A Blockchain-based Mapping System

IETF 98 – Chicago March 2017

Jordi Paillissé, **Albert Cabellos**, Vina Ermagan, Fabio Maino acabello@ac.upc.edu

http://openoverlayrouter.org

A short Blockchain tutorial

Blockchain - Introduction

- Blockchain = decentralized, secure and trustless database
- Add blocks of data one after another
- Protected by two mechanisms:
 - Chain of signatures
 - Consensus algorithm
- First appeared: Bitcoin, to exchange money
- Many more applications are possible

Blockchain - Properties

- Decentralized: all nodes have the entire blockchain
- No prior trust required
- Decouples ownership from identity
- Append-only and immutable: added transactions cannot be modified
- Verifiable

A Blockchain-based Mapping System **Overview**

Basic Idea

- Objective: Securely store:
 - EID prefix delegations (as in RPKI or DDT-ROOT)
 - EID-to-MS information (as in DDT)
 - EID-to-RLOC mappings (as in MS)
- Map Resolvers read the blockchain to find the mappings
- Idea: An EID is equivalent to a coin
 - Wallet: A set of EIDs
 - Transaction: Delegating EIDs or binding them to a MS or a set of RLOCs
 - Blockchain: A public ledger of the transactions

A Blockchain-based
Mapping System
Storing EID delegations and
EID-to-RLOC mappings

A Blockchain-based
Mapping System
Storing EID delegations
and EID-to-MS information

Pros and Cons

Pros

- Infrastructure-less and decentralized
- Fast lookup
- Secure, without certs
 - Non-repudiation
 - Resilience
 - Integrity
 - Authentication
- No prior trust required
- Simple rekeying

Cons

- Challenges with incentives
- Slow updates
 - Mappings can be stored in a MS, then performance is as fast as DDT
- Costly bootstrapping
- Large storage required

Can be mitigated using a dedicated chain

Comparison with LISP-DDT

Blockchain

- + Fast update _ Dynamic mappings
- Manual configuration

- + Less infrastructure
- + No certificates
- + Fast queries
- Large storage required
- Update mappings slow ☐ Store Mappings in MS (same performance as MS)

Issues with RPKI

	RPKI	Blockchain
Anonymity [1]	Prefixes linked to owner name	Prefixes linked to a public key
Revocation	Performed by CAs	Performed automatically (validity time) or impossible
Certificate management [2]	Complex	No certificates

^[1] Wählisch, Matthias, et al. "RiPKI: The tragic story of RPKI deployment in the Web ecosystem." *Proceedings of the 14th ACM Workshop on Hot Topics in Networks*. ACM, 2015. [2] George, Wes. "Adventures in RPKI (non) Deployment." NANOG, 2014.

Scalability

Blockchain size estimation

- One mapping for each block of /24 IPv4 address space
- Growth similar to BGP churn*
- Prefix delegation + mappings
- Each transaction approx. 400 bytes
- Only prefixes: approx. 40 GB in 20 years (worst case + BGP table growth*)

A Blockchain-based Mapping System **Transactions**

First transaction

- Map-Resolver trust the Public Key of the Root, that initially claims all EID space by writing the genesis block
- Root can delegate all EID space to itself and use a different keypair

Prefix delegation

 Root delegates EID-prefixes to other entities (identified by Hash(Public Key)) by adding transactions

 Owners can further delegate address blocks to other entities or write MS addresses (and MS's Public Key)

Writing mappings

 Just like delegating a prefix, but instead of the Map Server address, we write the mapping

Rekeying

- Delegating the owned EID-prefixes to itself using a new key set.
- Simpler than traditional rekeying schemes
- Can be performed independently, i.e. each owner can do it without affecting other owners
- Same procedure for mappings

Map-Reply Authentication

- MS public key can also be included in the delegations
- Since blockchain provides authentication and integrity for this key, MRs can use it to verify Map-Replies

A Blockchain-based Mapping System **Prototyping**

Design considerations

- Bitcoin is too restrictive:
 - Only for money transfer
 - Huge blockchain file size (approx. 100 GB)
 - High bootstrap time (several days*)
 - Low throughput (7 transactions/sec.)
- New blockchain technologies:
 - More scalable
 - Smart contracts

Dedicated chain

- Public (anyone can use it) but dedicated (only for mappings)
- Stores:
 - Prefix delegations Replaces DDT ROOT
 - EID-to-MS information Replaces DDT-Nodes
 - EID-to-RLOC mappings (if you don't expect many updates) - xTR does NOT need a Map-Server
- We plan to deploy it in LISP-Beta

Prototype

A Blockchain-based Mapping System

IETF 98 – Chicago March 2017

Jordi Paillissé, Albert Cabellos, Vina Ermagan, Fabio Maino acabello@ac.upc.edu

http://openoverlayrouter.org

More about the Consensus Algorithm

- Rules used by nodes to agree on which data to accept
- Eg. Bitcoin uses Proof of Work
- Miners compute Proof of Work
 - Finding a nonce that when added to the data makes its hash start with N zeros.
 - Hard
- Other algorithms are being explored:
 - Proof of Stake: nodes with more assets are more likely to add blocks
 - Practical Byzantine Fault Tolerant: reach a minimum number of endorsements from nodes in order to add data
 - <u>Deposit-based:</u> assets are lost if a node performs an illegal operation (security deposit)