- Clean-slate design
- Research goals: <u>NSF 16-586</u>
 - Create new integrated ICN approach for wireless nets
 - Address fundamental challenges of wireless ICN data delivery
 - Demonstrate & quantify benefits of a potential ICN-WEN
 - Evaluate realistic deployments & implementation complexities

ICN and 5G+ Networks

- ICN over wireless a natural next step
- 5G+ use cases very different from traditional ones
 - High bw and support for large #s of devices
 - AR/VR, autonomous vehicles, dense IoT, robotics, drones, etc.
- New usage models where source-dest model falls short
 - Source is inaccessible: e.g., in sleep mode, offline, encounters congestion, mobility or interference
- IoT Data
 - Data often originates and is processed at the Edge
 - May (not) flow back to the core
 - ICN enables access to data within the network
 - With less application dependence

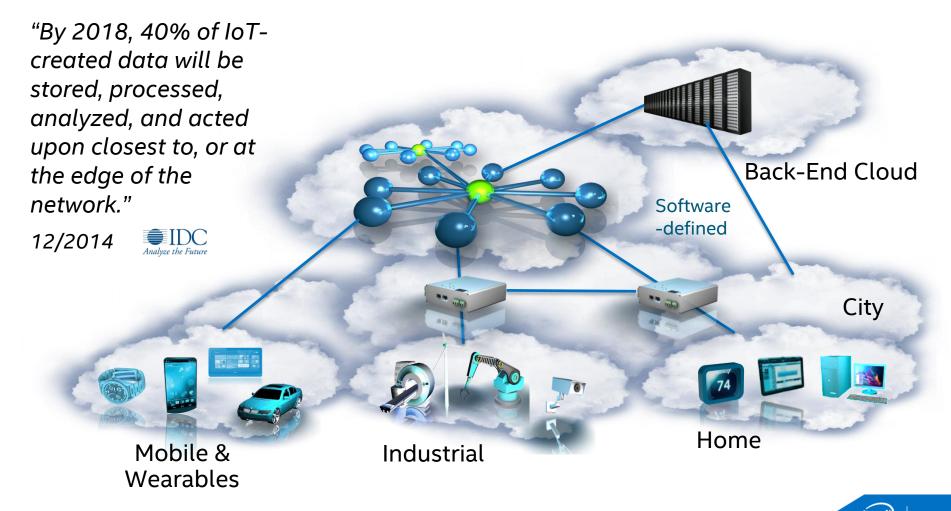
Translating to 5G Requirements ITU's IMT Vision

Enhanced Mobile Broadband

New metrics and wide variety and variability of Services

Likely ICN-over-Wireless Benefits?

- Wireless Edge Networks with dynamic reconfigurations and data requirements
 - Flow of data cannot be programmed during net setup
 - Benefits in routing and data management
- Data access benefits in Non-star topologies
 - Not simple Cellular and WiFi
 - Wireless mesh networks
- Liberation of meta-data
 - Use of contextual info in the lower layers w/out app dependence
- Support for reverse data flows
 - Combines routing with caching/storage ... & processing


Challenges and Hard Problems

- Producer mobility
- Security and Privacy
 - End user devices may have limited resources to implement complex encryption
 - How to establish trust?
- Bridging ICN islands with each other and with IP networks
- Modifications to ICN architecture to directly implement over wireless MAC layer
- Wireless co-design with ICN
 - Make ICN wireless-aware
 - Make wireless ICN-aware

Why is Intel interested in ICN?

- ICN has potential, but is it ready for prime time?
 - Develop practical ICN use cases
 - Develop ICN implementations that can be commercialized & standardized for industry adoption
- What is improved if we use ICN instead of IP?
- Evaluate potential for
 - Being an industry solution
 - Implementing 5G+ networks
 - Meeting ultra low-latency requirements and massive IoT solutions
 - Enabling Edge/Fog computing

Data Inversion Problem: IoT Edge data flows upstream Cloud functionality migrating to be more proximate to the data

10

Problem: Legacy clouds fall short ...or are unusable

When the IoT data generated is

- Delay-sensitive
- High-volume
- Trust-sensitive
- (Intermittently) Disconnected

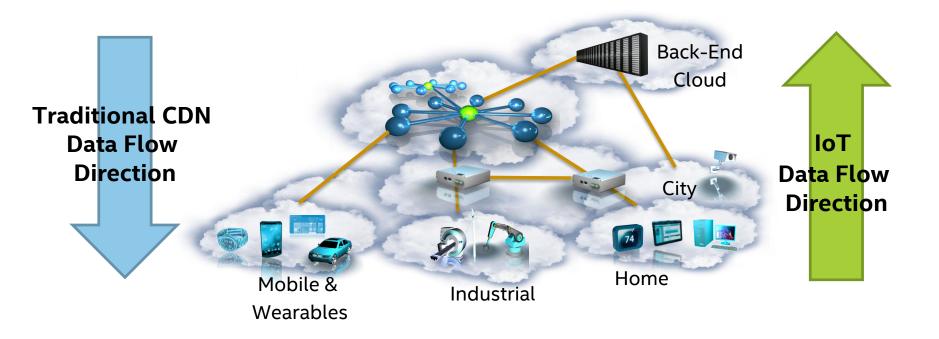
Countless examples

• Both near term & further out

Video Analytics

Smart20K wysLegacyCamera(24x7)Cloud(24.7 Mbps)(~1.6 Tbps)

Augmented Reality



- Data heavy
- Compute intensive
- Response times <30ms
- Small form factor
- Low power

11

Need for Edge and Fog Computing A Multi-tier Cloud of Clouds

Use ICN for rCDNs (reverse CDNs)?

Reverse data flows combining routing with storage and processing

12

Bigger Picture: From Cloud to Edge to Fog Computing

- IoT Data disruption ...
 - What's the <u>network+compute+storage</u> architecture needed?
 - What's the impact on privacy, security, trust models?
 - How/where to put the control?
- Liberation of data and meta-data
 - Accessible anywhere? Safeguarded everywhere?
- ICNs role in and/or relationship to...?
 - Fog data flows Intra-cloud, E/W and N/S (rCDNs)
 - Smart data/object frameworks
 - Data naming, lineage and interoperability
 - "Organically-grown" Trust

Questions?

