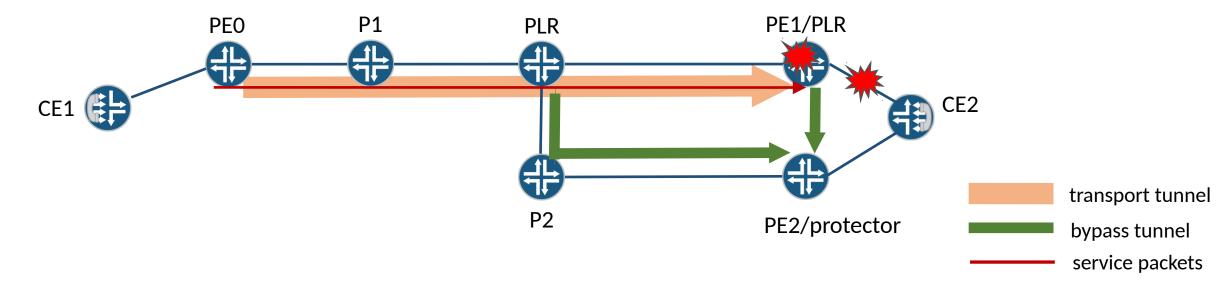
MPLS Egress Protection Framework draft-shen-mpls-egress-protection-framework-04

Yimin Shen (<u>yshen@juniper.net</u>)

Minto Jeyananth (minto@juniper.net)


Bruno Decraene (bruno.decraene@orange.com)

Hannes Gredler (hannes@rtbrick.com)

Carsten Michel (c.michel@telekom.de)

Egress Protection

- Egress failures egress node and egress link (aka. PE-CE link, AC).
- Egress protection FRR for protecting MPLS tunnels and services against egress failures.
 - Equivalent to FRR for transit link/node failures, e.g. RSVP, LDP, LFA.
 - Driven by local failure detection and local repair.
 - Complements global repair and topology convergence.

Protection at Service and Transport Levels

- Egress link failure is a service-level failure.
 - Service packets are unable to reach the service destination.
- Egress node failure is a two-level failure.
 - Transport tunnel MPLS packets are unable to reach the egress router.
 - Each service carried by the tunnel Service packets are unable to reach the service instance.
- Egress protection must be provided at both levels.
 - Transport level PLR redirects packets to a "protector".
 - Service level Protector hosts "protection service instances" to forward service packets towards service destinations.

Goals

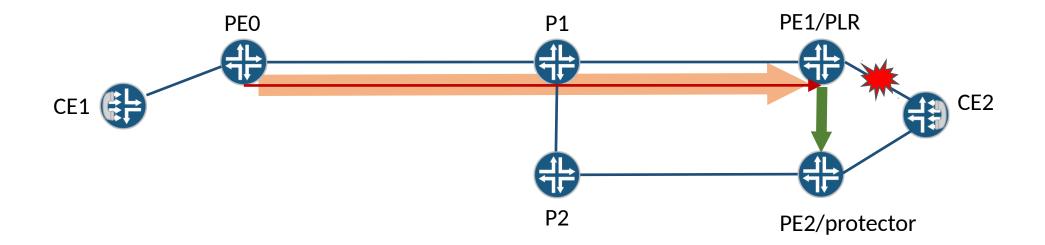
- Provide a generic and unified solution for egress protection.
 - Multi-transport and multi-service
 - Minimized complexity
- Provide a framework and guidelines towards services.
 - Service protocol extensions, if needed, should be addressed by separate drafts on a per-service-type basis.
 - ✓ PWE3 RFC 8401
 - ✓ Layer-3 VPNs section 8 of the draft

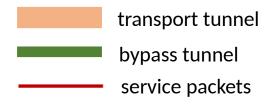
Goals (cont.)

- Must support P2P tunnels, as well as P2MP and MP2P tunnels by treating sub-LSPs as P2P.
- PLR must be agnostic with services and service labels, and maintain protection state on a per-tunnel basis, rather than per-service-label basis.
- PLR must be able to use local routing/TE info to resolve bypass tunnel.
- Protector must be able to perform context-based IP forwarding or label switching for rerouted service packets.
- Must work seamlessly with transit link/node protection mechanisms.

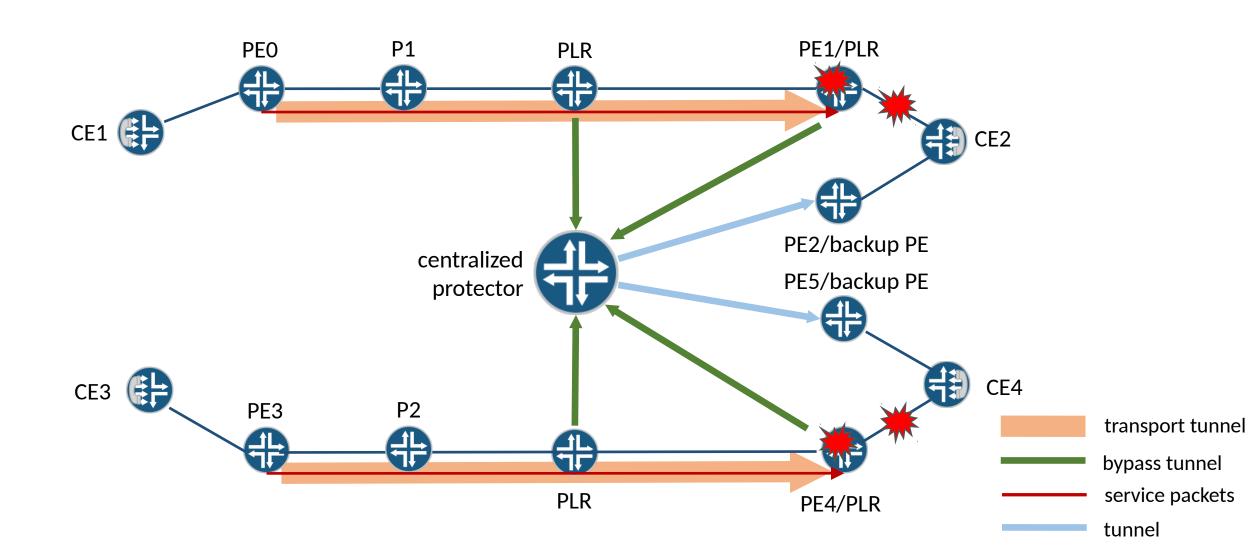
Building Blocks

- Router at PLR (point of local repair)
 - Penultimate hop router in egress node protection.
 - Egress router in egress link protection.
 - Pre-establishes a bypass tunnel to protector.
- Protector
 - Points bypass tunnel to special label table and IP forwarding table, corresponding to the label space and IP address space of protected egress router, respectively.
- Bypass tunnel
 - PLR reroutes packets to protector via a bypass tunnel, with service label intact.
 - UHP tunnel
- Context ID and context-based forwarding
 - Protector forwards service packets to ultimate service destinations, by using a label table and IP forwarding table indicated by a context ID.


Update 1 - New Co-authors


- Hannes Gredler (<u>hannes@rtbrick.com</u>)
- Carsten Michel (<u>c.michel@telekom.de</u>)

Update 2 – Allow Tunnel Protocol Extensions


- The draft should work with existing tunnel protocols.
- Tunnel protocol extensions are not precluded, if they can facilitate egress protection establishment.
 - Example: draft-ietf-teas-rsvp-egress-protection

Update 3 – Egress Link Protection

Update 4 - Centralized Protector Model

Next Steps

- Welcome comments.
- As the draft is mature, we'd like to request for WG adoption.