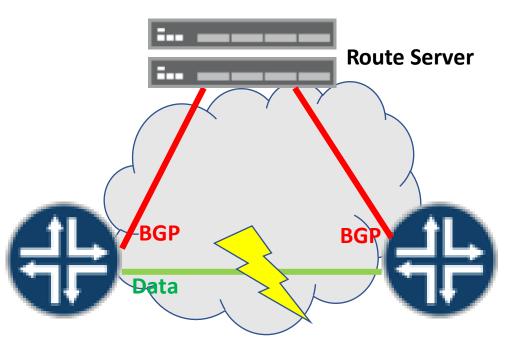

draft-ietf-idr-rs-bfd-03

IETF 98 – Chicago


Randy Bush	< <u>randy@psg.com</u> >
Jeffrey Haas	< <u>jhaas@juniper.net</u> >
John Scudder	<jgs@juniper.net></jgs@juniper.net>
Arnold Nipper	< <u>arnold.nipper@de-cix.net</u> >
Thomas King	< <u>thomas.king@de-cix.net</u> >

Problem Statement

- In Internet Exchange Point (IXP) environments, routers may peer with each other using BGP Route Servers (RFC 7947).
 - The IXP switching fabric connecting peers typically is supplied as a broadcast link, such as Ethernet.
- Routes learned from a Route Server are not learned directly from the peer supplying the destination or the BGP next-hop.
- In the event of data link issues, the switching fabric may become partitioned. Since the routes learned from the Route Server are not learned directly from a peer, the router may blackhole traffic to that destination.

When the **data plane** breaks, the **control plane** can detect this.

When the **data plane** breaks, the **control plane** doesn't notice.

Solution

- Route Server Client routers verify connectivity to the next-hops of the learned routes using BFD (RFC 5880).
 - When a next-hop isn't reachable via BFD, treat routes using that next-hop as unreachable.
 - This is still useful for non-Route Server scenarios.
- Route Servers tell their clients about available next-hops.
- Route Server clients use this knowledge to provision BFD sessions.
- Route Server clients tell their server about reachability of the monitored next-hops.
- The Route Server can use this next-hop reachability to influence the contents of a Client's BGP routes in its view.

Next-hop tracking

- This document defines a "Next-Hop Information Base":
 - Adj-NHIB-In: The nexthops you've learned from this mechanism from a peer.
 - Adj-NHIB-Out: The nexthops you're telling a peer about.
- What you place in the NHIB will depend on the role are you a route server or its client?

General Procedure

- The Route Server tells its clients about next-hops it knows about for a given client rib-out (view). I.e. puts the next-hops in its Adj-NHIB-Out.
 - It'll include the next-hops it has in there. Basically, the next-hops in that view's rib-in.
 - It'll also include the BGP peering addresses if a next-hop isn't available. You need this so the BFD session can be provisioned when you have asymmetric distribution of routes through the RS.
- Route Server clients set up BFD sessions to the received next-hops in its Adj-NHIB-In.
- The clients tell the Route Server about whether the next-hop is reachable or not. I.e puts the next-hop in its Adj-NHIB-Out.

What's changed in this document?

- < -02, NHIB was distributed via nh-cost SAFI (draft-ietf-idr-bgp-nhcost). This wasn't quite a good fit for the feature, and overloaded the SAFI inappropriately.
- -02 used BGP-LS. Good fit! However, feedback was that the complexity was too high for this application.
- -03 Proposal to use new RS-Reachable SAFI. Very similar to Nexthop-SAFI but highly simplified for this use case. Expand detail on more of the procedure.

What needs improvement?

- Good discussion on the mailing list; suggestions queued for next rev.
- Discussion among the authors suggests that the NHIB model description is a bit convoluted since the behavior depends on the point of view of the BGP speaker. Is it the Route Server, or its client?
 - Will simplify next rev.
- Current proposal leaves "negative state" tracked by the Route Server that needs to be flushed in some circumstances.
 - Will move to a new mechanism that always sends current state.
- The document has been through three sets of editors and needs cleanup.
 - Will happen in -04.