An Overview of MAMS (Multiple Access Management Services)

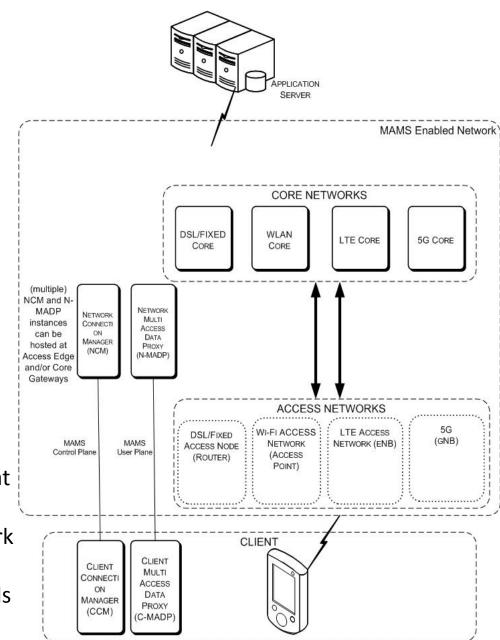
draft-kanugovi-intarea-mams-protocol-03

draft-zhu-intarea-mams-control-protocol-00

Satish Kanugovi (<u>satish.k@nokia.com</u>), Hannu Flinck (<u>hannu.flinck@nokia.com</u>), Nurit Sprecher (n<u>urit.specher@nokia.com</u>)

Co-Authors: Nokia, Broadcom, Intel, Huawei, AT&T, KT

Motivation


- Devices are capable of Multiconnectivity Applications have ability to leverage multiple networks
- Application QoE (quality of experience) varies with choice of network paths
 - Performance varies dynamically based on network conditions, e.g. radio conditions, user population, actual network utilization
 - e.g. 1, Wi-Fi offers good capacity with small number of users which quickly degrades, low throughputs and large unpredictable delays due to uplink contention with larger user population.
 - e.g. 2, LTE capacity is limited by available licensed spectrum but offers predictable performance even with increasing number of users
- Deployment configurations determine certain network path choices for applications
 - e.g. Enterprise apps available only via Wi-Fi IP gateway, Cellular operator hosted Cloud only available via cellular IP gateway, VPNs
- Different traffic types require different user plane treatment
 - e.g. MPTCP based aggregation of link capacity for TCP based video flows, Encapsulating Trailer/Header (e.g. GRE) based reordering support for UDP traffic over multiple links
- Selecting best combination of network paths and user plane treatment is essential for consistent and high QoE
 - Dynamically adapt to changing network conditions
 - e.g. Improve enterprise conferencing service (e.g. Skype) by choosing Wi-Fi access in uncongested conditions, Switch only uplink to LTE access as Wi-Fi radio link condition degrades or congestion increases

MAMS - Introduction

- MAMS is a framework for
 - Integrating different access network domains based on IP layer interworking,
 - with ability to select access and core network paths independently
 - and user plane treatment based on traffic types
 - that can dynamically adapt to changing network conditions
 - based on negotiation between client and network

Architectural Framework

- MAMS functional elements
 - Network Connection Manager (NCM)
 - Intelligence in the network to configure network paths and user plane protocols based on client negotiation
 - Client Connection Manager (CCM)
 - Negotiates client's capabilities and needs with the NCM and configures network path usage
 - NCM CCM message exchange enables
 - Dynamic selection of best network paths
 - Flexible configuration of MADP protocols and parameters
 - Overlay and Extensible messaging (e.g. JSON over HTTP)
 - Multiple Access Data Proxy (C/N-MADP)
 - C-MADP handles user plane functions at the client and N-MADP at network.
 - User plane distribution and aggregation across configured network paths.
 - Supports any user plane protocols including existing IETF protocols like TCP, UDP, MPTCP, SCTP, QUIC, GRE, ...

MAMS Control and User Plane Protocols

- Control Plane
 - Messages carried over HTTPS/TLS agnostic to underlying transport network
 - Configures user plane protocols per application needs and client and network capabilities
 - Supports dynamic adaptation of network paths and user plane protocol selection triggered by changing network conditions
- User Plane
 - Provides services like Traffic Aggregation and distribution
 - Can be use existing protocols like MPTCP, GRE Proxy
 - Or new user plane protocols (e.g. Trailer Adaptation)
 - Divided into:
 - MX Convergence Sublayer: Aggregation and Distribution
 - MX Adaptation Sublayer (optional): access and transport specific aspects of a single path (e.g. NAT, User plane security)

+ Multi Acc	cess (MX) Cont	trol Message
++ HTTPS		
TCP/TLS		
MAMS Control Plane Protocol		
User Payload (e.g. IP PDU)		
++ Multi Access (MX) Convergence Sublayer ++		
	MX Adaptation Sublayer (optional)	MX Adaptation Sublayer (optional)
Access #1 IP Access #2 IP Access #3 IP +		

MAMS User Plane Protocol

Summary

- Lightweight integration of different access technology domains
 - multi-tech/vendor/operator network e.g. LTE, DSL, Wi-Fi, 5G
 - any layer e.g. IP, MPTCP, PDCP
- Flexible function placement:
 - RAN, Core or MEC, all can be managed independently
 - Device implementation as SW upgrade (application or OS)
- Use cases benefitting from MAMS
 - Ideal for LTE/Wi-Fi integration for enterprises, public venues and stadiums
 - Introduction of local (e.g. hotspot) 5G deployments and co-operation with the rest of existing infrastructure
 - Improved use of existing fixed line assets, unified platform for managing utilization and joint traffic steering across multiple networks

BACK-UP

Relation to other IETF work

- MAMS is a framework for negotiation, configuration and delivery of network paths in a multinetwork scenario.
 - Control layer for flexible combination of access and core network paths and user plane treatment
 - Efficient delivery of user plane over multiple paths with no impact to existing network/transport protocols
 - Dynamic best path selection based on real-time network conditions and utilization.
 - Minimal impact to actual underlying network technology and architecture
- IETF groups are engaged in development of multipath user plane protocols
- MAMS is not bound to any specific user plane protocol, e.g. TCP, UDP, MPTCP, GRE but provides mechanism to negotiate use and configuration of the protocols.
- Network state information from MAMS framework can be used to optimize user plane operation.
 - e.g. CCM-NCM can exchange policy [1] or optimal path information [2] to complement MPTCP operation
- MAMS framework is agnostic to underlying network technology
 - Applicable to multi-network integration discussions including LTE, Wi-Fi, DSL, and 5G
- MAMS framework is complementary to such IETF work

References

[1] Lance Hartung and Milind M. Buddhikot, "Policy Driven Multi-band Spectrum Aggregation for Ultra-broadband Wireless Networks", 7th IEEE Dynamic Spectrum Access Networks (DySPAN) 2015. Stockholm, Sweden.

[2] S. Borst, A. O. Kaya, D. Calin, H. Viswanathan, "Optimal Path Selection in Multi-RAT Wireless Networks", in Proc. of IEEE INFOCOM 2016 Wkshp on 5G & Beyond – Enabling Technologies and Applications, April 2016, SF, CA